
SciPost Physics Submission

Modeling Hadronization using Machine Learning

Phil Ilten 1†, Tony Menzo 1?, Ahmed Youssef1‡, and Jure Zupan1§

1 Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221,USA
† philten@cern.ch, ? menzoad@mail.uc.edu, ‡ youssead@ucmail.uc.edu, § zupanje@ucmail.uc.edu,

March 1, 2023

Abstract

We present the first steps in the development of a new class of hadronization models
utilizing machine learning techniques. We successfully implement, validate, and train a
conditional sliced-Wasserstein autoencoder to replicate the Pythia generated kinematic
distributions of first-hadron emissions, when the Lund string model of hadronization im-
plemented in Pythia is restricted to the emissions of pions only. The trained models are
then used to generate the full hadronization chains, with an IR cuto↵ energy imposed
externally. The hadron multiplicities and cumulative kinematic distributions are shown
to match the Pythia generated ones. We also discuss possible future generalizations of
our results.

Contents

1 Introduction 2

2 Conditional SWAEs and hadronization 3

2.1 The simplified Lund string hadronization model 3
2.2 The cSWAE architecture 6
2.3 Training 9

3 Reproducing the simplified Pythia fragmentation model 10

3.1 First emission trained models 11
3.2 Labels and E dependent distributions 13
3.3 Hadronization chain 15

4 Conclusion and Outlook 16

A Public code MLhad v0.1 18

B Sliced Wasserstein distance 19

C Latent distributions 20

References 21

1

SciPost Physics Submission

1 Introduction

A typical particle physics Monte Carlo event generator factorizes into three distinct steps
or blocks of code: (i) the generation of the hard process, (ii) parton shower, and (iii)
hadronization (including color reconnections). The first two steps are perturbative in their
nature, and thus under good theoretical control, with significant e↵orts devoted to improv-
ing the precision even further[[1–4]]. The algorithmic challenges are e�cient sampling of
final state particle configurations, and taming the factorial growth of the calculations with
the increasing number of particles. The simulation of the hard matrix element is performed
either by a specialized code, e.g., MadGraph [5], which only calculates the hard process,
or is directly included in complete event generators, such as Pythia [6], Herwig [7], or
Sherpa [8], that also perform the parton showering.

In contradistinction, the hadronization step is inherently non-perturbative. One is
therefore forced to resort to phenomenological models inspired by non-perturbative dis-
criptions such as lattice QCD. The two main models used in simulating hadronization are
the Lund string model [9–11] and cluster model [12–14]. In the string model, quark–anti-
quark pairs are thought of being connected by a string, a flux tube of the strong force
confined in the lateral direction. As the quark–anti-quark pair moves apart, the string
breaks, creating new quark–anti-quark pairs in the process, resulting in the emission of
hadrons. These emissions are performed iteratively, breaking the string either from the
left or the right side, with the final step modified post hoc in order to provide an emis-
sion similar to the previous steps. This model requires extra parameters to describe the
hadrons’ transverse momenta and heavy particle suppression, and has some challenges
describing baryon production. Over O(20) parameters are required by the string model
to describe the hadronization.

In the cluster model, gluons are forced to split into quark–anti-quark pairs at longer
distances (lower energy). All quark–anti-quark pairs are grouped into color singlet com-
binations with a distance scale that depends only on the evolution step, and not the hard
process step of the Monte Carlo even generation. Hadrons are emitted from these uni-
versally pre-confined clusters via a series of two-body decays until only physical hadrons
remain. The model has fewer parameters and naturally generates hadron transverse mo-
menta. However, the decays of massive clusters lead to phenomenological problems such
as predicting heavy baryon distributions which do not match data well.

Machine Learning (ML) techniques o↵er the possibility to build alternatives to the
above two models of hadronization. Such ML models could be directly built from data
and provide insights into the current phenomenological models. While ML techniques
have recently entered into the development of event generators, through adaptive integra-
tion [15–20],[parton showers [21–30], ML based fast detector or event simulations [31–57]],
and model parameter tuning [58,59], the application of ML to the problem of hadronization
as the final step in the Monte Carlo pipeline is entirely new, to the best of our knowledge.
The present manuscript represents [the first step toward building a full-fledged ML based
hadronization framework.]

In principle, Generative Adversarial Networks (GANs) [60], Variational Auto-Encoders
(VAEs) [61] [and Normalizing Flows (NF) [62]] have demonstrated the ability for ML
to generate convincing physical observables. [In addition, conditional generative models
give more flexibility and control of the output [63, 64]] [Extending the ML techniques for
hadronization faces] [three challenges]: (i) producing sets of physical observables that vary
in size (unlike a fixed number of pixels), ranging from O(1) to O(104); (ii) strictly con-
serving certain physical quantities, e.g., momentum and energy; and (iii) learning from
limited training sets which only provide coarse-grain detail. In this paper we present

2

SciPost Physics Submission

an architecture based on conditional sliced-Wasserstein autoencoders (cSWAE) [65, 66],
that overcomes the above challenges. The resulting code, MLhad, is publicly available,
see Appendix A. We demonstrate the capabilities of MLhad by training it on specially
prepared Pythia hadronization outputs with an explicit IR cut-o↵. To speed up the train-
ing we perform a transformation that captures the bulk of the energy dependence of the
Pythia hadronization output. However, we also show that, if this transformation is not
performed, the cSWAE can still reproduce the energy dependence and thus should be able
to reproduce any additional energy dependence that may be present in the hadronization
process realized in nature. We expect that the first version of the cSWAE architecture
presented here can be upgraded to eventually be trained directly on data [(details about
further steps to achieve this can be found in section 4)].

The paper is structured as follows. In Section 2 we introduce conditional sliced-
Wasserstein autoencoders and describe how these can be used to reproduce the Lund
string model of hadronization. In Section 3 we then compare the trained MLhad models
to the results of a simplified Pythia hadronization model. Section 4 contains our con-
clusions and a brief discussion of future directions. Appendix A contains details about
the publicly accessible MLhad code, while Appendix B gives further details on the sliced-
Wasserstein distance.

2 Conditional SWAEs and hadronization

2.1 The simplified Lund string hadronization model

As the first step toward building a machine learning (ML) based simulator of hadroniza-
tion, we create a ML architecture that is able to reproduce a somewhat simplified Lund
string model for hadronization. [Hadronization is the last step in the Monte Carlo simula-
tion of the particle collision, and describes the creation of hadrons from quarks and gluons,
a process that occurs at the nonperturbative scale of a few 100MeV. The distributions
of quarks and gluons at low scales is obtained using a parton shower simulation, which
describes the emission of particles between the hard scale of the collisions, typically a few
100 GeV, down to low energies. In a Lund string model the quarks and gluons are thought
of being connected by QCD [color flux tubes, or strings,] that carry significant amounts of
energy, and shed it in the process of hadron creation. While there were already attempts
to use ML to improve parton shower simulations [28, 67–73], this manuscript represents
the first attempt to use ML for hadronization. In both cases the physics is described by
a Markov chain, however, for di↵erent reasons. The semi-classical evolution of a parton
shower, where gluons and quarks are radiated in a Markov chain, can be justified in the
small angle emission limit. The hadronization, on the other hand, can be represented
as a Markov chain process because string fragmentations occur at causally disconnected
points.]

The physical process we want to describe is depicted in Fig. 1. It shows a qiq̄i frag-
mentation event in the center-of-mass frame in which the individual partons, each with
flavor index i and initial energy E, travel with equal and opposite momenta and are con-
nected via a QCD string. String breaking produces a composite hadron h ⇠ qiq̄j and
a new qj q̄i-string system depicted in the lower part of Fig. 1.1 The hadron h is ejected
with some energy and momentum (Eh, ~ph), while the new string system has the energy
and momentum (2E � Eh,�~ph), so that the total energy and momentum are conserved.

1
The depiction in Fig. 1 is for a string breaking occurring on the quark side. The string breaking on

the anti-quark side produces similarly a hadron with quark composition h ⇠ qj q̄i, and the new qiq̄j-string.

3

SciPost Physics Submission

Figure 1: [Schematic of a single fragmentation event, for an initial quark–anti-quark
pair, qiq̄i, into a hadron with quarks qiq̄j and new endpoints q̄iqj .]

[The goal of our ML framework will be do properly describe the probabilities of emitting
a hadron of given energy and momentum.]

After boosting to the center-of-mass frame of the new string, one has essentially the
same initial state, a quark–anti-quark pair going back to back connected by a string, but
with reduced energy E0 and a di↵erent quark flavor composition. Such fragmentation
events stack one after the other and form a fragmentation chain, one hadron emission
at a time, until the entire energy of the initial two-parton system (2E) is converted into
hadrons. The end of the string used for each splitting is chosen at random. Until relatively
low string energies of a few GeV, the selection of flavor and the kinematics of the hadron
emission are taken to be independent processes. In the final stages of hadronization, when
the string energy is close to the nonperturbative scale, the two processes, on the other hand,
become intertwined. To simplify the problem, we therefore terminate fragmentation events
at a center-of-mass string energy Ecut = 5 GeV. We also consider a simplified string system
which allows for u and d quarks as string ends, as well as their respective anti-quarks, and
pions as final states.

Note that each step in the above hadronization chain is independent from the previous
one. A successful hadronization simulator therefore takes as the input the string energy
E (i.e., the energy of one of the endpoint quarks in the center-of-mass frame) as well
as its flavor composition, and gives the flavor and kinematics of the hadron after first
emission, (Eh, ~ph). Repeating the first emission generates the full hadronization chain.
Since E2

h = ~p2h +m2
h, where mh is the hadron mass, the kinematics of the emission are fully

described by specifying ~ph and flavor of the created hadron h. We orient the coordinate
system such that the z axis is along the direction of the initial string, while the x and y
coordinates are perpendicular to it. The transverse components of the ~ph vector are given
by

px = pT cos', py = pT sin', (1)

where pT ⌘

q
p2x + p2y and ' is the polar angle. The string breaking and hadron emission

are assumed to be axially symmetric in Pythia, i.e., independent of ', and thus the prob-
lem of simulating the hadronization event reduces to a two variable problem of generating
the pz and pT distributions for the first emission.

A special feature of the hadronization event and the chosen kinematic variables is the
ability to render the pz kinematic distributions independent of the initial parton energy,
E, through a simple rescaling transformation

p0z ⌘ Eref
p

E
, (2)

where E is the energy of the quark in the center of mass for the initial string, and Eref

4

SciPost Physics Submission

0 200 400 600 800 1000
pz (GeV)

10�4

10�3

10�2

10�1
P

D
F

0 10 20 30 40 50
p�

z (GeV)

0.00

0.01

0.02

0.03

0.04

P
D

F

10 GeV

100 GeV

1000 GeV

Figure 2: The pz distributions (left) and the rescaled p0z, Eq. (2), distributions
(right) from Pythia hadronization events for the first-hadron emission with ini-
tial parton energies E = 10, 100, 1000 GeV shown with blue, red, and green solid
lines, respectively.

is a conveniently chosen reference energy that renders p0 dimensionful. In the rest of the
paper we set Eref = 50 GeV. The transformation of the pz distribution with respect to the
initial parton energy E can be seen in Fig. 2.

The fragmentation process implemented in Pythia is constructed in momentum space
as an iterative walk through production vertices. To do so a stochastic variable termed
the longitudinal momentum fraction z is defined, describing the fraction of longitudinal
momentum taken away by the emitted hadron.2 Given the longitudinal momentum frac-
tion, pz can straight-forwardly be obtained via the relation z = (pz +Eh)/2E where 2E is
the total energy of the initial fragmenting system. The probability distribution f(z) from
which z is sampled is called the Lund left-right symmetric scaling function (also Lund
sampling or fragmentation function) and is given by

f(z) /
(1 � z)a

z
exp

�b

m2
h,T

z

!
, (3)

where m2
h,T ⌘ m2

h + p2T is the transverse mass, and the normalization prefactor is omitted
for clarity. The phenomenological parameters a, b are chosen to match experimental data.
The p2T term in the transverse mass squared, m2

h,T , captures the tunneling probability for
a string breaking to occur away from the classical position of the string end, such that
the additional energy required for the transverse momentum kick can be released from
the string. It leads to a correlation between transverse and longitudinal distributions of
hadron momenta (in the center-of-mass frame of the initial string), i.e., the average value
of z increases with increasing pT . In the default implementation of the Lund model in
Pythia, the hadron pT distribution is assumed to be Gaussian distributed, with average
h~pT i = 0, and a width �0 ⇠ O(300MeV), reflecting that its origin is an inherently quantum
process occurring at the nonperturbative QCD scale.3

The above basic setup of the Lund model becomes more involved when full complexity
of the experimental data needs to be explained. Most of the O(20) parameters that give
more flexibility to the Pythia implementation of the Lund string model are related to

2
In Section 2.1, zi denote the latent-space variables. Despite similarity in notation there is no relation

between the two variables.
3
The configurable Pythia parameter name is StringPT:sigma.

5

SciPost Physics Submission

the di↵erences in hadronizations of the light quarks compared to the strange, c and b
quarks. For instance, each quark flavor can in principle have a di↵erent a; in Pythia

strange quarks are allowed to have di↵erent values of a than for u and d quarks, while
for heavier c and b quarks the Lund fragmentation is also allowed to be multiplied by
an extra z-dependent factor with new flavor-dependent parameters. Similarly, the pT
distributions can deviate from the Gaussian form. While this gives quite some flexibility
to the hadronization model, it does have its own drawbacks. On one hand, the number
of parameters to be tuned to data is already quite large. On the other hand, one may
worry that the analytic form of the scaling function in Eq. (3), while well motivated, is
not flexible enough, with higher order corrections in z potentially becoming important,
e.g., at low string energies. Generative ML models, such as the architecture that we
introduce in the next section, can be used as e↵ective tools to address both of these issues.
[For the purposes of this paper we will not yet train our ML architecture on the physics
data, but rather on the synthetic data generated by Pythia. However, we anticipate
that the expressibility of the ML framework, which we demonstrate below, will allow for a
better description of the physics data sensitive to hadronization than the Lund left-right
symmetric scaling function in Eq. (3) does right now.]

2.2 The cSWAE architecture

The MLmodel of hadronization used here is based on the conditional sliced-Wasserstein
Autoencoder (cSWAE) [65, 66] (for an example of a use of SWAE architecture in particle
physics simulations see [40]). The motivation for using cSWAE is two-fold, i) the flexibility
of being able to use a wide variety of latent-space distributions and thus optimize the
performance of the hadronization model, and ii) the ability to incorporate the energy
dependence of hadronization through a two dimensional condition vector c. We expect the
second feature to become most relevant once MLhad is trained on experimental data, for
which small breakings of the energy independence exhibited by the Monte Carlo generated
p0z data, Fig. 2, may be anticipated. [The main advantage of SWAEs over VAEs is the
flexibility in the choice of the latent space distribution, which allows the user to chose any
sampleable distribution as latent space distribution.] [This is achieved by introducing a
sliced Wasserstein distance (i.e. an approximate of the real Wasserstein distance between
the desired and the obtained latent space distributions) in the cost function, see Eq. (6)
below. This is then added to the usual reconstruction loss estimate term in the cost
function, see Eq. (5) below.]

The schematic of the cSWAE architecture is given in Fig. 3. It has two parts, the
encoder and the decoder:

The encoder � takes as inputs the data vectors xi and labels ci and returns a latent-
space vector z̃i = �(xi, ci). Depending on the value of ci the encoder will transform xi

to di↵erent regions in the latent space, as shown in the graphical representation of Fig. 4.
The dimension of the latent space, dz, needed for the application to hadronization is any-
where from dz = 2 to dz = 30, see also Table 1. The latent-space vectors z̃i are trained
to be distributed according to the target latent-space distribution, z̃i ⇠ I(z̃i, ci), which
is ensured through the use of sliced-Wasserstein distance, SWp, in the loss function. In
particular, the latent-space variable z̃i need not be normally distributed. We found that
this feature translated to significant improvements in the performance of MLhad. With
cSWAE one can choose a custom probability distribution such that the encoding of the
information about the first emission hadron kinematics leads to optimal results. This is
the main practical di↵erence between cSWAE and the conditional Variational Autoen-
coder (cVAE). The cVAE use KL-divergence in the loss function, which typically require

6

SciPost Physics Submission

Figure 3: [The cSWAE architecture for simulating hadronization. Inputs xi

have condition ci, which parametrizes the string energy. The decoder takes z̃i as

inputs and generates the predicted hadron kinematics x̃i = {p̃(i)z,k}. The sliced-
Wasserstein-distance loss function, LSW , constrains the latent-space vectors z̃i
to the target distribution z̃i ⇠ I(z̃i, ci). The reconstruction loss function, Lrec,
minimizes the di↵erence between xi and x̃i.]

Figure 4: [Illustration of the conditional vector ci = c(Ei) mapping the input
data xi into di↵erent regions of the latent space, z̃.]

that the latent-space variables follow simple distributions, such as a normal distribution.
The cSWAE uses instead the sliced-Wasserstein distance, SWp, see Appendix B for more
details. This gives the architecture significantly more flexibility, as one can choose the
latent-space distributions to follow almost any distribution, as long as it is sampleable (in
particular, the analytic form of I(z, ci) is not required to exist).

The decoder takes as inputs the condition vector ci and the latent-space vector z̃i.
It returns the reconstructed hadron kinematics x̃i = (�(xi, ci)), where x̃i is the Ne

dimensional vector consisting of sorted kinematic variables, either p0(i)z,k or p(i)T,k. Through
the minimization of the loss function [65]

L(,�) = Lrec + LSW, (4)

where

Lrec =
1

Ntr

NtrX

i=1

1

Q
d22(xi, (�(xi, ci))) + d1(xi, (�(xi, ci)))

�
, (5)

LSW =
�

LNtr

LX

`=1

NtrX

i=1

dSW(✓` · z[i]` ,✓` · �(x[i]` , ci)), (6)

with zi ⇠ I(zi, ci), the training attempts to reproduce the training data distribution
xi with the generated data distribution x̃i, while the latent-space vectors z̃i follow the
desired target distribution z̃i ⇠ I(z̃i, ci). The reconstruction loss Lrec is a measure of the
di↵erences between the input, xi, and generated kinematic vectors, x̃i. It is the sum of

7

SciPost Physics Submission

Figure 5: [Illustration of MLhad generating hadronization chains. Random
variables zi are passed through the decoder D with condition vector ci to generate
the hadron momentum, given the string energy Ei. A modified Pythia flavor
selector FS, generates the new string flavor, si+1, and emitted hadron species,
hi. Before each emission, the string is boosted to its center-of-mass frame using
a Lorentz transformation ⇤.]

two terms for each of the 1D distributions that we consider,

d22(xi, (�(xi, ci))) =

8
<

:

P
k

⇣
p0(i)z,k � p̃0(i)z,k

⌘2
, for p0z distributions,

P
k

⇣
p(i)T,k � p̃(i)T,k

⌘2
, for pT distributions,

(7)

d1(xi, (�(xi, ci))) =

(P
k

��p0(i)z,k � p̃0(i)z,k

��, for p0z distributions,
P

k

��p(i)T,k � p̃(i)T,k

��, for pT distributions,
(8)

where p0(i)z,k and p(i)T,k are the components of the training-dataset vectors xi, while p̃0(i)z,k and

p̃(i)T,k are the components of the output vectors x̃i. For the relative weight between the
two terms in Lrec we take Q = 1GeV. The two contributions of Lrec are sensitive to dis-
tinct scales allowing for fast convergence (d1) and continual improvement (d2) throughout
training while also heavily penalizing outliers.

The second term in Eq. (4), LSW, is the implementation of the sliced-Wasserstein
distance SW1 between the distribution of latent-space vectors z̃i created by the encoder,
and the target latent-space distribution I(zi, ci). [The sliced-Wasserstein distance is the
approximation of the true Wasserstein distance between the two distributions, and is
smaller the closer the latent space distribution is to the desired one. The sliced-Wasserstein
distance approximation becomes better and better the higher the number of 1D slices
(or probes) of the distributions one uses. The advantage is that the computation of
Wasserstein distances for 1D slices can be done very e�ciently, leading to a significant
speed up of the algorithm.]

[The computation of SW1 is done as follows.] The vectors zi in Eq. (6) are randomly
drawn from this target distribution, zi ⇠ I(z, ci). The scalar products with the unit
vectors ✓l, defining the L slices, give the one dimensional projections of the latent-space
distributions, for which the Wasserstein distances, W1, are straightforward to compute.
They are given simply by the average sum of the distances between the sorted data points,
see Appendix B for further details. Note that for one dimensional latent space SW1 = W1,
and in the sum in Eq. (4) one can set L = 1.

8

SciPost Physics Submission

2.3 Training

The input data to the encoder are Ne Pythia generated first-hadron emissions for
a fixed initial string energy Ei = 50 GeV. In all of the numerical examples below we

take Ne = 100, so that the input is an Ne dimensional vector xi of either p0(i)z,k or p(i)T,k,
k = 1, . . . , Ne. That is, in this manuscript we apply cSWAE to the case where the p0z
and pT distributions are uncorrelated and treat each of them separately. However, the
architecture is flexible enough that correlated 2D or higher dimensional distributions could
also be used as inputs.

The elements of the input vectors xi are sorted, i.e., p0(i)z,1 p0(i)z,2 · · · p0(i)z,Ne

(and similarly for p(i)T,k).
4 The training dataset consists of Ntr such xi input vectors,

i = 1, . . . , Ntr, and Nval yj validation vectors, j = 1, . . . , Nval, where typically Ntr is taken
to be Ntr = O(4000) and Nval an order of magnitude smaller. To summarize, the training
and validation datasets are created by generating N ⌘ Ne(Ntr +Nval) = 4 ⇥ 105 Pythia

first hadron emission events. The emission data (pz or pT) is then partitioned randomly
into Ntr +Nval vectors of length Ne = 100. Finally, the elements in each vector are sorted
from least to greatest.

The string energy Ei, or equivalently mass in the center-of-mass frame, is converted to
a unit condition vector ci = (c̄i, 1 � c̄i) with c̄i 2 [0, 1] a floating point number such that

Ei = Eminc̄i + Emax
�
1 � c̄i

�
, and thus c̄i =

Emax � Ei

Emax � Emin
, (9)

where Emin and Emax are the reference minimal and maximal energies. A good choice for
Emax is the maximal partonic collision energy in the simulation, while Emin can be taken
to be the IR cuto↵ Ecut.

In general, the cSWAE allows for the initial string energy Ei of each xi to be di↵erent
(but the same for all the Ne components of xi). For the Pythia generated events the
kinematic variable pz can be made E independent through the transformation in Eq. (2)
and thus Ei can be set to a constant value, Ei = 50 GeV. As a proof of principle we also
show in Section 3.2 that cSWAE models can be trained on E-dependent xi.

The algorithm for training the cSWAE is as follows. Applying the encoder to the
input data sample {x1, ..,xNtr} gives the latent-space vectors {z̃1, .., z̃Ntr}. To compute
the sliced-Wasserstein distance term, Eq. (6), the unit vectors {✓1, ..,✓L} are randomly
sampled from the (dz�1)-dimensional unit sphere S

dz�1, while theNtr latent-space vectors
{z1, . . . , zNtr} are sampled from the target distribution, zi ⇠ I(zi, ci). For each ✓`, the
scalar products ✓` ·z̃i = ✓l ·�(xi) and ✓` ·zi are sorted in the following way. First the energy
labels ci (and the corresponding z̃i, zi) are sorted into Nc bins of increasing ci intervals
with boundaries c̄[1] < c̄[2] < · · · < c̄[Nc]. That is, the latent-space data are binned
according to their energies, Ei, where the bins are chosen such that the distributions
I(zi, ci) do not have large dependence on ci within the bin. The generated and target
I(zi, ci) distributions are then compared within each energy bin. This is achieved by first
sorting the scalar products of z̃i and zi with ✓` within each ci bin, and then combined into
the lists {✓` · z̃[1]` , . . . ,✓` · z̃[Ntr]`} and {✓` · z[1]` , . . . ,✓` · z[Ntr]`}, respectively. The SW loss
function LSW in Eq. (6) is then the average over the latent space distances between the
two sorted lists,

dSW(✓` · z[i]` ,✓` · �(x[i]`) =
��✓` · z[i]` � ✓` · �(x[i]`)

��, (10)

4
For 2D or higher dimensional problems the data would first be clustered in predefined 1D bins and

then sorted within each bin.

9

SciPost Physics Submission

Figure 6: [Illustration of Lorentz boosting (⇤) from the lab frame to the string
center-of-mass frame. Red and blue lines are the string system’s longitudinal
momentum with the total area equal string system’s longitudinal momentum
E + pz. Each box is a new string.]

averaged also over all the L slices and multiplied by the relative weight prefactor �. The
final step in the algorithm is applying the decoder to z̃i, which gives {x̃1, . . . , x̃Ntr}.
The distances between input dataset, {x1, ..,xNtr}, and the generated sets {x̃1, . . . , x̃Ntr}

are then calculated using Eqs. (7) and (8), giving the reconstruction loss function Lrec,
Eq. (5). The decoder and encoder are updated in steps, trying to minimize the combined
loss function, Eq. (4). Overfitting is avoided by monitoring the value of loss function when
applied to the validation dataset, i.e., the loss function (4) with xi ! yi, Ntr ! Nval.

Fig. 5 illustrates how the trained MLhad decoder is used, along with the Pythia

flavor selector, to generate the hadronization chain. Note, the full Pythia flavor selector
is not needed here, but included to allow for subsequent development. The flavor selector
takes as input the initial string flavor ID, si, and gives as the output the flavor ID of the
emitted hadron, hi, which also defines the flavor of the new string fragment, si+1. The
MLhad decoder takes as input the latent-space vector zi ⇠ I(zi, ci) sampled from the
target distribution I(zi, ci), where ci is the label encoding the center-of-mass energy of
the string si, see Eq. (9). The MLhad decoder returns the Ne-dimensional vector with a

list of possible momenta for the emitted hadron, p̃0(i)z,k (or p̃(i)T,k). We randomly choose one
of these as the actual hadron kinematics, and modify accordingly the kinematics of the
remaining string fragment, si+1 , such that the energy and momentum are conserved. The
emitted hadron is boosted to the lab frame, and added to the list of emitted hadrons, while
the new string is boosted to its rest frame, see Fig. 6. Its center-of-mass energy defines
the label ci+1 used as the input in the decoder for the next hadron emission. These steps
are repeated until the string energy in its rest frame reaches the IR cuto↵ energy Ecut.

We have implemented the cSWAE architecture described above using PyTorch [74].
The code can be accessed via a public repository, see Appendix A for details.

3 Reproducing the simplified Pythia fragmentation model

To demonstrate the viability and capability of the cSWAE based machine learning al-
gorithm implemented in MLhad, we reproduce the Pythia hadronization outputs. We
analyze a qiq̄i hadronization event in the center-of-mass frame in which the individual
partons, each with flavor index i and initial energy E, travel with equal and opposite
momenta producing a string between them. After the string breaks this produces a new
string and the first emission hadron, see Section 2.1 for more details.

While MLhad treats all the hadron emissions on an equal footing, Pythia treats
the first emission slightly di↵erently; in the first emission mT,h in Eq. (3) is set to mh

10

SciPost Physics Submission

Variable x Target z t (epochs) dz � L

p0z

Pythia 150 35 35 15
Trapezoidal 300 2 20 30
Triangular 150 2 30 25

pT

Pythia 100 20 30 30
Skew-norm 120 4 20 25
Triangular 120 4 15 25

Table 1: The cSWAE training configurations, [where x is the input data, z the
target latent-space distribution, t the number of epochs, dz the dimension of the
latent space, � the regularization parameter of the sliced-Wasserstein loss, and L
the number of latent space projections (slices).]

(i.e., pT = 0), while for all subsequent emissions px and py are sampled from a normal
distribution with a width �0 (we set this tunable Pythia parameter to �0 = 0.335GeV).
Therefore, in training MLhad we only aim to reproduce the Pythia output on average,
which is in line with the physical limitations of the problem, since one cannot trace in
nature each individual emission in the hadronization event.

Our model is trained on kinematic distributions for transformed variables, p0z, pT ,
Eq. (2), obtained from the Pythia first emission events. With a uniformly sampled polar
angle ' in the transverse plane, these kinematic variables then completely define the phase
space of the system through Eqs. (1), (2). The MLhad decoder is then used with a fixed
shifted value transverse mass m2

T,h = m2
h + �2, with � = �0/

p
2. This accounts for using

only Pythia produced first emission data where pT = 0 GeV. For flavor selection we rely
on Pythia’s probabilistic model, and limit ourselves to light quarks, u, d and only pions
as the final state hadrons.

The independence of the distributions from the initial parton energy, see Fig. 2, allows
the cSWAE model to be trained on a dataset using an arbitrary initial parton energy, Eref ,
while the outputs of cSWAE hadronization generator can be transformed accordingly to
obtain the distributions for any desired initial energy, E, using Eq. 2. While in the Pythia

output the complete energy dependence is already captured with the simple rescaling in
Eq. (2) we do not expect this to be entirely true for actual physical hadronization events
realized in nature, for which subleading deviations from the scaling law in Eq. (2) may be
anticipated. In Section 3.2 we demonstrate that such corrections to the scaling law can
be captured by the cSWAE architecture.

3.1 First emission trained models

The cSWAE trained models di↵er according to the target latent-space distribution, I(z, c),
the dimension of the latent space dz, training time t (epochs), the value of the sliced-
Wasserstein regularization parameter �, and the number of slices L, as shown in Table 1.
In all the cases we fix the string energy to be E = 50 GeV. The first emissions for other
string energies can be obtained by inverting the rescaling of the p0z distributions in Eq. (2),
while pT distributions do not scale with E, although this is an assumption of the Pythia

model. For Pythia generated p0z data we use the transverse pion mass m2
T,⇡ = m2

⇡ + �2,
instead of the actual pion mass. Because of the di↵erent treatment of first and subsequent
hadron emissions in Pythia, this choice for a pion mass will then reproduce the average
Pythia hadronization results for full hadronization chains, as discussed in the beginning
of Section 3 and shown explicitly in Section 3.3 below.

11

SciPost Physics Submission

0.0 0.2 0.4 0.6 0.8 1.0
zpz

0.0

0.5

1.0

1.5

2.0
P

D
F

Pythia

Trapezoidal

Triangular

0.0 0.5 1.0 1.5
zpT

0.0

0.5

1.0

1.5

2.0

2.5

P
D

F

Pythia

Skewed � Normal

Triangular

Figure 7: Three choices for latent-space target distributions I(z, c) for p0z inputs
(left) and for pT inputs (right). See Appendix C for more details.

A key feature of the SWAE algorithm and the sliced-Wasserstein loss is the ability
to ‘push’ the encoded latent space towards a target latent-space distribution. The choice
of target distribution a↵ects the total training time and the speed of kinematic data
generation. Choosing a target latent-space distribution which is similar to the training
data set distribution generally requires a fewer number of epochs to train the model to a
specified accuracy compared to a target latent space which is dissimilar. This may come
at a cost during the generation of kinematic data for hadronization events due to the
generation of a large number of random variables obeying potentially complex probability
distributions.

We demonstrate this flexibility by training with multiple target latent-space distribu-
tions, see Fig. 7. A total of six models are trained, three for each kinematic variable p0z
and pT , with the results shown in Figs. 8 and 9. Of the three models in each kinematic
variable, one model is trained using a target latent-space distribution equivalent to the
training set distribution, i.e., the Pythia generated distribution of p0z or pT . The other
two trained models have target latent-space distributions that are distinctly di↵erent from
the training set distributions. For p0z we choose trapezoidal and triangular target latent
distributions and for pT we choose a skewed normal and triangular target latent-space dis-
tributions. The latent-space distributions are shown in Fig. 7, while their analytic forms
can be found in Appendix C. Regardless of the choice of the latent-space distribution, the
trained and the target (prior) data distributions are in good agreement.

The dimension of the latent space is a tunable discrete hyperparameter, taking values
dz 2 [2, 35], see the fourth column in Table 1. The regularization parameter � controls
the magnitude of the sliced-Wasserstein loss and determines its relative weight in the
total loss function, see Eq. (4). In practice, the regularization parameter determines how
closely the encoded latent-space distribution will agree with the chosen target latent-
space distribution, I(z, c). In our trained models the regularization parameter in the loss
function Eq. (4) takes values � 2 [15, 35], as listed in the fifth column in Table 1. Larger
values are chosen in models where the target latent-space distribution is similar to the
training distribution. Large values of � e↵ectively reduce the size of the explored manifold
which maps decoder weight-configurations to values of the loss function (if we think of
the decoder as a partition function and the loss function as a functional, large values of
� place the decoder near a saddle-point configuration). This improves the convergence to
the minimum of Lrec, resulting in shorter training times. This can also be explained by

12

SciPost Physics Submission

0.00

0.01

0.02

0.03

0.04
P

D
F

Trained (Pythia)

Trained (Trapezoid)

Trained (Triangle)

Target

0 10 20 30 40 50
pz

0.5
1.0
1.5

R
at

io

0.00

0.02

0.04

P
D

F

Encoded

Target (Pythia)

0 20 40 60
z

0.5

1.0

1.5

R
at

io

0.00

0.02

0.04
Encoded

Target (Trapezoid)

0 20 40 60
z

0.5

1.0

1.5
0.00

0.02

0.04
Encoded

Target (Triangle)

0 20 40
z

0.5

1.0

1.5

Figure 8: Top: MLhad generated pz distributions for first-hadron emission
from a string with an energy E = 50 GeV, using three di↵erent latent-space
distributions, Pythia (blue), trapezoidal (red), and triangular (green), compared
to the Pythia generated target distribution (purple), as well as the ratios of
MLhad generated to Pythia generated distributions. Bottom: comparison of
the trained and target latent-space distributions for the three cases.

describing the correlation between the minimization of LSW and Lrec.
The number of slices or projections used in the sliced-Wasserstein loss is also a tunable

hyperparameter taking values L 2 [15, 30], as listed in the last column in Table 1. Each
model uses the kinematic data generated from N = 4 ⇥ 105 first emission events parti-
tioned into N/Ne = 4000 Ne-dimensional vectors, where 80% of the data is used as the
training and 20% as the validation set. We use an initial learning rate value of 10�3 and
utilize PyTorch’s dynamic learning-rate scheduler to reduce the learning rate according
to plateaus of the loss function during training.

3.2 Labels and E dependent distributions

The trained models for the first-hadron emission presented in the previous section were
all obtained for a fixed initial string energy, E. To reproduce the Pythia model for the
first-hadron emissions (for string fragments with energies above Ecut) this is all that is
required. The p0z distributions for any string energy can be obtained from the reference
value of E = 50 GeV that we used in the training by performing the rescaling, cf. Eq. (2)
and Fig. 2. The pT distributions for first emissions, on the other hand, are independent
of the initial string energy.

However, the above scaling behaviors are not expected to be exact in nature. For one,

13

SciPost Physics Submission

0.0

0.5

1.0

1.5

2.0

2.5

P
D

F
Trained (Pythia)

Trained (Skewed normal)

Trained (Triangle)

Target

0.0 0.2 0.4 0.6 0.8 1.0
pT

0.5
1.0
1.5

R
at

io

0

1

2

P
D

F

Encoded

Target (Pythia)

0.0 0.5 1.0
z

0.5

1.0

1.5

R
at

io

0

1

2

Encoded

Target (Skewed normal)

0.0 0.5 1.0
z

0.5

1.0

1.5
0

1

2 Encoded

Target (Triangle)

0.0 0.5 1.0
z

0.5

1.0

1.5

Figure 9: Top: MLhad generated pT distributions for first-hadron emission
using three di↵erent latent-space distributions, Pythia (blue), skewed-normal
(red), and triangular (green), compared to the Pythia generated target distri-
bution (purple), as well as the ratios of MLhad generated to Pythia generated
distributions. Bottom: comparison of the trained and target latent-space distri-
butions for the three cases.

at lower string energies the approximations in deriving the string Lund model are likely to
fail - the quarks are not massless, and there may be couplings between pT and mh that are
not captured by the simple transverse mass tunneling ansatz, Eq. (3). Furthermore, the
origin of pT distributions for first emissions is purely non-perturbative in nature, and thus
the E independence of pT distribution assumed in Pythia is not rooted in first principles.

The MLhad architecture is flexible enough to allow for the dependence of first emis-
sions on the string energy, E. This is achieved by training the conditional SWAE on
label-dependent datasets, which we demonstrate next. The training proceeds in a similar
way as in the previous section, but now on a dataset comprising of first-hadron emis-
sions for four distinct string energies, E = {5, 30, 700, 1000}GeV.5 Each xi input vector is
therefore accompanied by one of the four discrete values for the two-dimensional vectors
ci = (1�ci, ci) encoding the string energy through the label ci as defined in Eq. (9), taking
Emin = 5GeV and Emax = 1000GeV.

The decoder in the trained cSWAE was then used to generate the first-hadron emis-
sions at a di↵erent set of string energies, E = {100, 200, 300, 400, 500}GeV. Importantly,
because the conditional vector is not discrete but rather depends on a continuous pa-

5
One could also have used emission data for continuous values of E, but binned finely enough in string

energy values. We choose discrete string energies to demonstrate clearly that the cSWAE decoder can

interpolate between the input labels.

14

SciPost Physics Submission

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

P
D

F

Target

E = 100.0 GeV

E = 200.0 GeV

E = 300.0 GeV

E = 400.0 GeV

E = 500.0 GeV

0 100 200 300 400 500
pz

0.5

1.0

1.5

R
at

io

Figure 10: [MLhad generated pz distributions using the cSWAE model trained
on data with string energies di↵erent from training and compared with Pythia

(black).]

rameter defined between the minimum and maximum energies (Emin, Emax) the trained
decoder is able to interpolate between labels (ones which the decoder has not trained on
explicitly, see Fig. 4) and rescale the kinematic distributions accordingly. This consider-
ably increases the flexibility of generating training datasets as the user is able to choose
the number of interpolation points which the model can use as anchors in generating data
with a unique energy label. The comparison of MLhad and Pythia generated pz dis-
tributions for the first-hadron emissions is shown in Fig. 10, demonstrating that MLhad

reproduces faithfully the Pythia results.

3.3 Hadronization chain

As shown in the previous subsections the cSWAE trained models in MLhad are able to
accurately reproduce Pythia’s first emission kinematics for a hadronized qq̄ system in the
center-of-mass frame of the string. In this section we show how well the MLhad decoder
reproduces the full Pythia hadronization event. The implementation can be summarized
as follows: from the initial string system, one string end is chosen randomly, while Pythia

flavor selector is used to determine the flavor ID of the emitted hadron. Given the energy
of the initial string end in the center-of-mass frame, p0z and pT are sampled using the
corresponding cSWAE models. The p0z and pT of the emitted hadron are transformed
to px, py, pz variables using Eqs. (1) and (2), and boosted to the lab frame. The string
fragment is boosted to its center-of-mass frame, see Fig. 6, after which one repeats the
hadron emission process until the string energy in the center of mass of the remaining
string fragment falls below the IR cuto↵, Ecut. The implemented fragmentation chain
architecture is illustrated in Fig. 5.

Fig. 11 shows a comparison between the hadronization chain multiplicities obtained
by Pythia (blue) and by the MLhad model trained on first emission data (red). In
both cases, starting from the initial string energy of E = 50 GeV, on average 9.1 hadron
emissions occur before the string fragment energy drops below the cuto↵ energy, Ecut = 5

15

SciPost Physics Submission

0 5 10 15 20
Length of fragmentation chain

0

200

400

600

800

1000

1200

1400

1600

C
ou

nt

Pythia (Avg. = 9.06 ± 0.08)

MLhad (Avg. = 9.15 ± 0.06)

Figure 11: Comparison of the number of hadrons produced in the fragmentation
chain of a single string for a sample of 104 strings, compared between Pythia

(blue) and MLhad (red) generated hadronization events.

GeV. The MLhad decoder also reproduces well the distribution of hadronization chain
multiplicities. Only a few hadronization events result in just a few hadrons, a bulk of
hadronization events contain between 7 to 13 hadrons, and both hadronization chain
generators feature a tail of rather long hadronization chains. The di↵erences between the
Pythia and MLhad hadron multiplicity distributions are in most cases at the level of
5�10%, where the largest deviations occur for hadronization events with just a few hadron
emissions. This is expected, given that Pythia and MLhad models of hadronization di↵er
in the treatment of the very first emission, see the discussion at the beginning of Section 3.

In Fig. 12 we also show the comparison of the average multiplicity of the hadroniza-
tion chain as a function of the initial parton energy, obtained either with Pythia (blue
solid line) or with MLhad (red). We see that MLhad is able to reproduce the Pythia

fragmentation chain length averages, and in particular also give the expected logE de-
pendence of the average number of produced hadrons. For each energy the multiplicity
distributions also match well, which we checked explicitly, while in the figure we only
show the result for MLhad to guide the eye (red density plot). The density plot scan was
performed by randomly choosing an initial parton energy E between 20 GeV-1000 GeV
and binning each fragmentation chain length with a parton energy resolution of 22 GeV
and chain length resolution of 1.7 hadrons for a total of 2⇥104 fragmentation events. The
minimal initial string energy was chosen to be 20 GeV such that it is still well above the
imposed hadron emission cut Ecut = 5 GeV.

4 Conclusion and Outlook

The cSWAE architecture that was developed in this work appears to be well suited for
modeling the nonperturbative process of hadronization – the creation of hadrons from the
energy stored in the string connecting a qq̄ pair. We have demonstrated this by training the
MLhad hadronization models to a simplified version of Pythia hadronization, limited to
only light quark flavor endings of the string, and allowing only for pions to be the final-state

16

SciPost Physics Submission

0 200 400 600 800 1000
E (GeV)

5

10

15

20

25

30

35

40

N
A

vg
.(
ha

dr
on

s)

Pythia

MLhad

0

10

20

30

40

50

60

70

Figure 12: Comparison of the average number of hadrons produced in the frag-
mentation chain of a single string as a function of the initial parton energy E
(Estring = 2E), produced using Pythia (blue) and MLhad (red). The den-
sity plot shows the multiplicity distributions obtained with MLhad for 2 ⇥ 104

fragmentation chains.

hadrons. Furthermore, we utilized the scaling properties of the Pythia hadronization
model that simplified the cSWAE training, requiring training at just a single string energy.
Even so, the results shown in Figs. 8, 9 and 11 are very encouraging. The Pythia first-
hadron emission distributions at a fixed string energy, Fig. 8, 9, are faithfully reproduced
by the MLhad decoder, as are the hadron multiplicities for full hadronization chains,
Fig. 11.

The cSWAE architecture also has enough built in flexibility that it should be pos-
sible to extend the MLhad model to handle all possible string flavors and kinematics.
We have already shown that the inclusion of a label allows for an interpolation of the
hadronization models to di↵erent string energies, see Fig. 10. This should then also allow
to extend the MLhad models below the string energy cut of 5 GeV that we imposed in
this preliminary exploration. Similarly, the conditional label could be used for MLhad to
handle the generation of hadron flavors, including possible kinematic dependencies. The
MLhad architecture should also allow us to model any correlations between pz and pT
distributions of the emitted hadrons, if these are present in data, even though currently we
used the absence of such correlations in Pythia generated data to simplify the training of
MLhad models. Another important feature that we anticipate to be particularly impor-
tant once MLhad is trained directly on experimental data, is the flexibility in the choice
of the latent-space distributions, making it easier to adapt to any possible features not
captured by the rather constrained form of the Lund fragmentation function underlying
the hadronization implementation in Pythia. Finally, some of the planned extensions of
the MLhad hadronization framework may require more thought, most notably how to
best model the hadronization of baryons and include gluons.

While in this paper the training of MLhad was performed on the first hadron emissions
in the Pythia output, such training will not be possible when using real experimental

17

SciPost Physics Submission

data, since such information is physically not possible to extract directly from data. In-
stead, the training will need to be performed on the physically accessible observables
constructed from particle flows measured either in e+e� or pp collisions with two, three
or more jets in the final state. We anticipate that this is where the machine learning
approach to hadronization will prove most useful — capturing the many observables in
principle available in the data, such as hadron multiplicities, angular separations and mo-
mentum distributions for various hadrons [(see [75–80] for a selection of potentially useful
observables)]. [While many of these observables are not currently available in the litera-
ture, open-data e↵orts by a number of collaborations have or will make access possible.]
This data-collection is tedious when performed through human intervention and is a prob-
lem that calls for a machine learning based optimization. We believe that the presented
MLhad cSWAE architecture is well suited to achieve this next step, [and we are in the
process of building a pipeline to perform training of MLhad on actual data]. [In addi-
tion di↵erent generative models like Normalizing Flows will be explored, which provide a
tractable probability distribution function.]

Acknowledgments

We thank Jared Evans for collaboration in the initial stages of this work, and Stephen
Mrenna, Manuel Szewc, and Mike Williams for useful comments on the manuscript.

Funding information. AY, JZ, and TM acknowledge support in part by the DOE grant
de-sc0011784 and NSF OAC-2103889. PI is supported in part by NSF OAC-2103889.

A Public code MLhad v0.1

The public code may be accessed through https://gitlab.com/uchep/mlhad. The public
directory includes example files allowing the user to train and implement cSWAE models
in full fragmentation chains. The programs are written in Python and extensively use the
Pythia, PyTorch and Scikit-learn libraries. Installation instructions can be found
on the respective installation pages for each library.

The provided programs can be split into two categories: training cSWAE models and
generating hadronization events. The latter relies on the former. However, we have also
provided pre-trained models such that the user can generate hadronization events without
explicitly training a model.

Training a unique model configuration can be done by modifying the files pT SWAE.py,
pz SWAE.py, or pz cSWAE.py. The SWAE programs contain examples of label-independent
training, while the cSWAE program provides an example of label-dependent training. The
model hyperparameters and target latent distribution described in Section 2 have been
set to default values to provide a reasonable starting configuration but may be modified.
Label independent kinematic training datasets for pz and pT have been provided as well
as a label-dependent pz dataset.

Full hadronization events use the trained model decoder to generate hadronic kinemat-
ics. An example of generating this kinematic data from SWAE trained model decoders
can be found in model pxpypz.py. The setup of our modified fragmentation chain which
utilizes these kinematics can be seen in frag chain.py.

18

https://gitlab.com/uchep/mlhad

SciPost Physics Submission

B Sliced Wasserstein distance

In this appendix we give a short overview of the Wasserstein distance and the sliced-
Wasserstein distance.

The Wasserstein distance. The Earth mover’s distance or the Wasserstein distance
gives a measure of how di↵erent two distributions are, given a metric space ⌦ and a space
of Borel probability measures P(⌦) on ⌦. The p-Wasserstein distance Wp(µ, ⌫) between
any two probability measures µ 2 P(X) and ⌫ 2 P(Y) is [81]

Wp(µ, ⌫) :=

✓
inf

⇡2⇧(µ,⌫)

Z

X
c(x, y)d⇡(x, y)

◆ 1
p

, (11)

where c(x, y) is the cost function, ⇧(µ, ⌫) is the set of all transportation plans, with
⇡ 2 ⇧(µ, ⌫), while p 2 [1,1). The distance W1 is also commonly called the Kantorovich-
Rubinstein distance.

If µ and ⌫ are one-dimensional measures, the Wasserstein distance has a closed-form
expression

Wp(µ, ⌫) =

✓Z 1

0
|F�1

µ (z) � F�1
⌫ (z)|pdz

◆1/p

, (12)

where Fµ(⌫)(x) =
R x
�1 Iµ(⌫)(⌧)d⌧ are the cumulative distribution functions, with Iµ and I⌫

the probability density functions for the measures µ and ⌫, respectively. The Wp(µ, ⌫) for
the one dimensional case can therefore be calculated by simply sorting the samples from
the two distributions and calculating the average cost.

Radon transform and the sliced-Wasserstein distance. An approximate value for
the Wasserstein distance Wp between two higher dimensional distributions on X = R

d

can be obtained e�ciently from a set of projections to one-dimensional distributions,
since for each of these one can use the closed form of Eq. (12). The projection from
the higher dimensional distribution to the one-dimensional representation is done by the
Radon transform.

The d-dimensional Radon transform R maps a function I 2 L1(Rd) to [82]

RI(t, ✓) =

Z

Rd
|I(x)|�(t � hx, ✓i)dx, (13)

with (t, ✓) 2 R ⇥ S
d�1, where S

d�1 is the unit sphere in R
d, �(·) is the delta function

and h, i is the Euclidean scalar product. For a fixed direction ✓ the Radon transform
RIµ(·, ✓) therefore gives a one dimensional marginal distribution of Iµ that is obtained by
integrating Iµ over the hyperplane orthogonal to ✓.

The sliced-Wasserstein distance SWp(Iµ, I⌫) between Iµ and I⌫ is defined as

SWp(Iµ, I⌫) =

✓Z

Sd�1
Wp(RIµ(·, ✓), RI⌫(·, ✓)d✓

◆ 1
p

. (14)

TheWasserstein distance between each of the one dimensional projections (slicings)RIµ(·, ✓)
and RI⌫(·, ✓) is obtained straightforwardly using the closed form result of Eq. (12). The
integral over the unit sphere vectors ✓ probes all the possible slicings. Furthermore,
SWp(Iµ, I⌫) approximates Wp(Iµ, I⌫) “well enough” [83].

19

SciPost Physics Submission

The integration in Eq. (14) over the unit sphere in R
d can be estimated using a Monte

Carlo integration that draws samples {✓l} from the uniform distribution on S
d�1, which

substitutes a finite sample average for the integral [84],

SWp(Iµ, I⌫) ⇡

✓
1

L

LX

l=1

Wp(RIµ(·, ✓l), RI⌫(·, ✓l))

◆ 1
p

, (15)

where L is the number of projections (slicings). With this result, the sliced-Wasserstein
distance is obtained by solving a finite number of one-dimensional optimal transport prob-
lems, each of which has a closed-form solution. Furthermore, the sliced-Wasserstein dis-
tance approximates well the Wasserstein distance and thus can be used as a useful dis-
criminator for the similarity of distributions. More details can be found in [84] and [65].

C Latent distributions

The analytic forms of the latent target distributions used in the training of cSWAE in
Section 3.1 are

Itri.(z; a, b, c) =

8
>><

>>:

2(z � a)

(b � a)(c � a)
, a z c,

2(b � z)

(b � a)(b � c)
, c < z b,

(16)

for the triangular distribution, and

Itrap.(z; a, b, c, d) =

8
>>>>><

>>>>>:

2

d+ c � a � b

z � a

b � a
, a z < b,

2

d+ c � a � b
, b z < c,

2

d+ c � a � b

d � z

d � c
, c z d,

(17)

for the trapezoidal distribution. For a given initial parton energy E the choices of param-
eters a, b, c, d can be seen in Table 2. The target latent-space distributions are then given
by

Itri.(z, c) =
NeY

k=1

Itri.(zk; a, b, c), Itrap.(z, c) =
NeY

k=1

Itrap(zk; a, b, c, d), (18)

that is we take the same values of a, b, c, d parameters for all dz latent dimensions.
The normal and skewed-normal distributions are given by

IGauss(z;µ,�) =
1

�
p
2⇡

exp

✓
�
(z � µ)2

2�2

◆
, (19)

ISkew-Gauss(z;µ,�,↵) = 2IGauss(z;µ,�)�

✓
↵(z � µ)

�

◆
, (20)

respectively, where

�(x) =
1

p
2⇡

Z x

�1
e�t2/2dt. (21)

The µ, �, and ↵ are the fit parameters corresponding to the mean, standard deviation, and
skewness of the distribution, respectively. As in Eq. (18) the dz dimensional latent-space
distributions are products of one dimensional ones with the same µ,�,↵ parameters. For
pT we have µ = 0.099, � = 0.257, and ↵ = 4.259.

20

SciPost Physics Submission

Variable x Target z a b c d

p0z
Trapezoidal 0.04E 0.16E 0.24E E
Triangular 0.04E 0.2E E –

pT Triangular 0.0 0.3 1.0 –

Table 2: The p0z and pT latent-space distribution parameters.

References

[1] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H. S. Shao and M. Zaro, The au-
tomation of next-to-leading order electroweak calculations, JHEP 07, 185 (2018),
doi:10.1007/JHEP11(2021)085, [Erratum: JHEP 11, 085 (2021)], e-print:1804.10017.

[2] J. Bellm, S. Gieseke and S. Plätzer, Merging NLO Multi-jet Calculations with Im-
proved Unitarization, Eur. Phys. J. C 78(3), 244 (2018), doi:10.1140/epjc/s10052-
018-5723-2, e-print:1705.06700.

[3] J. M. Campbell, S. Höche, H. T. Li, C. T. Preuss and P. Skands, Towards NNLO+PS
Matching with Sector Showers (2021), e-print:2108.07133.

[4] S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys.
J. C 75(9), 461 (2015), doi:10.1140/epjc/s10052-015-3684-2, e-print:1506.05057.

[5] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-level and
next-to-leading order di↵erential cross sections, and their matching to parton shower
simulations, JHEP 07, 079 (2014), doi:10.1007/JHEP07(2014)079, e-print:1405.0301.

[6] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen and P. Z. Skands, An introduction to PYTHIA
8.2, Comput. Phys. Commun. 191, 159 (2015), doi:10.1016/j.cpc.2015.01.024, e-
print:1410.3012.

[7] J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76(4), 196
(2016), doi:10.1140/epjc/s10052-016-4018-8, e-print:1512.01178.

[8] E. Bothmann et al., Event Generation with Sherpa 2.2, SciPost Phys. 7(3), 034
(2019), doi:10.21468/SciPostPhys.7.3.034, e-print:1905.09127.

[9] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Parton Fragmentation
and String Dynamics, Phys. Rept. 97, 31 (1983), doi:10.1016/0370-1573(83)90080-7.

[10] B. Andersson, The Lund model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7,
1 (1997).

[11] S. Ferreres-Solé and T. Sjöstrand, The space–time structure of hadronization in the
Lund model, Eur. Phys. J. C 78(11), 983 (2018), doi:10.1140/epjc/s10052-018-6459-8,
e-print:1808.04619.

[12] R. D. Field and S. Wolfram, A QCD Model for e+ e- Annihilation, Nucl. Phys. B
213, 65 (1983), doi:10.1016/0550-3213(83)90175-X.

21

https://doi.org/10.1007/JHEP11(2021)085
http://arxiv.org/abs/1804.10017
https://doi.org/10.1140/epjc/s10052-018-5723-2
https://doi.org/10.1140/epjc/s10052-018-5723-2
http://arxiv.org/abs/1705.06700
http://arxiv.org/abs/2108.07133
https://doi.org/10.1140/epjc/s10052-015-3684-2
http://arxiv.org/abs/1506.05057
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/1410.3012
https://doi.org/10.1140/epjc/s10052-016-4018-8
http://arxiv.org/abs/1512.01178
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/1905.09127
https://doi.org/10.1016/0370-1573(83)90080-7
https://doi.org/10.1140/epjc/s10052-018-6459-8
http://arxiv.org/abs/1808.04619
https://doi.org/10.1016/0550-3213(83)90175-X

SciPost Physics Submission

[13] T. D. Gottschalk, An Improved Description of Hadronization in the {QCD} Cluster
Model for e+e� Annihilation, Nucl. Phys. B 239, 349 (1984), doi:10.1016/0550-
3213(84)90253-0.

[14] B. Webber, A QCD Model for Jet Fragmentation Including Soft Gluon Interference,
Nucl. Phys. B 238, 492 (1984), doi:10.1016/0550-3213(84)90333-X.

[15] F. Bishara and M. Montull, (Machine) Learning amplitudes for faster event genera-
tion (2019), e-print:1912.11055.

[16] S. Badger and J. Bullock, Using neural networks for e�cient evaluation of high mul-
tiplicity scattering amplitudes, JHEP 06, 114 (2020), doi:10.1007/JHEP06(2020)114,
e-print:2002.07516.

[17] C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional Integration and
Sampling with Normalizing Flows, Mach. Learn. Sci. Tech. 1(4), 045023 (2020),
doi:10.1088/2632-2153/abab62, e-print:2001.05486.

[18] C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Gen-
eration with Normalizing Flows, Phys. Rev. D 101(7), 076002 (2020),
doi:10.1103/PhysRevD.101.076002, e-print:2001.10028.

[19] I. Chahrour and J. D. Wells, Function Approximation for High-Energy Physics: Com-
paring Machine Learning and Interpolation Methods (2021), e-print:2111.14788.

[20] R. Winterhalder, V. Magerya, E. Villa, S. P. Jones, M. Kerner, A. Butter, G. Hein-
rich and T. Plehn, Targeting Multi-Loop Integrals with Neural Networks (2021),
e-print:2112.09145.

[21] R. Kansal, J. M. Duarte, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. R.
Vlimant and D. Gunopoulos, Graph generative adversarial networks for sparse data
generation in high energy physics, ArXiv abs/2012.00173 (2020).

[22] J. W. Monk, Deep learning as a parton shower, Journal of High Energy Physics
2018(12) (2018), doi:10.1007/jhep12(2018)021.

[23] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. Vil-
mant and D. Gunopulos, Particle cloud generation with message passing generative
adversarial networks, ArXivorg .

[24] Y. S. Lai, D. M. Neill, M. Plosko’n and F. M. Ringer, Explainable machine learning
of the underlying physics of high-energy particle collisions, Physics Letters B (2022).

[25] B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. Duarte, R. Kansal, J.-R. Vlimant
and D. Gunopulos, Sparse data generation for particle-based simulation of hadronic
jets in the lhc, doi:10.48550/ARXIV.2109.15197 (2021).

[26] M. Touranakou, N. Chernyavskaya, J. Duarte, D. Gunopulos, R. Kansal, B. Orzari,
M. Pierini, T. Tomei and J.-R. Vlimant, Particle-based fast jet simulation at the lhc
with variational autoencoders, doi:10.48550/ARXIV.2203.00520 (2022).

[27] E. Bothmann and L. Debbio, Reweighting a parton shower using a neural net-
work: the final-state case, JHEP 01, 033 (2019), doi:10.1007/JHEP01(2019)033,
e-print:1808.07802.

22

https://doi.org/10.1016/0550-3213(84)90253-0
https://doi.org/10.1016/0550-3213(84)90253-0
https://doi.org/10.1016/0550-3213(84)90333-X
http://arxiv.org/abs/1912.11055
https://doi.org/10.1007/JHEP06(2020)114
http://arxiv.org/abs/2002.07516
https://doi.org/10.1088/2632-2153/abab62
http://arxiv.org/abs/2001.05486
https://doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/2001.10028
http://arxiv.org/abs/2111.14788
http://arxiv.org/abs/2112.09145
https://doi.org/10.1007/jhep12(2018)021
https://doi.org/10.48550/ARXIV.2109.15197
https://doi.org/10.48550/ARXIV.2203.00520
https://doi.org/10.1007/JHEP01(2019)033
http://arxiv.org/abs/1808.07802

SciPost Physics Submission

[28] S. Tsan, R. Kansal, A. Aportela, D. Diaz, J. Duarte, S. Krishna, F. Mokhtar, J.-R.
Vlimant and M. Pierini, Particle Graph Autoencoders and Di↵erentiable, Learned En-
ergy Mover’s Distance, In 35th Conference on Neural Information Processing Systems
(2021), e-print:2111.12849.

[29] C. Krause and D. Shih, Caloflow: Fast and accurate generation of calorimeter showers
with normalizing flows, ArXiv abs/2106.05285 (2021).

[30] C. Krause and D. Shih, Caloflow ii: Even faster and still accurate generation of
calorimeter showers with normalizing flows, ArXiv abs/2110.11377 (2021).

[31] K. T. Matchev, A. Roman and P. Shyamsundar, Uncertainties associated with GAN-
generated datasets in high energy physics (2020), e-print:2002.06307.

[32] Y. Alanazi et al., Simulation of electron-proton scattering events by a Feature-
Augmented and Transformed Generative Adversarial Network (FAT-GAN) (2020),
doi:10.24963/ijcai.2021/293, e-print:2001.11103.

[33] B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweight-
ing with preserved uncertainties, Phys. Rev. D 102(7), 076004 (2020),
doi:10.1103/PhysRevD.102.076004, e-print:2007.11586.

[34] B. Stienen and R. Verheyen, Phase space sampling and inference from
weighted events with autoregressive flows, SciPost Phys. 10(2), 038 (2021),
doi:10.21468/SciPostPhys.10.2.038, e-print:2011.13445.

[35] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying
event samples, SciPost Phys. 10(6), 139 (2021), doi:10.21468/SciPostPhys.10.6.139,
e-print:2008.06545.

[36] M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Un-
weighting, SciPost Phys. 10(4), 089 (2021), doi:10.21468/SciPostPhys.10.4.089, e-
print:2012.07873.

[37] K. Danziger, T. Janßen, S. Schumann and F. Siegert, Accelerating Monte Carlo event
generation – rejection sampling using neural network event-weight estimates (2021),
e-print:2109.11964.

[38] A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot and S. Vent,
Generative Networks for Precision Enthusiasts (2021), e-print:2110.13632.

[39] G. B́ıró, B. Tankó-Bartalis and G. G. Barnaföldi, Studying Hadronization by Machine
Learning Techniques (2021), e-print:2111.15655.

[40] J. N. Howard, S. Mandt, D. Whiteson and Y. Yang, Foundations of a Fast, Data-
Driven, Machine-Learned Simulator (2021), e-print:2101.08944.

[41] G. Quétant, M. Drozdova, V. Kinakh, T. Golling and S. Voloshynovskiy, Turbo-Sim:
a generalised generative model with a physical latent space (2021), e-print:2112.10629.

[42] S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen,
G. Kasieczka, B. Nachman, T. Plehn and M. Trabs, Calomplification – The Power
of Generative Calorimeter Models (2022), e-print:2202.07352.

23

http://arxiv.org/abs/2111.12849
http://arxiv.org/abs/2002.06307
https://doi.org/10.24963/ijcai.2021/293
http://arxiv.org/abs/2001.11103
https://doi.org/10.1103/PhysRevD.102.076004
http://arxiv.org/abs/2007.11586
https://doi.org/10.21468/SciPostPhys.10.2.038
http://arxiv.org/abs/2011.13445
https://doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2008.06545
https://doi.org/10.21468/SciPostPhys.10.4.089
http://arxiv.org/abs/2012.07873
http://arxiv.org/abs/2012.07873
http://arxiv.org/abs/2109.11964
http://arxiv.org/abs/2110.13632
http://arxiv.org/abs/2111.15655
http://arxiv.org/abs/2101.08944
http://arxiv.org/abs/2112.10629
http://arxiv.org/abs/2202.07352

SciPost Physics Submission

[43] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and
K. Krüger, Getting High: High Fidelity Simulation of High Granularity Calorimeters
with High Speed, Comput. Softw. Big Sci. 5(1), 13 (2021), doi:10.1007/s41781-021-
00056-0, e-print:2005.05334.

[44] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring
phase space with Neural Importance Sampling, SciPost Phys. 8(4), 069 (2020),
doi:10.21468/SciPostPhys.8.4.069, e-print:2001.05478.

[45] L. de Oliveira, M. Paganini and B. P. Nachman, Learning particle physics by example:
Location-aware generative adversarial networks for physics synthesis, Computing and
Software for Big Science 1, 1 (2017).

[46] M. Paganini, L. de Oliveira and B. Nachman, Calogan: Simulating 3d high energy
particle showers in multilayer electromagnetic calorimeters with generative adversarial
networks, Phys. Rev. D 97, 014021 (2018), doi:10.1103/PhysRevD.97.014021.

[47] M. Paganini, L. de Oliveira and B. Nachman, Accelerating science with generative ad-
versarial networks: An application to 3d particle showers in multilayer calorimeters,
Physical Review Letters 120(4) (2018), doi:10.1103/PhysRevLett.120.042003.

[48] P. Musella and F. Pandolfi, Fast and accurate simulation of particle detectors using
generative adversarial networks, Computing and Software for Big Science 2, 1 (2018),
doi:10.1007/s41781-018-0015-y.

[49] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refin-
ing particle detector simulations using the Wasserstein distance in adversarial net-
works, Comput. Softw. Big Sci. 2(1), 4 (2018), doi:10.1007/s41781-018-0008-x, e-
print:1802.03325.

[50] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic
calorimeter showers using a Wasserstein Generative Adversarial Network, Comput.
Softw. Big Sci. 3, 4 (2019), doi:10.1007/s41781-018-0019-7, e-print:1807.01954.

[51] ATLAS Collaboration, Energy resolution with a GAN for
Fast Shower Simulation in ATLAS, ATLAS-SIM-2019-004,
Https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
(2019).

[52] D. Belayneh et al., Calorimetry with Deep Learning: Particle Simulation
and Reconstruction for Collider Physics, Eur. Phys. J. C 80(7), 688 (2020),
doi:10.1140/epjc/s10052-020-8251-9, e-print:1912.06794.

[53] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and
K. Krüger, Decoding Photons: Physics in the Latent Space of a BIB-AE Generative
Network, EPJ Web Conf. 251, 03003 (2021), doi:10.1051/epjconf/202125103003,
e-print:2102.12491.

[54] C. Chen, O. Cerri, T. Q. Nguyen, J. R. Vlimant and M. Pierini, Analysis-Specific
Fast Simulation at the LHC with Deep Learning, Comput. Softw. Big Sci. 5(1), 15
(2021), doi:10.1007/s41781-021-00060-4.

[55] C. Krause and D. Shih, CaloFlow: Fast and Accurate Generation of Calorimeter
Showers with Normalizing Flows (2021), e-print:2106.05285.

24

https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1007/s41781-021-00056-0
http://arxiv.org/abs/2005.05334
https://doi.org/10.21468/SciPostPhys.8.4.069
http://arxiv.org/abs/2001.05478
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1007/s41781-018-0008-x
http://arxiv.org/abs/1802.03325
http://arxiv.org/abs/1802.03325
https://doi.org/10.1007/s41781-018-0019-7
http://arxiv.org/abs/1807.01954
https://doi.org/10.1140/epjc/s10052-020-8251-9
http://arxiv.org/abs/1912.06794
https://doi.org/10.1051/epjconf/202125103003
http://arxiv.org/abs/2102.12491
https://doi.org/10.1007/s41781-021-00060-4
http://arxiv.org/abs/2106.05285

SciPost Physics Submission

[56] C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate Generation of
Calorimeter Showers with Normalizing Flows (2021), e-print:2110.11377.

[57] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3d high energy
particle showers in multilayer electromagnetic calorimeters with generative adversarial
networks, Physical Review D 97(1) (2018), doi:10.1103/physrevd.97.014021.

[58] P. Ilten, M. Williams and Y. Yang, Event generator tuning using Bayesian opti-
mization, JINST 12(04), P04028 (2017), doi:10.1088/1748-0221/12/04/P04028, e-
print:1610.08328.

[59] A. Andreassen and B. Nachman, Neural Networks for Full Phase-space
Reweighting and Parameter Tuning, Phys. Rev. D 101(9), 091901 (2020),
doi:10.1103/PhysRevD.101.091901, e-print:1907.08209.

[60] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, Generative adversarial nets, In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence and K. Weinberger, eds., Advances in Neural
Information Processing Systems, vol. 27. Curran Associates, Inc. (2014).

[61] D. P. Kingma and M. Welling, Auto-encoding variational bayes (2014), e-
print:1312.6114.

[62] D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, In
Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, p. 1530–1538. JMLR.org (2015).

[63] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder,
L. Ardizzone and U. Köthe, Invertible Networks or Partons to Detector and Back
Again, SciPost Phys. 9, 74 (2020), doi:10.21468/SciPostPhys.9.5.074.

[64] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder, How to GAN
away Detector E↵ects, SciPost Phys. 8, 70 (2020), doi:10.21468/SciPostPhys.8.4.070.

[65] S. Kolouri, C. E. Martin and G. K. Rohde, Sliced-wasserstein autoencoder:
An embarrassingly simple generative model, CoRR abs/1804.01947 (2018), e-
print:1804.01947.

[66] I. O. Tolstikhin, O. Bousquet, S. Gelly and B. Schölkopf, Wasserstein auto-encoders,
CoRR abs/1711.01558 (2017), e-print:1711.01558.

[67] A. Andreassen, I. Feige, C. Frye and M. D. Schwartz, Binary JUNIPR: an inter-
pretable probabilistic model for discrimination, Phys. Rev. Lett. 123(18), 182001
(2019), doi:10.1103/PhysRevLett.123.182001, e-print:1906.10137.

[68] A. Andreassen, I. Feige, C. Frye and M. D. Schwartz, JUNIPR: a Framework for
Unsupervised Machine Learning in Particle Physics, Eur. Phys. J. C 79(2), 102
(2019), doi:10.1140/epjc/s10052-019-6607-9, e-print:1804.09720.

[69] E. Bothmann and L. Debbio, Reweighting a parton shower using a neural net-
work: the final-state case, JHEP 01, 033 (2019), doi:10.1007/JHEP01(2019)033,
e-print:1808.07802.

[70] L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example:
Location-Aware Generative Adversarial Networks for Physics Synthesis, Comput.
Softw. Big Sci. 1(1), 4 (2017), doi:10.1007/s41781-017-0004-6, e-print:1701.05927.

25

http://arxiv.org/abs/2110.11377
https://doi.org/10.1103/physrevd.97.014021
https://doi.org/10.1088/1748-0221/12/04/P04028
http://arxiv.org/abs/1610.08328
http://arxiv.org/abs/1610.08328
https://doi.org/10.1103/PhysRevD.101.091901
http://arxiv.org/abs/1907.08209
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.21468/SciPostPhys.9.5.074
https://doi.org/10.21468/SciPostPhys.8.4.070
http://arxiv.org/abs/1804.01947
http://arxiv.org/abs/1804.01947
http://arxiv.org/abs/1711.01558
https://doi.org/10.1103/PhysRevLett.123.182001
http://arxiv.org/abs/1906.10137
https://doi.org/10.1140/epjc/s10052-019-6607-9
http://arxiv.org/abs/1804.09720
https://doi.org/10.1007/JHEP01(2019)033
http://arxiv.org/abs/1808.07802
https://doi.org/10.1007/s41781-017-0004-6
http://arxiv.org/abs/1701.05927

SciPost Physics Submission

[71] J. W. Monk, Deep Learning as a Parton Shower, JHEP 12, 021 (2018),
doi:10.1007/JHEP12(2018)021, e-print:1807.03685.

[72] K. Dohi, Variational Autoencoders for Jet Simulation (2020), e-print:2009.04842.

[73] B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. Duarte, R. Kansal, J.-R. Vli-
mant and D. Gunopulos, Sparse Data Generation for Particle-Based Simulation of
Hadronic Jets in the LHC, In 38th International Conference on Machine Learning
Conference (2021), e-print:2109.15197.

[74] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf et al., Pytorch: An imperative style,
high-performance deep learning library, In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox and R. Garnett, eds., Advances in Neural Information Pro-
cessing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019).

[75] Y.-T. Chien, A. Deshpande, M. M. Mondal and G. Sterman, Probing hadronization
with flavor correlations of leading particles in jets, Phys. Rev. D 105(5), L051502
(2022), doi:10.1103/PhysRevD.105.L051502, e-print:2109.15318.

[76] R. A. Khalek, V. Bertone and E. R. Nocera, Determination of unpolarized pion frag-
mentation functions using semi-inclusive deep-inelastic-scattering data, Phys. Rev.
D 104(3), 034007 (2021), doi:10.1103/PhysRevD.104.034007, e-print:2105.08725.

[77] V. Bertone, N. P. Hartland, E. R. Nocera, J. Rojo and L. Rottoli, Charged hadron
fragmentation functions from collider data, Eur. Phys. J. C 78(8), 651 (2018),
doi:10.1140/epjc/s10052-018-6130-4, e-print:1807.03310.

[78] M. Soleymaninia, H. Hashamipour and H. Khanpour, Neural network QCD analysis
of charged hadron fragmentation functions in the presence of SIDIS data, Phys. Rev.
D 105(11), 114018 (2022), doi:10.1103/PhysRevD.105.114018, e-print:2202.10779.

[79] H. Chen, I. Moult, J. Thaler and H. X. Zhu, Non-Gaussianities in collider energy
flux, JHEP 07, 146 (2022), doi:10.1007/JHEP07(2022)146, e-print:2205.02857.

[80] P. T. Komiske, I. Moult, J. Thaler and H. X. Zhu, Analyzing N-point Energy Corre-
lators Inside Jets with CMS Open Data (2022), e-print:2201.07800.

[81] C. e. Villani, Optimal transport, old and new, Springer, Berlin (2008).

[82] S. Helgason, Integral Geometry and Radon Transforms, Springer, New York (2015).

[83] F. Santambrogio, Optimal Transport for Applied Mathematicians, Springer, Switzer-
land (2015).

[84] S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau and G. K. Rohde, Generalized sliced
wasserstein distances, CoRR abs/1902.00434 (2019), e-print:1902.00434.

26

https://doi.org/10.1007/JHEP12(2018)021
http://arxiv.org/abs/1807.03685
http://arxiv.org/abs/2009.04842
http://arxiv.org/abs/2109.15197
https://doi.org/10.1103/PhysRevD.105.L051502
http://arxiv.org/abs/2109.15318
https://doi.org/10.1103/PhysRevD.104.034007
http://arxiv.org/abs/2105.08725
https://doi.org/10.1140/epjc/s10052-018-6130-4
http://arxiv.org/abs/1807.03310
https://doi.org/10.1103/PhysRevD.105.114018
http://arxiv.org/abs/2202.10779
https://doi.org/10.1007/JHEP07(2022)146
http://arxiv.org/abs/2205.02857
http://arxiv.org/abs/2201.07800
http://arxiv.org/abs/1902.00434

	Introduction
	Conditional SWAEs and hadronization
	The simplified Lund string hadronization model
	The cSWAE architecture
	Training

	Reproducing the simplified Pythia fragmentation model
	First emission trained models
	Labels and E dependent distributions
	Hadronization chain

	Conclusion and Outlook
	Public code MLhad_v0.1
	Sliced Wasserstein distance
	Latent distributions
	References

