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Abstract

Discontinuities can be fairly arbitrary but also

cause a significant impact on outcomes in so-

cial systems. Indeed, their arbitrariness is why

they have been used to infer causal relationships

among variables in numerous settings. Regres-

sion discontinuity from econometrics assumes the

existence of a discontinuous variable that splits

the population into distinct partitions to estimate

causal effects. Here we consider the design of

partitions for a given discontinuous variable to

optimize a certain effect. To do so, we propose

a quantization-theoretic approach to optimize the

effect of interest, first learning the causal effect

size of a given discontinuous variable and then

applying dynamic programming for optimal quan-

tization design of discontinuities that balance the

gain and loss in the effect size. We also develop a

computationally-efficient reinforcement learning

algorithm for the dynamic programming formula-

tion of optimal quantization. We demonstrate our

approach by designing optimal time zone borders

for counterfactuals of social capital.

1. Introduction

Whether one earns admission to a particular school on the

basis of a test score is often linked to significant educational

and life outcomes (Park et al., 2015), but the admissions

threshold may be quite arbitrary. Those on one side of the

threshold may otherwise be quite similar to those on the

other side. There are similarly arbitrary discontinuities in

numerous settings in public policy, economics, healthcare,

and elsewhere that may cause significant impacts. Indeed,

categorization on the basis of fairly arbitrary partitioning of

certain attributes abounds in social life (Varshney & Varsh-
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ney, 2017).

DiscontinuityÐthe presence of a discrete set of partitionsÐ

has been used to learn causal relationships among variables.

Indeed a leading method for causal inference in economet-

rics is regression discontinuity design (RDD), which as-

sumes a pre-known threshold dividing the population into

two discontinuous groups (Angrist & Pischke, 2009). Com-

paring samples on each side of the threshold point then

allows inference of causality.

RDD has been applied in various domains with discontinu-

ities, e.g. in national security (Dell & Querubin, 2018), in

estimating prices of used cars (Englmaier et al., 2018), and

in faculty performance reviews (Rivera & Tilcsik, 2019).

Here, we take up the challenge of partition design in the

context of causal effects of discontinuities, which as far as

we know has not been studied in any systematic manner.

Indeed, there appears to be a lacuna at this intersection of

causal inference and mechanism design. To do so, we first

establish theory to address the counterfactuals of redesign-

ing discontinuities. Then we develop new techniques in

optimal quantization theory for partition design. Although

there is a large literature in quantization theory (Gray &

Neuhoff, 1998; Gersho & Gray, 1991)Ðincluding in set-

tings of statistical inference (Poor & Thomas, 1977; Varsh-

ney & Varshney, 2008; Misra et al., 2011; Shlezinger et al.,

2019)Ðthere appears to be no prior work on quantization

in the context of causal inference.

1.1. Time Zone Discontinuity

Time zones are an example of discontinuities that affect

daily life. Normatively, the 720 longitude lines of the Earth

are divided into 24 time zones. However, there are countries

that geographically lie in certain time zones but actually

follow other time zones, such as France and Spain, which

use Western European Time. China geographically spans

five time zones but uses just a single China Standard Time

throughout. Time zone borders may not run straight from

north to south, but may follow certain political boundaries.

Time zone systems along with globalized social systems led

to uniform start times of school, work, and sleep, which may

dictate wake-up times not aligned with the sun (Hamermesh

et al., 2008). Such schedules can disrupt human circadian
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rhythms and have consequences on health and productivity

(Cappuccio et al., 2010; Gibson & Shrader, 2018). By

exploiting the discontinuity in the timing of natural light at

time zone boundaries, (Giuntella & Mazzonna, 2019) found

that an extra hour of natural light in the evening reduces

sleep duration by 20 minutes. Such results imply sunset

time, as linked to geographic location, may contribute in

other ways to health and well-being.

In this paper, we ask how to partition the world into time

zones that optimize social capital, rather than the arbitrary

time zone system in place today. For this, we need two

things: first, the counterfactual prediction using regression

discontinuity design to measure the effect of current time

zone borders, and second, quantization to design the optimal

time zone borders.

2. Causal Effects of Time Zones on Human

Well-being

Let us consider social capital as an indicator of human

wellbeing. To measure the discrepancy on social capital,

when given standard time zone borders, we apply RDD

(Lee & Lemieux, 2010). We fit a linear model to measure

the causal effects of time zone borders by modeling the

distance to borders as discontinuous. In RDD, we have two

groups based on a cut-off pointÐtreated and controlÐand

we aim to find the average treatment effect. Since we cannot

observe two outcomes simultaneously for a given region

at a given point of time, we estimate the average treatment

effect to derive the causal effects on the outcome of interest.

We fit the following RD model:

Yc = β0+β1hc+β2f(dc)+hc ·β3f(dc)+β4δc+εi, (1)

where Yc is the outcome variable for a region c, hc ∈ {0, 1}
is a dummy variable where 1 indicates the eastern side of a

time zone boundary and 0 indicates the western side based

on the distance dc from the time zone boundary (positive

dc value is for the eastern side and negative dc value is for

the western side). The function f(·) is taken as polynomial

(Gelman & Imbens, 2019). The control variable δc includes

socio-demographic variables to improve the accuracy of

estimates, and εi is the error term in the regression model.

The treatment effect is β1 which measures the effect size

of the distance from time zone borders on the variable of

interest. We pick the coefficient β1 to refelct the treatment

effect because β1 captures the treatment at the discontinuity

dc = c.

3. Quantizer Design

To design optimal time zone borders, we consider the prob-

lem of partitioning the geographic distribution of the human

population through the choice of time zone borders of maxi-

mum human well-being. Basically, we want as many people

living at the eastern edges of their time zones so the sun sets

earlier, they sleep more, and therefore have better wellbe-

ing. So as not to have adverse circadian rhythm effects of

mismatch between clock and sun, we also want to minimize

the mismatch between the clock time and the solar time.

Here, we measure the gain of optimal time zone regions on

well-being by using social capital data.

Let us consider a quantizer that partitions the set of longi-

tude lines B into K subsets, B1, . . . ,BK , called quantization

regions. The regions are intervals bounded by time zone

borders b
(k)
i , for K time zone borders, k ∈ [0,K] and N lon-

gitude lines, i ∈ [0, N ]. For example, the interval for region

B1 = (−∞, b
(1)
i ],B2 = (b

(1)
i , b

(2)
i′ ], . . . ,BK = (b

(K)
i′′ ,∞).

For each quantization region Bk, there is a representation

point r
(k−1)
i to which elements are mapped. The values

r
(k−1)
i are in the middle of the region k, and the values b

(k)
i

are at the boundaries of the region Bk.

To achieve our goal of having optimal partitions of the

human population, we measure the effect of a given time

zone border position on the rest of the longitude lines. Let

D(bj , b
(k)
i ) be a function that measures the distortion on the

population (at longitude line bj) being at the eastern side

of the time zone border b
(k)
i . Similarly, let D(bj , r

(k)
i ) be

the distortion from the circadian mismatch, such that the

population at longitude line bj are distant from the middle

of the region. Therefore, we aim to minimize the distor-

tion brought by the eastern edge effect D(bj , b
(k)
i ) and the

circadian rhythm effect D(bj , r
(k)
i ) for the population at bj

having b
(k)
i to be their time zone border. We approach the

problem in three formulations of increasing intricacy, as

follows.

Prime Meridian Choice The first optimization is that we

search for a longitude line b
(ko)
i that acts as the reference

time zone border for other borders. That reference time zone

border b
(ko)
i minimizes the average distortion D(·) for all

other longitude lines. A direct optimization is to fix K = 24
and fix the quantizer to be uniform-sized such that regions

are of size 720/24 = 30, for 720 longitude lines. Therefore,

the objective is to minimize the distortion of the eastern

edge effect

argmin
b
(ko

i
)

E





N
∑

j=0

D(bj , b
(k)
i )



 . (2)

Timezone Boundaries Choice In the second optimiza-

tion, we allow regions to be of non-uniform size and search

for the optimal boundaries of each time zone region. Given

that the Earth is divided into 24 regions, each belonging

to a time zone, we set K = 24 to find the optimal K par-
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titions. For each k ∈ K, we find the time zone border

b
(k)
i and the corresponding representation point r

(k)
i′ that

minimize the distortion at longitude lines in partition Bk.

Therefore, the objective is to find the set of optimal K time

zone borders, {b
(1)
i , . . . , b

(K)
i′ }, and their corresponding rep-

resentation (middle) points {r
(0)
n , . . . , r

(K−1)
n′ }.

argmin
{b

(1)
i

,...,b
(K)

i′
},{r

(0)
n ,...,r

(K−1)

n′
}

E





N
∑

j=0

D(rj , r
(k)
n )





+λE





N
∑

j=0

D(bj , b
(k)
i )



 ,

(3)

where i, i′, j, n, n′ ∈ [0, N ]. The quantity λ is meant to

reflect the causal impact of current timezone borders on

wellbeing. Therefore, the effect estimated β1 from the cur-

rent time zone borders on wellbeing is substituted by λ
within the formulation.

Numbers and Boundaries of Time Zones The last for-

mulation makes K open to optimization to find the optimal

number of time zone borders.

argmin
K,{b

(1)
i

,...,b
(K)

i′
},{r

(0)
n ,...,r

(K−1)

n′
}

E





N
∑

j=0

D(rj , r
(k)
n )





+ λE





N
∑

j=0

D(bj , b
(k)
i )





+ ηK.

(4)

3.1. Dynamic Programming Formulation

The first optimization in (2) is approached by enumeration

while finding optimal partitions using (3) is approached

through dynamic programming. Therefore, we extend a

dynamic programming (DP) algorithm for optimal quan-

tization due to Sharma (1978). A common approach for

quantization is the Lloyd-Max algorithm (Max, 1960; Lloyd,

1982), but this does not work in our setting, since we aim to

concentrate the probability mass at the right (eastern) edge

of partition regions, bi rather than largely being near the

center ri.

Recall N is the total number of longitude lines, with K time

zone borders. We aim to find the optimal K-level quan-

tizer, where b
(k)
i acts as the time zone border of minimum

distortion for region Bk.

Specifically, to measure the distortion D(·), consider two

longitude lines, bi and bj , where bi acting as a reference

time zone border for bj . We calculate the eastern edge effect

to be the amount of population at longitude lines to the

eastern of bi up to bj . We start by measuring the eastern

edge effect Dk(bi, bj) at just one quantization level, k = 1,

i.e. one time zone region, assuming longitude lines belong

to one segment as follows,

D1(bi, bj) =

j
∑

w=i

ρZw , (5)

where Zw is the weighted population at longitude line bw,

and ρ is a scaling factor, e.g. 0.5, multiplied by the difference

between bi and bj , to reflect the distance between bi and bj .

Next, we define the distortion at 2 ≤ k ≤ K, when k
segments are placed in the interval (bi, bj). For each k,

we define a value Mk = N − 2k to represent the end of

the interval. For example, let b
(1)
i , . . . , b

(K)
j be the optimal

solution, (optimal time zone borders), i.e. they represent the

optimal K-level quantizer for the interval (i,MK). With

j′ < j, b
(1)
i , . . . , b

(K−1)
j′ must represent the optimal (K−1)-

level quantizer for the interval (i,MK−1). Thus, we can

split the problem into sub-problems as:

Dk(bi, bMk
) = min

αm

D1(bi, bm) +Dk+1(bm, bMk+1
)

s.t. m ∈ (i,Mk),
(6)

such that the longitude line bm is between lines bi and bMk
.

The value αm is the minimum distortion attained within the

interval (i,Mk) for time zone Bk. Therefore, the optimal

time zone border b
(k)
m for time zone region Bk is

b(k)m = argmin
bm

Dk(bi, bMk
) . (7)

We solve (6) up until k+1 ≤ K. We follow a similar proce-

dure to fine optimal representation points r
(k)
n by replacing

bi with ri−1 in (5) and (6).

3.2. Reinforcement Learning Formulation

The computational complexity of the DP approach makes

computation challenging for large values of K and N , e.g.,

K = 24. In DP we end up with a worst-case computation

of O(N(KN3)).

Given the dependency in finding partitions in (6), the vari-

ables at k-level quantizer depend on future (k + 1)-level

quantizer results. Therefore, the quantization problem for

partitioning longitude lines can be cast as a Markov Deci-

sion Process (MDP). (Details on MDPs in Appendix B).

Commonly, DP solves MDPs by breaking them into smaller

sub-problems. However, in large optimization problems, it

is challenging to solve MDPs using DP (Powell, 2007). Re-

inforcement learning (RL) alternatively solves large MDPs

in a way that combines optimization with simulation to ap-

proximate the optimal solution of MDPs (Mes & Rivera,

2017).

3



3.2.1. QUANTIZATION WITH VALUE ITERATION

The value iteration (VI) algorithm, from RL, guarantees

that the algorithm does not get locked into any hopelessly

long sub-calculations before it can find the optimal value

(Sutton & Barto, 2018).

We convert our modified version of Sharma’s DP function

(Sharma, 1978) in (6) into the VI function, we consider re-

defining the states, rewards, and actions based on our setting.

Complete derivation in Appendix C. The final formulation

we end up with is the following:

Vt(bi, k, bMk
) =

min
bm∈A(bi,k,bMk

)
R(bi, bm) + γVt−1(bm, k + 1, bMk+1

).

(8)

After convergence, the optimal policy π∗ is the set of longi-

tude lines {b
(1)
m , . . . , b

(K)
m′ | m,m′ ∈ [0, N ]} which are the

optimal boundaries for each time zone Bk, at, and their corre-

sponding representation points {r
(0)
n , . . . , r

(K−1)
n′ | n, n′ ∈

[0, N ]}.

4. Empirical Investigations

In this section, we demonstrate our approach for the time

zone design problem so as to explore the possibility of

improving social capital.

Social capital includes five different metrics: family unity,

community health, institutional health, efficacy, and an over-

all index that averages the four sub-indices. Here we investi-

gate the effect of sunlight amount determined by time zone

borders on social capital across counties.

Table 1 first row reports the RDD estimates. We find a

significant causal effect from sunset time on both the overall

social capital index and the community health sub-index.

We find that later sunset causes a lower social capital index.

Thus, if the western counties near the time zone boundary

were moved to the eastern side of the time zone boundary,

we should expect a lower counterfactual prediction of the

county index.

4.1. Quantization

Given our finding of causal significance between sunset and

social capital in Section 4, we focus on those indices to

demonstrate our quantization approach.

To partition regions, we base our partitioning on the popula-

tion size at each longitude line (Rankin, 2008). We use the

world population estimates at the west and east of each of

the 360 longitude lines, with 15 degrees from both sides of

a longitude line, hence, population sizes are observed at a

total of 720 longitude coordinates/points. We use population

data (Data & Center, 2000) calculated at each longitude line

of the year 2000. At each time zone region, we aim to have

a minimum population size at the east edge of a time zone

border to minimize the distortion effect following (2)±(4).

4.1.1. QUANTIZED TIME ZONE BORDERS

We apply our method and investigate the quantized partition-

ing by allowing the time zone regions to be of non-uniform

widths. Figure 1a shows the optimal time zone boundaries

redesigned by quantization over the world map for K = 24.

We see that more time zone boundaries appear just to the

east of regions with large populations, e.g. India and China.

This follows our intuition for the need to redesign optimal

time zone boundaries that minimize distortions across popu-

lations.

(a) Quantized World partitions

(b) Quantized Continental United
States partitions

Figure 1. Time zone quantization for K = 24. (Black lines are the

boundaries of a time zone and the red lines are the representation

points)

4.2. Designed Discontinuity Counterfactual Prediction

After we have optimally redesigned time zone borders as in

Figure 1a, with a focus on the United States in Figure 1b,

we measure the counterfactual change in the causal impact

of the new borders on social capital, as compared to the

impact under the standard time zone borders. Focusing on

the continental United States, we reuse the RDD model in

(1), following the same causal inference analysis in 2. Coun-

ties are assigned to a time zone region with the minimum

distance from a time zone border. Counties that are to the

east of the time zone border have hc = 1, to indicate the

treatment, and hence, measure the treatment effect β1 in (1).
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Effects of: County Index Family Unity Community Health Institutional Health Efficacy

Later Sunset Counties
Current Timezone −1.194∗∗∗(0.419) −0.491(0.540) −1.644∗∗∗(0.558) −0.694∗(0.395) −0.519(0.447)
Redesigned Timezone 0.083∗∗∗(0.024) 0.098∗∗∗(0.022) −0.0443∗∗(0.019) 0.073∗∗(0.024) 0.047∗∗(0.019)

Table 1. Counterfactual Prediction on Social Capital of the United States: Local non-parametric regression discontinuity estimates (In

the later sunset counties row, first number represents the estimate, and shows the significance levels where ∗p < 0.1, ∗∗p < 0.05, and
∗∗∗p < 0.01, and number in parenthesis displays the standard error).

The outcome of interest, Yc, is the social capital index for

county c, including the aggregated measure, county index,

and subindex measures.

Table 1, second row, shows the effect of being at the eastern

edge of the redesigned time zone border on social capital

indices. In comparison to results in first row in Table 1,

we see that the redesigned borders have yielded a stronger

positive causal impact on social capital which mitigates the

effect of distortion from the standard time zone borders.

5. Discussion

If we want as many people as possible living at the east-

ern edges of their time zones so the sun sets earlier, they

sleep more, and therefore have more social capital (Put-

nam, 2000) (while ensuring the sun and the clock do not

differ too much), can we design time zone boundaries to

do so? For this problem and structurally-related ones that

involve the design of discontinuities such as in health and

education policies, we studied a problem formulation at the

intersection of causal inference and quantization theory for

the purpose of mechanism design. This led to new math-

ematical developments in linking regression discontinuity

counterfactuals with optimal quantization theory. For the

time zone problem specifically, results put time zone bound-

aries just to the east of large population centers, and we

showed the possibility of significant gains in social capital.

There are natural questions of equity that arise through the

design of discontinuities of the type we developed here.
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A. Background: Causal Inference

In engineering, health, and social science fields, the randomized experiment has played important roles to uncover causal

effects under a given intervention on an outcome of interest. For example, to study the efficacy of a new drug, one can

randomly assign patients to two groups where one group receives the new drug and the other receives a placebo. By

comparing the difference in efficacy between the two groups, one can estimate the treatment effect. Although randomized

experiments have been robust in producing estimates and simple interpretations, it is often hard to apply to real-world

applications given practical and ethical limitations in randomly assigning groups and interventions. To overcome such

limitations, non-experimental designs have been developed to uncover causal effects.

One of the main distinctions between standard statistical analysis and causal inference is dealing with changing conditions.

Statistical analysis, represented by regression and hypothesis testing techniques, estimates beliefs from past to future as long

as experiment conditions do not change, whereas causal inference infers beliefs under changing conditions to uncover causal

relationships among variables (Pearl, 2009). Several frameworks are used for causality analysis, such as structural models

(Pearl, 2010) and the potential outcome framework (Rubin, 1974), which we focus on here.

The potential outcome framework assumes effects are tied to a treatment or an intervention. To reveal the causal effects of

an intervention, (Rubin, 1974) proposed to measure the difference between two potential outcomes; let us denote them as

Y N and Y I , for a given unit x. The potential outcome Y N is the outcome for x without being exposed to an intervention,

and Y I is the outcome after an intervention is applied on x. So, the causal effect is

τ = Y N − Y I . (9)

However in real applications, we can never observe both outcomes for the same unit under the same conditions, only one of

the two will take place at a given time. Since one of the potential outcomes will always be unavailable, the core objective of

the framework is to estimate it.

Let us introduce the main terms in the potential outcomes literature, which are used throughout. A unit is the atomic object

in the framework, which can be a city or a county. A treatment is the action applied to a unit to change its state. The

treatment 1 can be a medicine given to a particular group. The treatment is usually thought of as binary, so one group

receives the treatment (the treated group), and the other does not (the control group). One commonly used design under the

potential outcomes framework is regression discontinuity, which we consider here.

A.1. Regression Discontinuity

The RDD has recently gained attention in social science because it provides the most credible analysis of causal effects with

relatively mild assumptions compared to other non-experimental designs such as instrumental variables (IVs). In RDD, each

observation can be split into two groups based on a known discontinuous variableÐa cut-off point for an intervention of

interest (Imbens & Lemieux, 2008). Suppose observations cannot perfectly manipulate the intervention; then the difference

between two groups near the known cut-off point can be used to measure the local average treatment effect on an outcome

of interest. Therefore, RDD does not require researchers to explicitly randomize the treatment, yet it gives the comparative

analysis of the causal effects as the randomized experiment.

The causal estimate arises from the comparison between both groups, in which the distribution of samples below and above

the threshold is expected to be different if an intervention had an impact on treated samples. However, to ensure the validity

of the estimate, the distribution of characteristics around the threshold should not change discontinuously (Lee & Lemieux,

2010).

B. Markov Decision Process

MDP is a controlled Markov chain, in which the transition from one state to another depends on an external control parameter

called the action. Specifically, the probability of transitioning to state s′ from state s upon taking action a is denoted by

Ps,s′(a) and given by

P(s, s′, a) := P (s1 = s′|s0 = s,A0 = a),

∀s, s′ ∈ S, ∀a ∈ A(s) .
(10)

1The terms treatment and intervention are used interchangeably.
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In addition to the finite state space S , for any state s ∈ S , MDP has a finite action space A(s) of possible actions that can be

taken at state s. Another component of an MDP is an underlying one-step reward function R(s, a) that assigns random

rewards to each (s, a) pair. Therefore, an MDP is given by a quadruplet (S,A,P,R). The goal in analyzing an MDP is to

find the optimal policy π∗
t at different time steps. More formally, a policy is a probability distribution over the action space

A:

πt(a|{si, ai}
t−1
i=0, st) := P (A(st) = a|s0, a0, . . . , st−1, at−1, st). (11)

In words, the current policy πt at current time t depends on a sequence of previous states and actions from t = 0 up to

t = t− 1 and current state st in an MDP.

Commonly, DP solves MDPs by breaking them into smaller sub-problems. However, in large optimization problems, it is

challenging to solve MDPs using DP (Powell, 2007). Reinforcement learning (RL) is an alternative to solve large MDPs in a

way that combines optimization with simulation to approximate the optimal solution of MDPs (Mes & Rivera, 2017).

C. Value Iteration

One RL technique to solve an MDP is the value iteration (VI) algorithm, in which all states are updated in random order at

one iteration. It is also based on a one-step look-ahead search from the current state. Therefore, this guarantees that the

algorithm does not need to get locked into any hopelessly long sub-calculations before it can find the optimal value (Sutton

& Barto, 2018).

The VI function V(·) basically uses the Bellman optimality equation (Bellman, 1966) with an update rule at each iteration

from t = 1 to T . Each state s ∈ S has a value Vt(s) that is updated using the previous value function of the next state

s′ ∈ S with a non-negative reward function R(s, a) to dictate the best action to take over all possible actions a ∈ A(s) as in

(10). The reward indicates what is the good action to take in an immediate sense, whereas a value function indicates what is

the best, in the long run, (Sutton & Barto, 2018). Formally, the value function iterates from t to a total of T and is expressed

as follows,

Vt(s) = max
a∈A(s)

R(s, a) + γ
∑

s′∈S

P(s, s′, a)Vt−1(s
′). (12)

The parameter γ is a discount factor, 0 < γ < 1 which is used to make an infinite sum finite when T → ∞. Therefore, this

also imposes convergence guarantees as proved in (Sutton & Barto, 2018; Agarwal et al., 2019).

Specifically, running the value function in (12) for T iterations such that

T ≥
log(||V1 − V0||∞) + log(2)− log(ϵ(1− γ))

log( 1
γ
)

(13)

ensures that the optimal value function V∗ is ||VT − V∗||∞ < ϵ, therefore, πT → π∗, the optimal policy. For the theorems

and derivations that lead to this result, please see (Agarwal et al., 2019; SzepesvÂari, 2020; Srikant, 2022)

C.0.1. QUANTIZATION WITH VALUE ITERATION

To convert our modified version of Sharma’s DP function (Sharma, 1978) in (6) into the VI function, we consider redefining

the states, rewards, and actions based on our setting. First, we rewrite (12) with equal transition probabilities and with a

minimization objective as follows:

Vt(s) = min
a∈A(s)

R(s, a) + γVt−1(s
′). (14)

Then, we build the MDP using the set of longitude lines B and the number of time zones K as follows

s := (bi, k, bMk
)

a := bm

A(s) := f(bi, k, bMk
)

R(s, a) := D1(bi, bm)

s′ := (bm, k + 1, bMk+1
).

(15)

The function f(bi, k, bMk
) returns actions A(s) that satisfy the constraints on bm in (6).
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Therefore, combining (6) and (14) with change in notation we get

Vt(bi, k, bMk
) = min

bm∈A(bi,k,bMk
)
R(bi, bm) + γVt−1(bm, k + 1, bMk+1

). (16)

Notice that if Vt converges before T , that is VT−1 = VT , then it satisfies the DP in (6)

VT (bi, k, bMk
) = min

bm∈A(bi,k,bMk
)
R(bi, bm) + γVT (bm, k + 1, bMk+1

). (17)

D. Data and Pre-processing for Regression Discontinuity Models

Let us initially consider the continental United States. Following (Giuntella & Mazzonna, 2019), we consider the distance

between the centroid of a region and the time zone boundary to calculate the daylight hours for a given region. We use

Census center of population and time zone boundary data from the Bureau of Transportation Statistics to compute the

distance between the centroid of the county and adjacent time zone boundaries.

Census Centers of Population The Census centers of population dataset2 provides the balance point of various geographic

and demographic features. We especially use the centers of the population by county data to obtain coordinates of counties

in the continental U.S. With this dataset, we compute the average sunset time given year and distance to the time zone

boundary for all counties.

Time Zone Boundary U.S. time zone boundaries and daylight saving time (DST) are managed by the Department of

Transportation. There are four time zones in the continental U.S.: Pacific (UTC −07:00), Mountain (UTC −06:00), Central

(UTC −05:00) and Eastern (UTC −04:00). There is a one hour difference between each time zone. As time zones in the

U.S. are not strictly based on mean solar time at the meridian, we use the shape file provided by the Bureau of Transportation

Statistics. With coordinates of counties from Census data, we compute the distance between adjacent time zone boundaries

and centroids of counties using Euclidean distance. Since not all states observe DST or have a consistent time zone over

years, we exclude counties in Arizona, Florida, and Indiana from our analysis. The distance from the time zone boundary

and the current year are used to calculate the average sunset time for a given region.

Social Capital The social capital measure is obtained from the Social Capital Project (Lee, 2018) and comprises family

unity, an indicator of the structure of families in terms of marriage and children; community health, an indicator of

participation in civic life; institutional health that considers confidence in media/corporations/schools and participation

in institutions such as elections and census; and collective efficacy, an indicator for the converse of social disorganization,

operationalized via violent crime rates.

2https://www.census.gov/geographies/reference-files/time-series/geo/centers-population.

html

9


