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Abstract

To leverage the copious amount of data from

source tasks and overcome the scarcity of the tar-

get task samples, representation learning based

on multi-task pretraining has become a standard

approach in many applications. However, up

until now, most existing works design a source

task selection strategy from a purely empirical

perspective. Recently, Chen et al. (2022) gave

the first active multi-task representation learning

(A-MTRL) algorithm which adaptively samples

from source tasks and can provably reduce the

total sample complexity using the L2-regularized-

target-source-relevance parameter ν2. But their

work is theoretically suboptimal in terms of to-

tal source sample complexity and is less practi-

cal in some real-world scenarios where sparse

training source task selection is desired. In this

paper, we address both issues. Specifically, we

show the strict dominance of the L1-regularized-

relevance-based (ν1-based) strategy by giving a

lower bound for the ν2-based strategy. When ν1

is unknown, we propose a practical algorithm that

uses the LASSO program to estimate ν1. Our

algorithm successfully recovers the optimal result

in the known case. In addition to our sample com-

plexity results, we also characterize the potential

of our ν1-based strategy in sample-cost-sensitive

settings. Finally, we provide experiments on real-

world computer vision datasets to illustrate the

effectiveness of our proposed method.

1. Introduction

Deep learning has been successful because it can effec-

tively learn a proper feature extractor that can map high-

dimensional, highly structured inputs like natural images
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and natural language into a relatively low-dimensional rep-

resentation. Recently, a big focus in deep learning has been

on few-shot learning, where there is not enough data to learn

a good representation and a prediction function from scratch.

One solution is using multi-task learning, which uses data

from other sources to help the few-shot target. This ap-

proach is based on the idea that different tasks can share a

common representation. The process starts by training on

a lot of source tasks to learn a simpler representation and

then uses that pre-trained representation to train on a limited

amount of target data.

Accessing a large amount of source data for multi-task rep-

resentation learning (MTRL) may be easy, but processing

and training on all that data can be costly. Therefore, it is

important to find ways to minimize the number of samples,

and perhaps the number of sources, needed from source

tasks while still achieving the desired performance on the

target task. Naturally, not all source tasks are equally impor-

tant for learning the representation and maximizing perfor-

mance on the target task. But to the best of our knowledge,

most research in this area chooses which tasks to include

in the training of the multi-task representation in an ad hoc

way (Asai et al., 2022; Fifty et al., 2021; Yao et al., 2022;

Zaiem et al., 2021; Zamir et al., 2018; Zhang et al., 2022b).

Notable exceptions include (Chen et al., 2021; 2022) that

study ways to improve training efficiency and reduce the

cost of processing source data by prioritizing certain tasks

during training with theoretical guarantees.

On the other hand, the significant empirical success of

MTRL has motivated a number of theoretical studies (Du

et al., 2021; Chen et al., 2022; Tripuraneni et al., 2021). In

particular, (Du et al., 2021) and (Tripuraneni et al., 2021)

provide generalization (excess risk) upper bounds on the

estimation error of the target task for passive multi-task

representation learning (P-MTRL). Here, passive means

that samples are drawn from tasks according to some non-

adaptive sampling strategy fixed before data is observed

(e.g., an equal number of samples from each task). Tripura-

neni et al. (2021) also proves a lower bound related to the

quality of whole feature representations in P-MTRL.

In this paper, our main focus is to guarantee a specific level

of accuracy on a target task while provably using the least

amount of data from other related tasks. This is achieved

1

a
rX

iv
:2

3
0
6
.0

2
5
5
6
v
1
  
[c

s.
L

G
] 

 5
 J

u
n
 2

0
2
3



Improved Active Multi-Task Representation Learning via Lasso

through task-level active learning. Chen et al. (2022) is

the first work to propose an active multi-task representation

learning (A-MTRL) algorithm that can provably reduce

the total number of samples from all the tasks compared

to the passive learning version (P-MTRL) by estimating

the relevance of each source task to the target task and

sampling accordingly. However, this previous work has

several limitations and leaves some questions open, in both

theory and practical application. For example, they did

not study the lower bounds of the excess risk on the target

task for Multi-Task Transfer Learning. Furthermore, Chen

et al. (2022) proposed an L2 regularized source-to-target-

task relevance quantity ν2, but it is unclear whether this

relevance score is the best criterion for the A-MTRL design

compared to other possible relevance scores. As we will

show later, their A-MTRL algorithm may not be optimal.

In our work, we build on (Chen et al., 2022) by optimizing

their upper bound of the excess risk and show that this

yields an asymptotically optimal sampling strategy which

corresponds to an L1 regularized relevance quantity ν1 and

samples from this distribution accordingly. Moreover, we

provide the first sampling-algorithm-dependent minimax

lower bound of excess risk on the target task for both the

A-MTRL in (Chen et al., 2022) and P-MTRL, which shows

that our algorithm can strictly outperform these baselines

even in the worst case.

In addition to the theoretical bounds, Chen et al. (2022) also

has practical limitations. When there exist multiple sam-

pling strategies that are seemingly equivalent under their

framework, their algorithm tends to put a little weight on

all tasks by nature of the L2 regularized solution ν2. This is

sometimes undesirable in practice as will illustrate by two

examples. First, setting up a sample-generating source can

be more expensive than actually generating the samples. For

example, in robotics, each source task can be considered

as a specific real-world testing environment that can take

weeks to set up, but then samples can be generated quickly

and plentifully (Shi et al., 2021). Second, previous research

assumes that the cost of samples is the same no matter how

much data we need or for how long. However, in reality,

subscribing to data from a single source for a long period of

time can lead to a lower average label cost. Therefore, even

with the same sample complexity from sources, choosing

fewer source tasks can be more beneficial. We propose a

general-purpose cost-sensitive A-MTRL strategy that ad-

dresses these scenarios and demonstrates the potential of our

proposed L1 regularized strategy in various cost-effective

situations.

1.1. Our Contributions

We summarize our contributions as follows.

• We begin by proving that the sampling distribution

over tasks using our proposed L1 strategy defined in

Def. 2.5 minimizes the target excess risk upper bound

of (Chen et al., 2022). We then consider a class of

strategies Lp-A-MTRL (A-MTRL with Lp strategy)

and show that, when T ≳ k2, for Ntot number of

total source samples, L1-A-MTRL is strictly domi-

nant over this class by proving that its estimation er-

ror decreases at least as fast as Õ( k
σ2
k
Ntot

) while the

error of the L2-A-MTRL/P-MTRL strategies suffers

algorithm-dependent minimax lower bound of at least

Ω̃( T
kσ2

k
Ntot

). Here T is the number of source tasks, k

is the dimension for the non-shared prediction func-

tion and σk characterizes the diversity of source tasks

which will be specified later. These minimax lower

bounds are novel to the MTRL literature. (Section 3.1,

3.2)

• While the L1-A-MTRL strategy provably has sample

complexity benefits over other sampling strategies, it is

not directly implementable in practice since it requires

prior knowledge of ν1 (i.e., those bounds only demon-

strate the performance of the sampling distribution, not

how to find it). Consequently, inspired by (Chen et al.,

2022), we design a practical strategy that utilizes the

Lasso and a low order number of samples to estimate

the relevance vector ν1, and then apply the L1 strat-

egy to sample source data using the estimated ν1. We

show that this practical algorithm achieves a sample

complexity nearly as good as when ν1 is known. The

key technical innovation here is that when the regular-

ization parameter is lower bounded, the Lasso solution

can be close to the ground truth value. (Section 3.3)

• Going beyond these main results, we demonstrate that

our L1-A-MTRL strategy can be extended to support

many sample-cost-sensitive scenarios by levering its

sparse source task selection properties. We formulate

this setting as an optimization problem and formally

characterize the benign cost function under which our

L1-A-MTRL strategy is beneficial (Section 4)

• Finally, we empirically show the effectiveness of our

algorithms. If we denote the practical algorithm of

(Chen et al., 2022) by L2-A-MTRL, we show that

our proposed L1-A-MTRL algorithm achieves 0.54%

higher average accuracy on MNIST-C relative to L2-A-

MTRL (92.6%), which confirms our theoretical results.

We then restrict most of the data to be sampled from

no more than 10 tasks, in order to mimic the sample-

cost-sensitive setting with decreasing per-sample cost.

Here we find L1-A-MTRL achieves 2.2% higher aver-

age accuracy relative to the uniform sampling (94.3%).

(Section 5).
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2. Preliminaries

In this section, We describe the relevant notations and the

problem setup for further theoretical analysis.

2.1. Notation

Miscellaneous. Let [T ] := {1, 2, ..., T} denotes the set

of source tasks and n[T ] := {n1, n2, ..., nT } denotes the

number of samples dedicated to each task. Likewise,

n[T ],i := {n1,i, ..., nT,i} represents the data from each task

at the i-stage for multi-stage learning procedure. If S is an

index set, |S| denotes the number of elements in S. We use

∥ · ∥p to denote the lp norm of vectors and use | · | or ∥ · ∥ to

denote the l2 norm for convenience. Let subGd(ρ
2) be the

d-dimensional sub-gaussian variables with variance ρ.

Singular Values. For A ∈ Rm×n, we denote by σi(A)
the i-th singular value of A, which satisfy σ1(A) ≥ ... ≥
σr(A) > 0 with r = rank(A). And we specify κ(A) as the

condition number of A, i.e., κ(A) = σ1(A)
σr(A) if σr(A) > 0.

Asymptotic comparison. We use the standard O,Ω,Θ
notations to hide the universal constants, and further use

Õ, Ω̃, Θ̃ to hide logarithmic factors. We use a ≲ b or b ≳ a
to denote a = O(b) and use a ≍ b to denote a = Θ(b).

2.2. Problem Setup

Multi-Task. Let t ∈ [T ] be the index of the T source tasks

and index T+1 denotes the target task. Each task t ∈ [T+1]
is associated with a joint distribution µt over X ×Y , where

X is the input space and Y is the output space. In this paper

we assume X ⊆ Rd and Y ⊆ R.

Data Generation. Like in (Chen et al., 2022), we as-

sume there exists an underlying representation function

ϕ∗ : X → R which maps the input space X to a feature

space R ∈ Rk where k ≪ d. And the representation func-

tions are restricted to be in some function classes Φ, e.g.,

linear functions, convolutional networks, etc. We further

assume that each t-th task for t ∈ [T + 1] follows a ground

truth linear head w∗
t that maps the particular feature to the

corresponding label. To be more specific, we assume the

i.i.d sample (xt, yt) ∼ µt satisfies

yt = ϕ∗(xt)
⊤w∗

t + zt, zt ∼ N (0, σ2
z) (1)

where xt ∼ pt and xt is independent to zt. For conve-

nience, we denote Xt = [xt,1, .., xt,nt
]⊤ ∈ Rnt×d to be the

input data matrix which contained nt i.i.d. sampled data

(xt,1, yt,1), ..., (xt,nt
, yt,nt

) ∼ µt from the t-th task, and

Yt = [yt,1, ..., yt,nt
]⊤ ∈ Rnt , Zt = [zt,1, ..., zt,nt

] ∈ Rnt

to be the labels and noise terms aligned to the inputs. For

convenience, we define Ntot :=
∑T

t=1 nt to be the total

sampling number from all the source tasks.

Transfer Learning Process. As in (Du et al., 2021), firstly

we learn the representation map on the source tasks by

solving the following optimization problem

ϕ̂, ŵ1, ..., ŵT = argmin
ϕ∈Φ,w1,...,wT∈Rk

1

T

T∑

t=1

1

nt
∥Yt−ϕ(Xt)wt∥22

(2)

Here we allow nt to vary from different tasks

rather than requiring uniform sampling and ϕ(Xt) :=
[ϕ(xt,1), ..., ϕ(xt,nt

)]⊤ ∈ Rnt×k. Then we retain the

learned representation and apply it to the target task while

training a specific linear head for this task:

ŵT+1 = argmin
wT+1

1

nT+1
∥YT+1 − ϕ̂(XT+1)wT+1∥22 (3)

Goal. Our main goal is to bound the excess risk (ER) of

our model on the target task with parameters (ϕ̂(x), ŵT+1)
while minimizing the total cost of sampling data from the

source tasks. Here, like in (Du et al., 2021; Chen et al.,

2022), we define the population loss as LT+1(ϕ̂, ŵT+1) =

E(x,y)∼µT+1
[(yT+1 − ϕ̂(xT+1)

⊤ŵT+1)
2]. Then from (1)

we can define the excess risk:

ER(ϕ̂, ŵT+1, ϕ
∗, w∗

T+1)

= LT+1(ϕ̂, ŵT+1)− LT+1(ϕ
∗, w∗

T+1)

= Ex∼pT+1
[(ϕ̂(x)⊤ŵt − ϕ∗(x)⊤w∗

t )
2]

(4)

It should be mentioned that in this paper, we consider the

model performance under the worst circumstance, therefore

we treat the ground truth parameters ϕ∗, w∗
T+1 as the ar-

guments of excess risk, which is different from that in the

previous works (Du et al., 2021; Chen et al., 2022).

Linear Representation. Our theoretical study concentrates

on the linear representation function class, which is widely

used in many previous works (Du et al., 2021; Tripuraneni

et al., 2020; 2021; Thekumparampil et al., 2021; Chen et al.,

2022). Namely, we let Φ = {x 7→ B⊤x | B ∈ Rd×k} and

thus ϕ(Xt) = XtB ∈ Rnt×k. Without loss of generality,

we assume the ground truth representation map B∗ is an or-

thonormal matrix, i.e., B∗ ∈ Od,k, which is also commonly

used in the related works (Chen et al., 2022; Tripuraneni

et al., 2021; Kumar et al., 2022).

Other assumptions. Assume Ext∼pt
[xt] = 0, Σ∗

t =

Ext∼pt
[xtx

⊤
t ] and Σ̂t :=

1
nt
(Xt)

⊤Xt for any t ∈ [T + 1].
We have the following assumptions for the data distribution:

Assumption 2.1. (sub-gaussian input). There exists ρ ≥ 1
such that xt ∼ pt is subGd(ρ

2) for all t ∈ [T + 1].

Assumption 2.2. (proper variance) For all t ∈ [T + 1], we

have σmax(Σ
∗
t ) = Θ(1) and σmin(Σ

∗
t ) = Θ(1).

Variance conditions are common in the related works (Tripu-

raneni et al., 2021; Du et al., 2021; Chen et al., 2022) and

3
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Assumption 2.2 is a generalization than identical variance

assumption used in (Tripuraneni et al., 2021; Chen et al.,

2022) which requires Σ1 = ... = ΣT+1 = Id. Specially, we

only use the identical variance assumption in Section 3.3.

Assumption 2.3. (high dimension input and enough tasks)

The parameters satisfy d > T ≥ k ≥ 1 and d ≫ k.

Finally, we also need diverse task assumption mentioned in

(Tripuraneni et al., 2021; Du et al., 2021; Chen et al., 2022).

Denote W ∗ := [w∗
1 , ..., w

∗
T ] ∈ Rk×T , then we assume:

Assumption 2.4. (diverse task) The matrix W ∗ satisfies

σmin(W
∗) > 0.

Assumption 2.4 claims that W ∗ has full row rank, so we

can definitely find some ν ∈ RT such that W ∗ν = w∗
T+1,

and thus (6) in Def. 2.5 is well-defined. It’s a necessary

assumption for learning reasonable features as proven by

(Tripuraneni et al., 2021).

2.3. Scope of A-MTRL algorithms in this paper

Here we state the scope of the A-MTRL algorithm consid-

ered in this paper. Recall that in (Chen et al., 2022), the

learner samples in proportional to
ν̂(t)2

∥ν̂∥2
2

number of data from

task t, where ν̂ is defined via the following solution:

argmin
ν

∥ν∥2 s.t. W ∗ν = w∗
T+1 (5)

Here instead of focusing on this L2 regularization, we study

the whole candidate set of source-target relevance terms

and the corresponding sampling strategies. Formally, we

generalize Definition 3.1 of (Chen et al., 2022) to propose:

Definition 2.5. (LpNq sampling strategy) Let ν(t) be the

t-th element of vector ν ∈ RT and N be the minimum

number of sampling data from every source task. The LpNq

strategy is defined as taking nt = max{c′|νp(t)|q, N} for

some constant c′ > 0, where nt is the number of samples

drawn from from the t-th task, and

νp = argmin
ν

∥ν∥p s.t. W ∗ν = w∗
T+1. (6)

If p = q, we denote Lp as the abbreviation of LpNq. For

example, if N = 0, then the L1 strategy corresponds to

nt = Ntot

∥ν1∥1
· |ν1(t)| and the L2 strategy corresponds to

nt =
Ntot

∥ν2∥2
2
|ν2(t)|2, where Ntot is the total source sampling

budget.

In the rest of the paper, we will focus on this LpNq sampling

strategy set.

3. Main Results

3.1. Optimal Strategy L1-A-MTRL with Known ν

In this section, we aim to obtain the optimal sampling strat-

egy that can achieve the required performance on the target

task with the smallest possible number of samples from

source tasks. Firstly, with linear representation assumption,

we rewrite ER(B̂, ŵT+1, B
∗, w∗

T+1) in (4) as follows:

Ex∼pT+1
∥x⊤(B̂ŵT+1 −B∗w∗

T+1)∥22. (7)

Then from the intermediate result of Theorem 3.2 in (Chen

et al., 2022), we get the upper bound of excess risk for all

A-MTRL methods:

Theorem 3.1. (Chen et al., 2022) Fix a failure probability

δ ∈ (0, 1). If Assumption 2.1, 2.2, 2.3, 2.4 hold, and the

sample size in source and target tasks satisfy nt ≫ ρ4(d+
ln(Tδ )) for all t ∈ [T ] and nT+1 ≫ ρ4(k + ln( 1δ )), then

with probability at least 1− δ we have:

ER(B̂, ŵT+1, B
∗, w∗

T+1)

≲ σ2(kd ln(
Ntot

T
) + kT + ln(

1

δ
))∥ν̃∥22 + σ2 (k + ln( 1δ ))

nT+1
(8)

where ν ∈ {ν′ ∈ RT |W ∗ν′ = w∗
T+1} and ν̃(t) = ν(t)√

nt
.

The key idea behind Theorem 3.1 is as follows. (Du et al.,

2021) provides the first upper bound for the MTRL problem.

They consider sampling data evenly from each source task

and demonstrated that following the transfer learning pro-

cess (Eqn. 2, 3), the target task error can be controlled by the

source-task training error O(σ2(kd + kT )/Ntot) and the

target-task fine-tuning error O(σ2k/nT+1). However, in

their proof, the ground truth linear head w∗
T+1 is required to

satisfy a distribution Q such that ∥Ew∼Q[ww
⊤]∥ ≤ O( 1k ).

(Chen et al., 2022) go beyond this limitation by lever-

aging the equation W ∗ν∗ = W̃ ∗ν̃∗ = w∗
T+1, where

w̃∗
t = w∗

t

√
nt and ν̃∗(t) = ν∗(t)√

nt
. This idea introduces

the source-target relevance vector ν∗ ∈ RT into the bound

and results in Eqn. 8.

Inspired by Theorem 3.1, in order to minimize the excess

risk bound with a fixed sampling quota Ntot, we need to

find the optimal sampling strategy n[T ] = {n1, ..., nT } by

solving the following optimization problem:

min
ν,n[T ]

∥ν̃∥22 =
T∑

t=1

(ν(t))2

nt

s.t. W ∗ν = w∗
T+1

T∑

t=1

nt = Ntot

nt ≥ N, ∀t ∈ [T ]

(9)

Here N(≫ ρ4(d+ ln(Tδ ))) is the minimum sampling num-

ber for every source task as in Theorem 3.1. In this section,

we will transform (9) into a bi-level optimization problem

and obtain the asymptotic optimal solutions of (9).
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3.1.1. OPTIMAL STRATEGY FOR ANY FIXED ν

We first consider a fixed ν in (9) and find the optimal sam-

pling strategy accordingly, and we get:

Lemma 3.2. For any fixed ν such that W ∗ν = w∗
T+1,

the optimal n∗
[T ] for minimizing ∥ν̃∥22 satisfies n∗

t =

max{c′|ν(t)|, N} for every t ∈ [T ], where c′ > 0 is some

constant such that
∑T

t=1 n
∗
t = Ntot.

This lemma indicates an optimal sampling strategy under

some fixed, arbitrary ν ∈ {ν′|W ∗ν′ = w∗
T+1}. We can

then apply Lemma 3.2 to the previous bound (8) and deduce

the theoretical optimal bound on the sample complexity of

the source tasks for any suitable ν. Here, for simplicity, we

skip the trivial case where the model achieves sufficiently

high accuracy with uniformly allocated sampling data N by

requiring ε2 ≪ min(1, σ2(kd+ kT )
∥ν∥2

1

TN ). This condition

guarantees that Ntot ≫ TN , and we get:

Corollary 3.3. Assume Assumption 2.1, 2.2, 2.3, 2.4 hold

and ν is fixed. Then the optimal sampling strategy n[T ]

satisfies nt = max{c′|ν(t)|, N}, ∀t ∈ [T ], and with proba-

bility at least 1− δ, the optimal A-MTRL algorithm satisfies

ER ≤ ε2 with ε2 ≪ min(1, σ2(kd+ kT )
∥ν∥2

1

TN ) whenever

the total sampling budget from all source tasks Ntot is at

least

Õ(σ2(kd+ kT )∥ν∥21ε−2) (10)

and the number of target samples is at least Õ(σ2kε−2).

Discussion. To show the optimality of our bound, we com-

pare this with the result in (Chen et al., 2022). Their known

ν2 (denoted as ν∗ in their original paper) is equivalent to

argmin
ν

∥ν∥2 s.t. W ∗ν = w∗
T+1.

Under the same setting but using this ν2, with probability

at least 1− δ , A-MTRL algorithm with sampling strategy

n[T ] such that nt = max{c′′(ν(t))2, N}, ∀t ∈ [T ] satisfies

ER ≤ ε2 with ε ≪ 1 whenever Ntot is at least

Õ(σ2(kd+ kT )s∗∥ν2∥22ε−2) (11)

and the required number of target samples is also

Õ(σ2kε−2). Here s∗ = minγ∈[0,1](1 − γ)∥ν2∥0,γ + γT

and ∥ν2∥0,γ := |{t : |ν2(t)| >
√

γ∥ν2∥22N−1
tot }|. From

Lemma 3.2 we know our strategy is better than the previ-

ous under given arbitrary ν setting, so we have ∥ν∥1 ≲√
s∗∥ν∥2 ≤

√
T∥ν∥2, ∀ν ∈ {ν′|W ∗ν′ = w∗

T+1}. In par-

ticular, we show the gap between ∥ν∥1 and
√
s∗∥ν∥2 can

be very large under some special cases as follows.

Example: Almost Sparse ν. Assume T ≫ 1, Ntot ≫
NT ≥ T , then we consider an extreme case where

ν(t) =

{ √
1− 1

T−1 , t = 1
1

T−1 , t = 2, ..., T
(12)

Then ν is approximately 1-sparse since 1
T−1 ≪ 1, and we

have ∥ν∥1 =
√
1− 1

T−1 + 1 < 2, ∥ν∥2 = 1. Let γ0 :=
Ntot

(T−1)2 , it’s easy to prove s∗ ≥ min{γ0, 1} × T ≫ 1. This

result in
√
s∗∥ν∥2 ≫ ∥ν∥1 and A-MTRL in (Chen et al.,

2022) requires a sample complexity that is min{ Ntot

2(T−1) ,
T
2 }

times larger than our optimal sampling strategy.

3.1.2. OPTIMAL ν IN CANDIDATE SET

Secondly, suppose we are able to access the whole set

{ν′|W ∗ν′ = w∗
T+1}, now we aim to find the optimal ν

from the candidate set for sampling. Once we find such a

ν∗, we can utilize rules in Lemma 3.2 to obtain n∗
[T ] and ap-

ply all the results above. Here we focus on the case in (Chen

et al., 2022) where ER bound ε2 → 0 and Ntot → +∞ and

we deduce that L1-minimization solution is the best choice.

Theorem 3.4. Let (ν1, n1
[T ]) denotes the sampling parame-

ters of L1 strategy defined in Def. 2.5, i.e.,

ν1 = argmin
ν

∥ν∥1 s.t. W ∗ν = w∗
T+1

n1
t = max{c′|ν1(t)|, N}, ∀t ∈ [T ]

(13)

Let (ν∗, n∗
[T ]) denote the optimal solution of (9). Then as

Ntot → +∞ we have ν1 → ν∗, n1
[T ] → n∗

[T ].

Theorem 3.4 shows that the L1 strategy can correspond to

the asymptotic optimal solution of (9). As a reference, Alg.

1 in (Chen et al., 2022) is equivalent to L2 strategy, and we

call these classes of methods Lp-A-MTRL (A-MTRL with

Lp strategy) method with known νp for further discussion.

3.2. How Good Is L1-A-MTRL with Known ν?

Comparison on the Worst Target Task

To show the effectiveness of the L1 strategy with known

ν1, we analyze the performance of MTRL algorithms on

a worst-case target task w∗
T+1 that maximizes the excess

risk. Firstly, for better comparison, we define the sampling-

algorithm-dependent minimax lower bound of excess risk.

Let Γ(σk) = {W ∈ Rk×T |σmin(W ) ≥ σk} for any σk >
0, then we define:

Definition 3.5. (minimax ER lower bound) The mini-max

lower bound of ER on the target task for Lp-A-MTRL

method ERLp
(σk) is defined as

inf
(B̂,ŵT+1)

sup
(B∗,W∗,w∗

T+1)

Ex∼µT+1
∥x⊤(B̂ŵT+1 −B∗w∗

T+1)∥22

= inf
(B̂,Ŵ )

sup
(B∗,W∗,νp)

Ex∼µT+1
∥x⊤(B̂Ŵ νp −B∗W ∗νp)∥22

(14)

where W ∗ varies on Γ(σk) such that Assumption 2.4 holds

and νp denotes the Lp-minimization solution of W ∗ν =
w∗

T+1 like (6). Similar definitions hold for P-MTRL.
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Remark 3.6. The left term of (14) denotes the case that

we consider the average error of the best prediction model

(B̂, ŵT+1) on any target task facing any possible ground

truth parameters (B∗,W ∗, w∗
T+1). The equality of (14)

holds because choosing ŵT+1 is equivalent to choosing

any Ŵ ∈ {W ′|W ′νp = ŵT+1}, given the (W ∗, w∗
T+1)-

dependent νp. Note that we consider the Lp strategy as

Def. 2.5 which is determined by (νp, nt), so once we choose

some Lp-A-MTRL algorithm, (14) just depends on model

parameters and σk.

With this definition, we show that with known νp, the ER

on the worst target task for L1-A-MTRL can reduce up to
T
k times of total sampling data from source tasks than that

of L2-A-MTRL(Chen et al., 2022) and P-MTRL.

Theorem 3.7. Assume conditions in Theorem 3.1 hold,

∥w∗
T+1∥ = Θ(1) and ν1, ν2 defined in Def. 2.5 are known.

Then for L1-A-MTRL, we claim ν1 is at most k-sparse, i.e.,

∥ν1∥0 ≤ k. If Ntot ≫ TN and W ∗ ∈ Γ(σk), then with

probability at least 1− δ, for ER defined in (7) we have 1 :

ERL1
≲ σ2(kd ln(

Ntot

T
) + kT + ln(

1

δ
))

k

σ2
k ·Ntot

but for P-MTRL and L2-A-MTRL, with probability at least

1− δ we have :

ERL2
(σk), ERpassive(σk) ≳ σ2 dT

σ2
k ·Ntot

So when T ≳ k2, L1-A-MTRL outperforms L2-A-MTRL and

P-MTRL for the worst target task.

Discussion. In essence, the sparsity of νp causes the

difference in model performance on the worst-case tar-

get task. For the upper bound of L1-A-MTRL, We

show ∥ν̃1∥22 ≲ k/(σ2
k · Ntot). And for the lower bound

of L2-A-MTRL and P-MTRL, we utilize the fact that

infB̂,Ŵ supB∗,W∗ ∥Xt(B̂Ŵ − B∗W ∗)∥22 ≳ σ2kd (up to

logarithmic factors) and the result that when the row of

W̃ ∗ is well aligned with ν̃2, then ∥(B̂ − B∗)W̃ ∗ν̃2∥ ≳

∥(B̂ − B∗)W̃ ∗∥F ∥ν̃2∥, where ν2 can be chosen to satisfy

∥ν̃2∥ ≳ T/(k · σ2
k ·Ntot).

3.3. L1-A-MTRL Algorithm and Theory

In the previous sections, we showed the advantage of A-

MTRL with the L1 sampling strategy when ν1 is given.

However, in practice, ν1 is unknown and needs to be esti-

mated from W ∗ and w∗
T+1, which themselves need to be

1For the previous upper bound in Theorem 3.1, people esti-
mate non-shared w∗

T+1 by linear-probing on the target task so (8)
contains target-related error term. However, under the ºcheatingº
case in Theorem 3.7, knowing νp means we already have such
information as long as nt is large enough since W ∗νp = w∗

T+1.
We want to emphasize that this known νp assumption is used for
illustrating why L1 strategy is better, but not for practical use.

estimated with unknown representation B∗ at the same time.

In this section, we design a practical L1-A-MTRL algorithm

shown in Algorithm 1 which estimates the model parameters

B̂, Ŵ , ŵT+1 and relevance vector ν̂1. Here in our algorithm

setting, we let

β1 = 105Tk3 · C
6
W

σ6
(d+ ln(

4T

δ
))

β2 = k(d+ T + ln(
1

δ
))∥ν̂1∥21ε−2 + β1

(15)

where CW is defined in Assumption 3.8. β1 and β2 charac-

terize the sample complexity required to explore at the first

and second stage, respectively, and they are determined by

Tβ and Ntot defined in Theorem 3.10.

We want to highlight that unlike the L2-minimization ap-

proach of (Chen et al., 2022), our L1-minimization solution

does not have a closed form solution which creates more

challenges in controlling the estimation error between ν̂1

and ν1. To deal with this problem, we use the Lasso Pro-

gram (Wainwright, 2019; Tibshirani, 1996) to estimate ν̂1:

ν̂1 ∈ arg min
ν∈RT

{1
2
∥ŵT+1 − Ŵν∥22 + λk∥ν∥1} (16)

where the regularization parameter λk is chosen by users.

We prove that with proper λk, ν̂1 will be sufficiently close

to ν1 in l1 norm when the following assumptions hold.

Assumption 3.8. (bounded norm) There exists CW , R > 0
s.t. σmax(W

∗) ≤ CW and ∥w∗
T+1∥2 = Θ(R).

Assumption 3.9. (identical covariance) we have: Σt =
Σ∗ = Id for all t ∈ [T + 1].

Assumption 3.8 implies ∀t ∈ [T ], ∥w∗
t ∥2 = ∥W ∗en∥2 ≤

CW , which is a very common condition in the previous work

(Du et al., 2021; Tripuraneni et al., 2021; Chen et al., 2022).

Assumption 3.9 is a stronger variance condition than As-

sumption 2.2, but it’s also used in (Tripuraneni et al., 2021;

Chen et al., 2022) and we only need it in this section. With

these assumptions we are prepared to state our theoretical

guarantee for our practical L1-A-MTRL algorithm:

Theorem 3.10. Let Assumption 2.1, 2.3, 2.4, 3.8, 3.9

hold. Let γ = max{2160k3/2C2
W /σ,

√
2160k3/2C3

W /σ},

where σ = σmin(W
∗) > 0. For L1-A-MTRL method, we

set the regularization parameter by:

λk = 45

√
kRCWσ

γ
max{1, CW

γ
} (17)

Then to let ERL1
≤ ε2 where ε2 ≪ min(1, σ2(kd +

kT )
∥ν∥2

1

TN ) with probability 1 − δ, the number of source

samples Ntot is at most

Õ(σ2(kd+ kT )∥ν1∥21ε−2 + Tβ) (18)
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Algorithm 1 L1-A-MTRL Method

1: Input: confidence δ, representation function class Φ,

ER bound ε ≪ 1, minimum singular value σ
2: Initialize N = β1/T with (15) and λk with (17),

3: Phase 1: Exploration ν
4: Draw N i.i.d samples from every source task datasets

5: Estimate ϕ̂1, Ŵ 1 and ŵ1
T+1 with Eqn.(2), (3)

6: Estimate ν̂1 by Lasso Program (16)

7: Set β2 with Eqn. (15)

8: Phase 2: Sampling

9: Set n2
t = max{β2|ν̂1(t)| · ∥ν̂1∥−1

1 , N}.

10: Draw nt i.i.d samples from t-th source task datasets

11: Estimate ϕ̂2, Ŵ 2 and ŵ2
T+1 with Eqn.(2), (3)

where β = max{γ2 σ2
z

σ4 , γ
2C2

W

σ4 ρ4, ρ4,
σ2
z

σ2 } · (d + ln( 4Tδ )),
and target task sample complexity nT+1 is at most

Õ(σ2kε−2 + α) (19)

where α = max{γ2 σ2
zC

2
W

σ4R2 , γ
2C2

W

σ4 ρ4, ρ4} · (k + ln( 4δ )).

Discussion. Comparing to the known ν case in Corol-

lary 3.3, in this unknown ν setting we find our algorithm

only requires an additional ε-independent number of sam-

ples Tβ for the sampling complexity from source tasks

and α for that from target task to achieve the same per-

formance. (Chen et al., 2022) have similar results, but

their additional term β in their Theorem 4.1 has an or-

der of ε−1. Technically, (Chen et al., 2022) directly uses

the closed form of least square solution and proves that

|ν̂2(t)| = Θ(|ν2(t)|), ∀t ∈ [T ] if nt ≥ c′′ · ε−1. How-

ever, for Lasso-based L1-A-MTRL method, we can choose

some proper parameter λk which can upper bound not only

the noise term but also the l1-error between Lasso solution

and true vector as ∥ν̂1 − ν1∥1 = Θ(∥ν1∥1) if nt ≥ c′ · ε0
(Lemma E.3). Here c′, c′′ > 0 are model-related constants.

Moreover, we remark that we have a similar limitation as

(Chen et al., 2022) that we require some prior knowledge

of σ. However, since they only hit the additional constant

terms, they are unlikely to dominate either of the sampling

complexities for reasonable values of d, k, T and ε ≪ 1.

Lastly, it is worth mentioning that similar results to The-

orem 3.10 also apply when our L1-A-MTRL algorithm

incorporates multiple sampling stages, as presented in Al-

gorithm 2 in Appendix. The reason is that we only need to

ensure that the minimum sampling budget is larger than N
which is independent of the stage, and the additional proof

follows a similar approach to that of Theorem E.4 in (Chen

et al., 2022).

4. Extentsion: Cost-sensitive Task Selection

In Section 3, we proved that the L1 strategy can minimize

the total number of samples from the source tasks. Implic-

itly, this assumes the cost of each task is equal, and the first

sample costs the same as the n-th sample. In contrast, we

could also consider a non-linear cost function for the t-th
source task ft : N → R, which takes in the number of ran-

dom label query n and outputs the total required cost. For

example, this could encode the notion that a long-term data

subscription from one single source may result in decreasing

the average cost over time.

Here we show that, even in this task-cost-sensitive setting,

our L1-A-MTRL method Algorithm 1 can still be useful

under many benign cost functions. Consider the following

example.

Example: Saltus Cost Function. Assume Ntot and N
are fixed. If nt,1 = N , f :≡ ft for all t ∈ [T ] and f is

composed by fixed cost and linear variable cost:

f(n) =

{
Cfix + Cvar(n−N) , n > N

0 , n ≤ N
(20)

where for each source task t we have N free data for sam-

pling. As a reference, one practical instance for this case is

programmatic weak supervision, where setting up a source

requires some high cost but afterward, the query cost re-

mains low and linear (Zhang et al., 2022a). If we want to

find some proper ν to minimize the total cost
∑T

t=1 ft(nt),
then it’s equivalent to finding the L0 minimization solution

of Ŵν = ŵT+1, where Ŵ , ŵT+1 is estimated by free data.

Of course, L0 minimization is known to be intractable, so

with proper λf , the L1-A-MTRL method can be a good

approximation.

Now, we are ready to give a formal definition of our goal

and the characterization of when our L1-A-MTRL method

can be useful. Based on the excess risk upper bound in

Theorem 3.1, to get ER ≤ ϵ2, we are aimed to solve the

following optimization problem.

min
n[T ],2

T∑

t=1

ft(nt,1 + nt,2)

s.t. σ2k(d+ T )
T∑

t=1

ν(t)2

nt,1 + nt,2
⪅ ε2

W ∗ν = w∗
T+1

nt,2 ≥ 0, t ∈ [T ]

(21)

Then we have the following guarantees as long as ft satisfies

the properties shown there.

Theorem 4.1 (informal). Assume ft is a piecewise second-

order differentiable function, and on each sub-function, it

satisfies ft ≥ 0,∇ft ≥ 0,∇2ft ≤ 0 and ∇ft(nt,1 +

7
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nt,2) = Ω(n−2+q
t,2 ) for some q ∈ (0, 2]. Denotes the op-

timal solution of (21) as (n∗
[T ],2, ν

∗). Then under a similar

data generation assumption as before, we have

n∗
t,2 = ht(|ν∗(t)|) (22)

where ht is a monotone increasing function that satisfies:

ct,1x ≤ ht(x) ≤ ct,2x
2/q where ct,1, ct,2 > 0 . Moreover,

we claim A-MTRL algorithm with n∗
[T ],[2] sampling strategy

is k-sparse, i.e., ∥n∗
[T ],2∥0 ≤ k.

Discussion. If ∇ft(n
∗
t,2) ≡ c > 0, (112) is equivalent to L1

strategy mentioned in the previous sections. However, for

many other cases, it might be NP-hard to optimize (21), such

as the Saltus Cost Function example shown above. There-

fore, our previous algorithm L1-A-MTRL can be widely

applied to these task-cost-sensitive scenarios to approximate

the optimal strategy.

5. Experiments

Although our theoretical analysis only holds for a linear

representation, our experiments also show the effectiveness

of our algorithm on neural network representations as well

in the task selection case. In this section, we follow the

experimental settings in (Chen et al., 2022) and empirically

evaluate L1-A-MTRL on the corrupted MNIST (MNIST-C)

dataset proposed in (Mu & Gilmer, 2019). We reflect the

preponderance of our algorithm on the two scenarios men-

tioned above. The first one is cost-agnostic, which aims to

minimize the total sampling number from the source tasks

and can reach all the source tasks. Another scenario is task-

cost-sensitive like Section 4 and we particularly concentrate

on k task-selection algorithms which correspond to cost

functions like saltus cost function, and the learner is only

allowed to sample from only k tasks after the initial explo-

ration stage. We call the first case full task scenario and

the second one k-task selection scenario for convenience.

Please refer to Appendix G.1 for further illustration of our

intuition for the k-task selection scenario.

5.1. Experimental Setup

Datasets. The MNIST-C dataset is a comprehensive suite of

16 corruptions applied to the MNIST test set. Like in (Chen

et al., 2022), we divide each corruption-related sub-dataset

into 10 tasks according to their labels ranging from 0 ∼ 9
and thus get 160 separate new tasks denoted by º{corruption

type} {label}º. For instance, brightness 0 denotes the data

corrupted by brightness noise and relabeled to 1/0 based

on whether the data corresponds to number 0 or not. And

once we choose 1 task called º{type A} {label B}º for the

target task, the other 150 tasks that don’t contain ºtype Aº

corruption will be chosen as source tasks.

Experimental Setups and Comparisons. Like in (Chen

et al., 2022), we replace the cross-entropy loss, which is

commonly used for MNIST, with the regression l2 loss in

order to align with the theoretical setting in this paper. As

the model setting, for full tasks scenario, we use the linear

representation as defined in our theorem. We set d = 28∗28,

k = 50 and there are T = 150 source tasks in total. And we

compare L1-A-MTRL and L2-A-MTRL(Chen et al., 2022)

algorithms on the above datasets with 160 different target

tasks. For the k-task selection scenario, we use a 2-layer

ReLU CNN followed by a fully-connected linear layer as

the representation map. Since neural networks can better

capture the feature, here we set a smaller representation

dimension k = 10 to show the advantage of the sparse task

selection algorithm while other parameters follow the set-

ting in the case of the full tasks. We compare L1-A-MTRL,

which has been proved to be k-sparse from Theorem 3.7,

together with vanilla k-sparse baseline that randomly se-

lects k = 10 source tasks for sampling data at the second

stage. Please refer to Appendix G.2 for details of algorithm

implementation and Appendix G.3 for details on how to

determine the value of λk.

5.2. Results

Full tasks scenario. In summary, L1-A-MTRL achieves

0.54% higher average accuracy among all the target tasks

than L2-A-MTRL and results same or better performance in

126 out of 160 tasks. Due to the imbalanced dataset, 10%
is the error rate of the baseline which randomly guesses the

label, and the average prediction incorrect rate for L2-A-

MTRL is 7.4%.

k-Task selection scenario. Similarly, L1-A-MTRL

achieves 2.2% higher average accuracy among all the target

tasks than the vanilla baseline which has the average pre-

diction error rate of 5.7%. And our algorithm results in the

same or better performance in 149 out of 160 tasks. This

shows the effectiveness of our method on neural network

representation.

In Section G.4 of the appendix, we provide additional com-

parisons of the empirical sampling budgets for different

algorithms. The results demonstrate that L1-A-MTRL re-

quires fewer samples compared to L2-A-MTRL and P-

MTRL while achieving comparable performance. These

findings further underscore the effectiveness of our L1-A-

MTRL algorithm.

6. Conclusion

We introduced a novel active sampling strategy L1-A-MTRL

to sparse sample from target-related source tasks and learn

a good representation that helps the target task. From a

theoretical perspective, we first showed that L1-A-MTRL is

strictly better than the previous L2-A-MTRL by proving a
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Figure 1. Performance Comparison. These pictures show the prediction difference (in %) between our method and baseline for all target

tasks, the larger the better. The y-axis denotes the corruption type while the x-axis denotes to the binarized label, and each grid on (x, y)
corresponds to the case that the target task is º{y} {x}º. Left: full tasks scenarios. Compare L1-A-MTRL and L2-A-MTRL using linear

representation. Right: k-task selection scenarios. Compare two k-sparse task selection algorithms L1-A-MTRL and passive-learning

baseline, which randomly selects k source tasks for the second-stage sampling, using Convnet representation.

novel sampling-strategy-dependent lower bound and then

provided a tighter upper bound correspondingly. From the

empirical perspective, we showed our algorithm is not only

effective under the standard setting but can achieve even

better results in the practical scenario where the number of

source tasks is restricted.
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A. Related Work

Empirical works on P-MTRL and A-MTRL. Multi-task representation learning has been widely applied and achieved

great success in the natural language domain GPT-2 (Radford et al., 2019), GPT-3(Brown et al., 2020), vision domain CLIP

(Radford et al., 2019) and multi-model Flamingo (Alayrac et al.). Nevertheless, such large models are costly in both data

collecting/cleaning and training. Recently, many works focus on efficiently selecting the source task. In the natural language

domain, for example, (Yao et al., 2022) use a heuristic retriever method to select a subset of target-related NLP source tasks;

More recently, works like (Asai et al., 2022; Zhang et al., 2022b) use prefix/prompt to capture the relation between source

and target tasks. Similar topics have also been studied in the vision domain, for example, (Zamir et al., 2018) propose a

transfer learning algorithm based on learning the underlying structure among visual tasks, which they called Taskonomy,

and there are many following works propose different approaches on this Taxonomy dataset, including (Fifty et al., 2021;

Standley et al., 2020).

Theoretical works on P-MTRL. There are also many existing works on provable P-MTRL. Tripuraneni et al. (2020; 2021);

Du et al. (2021); Thekumparampil et al. (2021); Collins et al. (2021); Xu & Tewari (2021) assume there exists a ground truth

shared representation across all tasks. In particular, Tripuraneni et al. (2020; 2021); Thekumparampil et al. (2021) assume a

low-dimension linear representation like us while Du et al. (2021) generalize to both high-dimensional representation and

2-layer Relu network. Tripuraneni et al. (2020) also further considers any general representation with linear predictors. Both

works obtain similar results. Besides, many recent works focus on fine-tuning in theoretical contexts (Shachaf et al., 2021;

Chua et al., 2021; Chen et al., 2021; Kumar et al., 2022).

For the lower bound, for the first time, Tripuraneni et al. (2021) proves a minimax lower bound for the estimation error of

the estimated representation layer measured by subspace angle distance. But we claim it can’t directly deduce a similar

lower bound of the test error on the target task, which relates to one of our main contributions. The reason is that though the

estimated representation may be far away from the ground truth one, the learner can estimate a proper target predictor to

achieve a sufficiently small test error as long as B∗w∗
T+1 (almost) lies in the column space of B̂, where the notations are

defined in the preliminary.

Theoretical works on A-MTRL. In order to overcome the problems in P-MTRL, some subsequent works focused on giving

different priorities to the source tasks by methods like active learning (Chen et al., 2022) and weighted training (Chen et al.,

2021). Representatively, Chen et al. (2022) is the first work to propose A-MTRL which calculates the proper sampling

number for each source task. It iteratively estimates the relevance of each source task to the target task by estimating the

relevance vector ν∗. Chen et al. (2022) utilizes the L2 strategy defined in Def. 2.5 to decide the sampling strategy and

significantly outperforms passive MTRL (P-MTRL), which uniformly samples from the source tasks, both theoretically

and empirically. Nevertheless, the optimal sample strategy for A-MTRL is underexplored, and the non-sparsity of ν2 may

cause inconvenience for task-cost-sensitive scenarios. We develop our works based on the problem setting in (Chen et al.,

2022) and propose a more efficient sampling strategy. As another approach, Chen et al. (2021) concentrates on learning a

weighting over the tasks. The crucial difference between their work with ours is that they can attach to the whole dataset

whereas we assume not but actively query new data from some large datasets (e.g., the task represented by the search terms

to Wikipedia or Google). They also assume that some tasks may not only be irrelevant but even harmful and need to be

down-weighted.

B. Technical Notations

We summarize the technical notations used in the appendix as follows.

Grassmann Manifold. Assume d ≥ k, we denote by Grd,k the Grassmann manifold which contains all the subspaces that

are spanned by k linearly independent d-dimensional vectors. For d ≥ k, we let Od,k be the set of matrices whose column

contains k orthonormal vectors that are in Rd. Then any B ∈ Od,k corresponds to an element, which is spanned by the

column vectors of B, of Grd,k. Actually, an element in Grd,k is corresponds to an equivalent class of d× k matrices that

satisfies the equivalent relation ∼:

Y ∼ X ⇔ Y = XA, ∀A ∈ GL(k,R) (23)

where GL(k,R) denotes general linear group over R of degree k.

Subspace Distance. Finally, we use the same definition as (Tripuraneni et al., 2021) and (Pajor, 1998) to define the

distance between the subspaces in the Grassmann manifold. We let sp(T ) = (
∑

i≥1 |σi(T )|p)1/p for any matrix T and any

11



Improved Active Multi-Task Representation Learning via Lasso

p ∈ [1,∞]. In particular, s∞ is the operator norm of T . For E,F ∈ Od,k, from Proposition 6 of (Pajor, 1998) we define

sq(E,F ) = (2
∑k

i=1 |1− σ2
i (E

TF )|q/2)1/q to be the subspace distance between the spaces spanned by the column vectors

of E and F , respectively. Particularly, s∞(E,F ) =
√

1− σ2
k(E

TF ).

C. Proof of Theorem 3.4

Proof of Lemma 3.2. We can use the following equivalent optimization problem to prove our Lemma:

min
n[T ]

G(n[T ]) :=

T∑

t=1

|ν∗(t)|2
nt

s.t. c0(n[T ]) := Ntot −
T∑

t=1

nt = 0

ct(nt) := nt −N > 0, ∀t ∈ [T ]

(24)

The corresponding Lagrangian function for (24) is

L(n[T ]) := G(n[T ])− λ0c0(n[T ])−
T∑

t=1

λtct(nt) (25)

Then from the Karush-Kuhn-Tucker condition, for all t ∈ [T ] we have the necessary condition

∂L

∂nt
= −|ν∗(t)|2

n2
t

+ λ0 − λt = 0

λt ≥ 0

λtct(nt) = λt(nt −N) = 0

(26)

So we get λ0 > λt ≥ 0, ∀t ∈ [T ] and

nt =





λ−0.5
0 |ν∗(t)| , λt = 0 ⇒ nt ≥ N,

N , λt > 0 ⇒ nt = N.
(27)

thus we finish the proof.

As a supplement, we give another proof for the special case in this Lemma where we assume nt > N for every t ∈ [T ]. Let

β(t) := ν∗(t)
∥ν∗∥2

, αt =
nt

Ntot
and thus

∑T
t=1 β

2(t) =
∑T

t=1 αt = 1. Therefore by Cauchy inequality,

∥ν̃∗∥22 =
∥ν∗∥22
Ntot

T∑

t=1

β2(t)

αt

=
∥ν∗∥22
Ntot

(

T∑

t=1

β2(t)

αt
)(

T∑

t=1

αt)

≥ ∥ν∗∥22
Ntot

(

T∑

t=1

|β(t)|)2 =
∥ν∗∥21
Ntot

(28)

The equality in (28) is achieved iff
|β(t)|√

αt
= c

√
αt for evert t ∈ [T ] with c > 0, which means that nt is proportional to

|ν∗(t)|.
Proof of Corollary 3.3. As stated in Lemma 3.2, n∗

t = max{c′|ν(t)|, N} and c′ > 0 is some constant such that∑T
t=1 n

∗
t = Ntot, so we have c′|ν(t)| ≤ n∗

t ≤ c′|ν(t)|+N . Sum up both sides of the inequality for all t ∈ [T ], then:

c′∥ν∥1 ≤ Ntot ≤ c′∥ν∥1 + TN (29)

12
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Therefore, if we assume Ntot ≫ TN , then we get Ntot = (1 + o(1))c′∥ν∥1. In fact, we only need to ensure that

Ntot > 2TN , which results in c′ > Ntot/(2|ν|1), since the coefficient in the error bound (8) is unconsidered.

Let S1 = {t ∈ [T ]|nt ≥ N, |ν(t)| > 0} and S2 = {t ∈ [T ]|nt < N, |ν(t)| > 0}. Then for any fixed ν, from Lemma 3.2,

we have the following inequality for the optimal strategy:

∥ν̃∥22 =
∑

t∈S1

ν(t)2

nt
+

∑

t∈S2

ν(t)2

N
≤

∑

t∈S1∪S2

ν(t)2

c′|ν(t)| = (1 + o(1))
∑

t∈S1∪S2

|ν(t)|
Ntot

∥ν∥1 = (1 + o(1))
∥ν∥21
Ntot

(30)

Here the inequality holds if and only if S2 is empty, which means that for all t ∈ [T ], ν(t) must satisfies ν(t) = 0 or

c′|ν(t)| ≥ N . Combining (30) and Theorem 3.1, we get the results.

Proof of Theorem 3.4. From (30) we know that if c′|ν(t)| ≥ N for all t ∈ [T ] such that |ν(t)| > 0 , then n∗
t =

Ntot|ν(t)|/∥ν∥1, ∀t ∈ {t′ ∈ [T ]||ν(t′)| > 0}, and ∥ν̃∥22 attain its minimum ∥ν∥21/Ntot.

We prove that such a condition can be achieved when Ntot is sufficiently large. Assume that c′|ν(t)| < N always

holds for some t ∈ [T ] where ν(t) ̸= 0. Then if we choose Ntot = TN + N/|ν(t)|∥ν∥1, we will have c′|ν(t)| =
c′∥ν∥1 · |ν(t)|/∥ν∥1 ≥ (Ntot − TN)|ν(t)|/∥ν∥1 ≥ N , where we use the fact that NT + c′∥ν∥1 ≥ Ntot from Eqn. 29.

This is contradicted by the assumption, and thus we can always find some Ntot such that c′|ν(t)| ≥ N if ν(t) ̸= 0.

So for any given ν, the optimal sampling strategy nt(ν)(Lemma 3.2) can let ∥ν̃∥22 achieves its minimum ∥ν∥21/Ntot. Then

we vary ν among the solution candidate set of W ∗ν = w∗
T+1 and find L1-minimization solution ν1 can minimize ∥ν∥21/Ntot.

Therefore, (ν1, n1
[T ]) is optimal for the original problem (9).

D. Proof of Theorem 3.7

D.1. Preparations for minimax lower bound

First, we reclaim some concentration inequalities commonly used in the previous work (Du et al., 2021; Chen et al., 2022).

Lemma D.1. (A variant of Lemma A.6 in (Du et al., 2021)) Let a1, ..., an be i.i.d. d-dimensional random vectors such that

E[ai] = 0, E[aia
⊤
i ] = I , and ai is ρ2-subgaussian. For δ ∈ (0, 1), ϵ ∈ (0, 1

2 ), suppose n > 1
ϵ2 caρ

4(d + ln( 1δ )) for some

universal constant ca. Then with probability at least 1− δ we have

(1− 2ϵ)Id ⪯ 1

n

n∑

i=1

aia
⊤
i ⪯ (1 + 2ϵ)Id (31)

Recall that Σ∗
t = Ext∼pt

[xtx
⊤
t ] and Σ̂t :=

1
nt
(Xt)

⊤Xt for any t ∈ [T + 1], then we have:

Lemma D.2. (A variant of Claim A.1, A.2 in (Du et al., 2021)) Suppose for δ ∈ (0, 1). Let nt >
1
ϵ2 caρ

4(d+ ln( 2Tδ )) for

all t ∈ [T ], then with probability at least 1− δ
2 over the inputs X1, ..., XT in the source tasks, we have

(1− 2ϵ)Σt ⪯ Σ̂t ⪯ (1 + 2ϵ)Σt (32)

Here ca > 0 is a universal constant. Similarly, let nT+1 > 1
ϵ2 caρ

4(k + ln( 2δ )). Then for any given matrix B1, B2 ∈ Rd×k

that is independent of XT+1 , with probability 1− δ
2 over XT+1 we have

(1− 2ϵ)B⊤
1 ΣT+1B2 ⪯ B⊤

1 Σ̂T+1B2 ⪯ (1 + 2ϵ)B⊤
1 ΣT+1B2 (33)

And then, we show that
∑T

t=1 |Xt(B̂ŵt −B∗w∗
t )|2 ≍ σ2(kT + k(d− k)). The upper bound has been shown in Claim A.3

in (Du et al., 2021), and the lower bound will be shown in the following theorem.

Theorem D.3. With conditions in Theorem 3.7, with probability 1− δ we have:

inf
(B̂,Ŵ )

sup
(B∗,W∗)

T∑

t=1

|Xt(B̂ŵt −B∗w∗
t )|2 ≳ σ2(kT + k(d− k)) (34)

The key theorems and lemmas are as follows.
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Theorem D.4. Let G0 := {BW |B ∈ Od,k ;W ∈ Rk×T }, and G1(δ1) := {BW |B ∈ Od,k ;W ∈ Rk×T ; ∥W∥F ≤
δ1, t ∈ [T ]} be a local packing of G0, where wt is the t-th column vector of W . Then there is a lower bound for G1’s

packing number:

lnM(G1(δ1), ∥ · ∥F ,∆1) ≳ k(d− k) + kT (35)

where ∆1 will be determined soon.

Lemma D.5. [Adapted from (Pajor, 1998)] For any 1 ≤ k ≤ d such that k ≤ d− k, for every ϵ > 0, we have

(
c1
ϵ
)k(d−k) ≤ N(Grd,k, s∞, ϵ) ≤ (

c2
ϵ
)k(d−k) (36)

with universal constants c1, c2 > 0. From the relation between packing number and covering number (Wainwright, 2019),

we have:

M(Grd,k, s∞, ϵ) ≥ (
c1
ϵ
)k(d−k) (37)

Lemma D.6. Let B1, B2 ∈ Od,k, w1, w2 ∈ Rk. With SVD we get (B1)⊤B2 = PDQT , where P,Q ∈ Ok,k, D =
diag(σ1, ..., σk). Obviously σi ∈ [0, 1], and we define v1 = P⊤w1, v2 = Q⊤w2. If subscripts denotes the index of vectors,

we have:

|B1w1 −B2w2|2 =

k∑

i=1

[2|v1i ||v2i |f(v1i , v2i ) + (|v1i | − |v2i |)2] (38)

where

f(v1i , v
2
i ) =

{
1− σi, sign(v1i · v2i ) = 1

1 + σi, sign(v1i · v2i ) = −1
(39)

And we can get the lower bound:

|B1w1 −B2w2|2 ≥ 2|v1k||v2k|(1− σk) +
k∑

i=1

(|v1i | − |v2i |)2 ≥ 0 (40)

Proof of Lemma D.6. By the calculation we get this result:

|B1w1 −B2w2|2 = (B1w1 −B2w2)⊤(B1w1 −B2w2)

= |w1|2 + |w2|2 − 2(w1)⊤(B1)
⊤B2w

2

= |v1|2 + |v2|2 − 2(v1)⊤Dv2

=
k∑

i=1

((v1i )
2 + (v2i )

2 − 2v1i v
2
i σi)

(41)

To make each term of the equation above non-negative, we use sign function:

|B1w1 −B2w2|2 =

k∑

i=1

[(v1i )
2 + (v2i )

2 − 2sign(v1i v
2
i )× v1i v

2
i + 2v1i v

2
i (sign(v

1
i v

2
i )− σi)]

=

k∑

i=1

[(v1i )
2 + (v2i )

2 − 2|v1i ||v2i |+ 2|v1i ||v2i |(1− sign(v1i v
2
i )σi)]

=
k∑

i=1

[(|v1i | − |v2i |)2 + 2|v1i ||v2i |f(v1i , v2i )]

(42)

Besides, we begin to construct a separate set for G1. Firstly we let GB = {B1, ..., BMB} be a ϵB-separated set for metric

s∞ in Grd,k, where ϵB ≤ min( c12 , 1) as c1 in Lemma D.5.
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Then denote (Bm)⊤Bn = P (m,n)D(m,n)Q(m,n), where P (m,n), Q(m,n) ∈ Ok,k, D(m,n) =
diag(σ1(m,n), ..., σk(m,n)), and P (m,n) = Q(m,n) = D(m,n) = Ik iff m = n. On the other hand, for

t ∈ [T ], we denote vjt,i(P (m,n)) to be the i-th component of vjt (P (m,n)) := P (m,n)⊤wj
t , and similarly for

vjt (Q(m,n)) := Q(m,n)⊤wj
t .

Lemma D.7. Suppose GV = {V j = (vj1, ..., v
j
T )|j ∈ S, vjt ∈ Rk, vjt satisfy Equ. 43 and attain largest |S|}:

|vjt,k| ≥
δV√
TϵB

, ∀j, ∀t ∈ [T ]

∥V j∥F =

T∑

t=1

|vjt |2 ≤ CV δV
ϵB

, ∀j

∥V i − V j∥F =
T∑

t=1

|vit − vjt |2 ≥ δV
ϵB

, ∀i, j

(43)

where CV is a universal constant and 4 < CV < 5. For m,n ∈ [MB ], let GW (P (m,n)) := {W j = (wj
1, ..., w

j
T ) | ∃ V j ∈

GV , s.t. W
j = P (m,n)V j} and similarly for GW (Q(m,n)). Then let GBW = {(B,W )| ∃ m,n ∈ [MB ], Wm ∈

GW (P (m,n)), Wn ∈ GW (Q(m,n)), s.t. BW ∈ {BmWm, BnWn}}, and we claim that GBW is a δV -separated

subset of G1 with Frobenius norm.

Proof of Lemma D.7. For each t ∈ [T ], we divide into 2 cases:

Case 1. For the case m ̸= n, we will work out the lower bound of Equ. 40. Since for any m ̸= n:

s∞(m,n) =
√
1− σ2

k((B
m)⊤Bn) ≥ ϵ2B

⇒1− σk((B
m)⊤Bn) ≥ ϵ2B

1 + σk((Bm)⊤Bn)
>

ϵ2B
2

(44)

combined with the first inequality of Equ. 43, we know by the definition of GBw, there exist some i, j such that:

T∑

t=1

|Bmwm
t −Bnwn

t |2 ≥ 2

T∑

t=1

|vit,k||vjt,k|(1− σk) ≥ δ2V (45)

Case 2. For the case m = n, note that σi = 1 for all i ∈ [k]. Combined Equ. 38 , Equ. 39, Equ. 43 and condition

ϵB < min( c12 , 1), there exist some i, j such that:

T∑

t=1

|Bmwm
t −Bmwm

t |2 =

T∑

t=1

k∑

l=1

(vit,l − vjt,l)
2 =

T∑

t=1

|vit − vjt |2 ≥ δ2V
ϵ2B

≥ δ2V (46)

Combined them together, we see that for any m,n ∈ [MB ], any Wm ∈ GW (P (m,n)), Wn ∈ GW (Q(m,n)) such that

Bm = Bn,Wm = Wn not hold in the meantime, we have:

∥BmWm −BnWn∥F =

T∑

t=1

|Bmwm
t −Bmwm

t |2 ≥ δV (47)

Proof of Theorem D.4.

From the construction in Lemma D.7, we consider flattening V j into a k × T vector ηj ∈ RkT , where V j ∈ GV = {V j =
(vj1, ..., v

j
T )|j ∈ S, vjt ∈ Rk, vjt satisfy Equ. 43 and attain largest |S|}. Then the last two conditions in (43) show that ηj is

a δV
ϵB

-separated set contained in a ball of radius CV δV
ϵB

in l2-norm. Actually, the first condition means removing the small

central part along very axis of ηj in the above ball, and it’s clear to see that GV has the same order of the cardinality if we

drop the first inequality of (43). So if we use card to denote the cardinality of a set, we get:
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ln(card(GV )) ≳ kT (48)

Then from the definition of GW and GBW in Lemma D.7, we see that:

ln(card(GBW )) = ln((
MB(MB − 1)

2
× 2 +MB) · ln(card(GW )))

= 2 ln(MB) + ln(card(GV ))

≳ k(d− k) ln(c1/ϵB) + kT, (48)

≳ k(d− k) + kT, (ϵB < min(
c1
2
, 1))

(49)

Choose ∆1 = δ1ϵB/CV and we finish the proof.

Proof of Theorem D.3.

Note that λ = σmin(Σ
1/2
t ), λ = σmax(Σ

1/2
t ) and κ = λ/λ, we can construct the local packing following Lemma D.7 by

using W̃ to replace W where w̃t =
√
ntwt. And we choose δ′1 = 0.9δ1 where δ1 = δV

ϵB
. Then we have:

√√√√
T∑

t=1

∥Xt(Biwi
t −Bjwj

t )∥22 ≤ 1.1λ∥BiW̃ i −BjW̃ j∥F

≤ 1.1λ · CV δ1 ·
δ′1

0.9δ1

< 6λδ′1

(50)

√√√√
T∑

t=1

∥Xt(Biwi
t −Bjwj

t )∥22 ≥ 0.9λ∥BiW̃ i −BjW̃ j∥F ≥ δ′1λ (51)

Here for convenience we choose CV = 4.5, and this will just influence the universal constant since CV is Θ(1) as in

Lemma D.7. Note the sum of excess risks on the source tasks in (50), (51) is actually a semi-metric between (Bi,W i) and

(Bj ,W j), and it’s easy to construct the corresponding δ′1λ-separated set GBW from G
BW̃

set obtained in Lemma D.7. We

recall that Yt = XtB
∗w∗

t + Zt, and define Yt ∼ P
j
t where P

j
t = N (XtB

∗w∗
t , σ

2Int
). And we further let P j :=

∏T
t=1 P

j
t .

Then by the independency among every tasks, we have the Kullaback-Leibler divergence:

D(P i ∥ P j) =
T∑

t=1

D(P i
t ∥ P j

t )

=
1

2σ2

T∑

t=1

∥Xt(B
iwi

t −Bjwj
t )∥22

≤ 18λ
2
(δ′1)

2

σ2
(50)

(52)

Note that GBW is a δ′1λ-separated set over G1, which is a local packing of G0, we then let M = M(G0, ∥ · ∥F , (δ′1)2) and

have the following Fano’s lower bound (Wainwright, 2019):

inf
(B̂,Ŵ )

sup
(B∗,W∗)

T∑

t=1

∥Xt(B̂ŵt −B∗w∗
t )∥22 ≥ (0.9λ)2 inf

(B̂,Ŵ )
sup

(B∗,W∗)

T∑

t=1

∥B̂Ŵ −B∗W ∗∥2F

≥ (δ′1)
2

4
{1−

1
M2

∑M
i,j=1 D(P i ∥ P j) + ln 2

lnM
}

=:
(δ′1)

2

4
· CFano

(53)
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Besides, let c2 ≥ 1 be the universal constant in Theorem D.4. Note d, T > k ≥ 1 and thus
c2(k(d−k)+kT )

3 > 2
3 > ln 2, we

let (δ′1)
2 = c2σ

2(k(d−k)+kT )

108λ
2 , which enable CFano ≥ 1

2 . Then finally we have:

inf
(B̂,Ŵ )

sup
(B∗,W∗)

T∑

t=1

∥Xt(B̂ŵt −B∗w∗
t )∥22 ≳

σ2(k(d− k) + kT )

κ2
(54)

Then from Assumption 2.2 and our notation above, we have κ2 = λ/λ = Θ(1), so we finish the proof.

D.2. Main Proof for the ER bound of P/A-MTRL

Lemma D.8. Denote that for any p ∈ N+:

νp(w∗
T+1) = argmin

ν
∥ν∥p s.t. W ∗ν = w∗

T+1 (55)

and let

H(cw) = {w ∈ Rk|∥w∥2 = cw} (56)

with constant cw > 0, then for any fixed W ∗, we have

sup
w∗

T+1∈H(cw)

∥νp(w∗
T+1)∥2 =

cw
σmin(W ∗)

sup
w∗

T+1∈H(cw)

∥ν1(w∗
T+1)∥1 ≤

√
k

cw
σmin(W ∗)

(57)

Proof of Lemma D.8.

First equality of (57) Firstly, by definition, we directly have for any w∗
T+1,

σmin(W
∗)∥νp(w∗

T+1)∥2 ≤ ∥W ∗νp(w∗
T+1)∥2 = ∥w∗

T+1∥2 (58)

Next we are going to prove the lower bound to show the equality. Let W ∗ = UDV ⊤, where U ∈ Ok×k, V ∈ OT×k, D =
diag(σ1(W

∗), ..., σk(W
∗)) with σ1(W

∗) > ... > σk(W
∗). There always exists an w′ satisfies

w′

∥w′∥2
= Uek (59)

Then it is easy to see that the corresponding νp(w′) satisfies V ⊤νp(w′) = ∥w∗
T+1∥2 · (σmin(W

∗))−1ek. After rearranging,

we have

∥w∗
T+1∥2

σmin(W ∗)
=

∥∥∥∥
∥w∗

T+1∥2
σmin(W ∗)

ek

∥∥∥∥
2

= ∥V ⊤νp(w′)∥2 ≤ ∥νp(w′)∥2 ≤ sup
w∗

T+1

∥νp(w∗
T+1)∥2 (60)

Combine (58) and (60) we finish the first part.

Second equality of (57). It is easy to upper bound

∥ν1(w∗
T+1)∥1 ≤

√
∥ν1(w∗

T+1)∥0∥ν1(w∗
T+1)∥2 ≤

√
∥ν1(w∗

T+1)∥0
∥w∗

T+1∥2
σmin(W )

(61)

where the last inequality again comes from (58) and the definition W ∗ν1(w∗
T+1) = w∗

T+1. Now we can upper bound

∥ν1(w∗
T+1)∥0 by k from the following arguments.
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Note that the original l1 minimization for the undetermined linear equation W ∗ν = w∗
T+1 is equivalent to find-

ing the solution to the following linear programming problem.

min
ν±

1
T ν±

s.t. W±ν± = w∗
T+1,

ν± ≥ 0.

(62)

where 1⊤ := (1, ..., 1) ∈ R2T , ν⊤± := (ν+, ν−), ν+ := max(ν, 0), ν− := max(−ν, 0) and W± := (W ∗,−W ∗) ∈ Rk×2T .

Since W ∗ν∗ = w∗
T+1 holds and there exists at least one optimal solution which is a basic feasible solution for LP (62).

From Def. 2.9 and Theorem 2.3 in (Bertsimas & Tsitsiklis, 1997), we know that the cardinality for the basis of basic feasible

solutions is rank(W±) = k. so ν1 at most k-sparse, i.e., ∥ν1∥0 ≤ k.

We show the Lemma that reflects our motivation to get the lower bound of ∥ν̃2∥21.

Lemma D.9. Assume conditions in Theorem 3.7 hold, Ntot → ∞, and W ∗ can be any matrix in Γ(σk) = {W ∈
Rk×T |σmin(W ) ≥ σk}, then for L2-A-MTRL and P-MTRL we have

sup
w∗

T+1∈H(cw)

∥ν̃2(w∗
T+1)∥21 ≳

T · c2w
Ntot · σ2

min(W
∗)

(63)

Proof of Lemma D.9. For passive learning, actually we can choose any νp such that W ∗νp(w∗
T+1) = w∗

T+1, then from

Lemma D.8 we have:

sup
w∗

T+1∈H(cw)

∥ν̃p(w∗
T+1)∥21 =

T

Ntot
· sup
w∗

T+1∈H(cw)

∥νp(w∗
T+1)∥21 =

T · c2w
Ntot · σ2

min(W
∗)

(64)

For L2 strategy we have nt = max{c′′ν2(t)2, N}. refer to the SVD decomposition of W ∗ in Lemma D.8 and the worst

target vector w′ defined in (60), we have

ν2(w′) = V D−1U⊤w′ = ∥w′∥2 · V D−1U⊤Uek = ∥w′∥2σ−1
min(W

∗) · V∗,k (65)

where V∗,k is the k-th column vector of V ∈ OT,k. Since Ntot ≫ TN and ∥ν2∥2 = ∥w′∥2σ−1
min(W

∗)∥V∗,k∥22 =
∥w′∥2σ−1

min(W
∗), then for any t ∈ S, we have

nt ≈ Ntot
|ν2(t)|2
∥ν2∥22

= Ntot · V 2
t,k (66)

So as Ntot → +∞, t ∈ S ⇔ |Vt,k| > 0. Note that the minimax lower bound used in Theorem 3.7 is proved by using

Fano’s inequality to the δV -separated subset as in Lemma D.7, and the corresponding separated set GW for W ∈ Rk×T

is constructed from GV . Clearly GW ′ := {W ∈ GW |W = UDV ⊤, ∃t ∈ [T ], s.t.Vt,k = 0} occupy zero volume space in

GW , and thus we can use GW −GW ′ to replace the original GW set by excluding a corrsponding zero volume space in

(43) from Lemma D.7 which has no difference to the original results. So set ∥w′∥2 = cw, with probability 1− o(1) we have

Vt,k > 0 and thus

sup
w∗

T+1∈H(cw)

∥ν̃2(w∗
T+1)∥21

w∗
T+1=w′

≥
∑

t∈S

|ν2(t)|2
c′′|ν2(t)|2 +

∑

t/∈S

|ν2(t)|2
N

≳
|S|
c′′

=
T

c′′
(67)

where c′′ = Ntotσ
2
min(W

∗)c−2
w .

We then prove a simple lemma to show that with a particular condition, we have ∥Av∥ ≈ ∥A∥F ∥v∥.

Lemma D.10. Assume v ∈ Rb, A,∆A ∈ Ra×b and ∥∆A∥F = c · ∥A∥ for some a, b ∈ N+ and c ∈ (0, 1). Further assume

that A satisfies ∥Av∥ = ∥A∥F ∥v∥, then

∥(A+∆A)v∥ ≥ 1− c

1 + c
∥A+∆A∥F · ∥v∥ (68)
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Proof of Lemma D.10. We proof it directly:

∥(A+∆A)v∥ ≥ ∥Av∥ − ∥∆A · v∥ = ∥A∥F ∥v∥ − ∥∆A · v∥ ≥ (∥A∥F − ∥∆A∥F )∥v∥

=
1− c

1 + c
(∥A∥F + ∥∆A∥F )∥v∥ ≥ 1− c

1 + c
∥A+∆A∥F ∥v∥

(69)

With such Lemma, we can prove an important Lemma for the lower bound of L2-A-MTRL and P-MTRL.

Lemma D.11. Recall the definition of H(cw) and νp(w∗
T+1) in (55) and (56), we have the following results for L2-

minimization solution.

inf
(B̂,W̃ )

sup
(B∗,W̃∗,w∗

T+1∈H(cw))

∥(B̂W̃ −B∗W̃ ∗)ν̃2(w∗
T+1)∥22 ≳ σ2 · k(d− k) · T · c2w

k ·Ntot · σ2
min(W

∗)
(70)

Proof of Lemma D.11. The key idea is that we want to find some W̃ ∗ such that ∥(B̂−B∗)W̃ ∗ν2∥ ≳ ∥(B̂−B∗)W̃∥F ∥ν2∥
when all the row vectors of W̃ are almost aligned with ν2. Without loss of generality, we assume ν2(t) ̸= 0, ∀t ∈ [T ], and

thus when Ntot → ∞, we have nt = c′′ · |ν2(t)|2, ∀t ∈ [T ], where c′′ ≫ 1 is some constant satisfies c′′ = Ntot/∥ν∥2. We

prove the Lemma step by step.

First, we construct a specific W̃ ∗, which is almost rank-1 and has rows aligned with ν̃2, to achieve the lower bound. For any

given ν(t), we define

W̃ ∗ :=
1√
c′′

u · χ⊤ + ∆̃W ∗ (71)

where u ∈ RT is some vector to be determined later and

χ(t) := sgn(ν2(t)) = I[ν2(t) > 0]− I[ν2(t) < 0], χ ∈ RT (72)

∆̃W ∗ :=

k∑

i=2

σ̃iα̃iβ̃
⊤
i (73)

Obviously, ∥χ∥ =
√
T . Here α̃i, β̃i ∈ RT , ∀i ∈ {2, . . . , k} and we let {u/∥u∥2, α̃2, . . . , α̃k} and {χ/

√
T , β̃2, . . . , β̃k}

to be two orthonormal bases of two k-dimensional subspace of RT . The reason for such a definition of ∆̃W ∗ is that the

Eqn. 71 will naturally be an SVD form of W̃ ∗. And for simplicity, we let σ̃i ≡ σ̃k, ∀i ∈ {2, . . . , k}. We then let

∥ 1√
c′′

u · χ⊤∥F = 2∥∆̃W ∗∥F ⇔ σ̃k =
∥u∥

√
T

2
√
(k − 1)c′′

(74)

Then from ν̃2(t) = ν2(t)/
√
nt = χ(t)/

√
c′′ and w̃∗(t) =

√
ntw

∗(t) =
√
c′′|ν2(t)| · w∗(t), we have

W ∗ν2 = W̃ ∗ν̃2 =
T

c′′
u+

1√
c′′

k∑

i=2

σ̃kα̃iβ̃
⊤
i χ =

T

c′′
u (75)

Note that W ∗ν2 = w∗
T+1 ∈ H(cw), i.e., cw = ∥W ∗ν2∥, we have the following conditions for ∥u∥ and σ̃k.

∥u∥2 =
cw · c′′

T
, σ̃k =

cw
√
c′′

2
√
(k − 1)T

(76)

We then choose ν2 = ν′ := 1 = [1, . . . , 1]⊤ ∈ RT , thus χ = ν′ = 1, ∥ν′∥ =
√
T and for W ∗ we have:

W ∗ =
u

c′′
1
⊤ +

1√
c′′

σ̃k

k∑

i=2

α̃iβ̃
⊤
i =

1√
c′′

· W̃ ∗ (77)

19



Improved Active Multi-Task Representation Learning via Lasso

And thus

σmin(W
∗) = σk =

σ̃k√
c′′

=
cw

2
√
(k − 1)T

(78)

which results that T = ∥ν′∥2 > c2w[4(k − 1)σ2
k]

−1. And we get

∥ν̃′∥2 =

T∑

t=1

|ν′(t)|2
c′′|ν(t)|2 =

T∥ν2∥2
Ntot

≳
Tc2w

kσ2
kNtot

(79)

We check that ν′ is a valid choice for the L2-minimization solution. Let W ∗ = UDV ⊤ be the SVD form of W ∗, where

U = (u/∥u∥, α̃2, . . . , α̃k) ∈ Ok×k, V = (χ/
√
T , β̃2, . . . , β̃k) ∈ OT×k, D = diag(σ1, . . . , σk), σ1 ≥ . . . ≥ σk ≥ 0. Note

that

V D−1U⊤W ∗ν′ = V V ⊤ν′ = (
1

T
χχ⊤ +

k∑

i=2

β̃iβ̃
⊤
i )ν′ = χ+ 0 = ν′. (80)

Therefore, ν′ = argminW∗ν′=W∗x ∥x∥2. Here we use the fact that β̃⊤
i ν′ = β̃⊤

i χ = 0, ∀i ∈ {2, . . . , k}.

Finally we have:

inf
(B̂,W̃ )

sup
(B∗,W̃∗,w∗

T+1∈H(cw))

∥(B̂W̃ −B∗W̃ ∗)ν̃2(w∗
T+1)∥22

≳ inf
B̂

sup
B∗

∥(B̂ −B∗)W̃ ∗ν̃′∥22

≳ inf
B̂

sup
B∗

∥(B̂ −B∗)W̃ ∗∥2F ∥ν̃′∥22, (Eqn. 74,Lemma D.10)

≍ inf
B̂

sup
B∗

T∑

t=1

∥Xt(B̂ −B∗)w∗
t ∥22 ·

Tc2w
kσ2

kNtot
, (Eqn. 79)

≳ σ2 · k(d− k) · Tc2w
kσ2

kNtot

(81)

For the first and last inequality, we restrict the local packing space on W and obtain the results in a manner similar

to Theorem D.3. Specifically, we note that the orthonormal matrix B can be viewed as a Grassmann manifold that is

diffeomorphic to a k × (d− k) dimensional linear matrix(Bai et al., 1992), and the constraint Bw = 0 introduces at most d
additional limiting equations to B, which will not influence its local packing number. Therefore, it becomes straightforward

to prove the last inequality using a methodology similar to the proof of Theorem D.3. And we finish the proof.

Finally, we turn to our main theorem in Sec. 3.2.

Proof of Theorem 3.7. From the conditions, we have cw = Θ(1).

Upper bound of ER for L1-A-MTRL. From Eqn. 29 from the proof of Lemma 3.2, we get ∥ν̃1∥ ≤ (1+o(1))∥ν1∥21/Ntot

when Ntot ≫ TN . Then use the second inequality of (57) in Lemma D.8, we have

sup
w∗

T+1∈H(cw)

∥ν̃1(w∗
T+1)∥21 ≲ sup

w∗
T+1∈H(cw)

∥ν1(wT+1)∥21
Ntot

≤ k · c2w
Ntot · σ2

min(W
∗)

(82)
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For the upper bound, let w̃t = ŵt
√
nt, w̃

∗
t = ŵ∗

t

√
nt and ν̃2(t) = ν∗(t)√

nt
for all t ∈ [T ], then we have:

Ex∼µT+1
∥x⊤(B̂ŵT+1 −B∗w∗

T+1)∥22 = ∥(Σ∗
T+1)

1
2 (B̂Ŵ −B∗W ∗)ν1∥22

≤ ∥(Σ∗
T+1)

1
2 (B̂W̃ −B∗W̃ ∗)∥2F · ∥ν̃1∥2

=

T∑

t=1

nt∥(Σ∗
T+1)

1
2 (B̂ŵt −B∗w∗

t )∥2 · ∥ν̃1∥2

≍
T∑

t=1

nt∥(Σ∗
t )

1
2 (B̂ŵt −B∗w∗

t )∥2 · ∥ν̃1∥2, (Assumption 2.2)

≲
T∑

t=1

∥Xt(B̂ŵt −B∗w∗
t )∥2 · ∥ν̃1∥2, (Lemma D.2)

≤ σ2(kd ln(
Ntot

T
) + kT + ln(

1

δ
))∥ν̃1∥2, (Claim C.1 in (Chen et al., 2022))

(83)

Then combine (83) and (82) we prove the result for L1-A-MTRL.

Lower bound of ER for P-MTRL/L2-A-MTRL. For L2-A-MTRL, we derive the results from Lemma D.11. It can be

easily verified that the same results hold for P-MTRL since we set ν′ = [1, . . . , 1]⊤ ∈ RT in Lemma D.11.

E. Proof of Theorem 3.10

Before proofing the original Theorem, we first illustrate an assumption naturally used for the sparse linear model and Lasso

Program (Wainwright, 2019):

Assumption E.1. (RE condition) Let ν∗ be supported on a subset S ∈ [T ] with |S| = s (From Theorem 3.7 we know

s ≤ k). Then W ∗ satisfies Restricted Eigenvalue condition over S with parameters (κ, 3) if:

∥W ∗∆∥22 ≥ κ∥∆∥22, ∀∆ ∈ C3(S) (84)

where Cα(S) := {∆ ∈ Rk|∥∆Sc∥1 ≤ α∥∆S∥1}.

What should be mentioned is that in this section we just consider L1-A-MTRL, so we replace ν̂ and ν∗ with ν̂1 and ν1,

respectively.

Since σ2
max(W

∗) ≥ κ ≥ σ2
min(W

∗), we rewrite Theorem 3.10 with RE condition as follows. Once we prove the following

theorem, we can replace κ with σ2
min(W

∗) and σ2
max(W

∗) correspondingly and immediately prove the original theorem.

Theorem E.2. Let Assumption 2.1, 2.3, 2.4, 3.8, 3.9, E.1 hold. Let Λ denote the lower bound of ∥ν∗∥1, q =
√
kR
σ (so

q ≥ ∥ν∗∥1) and γ ≥ max{2160sqCWΛ−1,
√

2160sqκΛ−1} and σ = σmin(W
∗) > 0. Then in order to let ERL1

≤ ε2

with probability 1− δ, the number of source samples Ntotal is at least

Õ(σ2(kd+ kT )∥ν∗∥21ε−2 + Tβ) (85)

where β = max{γ2 σ2
z

κ2 , γ
2C2

W

κ2 ρ4, ρ4,
σ2
z

κ } · (d+ ln( 4Tδ )), and target task sample complexity nT+1 is at least

Õ(σ2kε−2 + α) (86)

where α = max{γ2 σ2
z

κ2Λ2 , γ
2C2

W

κ2 ρ4, ρ4} · (k + ln( 4δ )).

Lemma E.3. (A variant of Theorem 7.13 in (Wainwright, 2019)) Assume that Assumption E.1 hold. Any solution of the

Lagrangian Lasso (16) with regularization parameter lower bounded as λk ≥ 2∥Ŵ⊤z∥∞ satisfies the following bound

∥ν̂ − ν∗∥2 ≤ 3

κ

√
sλk (87)

∥ν̂ − ν∗∥1 ≤ 4
√
s∥ν̂ − ν∗∥2 (88)
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Remark E.4. In Theorem E.5 we want ϵ ≤ min(0.05, κ
4γCW

) with high probability, so from Lemma D.2, we need

nt > max(400,
16γ2C2

W

κ2 )caρ
4(d+ ln( 2Tδ )) for all t ∈ [T ] and nT+1 > max(400,

16γ2C2
W

κ2 )caρ
4(k + ln( 2δ )) for universal

constant ca > 0.

To get the bound of regularization parameter λk, we turn to control the bound of the noise term z since Ŵ and ŵ∗
T+1 are

solved by original least square method.

Theorem E.5. If ni
t ≥ max{3γ2 σ2

z

κ2 , 16γ
2C2

W

κ2 caρ
4, 400caρ

4,
12σ2

z

κ } · (d+ ln( 4Tδ )), ni
M+1 ≥ max{3γ2 σ2

z

κ2∥ν∗∥2
1
,

16γ2C2
W

κ2 caρ
4, 400caρ

4} · (k + ln( 4δ )), and Assumption E.1 , 3.8 , 3.9 hold. Then with probability 1− δ we have

∥ν̂ − ν∗∥1 ≤ 2160

γ
s ·max{CW ,

κ

γ
} ·

√
kR

σ
(89)

Remark E.6. If (89) holds and
√
kR
σ = Θ(∥ν∗∥1), then active learning method with L1-minimization just multiplies an

additional term 1 + 2160
γ smax{CW , κ

γ }, i.e.

ERactive ≲ σ2(kd ln(
Ntot

T
) + kT )

∥ν∗∥21
Ntot

(1 +
2160

γ
smax{CW ,

κ

γ
})2 + σ2 (k + ln( 1δ ))

nT+1
(90)

Proof of Theorem E.5.

Substep 1: Decompose z.

As the analysis of original least square method in (Chen et al., 2022), for every t ∈ [T + 1] we have:

ŵi
t = argmin

w
∥Xi

tB̂
iw − Yt∥2

= ((Xi
tB̂

i)⊤Xi
tB̂

i)−1(Xi
tB̂

i)⊤Yt

= ((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗w∗
t +

1

nt
((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Zt

(91)

Then we have

zi =ŵi
T+1 − Ŵ iν∗

=ŵi
T+1 −

T∑

t=1

ŵi
tν

∗
t

=((B̂i)⊤Σ̂i
T+1B̂

i)−1(B̂i)⊤Σ̂i
T+1B

∗w∗
T+1 −

T∑

t=1

((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗w∗
t ν

∗
t

+
1

nT+1
((B̂i)⊤Σ̂i

T+1B̂
i)−1(B̂i)⊤(Xi

T+1)
⊤ZT+1 −

T∑

t=1

1

nt
((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Ztν

∗
t

=((B̂i)⊤Σ̂i
T+1B̂

i)−1(B̂i)⊤Σ̂i
T+1B

∗w∗
T+1 − ((B̂i)⊤Σ∗B̂i)−1(B̂i)⊤Σ∗B∗w∗

T+1︸ ︷︷ ︸
Ei

1

− (

T∑

t=1

((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗w∗
t ν

∗
t −

T∑

t=1

((B̂i)⊤Σ∗B̂i)−1(B̂i)⊤Σ∗B∗w∗
t ν

∗
t )

︸ ︷︷ ︸
Ei

2

+
1

nT+1
((B̂i)⊤Σ̂i

T+1B̂
i)−1(B̂i)⊤(Xi

T+1)
⊤ZT+1

︸ ︷︷ ︸
Ei

3

−
T∑

t=1

1

nt
((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Ztν

∗
t

︸ ︷︷ ︸
Ei

4

(92)
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where the third equality of Equ. 92 use Equ. 91 and the fourth equality comes from w∗
T+1 = W ∗ν∗. It’s obvious that

Ei
k, k ∈ {1, 2, 3, 4} all have 0 expectation, and to control the bound of z, we just need to bound these 4 term in l2-norm for

all i and use the inequality

∥z∥2 = ∥Ei
1 − Ei

2 + Ei
3 − Ei

4∥2 ≤ 2(∥Ei
1∥2 + ∥Ei

2∥2 + ∥Ei
3∥2 + ∥Ei

4∥2) (93)

Substep 2: Calculate Error Terms Ei
∗.

For the first term, with Inequ. 33 and Assumption 3.9 we have

∥Ei
1∥2 ≤ ∥((B̂i)⊤Σ̂i

T+1B̂
i)−1(B̂i)⊤Σ̂i

T+1B
∗ − ((B̂i)⊤Σ∗B̂i)−1(B̂i)⊤Σ∗B∗∥2∥w∗

T+1∥2
≤ ∥w∗

T+1∥2 · ∥
1 + 2ϵ

1− 2ϵ
((B̂i)⊤Σ∗B̂i)−1(B̂i)⊤Σ∗B∗ − ((B̂i)⊤Σ∗B̂i)−1(B̂i)⊤Σ∗B∗∥2

≤ ∥w∗
T+1∥2

4ϵ

1− 2ϵ
∥((B̂i)⊤B̂i)−1(B̂i)⊤B∗∥2

≤ 4ϵ

1− 2ϵ
∥w∗

T+1∥2, (σmax((B̂
i)⊤B∗) ≤ 1)

≤ 4ϵ

1− 2ϵ
CW ∥ν∗∥1, (∥w∗

T+1∥2 = ∥
T∑

t=1

W ∗etν
∗
t ∥2 ≤ max

t
∥W ∗et∥2 · ∥ν∗∥1)

(94)

The fourth inequality is relevant to subspace angle distance between p and q, where B̂i and B∗ are orthonormal matrices

whose colums form orthonormal bases of p and q respectively, as section 2 in (Tripuraneni et al., 2021). The second term

Ei
2 has upper bound similar to Ei

1:

∥Ei
2∥2 ≤

T∑

t=1

∥((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗ − ((B̂i)⊤Σ∗B̂i)−1(B̂i)⊤Σ∗B∗∥2∥w∗
t ν

∗
t ∥2

≤ 4ϵ

1− 2ϵ
∥((B̂i)⊤B̂i)−1(B̂i)⊤B∗∥2

T∑

t=1

∥w∗
t ν

∗
t ∥2

≤ 4ϵ

1− 2ϵ
CW ∥ν∗∥1

(95)

For the third term, from Lemma E.8 with probability at least 1− δ
4 we have:

∥Ei
3∥2 ≤ 1

nT+1
∥((B̂i)⊤Σ̂i

T+1B̂
i)−1(B̂i)⊤(Xi

T+1)
⊤ZT+1∥2

≤ 1

nT+1 · (1− 2ϵ)
∥((B̂i)⊤Σ∗B̂i)−1∥2∥(B̂i)⊤(Xi

T+1)
⊤ZT+1∥2

≤
√
1 + 2ϵ

1− 2ϵ
· σz

√
2k + 3 ln( 4δ )

nT+1

(96)

Analogously, from Lemma E.8 with probability at least 1− δ
4 we have:

∥Ei
4∥2 ≤

T∑

t=1

1

nt
∥((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Ztν

∗
t ∥2

≤
T∑

t=1

1

nt
∥((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤∥2∥(Xi

t)
⊤Zt∥2|ν∗t |

≤
T∑

t=1

√
1 + 2ϵ

1− 2ϵ
· σz

√
2d+ 3 ln( 4Tδ )

nt
|ν∗t |

≤
√
1 + 2ϵ

1− 2ϵ
· σz

√
2d+ 3 ln( 4Tδ )

mint(nt)
∥ν∗∥1

(97)
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Substep 3: Final Calculation.

Combining (94), (95), (96), (97) and (93), with probability at least 1− δ we have

∥zi∥2 ≤ 16ϵ

1− 2ϵ
CW ∥ν∗∥1 +

2
√
1 + 2ϵ

1− 2ϵ
· σz(

√
2k + 3 ln( 4δ )

nT+1
+

√
2d+ 3 ln( 4Tδ )

mint(nt)
∥ν∗∥1)

≤ 16

0.9× 4× γ
κ∥ν∗∥1 +

2
√
1.1

0.9
× κ∥ν∗∥1

γ
× 2, (Conditions)

≤ 82

9

κ∥ν∗∥1
γ

(98)

Choose that

λk := 45
κ
√
kR

γσ
max{CW ,

κ

γ
}

≥ 45
κ∥ν∗∥1

γ
max{CW ,

κ

γ
}

≥ 2× 22

9
max{CW ,

κ

γ
} × 82

9

κ∥ν∗∥1
γ

≥ 2 · (max
t

∥ŵi
t∥2) · ∥zi∥2, ((98), (101))

≥ 2max
t

|(ŵi
t)

⊤zi| ≥ 2∥Ŵ⊤zi∥∞

(99)

Finally from Lemma E.3 , the solution of (16) with regularization parameter λk satisfies:

∥ν̂ − ν∗∥1 ≤ 12s
1
4κ

λk, (Lemma E.3, E.9)

=
2160

γ
s ·

√
kR

σ
·max{CW ,

κ

γ
}, (99)

(100)

Lemma E.7. Assume conditions in Theorem E.5 hold, then the norms of column vectors of Ŵ have similar uppper bound to

that of W ∗:

∥ŵi
t∥2 ≤ 22

9
max{CW ,

κ

γ
} (101)

Proof of Lemma E.7. This can be done by directly calculation as (95) and (97)

∥ŵi
t∥2 = ∥((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤Σ̂i

tB
∗w∗

t +
1

nt
((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Zt∥2

≤ ∥((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗∥2∥w∗
t ∥2 +

1

nt
∥((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤∥2∥(Xi

t)
⊤Zt∥2

≤ 1 + 2ϵ

1− 2ϵ
CW +

√
1 + 2ϵ

1− 2ϵ
· κ
γ

≤ 1.1× 2

9
max{CW ,

κ

γ
}

(102)

Lemma E.8. Assume Assuption 3.9 holds. For any t ∈ [T ], with probability 1− δ
4 we have

∥(Xi
t)

⊤Zt∥2 ≤ σz

√
nt(1 + 2ϵ)(2d+ 3 ln(

4T

δ
)) (103)

As for target task, for any B ∈ Rd×k that is independent of ZT+1 , with probability 1− δ
4 we have

∥B⊤(Xi
T+1)

⊤ZT+1∥2 ≤ σz

√
nT+1(1 + 2ϵ)(2k + 3 ln(

4

δ
)) (104)
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Proof of Lemma E.8. We firstly proof 104. Using SVD we have B⊤(Xi
T+1)

⊤ = UBXDBXV ⊤
BX , where UBX ∈

Ok×k, VBX ∈ On×k, DV X = diag(σ1(B
⊤(Xi

T+1)
⊤), ..., σk(B

⊤(Xi
T+1)

⊤)). Let Q := V ⊤
BXZT+1, we know Q ∼

N (0, σ2
zIk) since B,Xi

T+1 are independent to ZT+1, so does VBX . Note that 1
σ2
z
∥Q∥22 ∼ χ2(k), and thus with probability

at least 1− δ
4 we have (Laurent & Massart, 2000)

1

σ2
z

∥Q∥22 ≤ k + 2

√
k ln

4

δ
+ 2 ln

4

δ
(105)

Then use (105), with probability at least 1− δ
4 we have

∥B⊤(Xi
T+1)

⊤ZT+1∥22 = Z⊤
T+1(X

i
T+1)BB⊤(Xi

T+1)
⊤ZT+1

= Z⊤
T+1VBXD2

BXV ⊤
BXZT+1

=

k∑

j=1

σ2
j (B

⊤(Xi
T+1)

⊤)Q2
j

≤ σmax((X
i
T+1)

⊤Xi
T+1)∥Q∥22

≤ nT+1 · (1 + 2ϵ) · σ2
z(2k + 3 ln(

4

δ
)), (Assumption 3.9 , (105))

(106)

As for source tasks, (104) don’t hold since B̂i is not independent to Xi
t and Zt. Then in order to get (103), we just need to

note that rank(Xi
t) = d and others steps are similar to the proof above.

Lemma E.9. If all the conditions of Theorem E.5 hold, then Ŵ satisfies RE conditions with parameter ( 14κ, 3).

Proof of Lemma E.9. Applying SVD to 1√
nt
(Xi

t)
⊤ = UtDtV

⊤
t , where Ut ∈ Od×d, Vt ∈ On×d, Dt = diag(σ1,t, ..., σd,t).

Let Qt := V ⊤
t Zt∆t, we know Qt ∼ N (0, σ2

z∆
2
t Id) since Xi

t ,∆t are independent to Zt, so does Vt. Furthermore, we have∑T
t=1

1√
nt
UtDtQt ∼ N (0, σ2

z

∑T
t=1

1
nt
∆2

tUtD
2
tU

⊤
t ) = N (0, σ2

z

∑T
t=1

1
nt
∆2

t Σ̂
i
t) due to task independence. Notice that:

(1− 2ϵ)Id ⪯ Σ̂i
t =

1

nt
(Xi

t)
⊤Xi

t = UtD
2
tU

⊤
t ⪯ (1 + 2ϵ)Id, (Assumption 3.9, (32)) (107)

We immediately have σ∗(Dt) ∈ [
√
1− 2ϵ,

√
1 + 2ϵ]. From the density function of multivariate normal distribution, let

Γ̂ :=
∑T

t=1
1
nt
∆2

t Σ̂
i
t and ∆̃t =

∆t√
nt

, then from (107), when ∥x∥2 is sufficiently large we have:

1

(2π)
d
2 ∥∆̃∥2

√
1 + 2ϵ

exp(−1

2
x⊤x

1

∥∆̃∥22(1 + 2ϵ)
) ≥ 1

(2π)
d
2 |Γ̂|1/2

exp(−1

2
x⊤Γ̂−1x) (108)

Thus in order to bound the L2 norm of
∑T

t=1
1√
nt
UtDtQt with high probability, we just need to bound the L2 norm of

random vectors with distribution N (0, σ2
z(1 + 2ϵ)∥∆̃∥22). Let ξ ∼ N (0, σ2

z(1 + 2ϵ)∥∆̃∥22), like (105), with probability at

least 1− δ
4 we have:

∥ξ∥22 ≤ σ2
z(1 + 2ϵ)∥∆̃∥22(2d+ 3 ln(

4

δ
)) (109)
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Then with probability at least 1− δ
4 we have the following inequality for all ∆ ∈ RT

∥Ŵ∆∥2 = ∥
T∑

t=1

((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗w∗
t∆t +

T∑

t=1

1

nt
((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Zt∆t∥2

≥ |∥
T∑

t=1

((B̂i)⊤Σ̂i
tB̂

i)−1(B̂i)⊤Σ̂i
tB

∗w∗
t∆t∥2 − ∥

T∑

t=1

1

nt
((B̂i)⊤Σ̂i

tB̂
i)−1(B̂i)⊤(Xi

t)
⊤Zt∆t∥2|

≥ |1− 2ϵ

1 + 2ϵ
∥W ∗∆∥2 −

1

1− 2ϵ
∥(B̂i)⊤(

T∑

t=1

1

nt
(Xi

t)
⊤Zt∆t)∥2|

≥ |1− 2ϵ

1 + 2ϵ
∥W ∗∆∥2 −

1

1− 2ϵ
∥

T∑

t=1

1√
nt

UtDtQt∥2|

≥ |0.9
1.1

∥W ∗∆∥2 −
√
1.1

0.9
σz∥∆∥2

√
(2d+ 3 ln( 4δ ))

mint(nt)
|, (Conditions, (109))

≥ |0.9
1.1

√
κ∥∆∥2 −

√
1.1

0.9× 4

√
κ∥∆∥2|, (nt ≥ 12

σ2
z

κ
(d+ ln(

4

δ
)))

≥ 0.5
√
κ∥∆∥2

(110)

From the definition of RE condition like Assumption E.1, we done the proof.

Lemma E.10. Let q =
√
kR
σ (so q ≥ ∥ν∗∥1). If γ ≥ max{2160sqCWΛ−1,

√
2160sqκΛ−1}, then

2160

γ
sqmax{CW ,

κ

γ
} ≤ ∥ν∗∥1 (111)

Proof of Lemma E.10. Just note that if γ ≥ max{2160sqCW ∥ν∗∥−1
1 ,

√
2160sqκ∥ν∗∥−1

1 }, then we can prove (111) by

direct calculation. Then since ∥ν∗∥1 ≥ Λ by definition, we get the result.

Proof of Theorem 3.10/E.2. Combine Theorem E.5 and Lemma E.10 and we can figure out the result like (90). For the

estimation of β1 = Tβ, we use the fact that s ≤ k, ∥ν∥2 ≤ R/σ and ∥ν∥1 ≥ ∥ν∥2 ≥ R/σ, then from the definition of γ,

we can figure out that β1 should be at least Θ(Tk3C6
W /σ6).

F. Proof of Theorem 4.1

First, we rewrite the assumption and theorem formally.

Assumption F.1. (decreasing gradient) Assume ft is a piecewise second-order differentiable function, and on each

sub-function, it satisfies ft ≥ 0,∇ft ≥ 0,∇2ft ≤ 0 and ∇ft(nt,1 + nt,2) = Ω(n−2+q
t,2 ) for some q ∈ (0, 2].

Remark F.2. Assumption F.1 covers a wide range of functions that may be used in practice, including the above example

(20). The last upper bound constraint in Assumption F.1 shows that we need ∇ft to decrease moderately, and it’s used for

our main theorem in this section.

And our main result for Section 4 is:

Theorem F.3. Let nt,1 ≡ n1 for all t ∈ [T ] and assume Assumption 2.1, 2.3, 2.4, 3.8, F.1 hold. Without loss of generality,

we also assume R = Θ(1) and CW = Θ(1) where CW , R are defined in Assumption 3.8. Then denotes the optimal solution

of (21) as (n∗
[T ],2, ν

∗), we have

n∗
t,2 = ht(|ν∗(t)|) (112)

where ht is a monotone increasing function that satisfies: ct,1x ≤ ht(x) ≤ ct,2x
2/q where ct,1, ct,2 > 0 and q defined in

Assumption F.1. Moreover, we claim A-MTRL algorithm with n∗
[T ],[2] sampling strategy is at least k-sparse task selection

algorithm.
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And we also rewrite the optimization problem (21) formally:

min
n[T ],2

g(n[T ],2) :=
T∑

t=1

ft(nt,1 + nt,2)

s.t. c0(n[T ],2, ν) :=
ε2

CERσ2k(d+ T )
−

T∑

t=1

ν(t)2

nt,2 + nt,1
≥ 0,

cj(ν) :=
T∑

t=1

w∗
j,tν(t)− (w∗

T+1)j = 0, j ∈ [k]

cm(n[T ],2) := nm,2 ≥ 0, m ∈ [T ]

(113)

where CER > 0 is a constant.

Proof of Theorem F.3. Here we note that the main insight for such a theorem is that we want to prove the objective function

is concave relative to ν. So we just prove for global second-order differentiable function and it can be easily generalized to

the piecewise second-order differentiable function by showing the maintenance of concavity.

Step 1: Use KKT conditions to reduce the variable’s number

Firstly we define the Lagrange function:

L(n[T ],2, ν) = g(n[T ],2)− λ0c0(n[T ],2)−
k∑

j=1

λjcj(ν)−
T∑

m=1

λm+kcm(n[T ],2) (114)

Then from KKT conditions we have

∂L

∂nt,2

∣∣∣∣
n∗
t,2,ν

∗(t)

= ∇ft(nt,1 + n∗
t,2)− λ∗

0

ν∗(t)2

(n∗
t,2 + nt,1)2

− λ∗
t+k,2 = 0, ∀t ∈ [T ]

∂L

∂νt

∣∣∣∣
n∗
t,2,ν

∗(t)

= 2λ∗
0

ν∗(t)

n∗
t,2 + nt,1

−
k∑

j=1

λ∗
jw

∗
j,t = 0, ∀t ∈ [T ]

λ∗
0 ≥ 0, λ∗

0c0(n
∗
[T ],2, ν

∗) = 0

λ∗
m+k ≥ 0, λ∗

m+kcm(n∗
[T ],2) = 0, ∀m ∈ [T ]

(115)

Note that when n∗
t,2 > 0, λ∗

m+k = 0 and ∇ft(nt,1 + nt,2) = Ω(n−2+q
t,2 ). then from the first equation of (115) we deduce

(112) and its property immediately.

Also, with (112) we can reduce the number of variables of the original problem from 2T to T + 1. To avoid confusion we

denote α =
√
λ0, γ(t) := ν(t) for new optimization problem (116). It’s clear that if the optimal solution of the original

optimization problem (113) is (ν∗, n∗
[T ],2) and the corresponding lagrange coefficient for the first equality constraint of (113)

is λ∗
0, then the optimal solution (γ∗, α∗) of the following problem (116) is equal to (ν∗,

√
λ∗
0).

min
γ,α

l(γ, α) :=

T∑

t=1

ft(nt,1 + ht(α|γ(t)|))

s.t. d0(γ, α) :=
ε2

CERσ2k(d+ T )
−

T∑

t=1

γ(t)2

ht(α|γ(t)|) + nt,1
= 0

dj(γ) :=

T∑

t=1

w∗
j,tγ(t)− (w∗

T+1)j = 0, j ∈ [k]

(116)

Step 2: The objective function of (116) is concave
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From the KKT conditions above we know for any feasible solution (γ, α) and any t ∈ [S], there exist a unique xt > 0 such

that α|γ(t)| =
√

∇ft(nt,1 + x) · (nt,1 + x). Then from the key Lemma F.4 we know the objective function of (116) is

concave relative to |γ(t)| for all t ∈ [S].

Step 3: Analyze γ∗ from the sub-problem of (116)

The first equality constraint of the problem (116) is non-linear relative to γ and α, which results that the feasible region of

(116) having non-linear boundary. This makes it difficult for us to get the closed form of the optimal solution for (116).

Fortunately, the other equality constraints, which are equivalent to W ∗γ = w∗
T+1, are not only linear but also have nothing

to do with α. So we try to find out the optimal solution of sub-problem (117) and connect it to that of (116).

min
ξ

l(ξ, α) :=

T∑

t=1

ft(nt,1 + ht(α|ξ(t)|))

s.t. D(ξ) := W ∗ξ − w∗
T+1 = 0

(117)

In (117) α is taken as a given value and ξ plays the same role as γ as above. Define opt(α) : R → Ω∗, where Ω∗ is the set

of optimal solutions for (117) with given α.

Firstly we show that the optimal solution of (117) is k-sparse. From step 2 we know l(ξ) is concave for any |ξ(t)|, t ∈ [S],
which means that the region contained by the isosurface of the objective function is concave where the axes are made up of

|γ(t)| for t ∈ [S]. Consequently, the solutions of the system of linear equations that minimize such a concave function will

give out sparse results (Tibshirani, 1996).

Secondly, we say the optimal solution of the original optimization problem (116) is k-sparse. For a non-trivial case, where

the algorithm achieves require performance and terminates at the first stage, we know d0(γ, 0) < 0, and if α → ∞,

d0(γ, α) → ε2

CERσ2k(d+T ) > 0. Then from continuality of ht we see that for any γ∗(α) ∈ opt(α), there exist a unique α0

such that γ∗(α0) is a feasible solution for (116). On the other hand, every optimal solution (γ∗, α∗) of (116) should be the

optimal solution of sub-problem (117),i.e. it should satisfy γ∗ ∈ opt(α∗). Thus γ∗ is k-sparse, and so as ν∗. Therefore

A-MTRL with n∗
[T ],[2] strategy is k-sparse task selection algorithm.

Lemma F.4. Assume ft, ht, nt,1 follow the conditions and results in Theorem 4.1, W ∗ ∈ Rk×T , w∗
T+1 ∈ Rk. Then if for any

feasible solution (γ, α) of (116), any t ∈ [S], there exist a unique xt > 0 such that α|γ(t)| =
√
∇ft(nt,1 + x) · (nt,1 + x),

then the objective function of (116) relative to |γ(t)| is concave for all t ∈ [S].

Proof of Lemma F.4.

Firstly we denote nt,1 as n for convenience. Note that from the chain rule:

∂l(γ, α)

∂|γ(t)| = ∇ft(n+ ht(α|γ(t)|)) · ∇ht(α|γ(t)|)) · α (118)

Clearly l(γ, α) is also monotone increasing relative to |γ(t)|. For the second order of l(γ, α) we have:

∂2l(γ, α)

∂|γ(t)|2 = {∇2ft(n+ ht(α|γ(t)|)) · (∇ht(α|γ(t)|))2 +∇ft(n+ ht(α|γ(t)|)) · ∇2ht(α|γ(t)|)} · α2 (119)

Firstly we need to figure out the relation between the derivative of ht and ft. From the first equation of (115) and the

definition of ht we have:

ht(
√
∇ft(n+ x) · (n+ x)) = x (120)

Since ht is monotone contineous function, from inverse function theory we have

∇ht(
√
∇ft(n+ x) · (n+ x)) =

2
√

∇ft(n+ x)

(n+ x)∇2ft(n+ x) + 2∇ft(n+ x)
(121)
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Let g(x) :=
√
∇ft(n+ x) · (n + x), from assumption F.1 we know g is a continous monotone increasing function

and g ∈ (0,+∞). Besides, from conditions we have that for each t ∈ [S] there is a unique x := xt > 0 such that

g(xt) = α|γ(t)|, with which we can simplify the gradient:

∇2ht(α|γ(t)|) = ∇2ht(
√

∇ft(n+ x) · (n+ x))

= d(
2
√

∇ft(n+ x)

(n+ x)∇2ft(n+ x) + 2∇ft(n+ x)
)/dx · ∇ht(

√
∇ft(n+ x) · (n+ x))

= 2
(∇2ft(n+ x))2(n+ x)− 4∇2ft(n+ x)∇ft(n+ x)− 2(n+ x)∇3ft(n+ x)∇ft(n+ x)

[(n+ x)∇2ft(n+ x) + 2∇ft(n+ x)]3

(122)

Denote h1
t := ∇ht(

√
∇ft(n+ x) · (n+ x)), h2

t := ∇2ht(
√
∇ft(n+ x) · (n+ x)). Thus we have:

1

α2

∂2l(γ, α)

∂|γ(t)|2 = ∇2ft(n+ x)(∇ht(
√
∇ft(n+ x)(n+ x)))2 +∇ft(n+ x)∇2ht(

√
∇ft(n+ x)(n+ x))

= h1
t ·

√
∇ft(n+ x)(n+ x)

[(n+ x)∇2ft(n+ x) + 2∇ft(n+ x)]2
· {3(∇2ft(n+ x))2 − 2∇3ft(n+ x)∇ft(n+ x)}

= 2∇ft(n+ x)(n+ x) · 3(∇
2ft(n+ x))2 − 2∇3ft(n+ x)∇ft(n+ x)

[(n+ x)∇2ft(n+ x) + 2∇ft(n+ x)]3

= 2∇ft(n+ x)(n+ x) · q(x), (q(x) :=
3(∇2ft(n+ x))2 − 2∇3ft(n+ x)∇ft(n+ x)

[(n+ x)∇2ft(n+ x) + 2∇ft(n+ x)]3
)

(123)

So if q(x) < 0 holds for all x > 0, we finish the proof. First we assume that ∇ft(y) =
At

(Bt+y)δ
where At > 0, Bt ≥ 0 and

δ ∈ [0, 2− q). Then

q(x) =
3

δ2A2
t

(n+x+Bt)2δ+2 − 2
δ(δ+1)A2

t

(n+x+Bt)δ+3+δ

2At

(n+x+Bt)δ
− δAt(n+x)

(n+x+Bt)δ+1

=
At

(n+ x+Bt)δ+1
· δ(δ − 2)

2Bt + (2− δ)(n+ x)
(124)

Since n+ x > 0 and 0 ≤ δ < 2, we have q(x) < 0, ∀x > 0. Besides, due to the fact that ∇ft is monotone decreasing and

non-negative, together with Assumption F.1 and n > 0, we can find δi ∈ [0, 2− q), At,i > 0, Bt,i ≥ 0 for i = 1, 2 such that
At,1

(Bt,1+x+n)δ1
≤ ∇ft(x+ n) ≤ At,2

(Bt,2+x+n)δ2
. So q(x) < 0 holds for any ∇ft that satisfies Assumption F.1.

Remark F.5. If δ in (124) is in (0, 2), then the optimization problem (113) is not computable.

G. Supplements to the Experiments Section

G.1. Explanation of k-task selection scenario

We provide an illustration of our intuition for the k-task selection scenario in Section 5. We emphasize that the specific

choice of the cost function is not critical in such a scenario, since solving the exact optimization problem (Eqn. 21) can be

computationally challenging. For instance, the cost functions could correspond to Lp-minimization (0 ≤ p < 1) solutions of

the relation equation W ∗ν = w∗
T+1, which is known to be NP-hard.

To address this challenge, as discussed in Theorem 4.1, we employ L1-A-MTRL as an approximation to the optimal solution

of (21). This approach is justified by the fact that the time complexity for solving the approximate solution of (21) using

L1-A-MTRL with relative accuracy δ is just poly(T ) ln(T/δ) from (Cohen et al., 2021), and the L1-minimization solution

is also k-sparse. Therefore, in cost-sensitive scenarios, our main focus is on addressing the question: ºHow well can active

multi-task representation learning algorithms perform when no more than k tasks are available for further sampling?º This

leads us to the setting of the k-task selection scenario.

G.2. Details of Algorithm Implementation.

In practice, Ŵ and ŵT+1 may differ at different epochs after the model converges due to the noise of data points. So to

enhance the stability of ν̂, we calculate ν̂ at every epoch in the last 20 rounds and take their average as the final reference to
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Algorithm 2 Multi-Stage L1-A-MTRL Method

Input: confidence δ, representation function class Φ, stage number S, scaling L > 1, minimum singular value σ
Initialize N = β1/T from (15) and ν̂1 = [1, 1, ...].
for i = 1 to S do

Set ni
t = max{βi|ν̂i(t)| · ∥ν̂i∥−1

1 , N}.

For each task t, draw nt i.i.d samples from the offline dataset denoted as {Xi
t , Y

i
t }Tt=1

Estimate ϕ̂i, Ŵ i on the source tasks with Eqn.(2)

Estimate ŵi
T+1 on the target task with Eqn.(3)

Estimate νi+1 by Lasso Program (16)

Set βi+1 = βi · L
end for

calculate n[T ] for both our algorithm and baselines, while the total number of epochs at each stage is no less than 2000.

For full tasks scenario, note that L2-A-MTRL(Chen et al., 2022) utilize the iterative L2-A-MTRL algorithm with 4 stages

to optimize the model we also run our algorithm iteratively with 4 stages for comparison, and the detailed procedure

for multi-stage learning is in Algorithm 2. We mention that Chen’s method requires multiple stages but we allow both

single-stage (Algorithm 1) and multi-stage (Algorithm 2) versions.

Here we set N = 100. We sample 500 data from the target task, while at the final stage, we sample around 30000 to 40000

data from the source tasks. For k-task selection scenario, we run the algorithm with 2 stages. Here we set N = 40. We

sample 200 data from the target task and around 12000 data from the source tasks.

G.3. How to choose λk

Determining the optimal value of λk requires additional knowledge of σ = σmin(W
∗), which are dataset-dependent prior

parameters. To address this, we explore two approaches to determine λk in our experiments:

• Tuning way: We roughly tune λk exponentially for the 2-phase L1-A-MTRL approach (Algorithm 1). And to further

obtain the optimal λk, we can utilize grid search to find better λk. Once we identify a good λk, we can run the

multi-phase L1-A-MTRL algorithm (Algorithm 2) using that λk and a larger Ntot to achieve improved results.

• Lazy way: Alternatively, we can simply choose a very small value for λk, such as 10−10, for our algorithm.

To provide a clearer illustration of the first approach, we apply the 2-phase L1-A-MTRL on the identity 9 dataset in full

task scenarios, where k = 50 and T = 150. In the first phase, each source task is assigned N = 100 data points, and in the

second phase, the total budget for the source data is Ntot = 33k. The results are presented in Table 1.

Table 1. The relevance between λk and the second-stage test error on the target task identity 9.

λk 1.0 10−1 10−2 10−3 10−4 2× 10−4 10−5 10−6 10−8 10−10 10−16

Error 0.0691 0.0690 0.0703 0.0694 0.0561 0.0570 0.0655 0.0655 0.0633 0.0631 0.0625

The optimal value for λk is approximately 10−4. Additionally, we observe that, except for the terms 10−4 and 2× 10−4,

the target error decreases as λk decreases. For other target tasks, although we don’t find an optimal λk similar to that of

identity 9, we consistently observe that smaller values of λk lead to better performance for L1-A-MTRL. We think this

phenomenon can be attributed to our Theorem 3.7, which considers a worst-case scenario where the noise may be significant.

However, in practice, smaller values of λk are often sufficient to control the noise. Furthermore, since smaller values of λk

result in a smaller bias when solving the Lasso program, L1-A-MTRL with small λk consistently exhibits good performance.

Therefore, to save time and resources, we adopt the lazy way instead of the tuning way in the experiments presented in

this paper. We set λk = 10−10, and the empirical results demonstrate that L1-A-MTRL with such a small value of λk still

achieves excellent performance.
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G.4. Additional Experiments on Sampling Budgets

To better show the empirical difference of the sampling budget in the experiments of MNIST-C, we consider the full task

scenario (mentioned in Sec. 5) and evaluate the model performance by utilizing the 5-epoch L1-A-MTRL (Algorithm 2)

with fixed minimum sampling data from every source task N = 100 and increasing total sampling number Ntot. Due to the

limited time and resources, we randomly select two target tasks shear 1 and identity 9, and obtained the results in Table 2.

From Table 2 we find that to achieve accuracy higher than 95% on the shear 1 target task, P-MTRL (passive sampling)

requires more than 86k source data, L2-A-MTRL(Chen et al., 2022) requires about 61k source data and L1-A-MTRL just

requires about 33k source data. Since at the later phase, we can reuse the evenly sampled data (TN = 15k in total) from the

first phase, L1-A-MTRL just requires labeling additional 18k source data at the later phase to achieve 95% accuracy, while

L2-A-MTRL requires approximately 46k extra data, and P-MTRL requires no less than 71k extra data. Similar results apply

to identity 9 . To achieve an accuracy above 93.7% on the identity 9 target task, P-MTRL requires more than 95k source

data, L2-A-MTRL(Chen et al., 2022) requires about 61k source data, while L1-A-MTRL requires only about 33k source

data. The above results illustrate the effectiveness of our L1-A-MTRL algorithm.

Table 2. Test error on the target task shear 1 and identity 9 with different Ntot.

shear 1 Ntot

Algorithms 15000 32850 44000 60700 86000

P-MTRL 0.0544 0.0538 0.0536 0.0520 0.0518

L2-A-MTRL(Chen et al. (2022)) 0.0544 0.0511 0.0519 0.0494 0.0488

L1-A-MTRL(Ours) 0.0544 0.0496 0.0478 0.0442 0.0428

identity 9 Ntot

Algorithms 15000 33000 43800 60900 95400

P-MTRL 0.0932 0.0834 0.0778 0.0738 0.0652

L2-A-MTRL(Chen et al. (2022)) 0.0932 0.0909 0.0638 0.0627 0.0621

L1-A-MTRL(Ours) 0.0932 0.0631 0.0620 0.0605 0.0551
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