arXiv:2208.13898v4 [cs.LG] 12 Jun 2023

Conjugate Natural Selection

A PREPRINT

Reilly Raab
Computer Science and Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064
reilly@ucsc.edu

Luca de Alfaro Yang Liu
Computer Science and Engineering Computer Science and Engineering
University of California, Santa Cruz University of California, Santa Cruz
Santa Cruz, CA 95064 Santa Cruz, CA 95064
luca@ucsc.edu yangliu@Qucsc.edu

June 14, 2023

ABSTRACT

We prove that Fisher-Rao natural gradient descent (FR-NGD) optimally approximates the continuous
time replicator equation (an essential model of evolutionary dynamics), and term this correspondence
“conjugate natural selection”. This correspondence promises alternative approaches for evolutionary
computation over continuous or high-dimensional hypothesis spaces. As a special case, FR-NGD
also provides the optimal approximation of continuous Bayesian inference when hypotheses compete
on the basis of predicting actual observations. In this case, the method avoids the need to compute
prior probabilities. We demonstrate our findings on a non-convex optimization problem and a system
identification task for a stochastic process with time-varying parameters.

Keywords evolution - natural selection - Bayesian inference - Fisher information - non-convex optimization - stochastic
process - parameter estimation

1 Introduction

Evolution describes how distributions change. Specifically, evolution provides a model for how a population’s
distribution of traits or strategies (hereafter hypotheses) changes over time as an environment modulates reproduction
rates (i.e., of individuals or of hypotheses; Lloyd, 2020): Hypotheses that have higher fitness are “selected” by the
environment and, in expectation, become more popular with time. The replicator equation is a formal, analytic
model of evolution and is indispensable to biology (Sinervo and Calsbeek, 2006; Queller, 2017).

In the replicator equation, the absolute fitness (in this paper, the negative loss -¥’) of hypotheses h € H is identified
with its rate of replication: exponential growth (or decline) in a population where different hypotheses compete for
relative frequency p(h) € [0, 1]. For probability distributions over hypothesis space H, this equation induces replicator
dynamics, selecting hypotheses with lower than average loss. In continuous time, the replicator equation i

%p(h] = p(h) [E;, _ i"(h)], where Z,:=3"p(h)Z(h), Y p(h)=1.
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The replicator equation has been applied to game theory (Hofbauer et al., 1998; Sandholm, 2010; Cressman and Tao,
2014; Friedman and Sinervo, 2016), economics (Friedman, 1991), and machine learning (Hennes et al., 2019). For
many real-world applications, however, an exceedingly large or continuous hypothesis space H presents challenges
(Bloembergen et al., 2015, Sec 4.2), and standard techniques in evolutionary computation resort to modeling finite
populations of individuals directly (Bick et al., 2018). Our results show promise in alleviating these challenges.
Specifically, we show that Fisher-Rao Natural Gradient Descent (FR-NGD) optimally approximates replicator dynamics
for a tractable, lower dimensional representation of an evolving distribution over H.

Why should we want analytic model of evolutionary dynamics with large hypothesis spaces? Suppose we wish to
find the minimum value of a (possibly non-convex) function #: R? — R, where we must make (possibly noisy,
expensive) queries for #(h) at any input h € R®. This problem formulation is foundational to machine learning. First,
we relax our attention to individual hypotheses h. Evolution describes how distributions change, and the replicator
equation gives us a way to model how any probability distribution p over hypothesis space # = R should evolve
when hypotheses are selected according to the loss function #: Under replicator dynamics, hypotheses with minimal
% will eventually out-compete all others, and any initial p that assigns non-zero probability (density) to all of H will
converge to a distribution over globally optimal hypotheses. We call p a metahypothesis.

For small (finite) hypothesis spaces H, the replicator dynamics may be simulated directly, corresponding to the method
of multiplicative weight updates (Littlestone and Warmuth, 1994; Friedman and Sinervo, 2016). For large H, however,
our need to independently track p(h) and sample -#’(h) for each value of h € H causes issues: Note that the replicator
equation describes dynamics in P, where P denotes the space of probability distributions over H. In general, the space
requirements for storing and manipulating arbitrary probability distributions p € P grow proportional to the size of H
(i.e., asymptotically, as ©(|H])). This is not feasible when H is continuous or high-dimensional.

When a (meta)hypothesis space (e.g., P) is large, it is standard in multiple fields to choose a parametric manifold
M = {p(-;6): 6 € R"} C P of tractable solutions, using a parameter vector § € R", where n dictates computational
space requirements. For example, we often linearize dynamical systems near equilibrium using a manifold described by
eigenvalues and eigenvectors. Similarly, neural networks parameterize manifolds in function space using weights and
biases. Unfortunately, replicator dynamics need not respect our chosen manifold: the replicator equation may force us
off of M, demanding values of p that are not addressable by any é. To resolve this, we desire a model of evolutionary
dynamics that is closed on any parametric manifold M — ideally one that approximates replicator dynamics as closely
as possible...

Our central result is that Fisher-Rao Natural Gradient Descent (FR-NGD) provides an optimal approximation
of continuous replicator dynamics constrained to any twice-differentiable parametric manifold M (Thm. 1). We refer
to this correspondence as conjugate natural selection (CNS; Section 3). As an extension of this result, by building on
known connections between the replicator equation and Bayes’s rule, we prove that FR-NGD also provides an optimal
approximation of Bayesian inference when loss is identified with a Kullback-Leibler divergence between predictions
and observations (Section 4). We demonstrate applications of these findings to a non-convex optimization problem
(Section 3.1) and parameter estimation of a stochastic process (Section 4.1).

By calling attention to the special case of FR-NGD among metrics for natural gradient descent, our work highlights
beauty in the natural world and provides immediate applications. First, our result indicates a provocative correspondence
between learning algorithms informed by information geometry and evolutionary processes driven by natural selection.
Second, our experiments indicate that CNS provides an alternative approach to evolutionary computation for non-convex
optimization and may be used for Bayesian system identification and parameter estimation.

1.1 Related Work

Prior work has discussed mutual connections between natural gradient descent, replicator dynamics, and Bayesian
inference, though even when cast as a synthesis of these previous results, our results retain novelty. In particular, we
are aware of no prior work that explicitly identifies FR-NGD as the best approximation of evolutionary dynamics nor
Bayesian inference for all twice-differentiable parameterization schemes p(h;#). Additionally, we believe our specific
construction of continuous Bayesian inference is novel.

While exact correspondence between the replicator equation and FR-NGD has been previously identified for tabular
or Boltzmann-Gibbs parameterized distributions (as the corresponding mirror-descent update) (Harper, 2009a, 2011;
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Harper and Safyan, 2020; Bloembergen et al., 2015; Gao and Pavel, 2017; Hennes et al., 2019; Otwinowski et al., 2020;
Chalub et al., 2021), this identity is limited to the case where M = P, and we are aware of no prior work that extends
this correspondence to under-parameterized approximations M C P.

While Harper (2009b,a) recognizes the replicator equation as both an instance of FR-NGD and as an inference dynamic
guided by Fisher information geometry and connected to Bayes’s rule in discrete time, the cited work stops short of
identifying the continuous time replicator equation as a generalization of Bayes’s rule to continuous time, nor does it
identify average fitness with a (negative) Kullback-Leibler divergence (despite recognizing the latter as a Lyapunov
function for the replicator equation). Achieving deeper connections to Bayesian inference, recent work by Khan and
Rue (2021) shows that FR-NGD gives rise to optimal Bayesian inference even for underparameterized distributions, but
the provided analysis assumes exponential families, rather than arbitrary, twice-differentiable parameterizations.

The previous results cited above all generalize to arbitrary twice-differentiable parameterizations in light of recent work
by Nurbekyan et al. (2022), who observe that natural gradient descent with any metric g(#) yields the least-squares
optimal approximation in M to natural gradient descent with metric g(p) on P (Nurbekyan et al., 2022, Eq. 2.2). For
our purposes: natural gradient descent on a parametric manifold always yields an optimal approximation of natural
eradient descent in the continuous analog of the tabular setting (i.e., in the case of FR-NGD, the replicator equation,
where, for every h, p(h) may be independently specified). Nonetheless, to our knowledge, this observation has not
been synthesized with the aforementioned results, nor have the implications for evolutionary dynamics been previously
explored.

2 Preliminaries

Before detailing our results, we first review necessary background, establishing our setting in Section 2.1. We briefly
discuss properties of the replicator equation in Section 2.2 and provide essential results from information geometry in
Section 2.3.

2.1 Setting

In this paper, we denote a hypothesis as h, which we identify with a “strategy” in the evolutionary game theory literature
(Friedman and Sinervo, 2016): For example, i may represent a combination of genes, a behavior, a belief, or a machine
learning policy. Let H denote the space of possible hypotheses, such that h € H for all k. For example, H might
represent a population’s genome, a set of competing social norms, an array of alternative beliefs, or the parameter space
of a neural network. Finally, let P denote the simplex, or space of probability distributions, over H.

Table 1: Variables

a hypothesis. h € H.

hypothesis space (arbitrary in size and dimension).
the space of probability distributions over H.

a probability distribution over hypotheses. p € P.

a random hypothesis. H ~ p.

a (possibly noisy) loss function. #: ‘H — R.

the expected value of % according to distribution p.

a parameter value. # € R™. Components indexed, e.g., as 6°.
the probability (density) at h, parameterized by 6.

the parametric manifold {p( -;6): 8 e R"}. M C P.

the Fisher (Section 2.3.1).

score (Def. 5), e.g., s;(0; h).

“natural deviation” (Def. 8).
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We use p € P to represent an individual probability distribution over H, and denote a hypothesis sampled at random
from this distribution as H ~ p. In a slight abuse of notation, we denote the probability (density) associated with h
in p as p(h). When H is discrete, p(h) corresponds to the relative frequency of h in a given population. When H is
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continuous, p(h) generalizes to a probability density, while sums over h generalize to integrals. While all equations
in this paper readily generalize to continuous H, we write our equations as if h were discrete for consistency and
convenience. This is not a limitation of our results.

For ease of notation, let a dot above a symbol to denote its full time derivative (that is, Yu, 4 = du/dt) and a bar
over a variable to denote its expectation value (explicitly, Yu,u = E[u]). We denote contravariant vectors with an
upper index and covariant vectors with a lower index, using the Einstein summation convention of implicitly summing
over matching upper and lower indices in a single term (formally, Yu, v, u;v* = ), u;v"), but we will not use this

convention for time index ¢. We also use standard shorthands for partial derivatives, identifying d;(-) = 8(-)/96" and
a(-)=0a(.)/ot.

The motivating problem we consider is the minimization, over p, of expected loss, for some loss function #: ‘H — R,
when H ~ p. Put simply, we wish to select the distribution of hypotheses p* with the smallest average loss.

= argflm_?;, . Z,= E [_'Z’(H)] =" p(h)Z(h). )

He
P h

In general, we assume that % may be a non-convex function. For example, #’(h) could represent the rate of excess
deaths compared to births for a genotype h, the negative rate of total returns for an investment portfolio h, or the
expected loss of machine learning policy h on a given task. For now, we assume that we may sample % without noise,
but this condition is easily relaxed as long as noise remains unbiased.

Ultimately, our proposed solution for Prob. (1) involves a twice-differentiable parametric manifold M C P of
distributions p(h;8) € M where 8 € R™ is a parameter vector for integer n greater than zero. We analyze continuous
time equations of motion for p and @: the replicator equation for p and FR-NGD for . In Section 3, we show that the
latter optimally approximates the former.

2.2 Replicator Dynamics

The replicator equation describes replicator dynamics. As background, we restate the continuous time replicator
equation and introduce Price equation (Lem. 2). While our treatment throughout this paper assumes a continuous time
variable ¢, we also derive the discrete-time form of the replicator equation in the supplementary material (Lem. 12),
taking care to explicitly consider time intervals of the form [¢, ¢ + At).

We have already introduced the continuous time replicator equation in a form adapted to the notation of machine
learning literature:

Definition 1. The replicator dynamics are governed by the equation

p(h) = p(h) | Z, — Z(B)|, where Z, =" p(W)Z(R), Y p(h)=1. @

Although we allow ourselves to omit time-indexing for p and #, these quantities are time-varying.
Remark 1. (No new hypotheses). For any finite times t and t', p,(h) = 0 iff py:(h) = 0.

Proof. The replicator equation has solutions of the form p;(h) = po(h) exp [, (Z,.,, — % (h)) dt’, which does not
admit roots in finite time unless pg (and therefore p;, for all ¢), is zero. O

Rem. 1 reveals that the replicator equation cannot generate new hypotheses. For this reason, it is often combined
with mutation or diffusion terms in practice, but the resulting dynamics are more difficult to solve (Bloembergen et al.,
2015). As an approximation of replicator dynamics with under parameterized p(#), FR-NGD can avoid this issue,
since eliminated hypotheses can be reintroduced or provably never be eliminated (e.g., when p(h; ) is everywhere
non-zero by design).

Lemma 2. (The Price Equation). For any function or real-valued property of hypotheses u: H — R, the expected
value of u, denoted @, when h is sampled with probability p(h), evolves according to

5=~ Gev [u(H),_‘Z’(H)] +E [ﬂ(H)] i w= B [u(H)}. 3)

4
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Many key results of evolutionary dynamics, such as fundamental theorems for gene and phenotype selection or
heritability, may be derived from the Price equation (Queller, 2017). We provide a derivation in the supplementary
material (Proof of Lem. 2), though this is a standard result.

2.3 Fisher-Rao Natural Gradient Descent

Variations of gradient descent have recently become standard techniques for non-convex optimization problems like
Prob. (1), facilitated by automatic differentiation and parallelized updates (Fradkov, 2020; Tappert, 2020). In broad
strokes, the technique is to first differentiably parameterize a search space M with a mapping 6 — p( - ;8), for example,
then repeatedly update @ in a direction that approximates the “fastest” decreasing value (i.e., the negative gradient) of
the expected loss .Z,

Definition 2. Naive Gradient Descent, in continuous time, is given by the update rule

bt = -5, 2. )

There is a problem with this update that is often unacknowledged in machine learning pedagogy: One side of this
equation is contravariant, while the other is covariant. To understand this intuitively, assign units to the quantities such
that dim(#) = U, dim(.#) = L, and dim(t) = T. It follows that dim(#*) = UT ! while dim(8;.%) = LU™". While a
learning rate provides a natural conversion between L and T—1, the powers of U do not balance on each side of Eq. (4),
and the equation is dimensionally invalid. This problem is resolved by explicit consideration of an (inverse) metric g%/
with units U? that assigns distances and angles in the cotangent space of é (i.e., where 8;(-), 8;(-), etc. live). The metric
gi; applies to the tangent space of @ (i.e., where de?, d¢’, etc. live).

Definition 3. Covariant Gradient Descent is given by the update rule

0t = —g9;%. 5)

Importantly, the choice of metric g can strongly influence the dynamics of gradient descent, which we call the
gradient flow. That is, the direction of the “fastest” decreasing value of .Z depends on how the tangent space of @ is
measured by g. The implicit assumption of naive gradient descent is that g = §“ for Kronecker delta § with the
appropriate units, i.e., a Euclidean metric for the (co)tangent space of §. FR-NGD, that is, natural gradient descent
with respect to the Fisher-Rao metric, uses a specific, alternative choice of g in Eq. (5) that derives from information
geometry (Amari, 1998; Martens, 2020). It (un)warps the space around any given parameter value 6 before performing
the gradient update, so that small updates of @ in any direction all contain the same marginal information about the new
distribution p(f + d#). The metric it uses is known as the Fisher.

In Fig. 1, we give an analogy for how the choice of metric can affect covariant gradient decent. Both a flat map and a
globe “warp” our perception of local distances and angles, and can mislead us when finding the “fastest” route between
two points on Earth.

2.3.1 The Fisher

The Fisher-Rao information metric tensor, Fisher information matrix (FIM), or “Fisher” may be expressed in multiple
ways, but is defined thus:

Definition 4. The Fisher for 0 is Z;;(68) = Covgn~, [0; log p(H;6), 0;log p(H;0)].

As a covariance matrix, Z is symmetric and positive semi-definite. 7 fails to be fully positive definite (i.e., is degenerate)

when parameter updates in different directions (up to constant scaling) affect p identically. Note that the quantity
8 log p(h; 8) appearing in Def. 4 is called the score.

Definition 5. The score s;(0; k) is defined as 8; log p(h; 8).
Lemma 3. (Zero Expected Score). The expected score is zero. That is, Ex ., [0; log p(H)| = 0.

Proof. Vi, En~,[0ilogp(H)] =3, p(h)0;log p(h) = -, Oip(h) = 8; 3, p(h) = 0. H
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Figure 1: An analogy for how different metrics can suggest different parameter updates in Eq. (5). Earth’s curvature is
exaggerated to emphasize that vectors W and G are tangent to its surface. The direction of travel from Rome (point R)
that most rapidly decreases one’s distance from Chicago, when measured in the Euclidean space of latitude-longitude
pairs (A, ), is nearly due west (vector W), because Rome and Chicago have nearly the same latitude A. Performing
gradient descent with an implicit Euclidean metric for parameter space is similarly naive. Vector C is tangent to the true
shortest path in physical space: north-west at an angle of nearly 35 degrees downwards. Like the update given by the
replicator equation or a continuous generalization of Bayes’s rule, this direction may not be tangent to the manifold
M. Constrained to M, the optimal approximation of the direction of C is its projection, G: north-west, tangent to the
surface, and tangent to the geodesic from Rome to Chicago on the surface of the sphere. Map Data Credit: NASA
Visible Earth.

2.3.2 Primal Gradient Flow

Definition 6. The primal gradient flow, for 6, induced by FR-NGD of .Z with respect to # is
0" = —[11(9)]" 6,2 (6)

where 7 is the Fisher and Z1 is its Moore-Penrose inverse. While Eq. (6) is often used in practice to update @, the
dynamics of the distribution p are of ultimate, material consequence. The dynamics of p are described by the conjugate
gradient flow.

2.3.3 Conjugate Gradient Flow

Definition 7. The conjugate gradient flow, for p € M, induced by FR-NGD of Zwith respect to 6 is

113(9)9‘? = —83;_? (?)

Z(6) is positive definite and invertible when @ has only non-degenerate degrees of freedom, in which case ZT(#) =
Z-1(0), the nullspace of Z*(8) is orthogonal to the tangent space of M, and Eq. (7) and Eq. (6) are equivalent. When
7(8) is not invertible, which occurs when 6 has redundant degrees of freedom (e.g., in a state of gimbal lock), the
properties of the Moore-Penrose inverse imply that Eq. (6) solves Eq. (7), producing, among under-determined solutions
for 6, the one with minimal Euclidean norm. In this case, the conjugate gradient flow induced by FR-NGD with respect
to 8 is still described by Eq. (7). We show that this conjugate gradient flow is an optimal approximation of the replicator
equation (Thm. 1).

To prime intuition, using results provided in the supplementary material (Lem. 6 and Lem. 7), we may rewrite the
conjugate gradient flow (Def. 7) as

>~ [8ilogp(h) (k) = 3 | ilog p(h) | (k) (Z— 2 (R). ®)

Comparing Eq. (2) and Eq. (8), we recognize conjugate gradient flow as a projection of the replicator dynamics
onto the dual space of @ spanned by the score (Def. 5), where the score provides a basis for the tangent space of M at 8
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such that, by Lem. 3, local motion along each basis vector introduces zero marginal entropy relative to p( - ; 6):
E [logp(H)+si(H)do'| = E [logp(H)| ©
Hep Hrp
As a projection of replicator dynamics onto M, we naturally expect the conjugate gradient flow to minimize an

appropriately defined distance from the replicator dynamics. Indeed, we define such a distance with Def. 8 and realize
this expectation with Thm. 1.

3 Conjugate Natural Selection

In this section, we state our primary results. We make use of the Fisher metric for p, also known as the Shahshahani
metric (Harper, 2009a), which follows from Def. 4 when 8 = p:

i) = ,E, [p(‘;}')z] : (10)

Definition 8. The natural deviation £ of p, induced by 6, from its nominal value under the replicator equation is given
by the corresponding mean-squared error in realized relative fitness d/d¢ log p.

£(6) = %HEP {(F%logp(ﬂ)l—\(?— Z(H)) )2] = %(@— ,é*)iL-J-(p)(p— p*)j. (11)

"

[ p(H)/p(H) p* (H)/p(H)

As desired, £ defines a distance in the tangent space of P, imposed by the Fisher metric Z(p) between the replicator
dynamics g* and the dynamics p realized by FR-NGD with respect to 6. By inspection, we see that £ is minimized for
tabular settings (p = @) if and only if the replicator equation holds (i.e., p = p(.Z — -#(k))). The minimization of £ by
FR-NGD generalizes to any twice-differentiable parameterization of p by 6.

Theorem 1 (Conjugate Natural Selection; Main Result). Constrained to a given manifold of twice-differentiable
parametric policies p(h;0), FR-NGD of Pwith respect to 0 (Egs. (6) and (7)) achieves the least-squares optimal fit in
6 to the continuous time replicator dynamics (i.e., Eq. (2)), as measured by the natural deviation £ (Def. 8).

Our Proof of Thm. 1, provided in the supplementary material, proceeds by establishing that FR-NGD of Zwith respect
to 6 induces a stationary point of £, such that /96 = 0, with a Hessian that is positive semi-definite everywhere,
implying a global minimum.

In addition to proving an optimal correspondence between FR-NGD with respect to € and the continuous time replicator
equation (Thm. 1), we may characterize the space of functions u: { — R that undergo the same dynamics under
either update rule as linear combinations of score (Thm. 2). Finally, we demonstrate an application of conjugate natural
selection (CNS) by experimentally evolving a distribution of continuous hypotheses for a non-convex problem.

Theorem 2 (Preserved Dynamics). Linear combinations of score satisfy the Price equation (Eq. (3)) when 6 is updated
via FR-NGD of . That is,

Vol € R,u = a's;(6; h), %H]f%p [U(H)] = — Cov [u(H),.‘Z’(H)] +,E [a(H)}. (12)

Hrep
We include Proof of Thm. 2 in the supplementary material.

3.1 Applications

We demonstrate an application of CNS by evolving a Gaussian distribution over candidate solutions for a non-convex
optimization problem: namely, unconstrained minimization of the Rastrigin function,

L(hg, hy) =20 + hZ + h; — 10 cos(2mwh,) — 10 cos(27hy),
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depicted in the rightmost pane of Fig. 2.

At each time step, N=40 hypotheses h are sampled from p; and the loss for each h is calculated, yielding a Monte
Carlo estimate of the loss gradient ;% ~ + S Z(hi)d; log p(hi). We use an analytically-known form of the
Fisher for a non-degenerate parameterization of a 2-dimensional Gaussian distribution using 5 degrees of freedom and
an Euler discretization of the dynamics. We provide our code for this simulation in the supplementary material.

Empirical Losses vs Time Rastrigin Loss Function % (k)

Figure 2: On the left, we plot the mean, standard deviation, and extremal empirical losses for the learned distribution
over 100 time steps. On the right, the loss function is visualized as a surface over the domain [—6, 6] x [—6,6]. In
the middle, we represent time steps 0, 20, and 50 of the evolution: The Rastrigin function is visualized with shading
and highlighted level sets; the sampled hypothesis are represented by white dots; and the 1- and 2-¢ ellipses for the
evolving Gaussian distribution p are shaded white with partial transparency. The distribution is initialized with mean at
[-1.5, —1.5] and identity covariance, and we use a constant learning rate of 1e~2 for the Euler update. An animation
of the time-evolution of the distribution is available with the included source code.

3.2 Limitations

Recent characterizations of FR-NGD have suggested quadratic convergence rates under certain conditions (Miiller and
Montifar, 2022; Hu et al., 2022), though care must be taken to choose appropriate parametric manifolds M for Z.
(Intuitively, it is possible to “optimally” fit data to any model, but the model must be appropriate to the domain for the
optimal fit to be useful).

Until recently, the bottleneck for applying FR-NGD in practice was the O(n~237) cost of Fisher matrix inversion,
prompting alternative empirical approximations of natural gradient descent (Martens, 2020; Hennes et al., 2019; Peirson
et al., 2022). A more scalable approach, based on solving the corresponding least-squares problem directly, has been
recently proposed by Nurbekyan et al. (2022).

Our simple demonstration in Fig. 2 indicates that conjugate natural selection provides an alternative approach to
standard approaches in evolutionary computation: Rather than directly simulate a population, we may use FR-NGD to
update a parametric distribution of candidate solutions and ultimately solve a non-convex optimization problem, even
when the hypothesis space is continuous or high-dimensional. As Zand Z(6) are often approximated by empirical
averages, we also comment that this approach readily extends in the presence of noise that is independent of p or 6.
In particular, the hypothesis space H may correspond to the space of functions over a random input, as in Section 4.
Finally, we assert that using FR-NGD for evolutionary computation may be suitable for constrained optimization in
practice, because simple sample rejection can guarantee that domain constraints for h are satisfied (although sample
rejection will distort the corresponding Fisher information matrix).

4 Continuous Bayesian Inference

For this section, let us interpret k as a predictive model yielding a probability (density) for a stochastic process X;
observed in continuous time ¢ and distributed by Nature as n. Examples of such processes X include physical quantities
like instantaneous field amplitude; the idealized market price of an asset; Brownian motion; or any continuous time
quantity perturbed by noise. In this context, the replicator equation (Eq. (2)) corresponds to continuous Bayesian
inference if we identify loss with the negative log-likelihood of hypothesis h given x;. That is, let

h(zy;t) = f:lr(Xt:ﬂ:ﬂt) i n(xy;t) = Pr(Xe=ze|t) ; ZL(h,t) = —logh(zy; t). (13)
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The loss % expressed in Eq. (13) corresponds to surprisal, or the amount of information about X revealed under
hypothesis h by the observation X;=x;. A good hypothesis minimizes average surprisal by correctly predicting the
process X;. For this loss, the replicator equation (Eq. (2)) describes stochastic dynamics for p that depend on the
instantaneous value of x;:

pt(h, ) = pe(h) [-?p;(It) + log h(xy; t)} , where %, (z) Z pt(h) log h(zy; t). (14)

We will use the gradient of the expected value of %, (-) over X; ~ n and perform FR-NGD to evolve p. While %, ()
might be formally defined as a cross-entropy term, its gradient with respect to p, is the same as the gradient of the
expected Kullback-Leibler divergence (relative-entropy) & from h to n, defined

Di(n|| h) =— Zn(:c; t)log % (15)

T

Lemma 4. The gradients of Ex,..[%,,(X:)] and Egip,[2:(n || H)] with respect to p; are equal.

A proof of Lem. 4 is provided in the supplementary material.
Theorem 3 (Continuous Inference). Eq. (14) may be used to derive Bayes'’s rule.

We provide Proof of Thm. 3 in the supplementary material. Unfortunately, when # is large, it is difficult to compute
the prior for an observable, as this calculation requires integrating over H (i.e., Pr,, (XA?) =Y, pe(h)h(XA%,¢) in
Eq. (21)). This difficulty is used to justify approximate Bayesian inference based on variational bounds, such as the
Evidence Lower Bound (ELBO). We may avoid the corresponding difficulty via FR-NGD, however, by using Monte
Carlo sampling to estimate the necessary gradient, 9; Eg~,[%:(n | H)] = — Ex, u [0;log p(H;0) log H(X,,t)].
Theorem 4 (FR-NGD Yields Optimal Continuous Inference). For any probability distribution p(h; @) that is twice-
differentiable with respect to parameters 6, FR-NGD of the expected divergence Eg; ., [Z:(n || H)] (of the p-weighted
predictions of model h(Xy;t) for X; ~ n) with respect to 8 optimally approximates Bayesian inference for p in
continuous time, by minimizing £ (Def. 8).
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Figure 3: Given randomly-spaced samples of a Wiener process W; with time-dependent variance (left), where vertical
lines indicate the times of observed samples (left, center), we define the observable X; = AW/v/At ~ n = N(0,0%(t))
between measurements of W; (center). We update a #-parameterized Gaussian distribution p over H = log ¥ via
FR-NGD, with respect to 0, of the expected Kullback-Leibler divergence between n and H ~ p, interpreting X as an
estimate of the time-evolving parameter o(t). We visualize the mean and standard-deviation of log ¥ ~ p with time,
compared to the actual value of log o (right).

4.1 Parameter Estimation for a Stochastic Process

Using FR-NGD, we demonstrate learning a time-varying distribution p = N(0;t) over H = log(X), where X is an
estimator for the time-varying parameter o(t) of an observable Wiener process dW; ~ N(0, a2(t) dt) (Fig. 3). Our
example uses a 40-sample Monte Carlo gradient estimate and an Euler discretization of the dynamics 8;; = 6; + nf;
with constant learning rate = 1e~2.



Conjugate Natural Selection A PREPRINT

5 Conclusion

We have shown that FR-NGD optimally approximates evolutionary and Bayesian dynamics for any twice-differentiable
parameterization of a distribution over hypotheses. We believe it is remarkable that the essential dynamics of evolution
by natural selection share such close relationships with the fundamentals of information theory, and that the unifying
theoretical machinery is widely applicable to machine learning and optimization in practice.

In the case of the correspondence between FR-NGD and evolutionary dynamics, we have termed our finding “conjugate
natural selection” and demonstrated its application to a non-convex optimization problem over a continuous hypothesis
space. We assert that this approach provides an alternative to existing methods of evolutionary computation by
dispensing with the need to simulate populations
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A Deferred Proofs

We organize our deferred proof thematically. In Appendix A.1, we provide lemmas that allow for more succinct proofs
throughout the rest of this section. In Appendix A.2, we derive Eq. (8), appearing in the main text. In Appendix A.3,
we prove our primary result, deemed “conjugate natural selection” (Thm. 1). In Appendix A.4, we derive the Price
equation and our result regarding dynamics preserved between replicator dynamics and FR-NGD on M (Thm. 2).
Finally, in Appendix A.5, we derive the discrete replicator equation and Bayes’s rule, and we prove the optimality of
FR-NGD for continuous Bayesian inference (Thm. 3).

A.1 Four Useful Lemmas (5-8)

Lems. 5 to 7 provide equivalent expressions for quantities that frequently appear in our problem domain: Lem. 5
identifies a simple term-rewriting rule, while Lem. 6 and Lem. 7 address either side of the conjugate gradient flow
equation (Def. 7), restated below. Lem. 8 proves a simple identity relying on repeated application of the chain rule.

Lemma 5. (Functionals). For any function w: H — R, for all parameter components i, the following expressions are
equivalent:

Z dip(h)u(h) = H]Ep [u(H)O; log p(H)] = gg:; [0;log p(H),u(H)].

Proof. The first equality is an instance of the “log-derivative trick”, while the second follows from Lem. 3:

Yu, Z dip(h)u(h) = Z p(h)9;log p(h)u(h) = gg\; [0:log p(H),u(H)].

.«

E- o [u(H)9; log p(H)]
O

Briefly recall the definitions for the Fisher (Def. 4) and conjugate gradient flow under FR-NGD (Def. 7), which we
reference in our proof of Lem. 6:

Definition 4. The Fisher for 0 is Z;;(68) = Covgn~, [0; log p(H;6), 0;log p(H;0)].
Definition 7. The conjugate gradient flow, for p € M, induced by FR-NGD of Zwith respect to 6 is

113(9)9‘? = —83;_? {?)
Lemma 6. (Conjugate Flow) The dynamics of p € M under FR-NGD of Z with respect to 6 (Def. 7 are

. d
(0T = . = — . ;
Ty ()67 = Gov [3:log p(H), 3. log p(H)| Y [8:108 p(1)] ().
where we elide the explicit dependence of p on 8 for compactness.

Proof. The first equality follows from substituting the definition of Fisher information (Def. 4) into Def. 7 and summing
over j, by the linearity of covariance.

L;(6)8’ = Cov [85 log p(H), 8, log p(H)]éf
~p

d
= Gov |slog p(H), - log p(H) |-

The second follows from rewriting covariance as an explicit sum over h while invoking Lem. 3 and pushing the time
derivative through the logarithm, that is,

12
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Lemma 7. (Loss Gradient) The gradient of expected loss £ with respect to 0 is

0.7 = Gov |ailog p(H), £(H)| = =Y |0ilog p(h) | o(h) (2~ 2(1)).

Proof. As the function #: H{ — R has no explicit dependence on &, we may expand
0, 7= £(h)dip(h).
h
By Lem. 5, when we choose u = .#, we may equate this sum with the desired covariance between 8; log p and .
> Z(h)dip(h) = ggxs[ai log p(H), £ (H)].
h

Finally, we re-express this covariance as an explicit sum:

Gov [9ulog p(H), £(H)| == [0:1og (h) | o(h) (Z~ £(h)).

Lemma 8. (Cancel Dots with Chain Rule). Yu independent of (6, p),

alz'*i (%u(‘o)) = 9yu(p).

Proof. By the chain rule,

q(%mm)—flmuma—u@) = () 02 (#010 + 0u0) = ()0 = Ou(p).

00! 06! o6

A.2  Proof: Projection of Replicator Dynamics (Eq. (8))

In the main text, we claim that the conjugate gradient flow (Def. 7) may be re-written as

>~ [8ilogp(h) (k) = 3 | ilog p(h) | (k) (Z— 2 (R). ©

h P h P

Proof. By direction application of Lem. 6 and Lem. 7, we compare Eq. (8) to Eq. (7):
7 -(9)6 = -0, 2.
Z [0:10g p(h)| () = Zi;(0)6" .

~0,2=%" [ag- log p(h)] p(R) (_?— _'Z’(h)).
> [Bilogp(h)] k) = 3 [0 10g p(B)] o) (Z— 2 ().

13
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A.3 Proof: Conjugate Natural Selection

With Lem. 9, we establish that FR-NGD of £ with respect to @ (Def. 7) induces a local extremum of £ (Def. 8) with
respect to §. With Lem. 10, we establish that this local extremum is a global minimum, by the fact that the Hessian of £
with respect to @ is everywhere positive semi-definite; In fact, this Hessian is the Fisher. We conclude that FR-NGD
of Z with respect to 8 is an optimal approximation of the replicator dynamics, a finding we term “conjugate natural
selection” (Thm. 1).

‘We first restate Def. 8:

Definition 8. The natural deviation £ of p, induced by 6, from its nominal value under the replicator equation is given
by the corresponding mean-squared error in realized relative fitness d/d¢ log p.

L1 d _ o1y N\ Y,
£(6) =5 B (ﬁ—tlogp(H1 —\(z’—z’(H))l) = (p=5") Tiw) (o= ") (11)
p(H)/p(H)  p*(H)/p(H)
We additionally recall that Z(p) is given by
Ty(p)= B |- (10)
ST dive [ p(H)2 ]

Lemma 9. (Gradient of Natural Deviation)

a
Gl

E() =TL;(0)0 + 0,2

Proof. We may take the gradient of Eq. (11) with respect to 6. We use Lem. 8 (for u = log) to first write

dit

o (i log P(h)) = 0, log p(h),

thus,
17,
o6

Recognizing that % log p= % p, the expectation value on the right side of Eq. (16) separates into two explicit sums; i.e.,

£B)= E [(%logp(ﬂ)—(i_"—i”(ﬂ))) a,-logp(H)]. (16)

Herep

%e(é) =" @i log p(h)] (k) — 3 8y og p(h)] p(h) (Z— 2 (h)) -

These sums correspond to the gradient flow on M (Lem. 6) and the loss gradient (Lem. 7), respectively. [l
Lemma 10. (Hessian of Natural Deviation) £ is convex in 6, that is,
52
96:007

where ZL;;(0) = 0 denotes that L;;(6) is positive semi-definite (has only non-negative eigenvalues).

£(6) =T,5(0) = 0,

Proof. We differentiate Eq. (16) with respect to 6, again using Lem. 8 (for u = log). Thus, the second derivative of £ is

2
)= B [ @ilogs(t) 05 10g ()]
= ggx; [85 log p(H;#), 0;log p(H; 9)}
= L;;(0).
Where the last equality relies on Def. 4. As a covariance matrix, Z is positive semi-definite (i.e., Z = 0). |

14
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That the Fisher is the Hessian of £ with respect to 6 is unsurprising, since £ is ultimately a distance measured by the
Fisher metric in the tangent space of p. This underlying reason is shared with characterizations of the Fisher as the
Hessian of the loss surface (Martens, 2020).

Theorem 1 (Conjugate Natural Selection; Main Result). Constrained to a given manifold of twice-differentiable
parametric policies p(h;0), FR-NGD of £ with respect to 0 (Egs. (6) and (7)) achieves the least-squares optimal fit in
6 to the continuous time replicator dynamics (i.e., Eq. (2)), as measured by the natural deviation £ (Def. 8).

Proof of Thm. 1. Lem. 9 implies that FR-NGD of 2 (Def. 7) with respect to @ achieves a local extremum of £ (i.e.,

3‘33 £(8) = 0), while convexity (Lem. 10) guarantees that any local extremum of £ is a global minimum. 0

A.4 Proof: The Price Equation and Preserved Dynamics

Thm. 2 characterizes the subspace of properties u(h) that obey the Price equation under FR-NGD: linear combinations
of the score. This result provides a direct route for determining how an approximation of the replicator dynamics by
FR-NGD in @ for some chosen parameterization affects quantities of interest: if a property is naturally expressed as a
linear combination of score, there is no resultant distortion of the dynamics of the property in question when using a
lower-dimensional representation # with FR-NGD when compared to replicator dynamics in P.

We first restate the replicator equation (Eq. (2)) for local reference:

(k) = p(R) [E;, _ i"(h)], where Z, =Y p(h)Z(h), > p(h)=1. )

Next, we restate and prove Lem. 2, defining the price equation, before proving our characterization of the space of
properties preserved by FR-NGD on M when compared to the replicator dynamics:

Lemma 2. (The Price Equation). For any function or real-valued property of hypotheses u: H — R, the expected
value of u, denoted @, when h is sampled with probability p(h), evolves according to

c‘:t w, = — gi‘; [u(H),_‘Z’(H)] . ngp [ﬂ(H )] ;o U, = HEP [u(H )}- ®)

Proof of Lem. 2. By the chain rule,
d

Vu, = Zh: p(h)u(h) = Zh: p(h)u(h) + Zh: pri(h)

Expanding p(k) in terms of the replicator equation (Eq. (2)) and recognizing the terms of the equation as expectation
values, we have that

Va, %Z p(hyu(h) =3 plh) [g 2(h) } +Z p(h)a(h) .

~ " ~ " .«
-

N

-l

— Cov i p[u(H), 2 (H)] “Erplat)]
O

Theorem 2 (Preserved Dynamics). Linear combinations of score satisfy the Price equation (Eq. (3)) when 6 is updated
via FR-NGD of . That is,

i i . d _ .
Vo' € Ru=a'si(6;h), T B [U(H)] =~ Cov [u(H) (H)] + B [u(H)}. (12)
Proof of Thm. 2.  Differentiate E[u] = )", p(h)u(h) by the chain rule, where dd‘;’ = p<-log p implies that
d .
vu, = B [u(H)} B [u(H) log p(H)] + B [U(H)]. (17)

15
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Independently, note that Lem. 6 and Lem. 7 allow us to rewrite (Def. 7) as

d
Cov [815 log p(H), 7 log p(H )] =—Cov [6& logp(H), Z(H )]- (18)

When u(h) = a's;(0; h) = a'8; log p(h) for some vector a(t) € R", we may take an a-weighted sum over Eq. (18).
By Lem. 3, E[u] = 0, thus Eq. (18) becomes
B [u(H)i log p(H)] — —Cov [u(H) _'Z’(H)].
’ dt Herep ’

This implies that the second term (first term on the right) in Eq. (17) and the second term (first term on the right) in
Eq. (12) are equivalent, and, therefore, Eq. (17) implies Eq. (12). O

A.5 Proof: Continuous Inference

In this section, we give a derivation of the discrete-time replicator equation as background. We reference this derivation
while also proving that continuous Bayesian inference (Eq. (14)) may be used to derive Bayes’s rule (Thm. 3) and that
FR-NGD provides an optimal approximation of continuous Bayesian inference (Thm. 4).

Let us first establish that the replicator dynamics preserve the normalization condition necessary for a proper probability
distribution, restating the replicator equation (Eq. (2)) for local reference:

(k) = p(R) [E;, _ i"(h)], where Z,:=3"p(h)Z(h), Y p(h)=1. @)

Lemma 11. (Preservation of Normalization). The dynamics of the continuous time replicator equation preserve the
normalization of p (i.e., S, p(h) = 1). Thatis, &3, p(h) = 0.

Proof.
&3 o) = Y2 i) = Y 0l0) [Z, — £(0)] = Z, — " plh) 2 () =0,

O

The replicator equation is frequently encountered in discrete time.
Lemma 12. (The Discrete-Time Replicator Equation). Define

1 t+ At

logre(h) =—%x; | Zv(h) dt’,
for each h, as the time-average of — %, (h) over [t,t + At), and let
Te(At) = pr(R)re(h).

h
It follows that

_ Tt ( h)&t

Proof. The solution of Eq. (2) (which may be verified by differentiating with respect to time) is

(t+Aat) (t+At)
purao®) =)o [ Z,at ) (e [ ~u(wyar).
t t

Ce.ae re(h)2t

After summing over h on both sides of this equation, normalization (Lem. 11) implies that the constant C; A, is
necessarily equal to the multiplicative inverse of 7¢(At) == Y, pe(h)re(h)A". M
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Our formulation of “continuous Bayesian inference” in the main text defines, for local reference,

h(zy;t) = f:lr(Xt:ﬂ:ﬂt) i n(xy;t) = Pr(Xe=ze|t) ; ZL(h,t) = —logh(ze;t). (13)
such that
pt(h, ) = pe(h) [-?.o; (z¢) + log h(xy; t)} , where %, (z) Z pt(h) log h(zy; t). (14)
Theorem 3 (Continuous Inference). Eq. (14) may be used to derive Bayes’s rule.
Proof of Thm To discretize Eq. (14), we first denote the path of observations over the time interval from ¢ up
tot + At as 2t == {xy: t’ € [t,t + At)}. Next, define the probability density of the path to be proportional to the
product of the probabllmes of its instantaneous values.
1 t+AL
log h(z2t;t) == m/ log h(zy;t') dt’ . (20)
t

Note that we normalize this equation to make it properly dimensionless by choice of an arbitrary scale, where [t]
denotes units of time. The choice of an arbitrary scale is integral to the definition of differential entropy, as it allows
us to establish a volume of configuration space (in this case, with units of time) to correspond to unit entropy. For a
motivating example, we must choose how many units of (differential) entropy correspond to the space of possible paths
over 1s, when each X; is a uniformly distributed Bernoulli random variable. We choose the same units that we use to
measure At, so that [t] may be considered equal to 1 hereafter.

Subject to the loss of Eq. (13), when #(h,t) = —log h( X!, t), retracing the derivation of the discrete-time replicator
equation (Lem. 12) yields Bayes’s rule, i.e.,

h(XA% 1) re(h)A
RIXEY) = pe(h) L, i k) = pe(h)= 21
P(t+At)( | X)) = pu( )Prp‘ (X;M)’ rom P(c+m)( ) = pe(h) 7 (At) (21)
where (400
re(h)2" = exp / —Zu(h)dt’ = h(XPt)

i

and
= pe(R)re(h)2 = Pr(XP).

h Pt

We identify pyi a(¢)(h) as the posterior p; i a (1) (k| X ) when path X% is observed. O

Having established that the replicator equation with a specific loss based on surprisal (Eq. (13)) may be identified

with “continuous Bayesian inference”, we next prove that continuous Bayesian inference is optimally approximated by

FR-NGD (Thm. 4). Let us first restate the definition of Kullback-Leibler divergence of n from h, to which we relate the

gradient of the surprisal-based loss:

h(z;t)
n(z;t)

Lemma 4. The gradients of Ex,...[%,,(X:)] and Egrp,[2:(n || H)] with respect to p, are equal.
Proof of Lem. 4.

Zu(n || B) = — 3 n(z;1) log

T

(15)

E [9(H,0)]— E [Z,(X.)]

Hrapy

a SRNED log M50+ 3 (e ) og b
—Zp; n(z,t)logn(z,t)

— Z n(z,t) logn(z,t).
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As the negative entropy of X; ~ n, this difference is independent of p; and therefore has zero gradient with respect to
pt. Each term of the original expression must therefore have the same gradient. O

We conclude with a restatement and proof of the optimal correspondence of FR-NGD with the appropriate loss to
continuous Bayesian inference:

Theorem 4 (FR-NGD Yields Optimal Continuous Inference). For any probability distribution p(h; @) that is twice-
differentiable with respect to parameters 8, FR-NGD of the expected divergence Ey; .., [Z;(n || H)] (of the p-weighted
predictions of model h(Xy;t) for X; ~ n) with respect to 0 optimally approximates Bayesian inference for p in
continuous time, by minimizing £ (Def. 8).

Proof of Thm. 4. Assume a twice-differentiable parameterization for probability distribution p(h;#). FR-NGD
of Eg~,[2(H,t)] (Eq. (15)) is the same as FR-NGD of EX;Nu[-i_pp: (Xt)] (Eq. (14)), since these quantities have
equivalent gradients (Lem. 4). We will treat the latter.

By Thm. 1, FR-NGD of Ex,~u[-%}, (X:)] with respect to 6 provides an optimal approximation of the replicator
dynamics (Eq. (2)) with the corresponding stochastic loss #(h) = — log h(z;; t).

Finally, because Thm. 3 indicates that the replicator dynamics are consistent with continuous time Bayesian inference,
it follows that FR-NGD of E ., [Z2(H), t| with respect to 6 is an optimal approximation of Bayesian inference in
continuous time. O
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