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AbstractÐ Neuromuscular injuries can impair hand function
and profoundly impacting the quality of life. This has motivated
the development of advanced assistive robotic hands. However,
the current neural decoder systems are limited in their ability
to provide dexterous control of these robotic hands. In this
study, we propose a novel method for predicting the extension
and flexion force of three individual fingers concurrently using
high-density electromyogram (HD-EMG) signals. Our method
employs two deep forest models, the flexor decoder and the
extensor decoder, to extract relevant representations from the
EMG amplitude features. The outputs of the two decoders are
integrated through linear regression to predict the forces of
the three fingers. The proposed method was evaluated on data
from three subjects and the results showed that it consistently
outperforms the conventional EMG amplitude-based approach
in terms of prediction error and robustness across both target
and non-target fingers. This work presents a promising neural
decoding approach for intuitive and dexterous control of the
fingertip forces of assistive robotic hands.

I. INTRODUCTION

To restore impaired or lost hand function for people

with neuromuscular impairments, the design of assistive

devices, such as prosthetic hands and exoskeleton gloves,

has advanced to imitate movements of the human biological

hand [1], [2], [3]. However, the clinical translation of these

robotic devices has been limited by the lack of a robust

neural-machine interface that can reliably decode the user’s

intent into executable control commands for the devices.

Surface electromyogram (sEMG) signals are commonly

used as the source of neural control for robotic hands. While

pattern recognition has advanced in identifying a finite set

of intended movements from sEMG features [4], [5], it falls

short in providing continuous and proportional control of

finger kinetics. One possible solution is to extend the control

strategies by using a regressor between the EMG amplitudes

and the kinetic variables, however, the performance of this

approach is often unsatisfactory and prone to interference.

This is due to the limitations of the regressor in establishing

complex muscle-force mapping when dealing with a large

number of features, as well as the co-activation between

fingers that affects the pattern of amplitude features, making

it difficult to accurately estimate individual finger forces.
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To address these challenges, this study proposes a deep

forest-based neural decoding approach to concurrently pre-

dict the extension and flexion force of three individual fin-

gers (index, middle, and ring-pinky) from sEMG amplitude

features. The approach uses two deep forests [6] to extract

prominent representations from the sEMG amplitude features

that are highly relevant to the finger flexion and extension

force. The outputs of the two deep forests are integrated

through linear regression to predict the forces of the three

fingers. This establishes the mapping between the sEMG

amplitude and the finger kinetic variables. The proposed

approach was evaluated on data from three subjects and

showed improved accuracy in predicting fingertip forces

compared to the conventional sEMG amplitude approach.

Overall, the proposed neural decoding approach presents a

promising solution for the dexterous control of finger force,

providing insightful perspectives into the feasibility of using

deep forest-based neural decoding for assistive robotic hand

control.

II. METHODS

A. Experimental setup

Three neurologically intact participants were recruited in

the study. All subjects gave informed consent with protocols

approved by the Institutional Review Board of the University

of North Carolina at Chapel Hill.

Two 8×16 electrode arrays with a 3-mm single-electrode

diameter and a 10-mm inter-electrode distance covered the

anterior and posterior sides of the forearm to record EMG

signals from the finger flexor (FDS) and extensor (extensor

digitorum communis (EDC)), respectively (Fig. 1 (A)). The

placement of the electrode was determined by palpating the

finger flexor or extensor when the subjects flexed or extended

fingers. The EMG-USB2+(OT Bioelettronica) system was

used to amplify and sample the monopolar EMG signals with

a gain of 1000, a pass band of 10-900 Hz and a sampling rate

of 2048 Hz. The reference was placed at the wrist. The index,

middle, ring, and pinky fingers were individually secured to

four miniature load cells (SM-200N, Interface), to measure

the flexion and extension forces of individual fingers at 1000

Hz. The forearm was supported at the neutral position with

the wrist fixed by two stiff foam pads. Before each trial,

the offsets of individual load cells were removed such that

a positive force reading represented flexion and a negative

reading represented extension.
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Fig. 1. The experiment settings. (A): Monopolar EMG signals were
recorded from the finger extensor and flexor, respectively, with two 8×16
electrode arrays, and the flexion/extension forces of the index, middle, ring,
and pinky fingers were recorded. Bottom: The trapezoidal force target from
the single-finger extension and flexion trial (B) and the multi-finger trial (C).
The force target of the multi-finger trial was shown with different colors to
represent the three fingers, i.e. index (red), middle (brown), and ring-pinky
(green) as the target finger, respectively.

B. Experiment procedure

The maximum voluntary contraction (MVC) force of

each finger was measured for both flexion and extension.

During the experiment, the subjects were asked to follow a

predefined force target that had a repeated trapezoidal pattern

with a maximum force of 50% MVC for each finger (Fig.

1 (B) ). Due to high enslavement between ring and pinky

fingers [7], the subjects were asked to extend or flex the two

fingers simultaneously all the time. These two fingers were

considered as one finger (ring-pinky finger) during the study.

The MVC of the ring-pinky finger was the sum of the MVC

of the ring and pinky fingers. The force measurements from

the ring and pinky fingers were always added together and

displayed to the subjects on the monitor.

This study involved two types of trials performed by the

subjects. The first type was the single-finger trial, where

the subjects were asked to flex or extend a single finger

following a predefined single trapezoid while avoiding co-

contraction of other fingers. The subjects performed four

single-finger trials for each finger, both for flexion and

extension, resulting in a total of eight single-finger trials per

finger. The second type of trial was the multi-finger trial,

where the subjects were asked to flex and extend at least two

fingers sequentially. The force target in this trial contained

multiple trapezoids, with the fingers flexing and extending

in sequence (See in Fig.1 (C) as an example of three-finger

trial). During a period , one finger was designated as the

target finger and was asked to maintain the targeted force,

while the other two fingers were allowed to co-activate. The

order of the target fingers was randomized across the multi-

finger trials, and each subject performed a total of 16 multi-

finger trials.

C. Deep forest decoder

An overview of the proposed method is shown in Fig.2.

The EMG signals were processed via a high pass filter

(Butterworth zero-phase shift with an order of 4). The Root

Fig. 2. Overview of the poposed method. The proposed method employs
two deep forest-based decoders to predict the flexion and extension forces
separately. The predicted force is obtained through a bivariate linear
regression on the DF-drive information generated by the decoders.

Mean Square (RMS) value was extracted as input features

for training from each EMG channel within a window of 0.5

second and moving step of 0.1 second. The same window

and overlap is also applied to the recorded force. To predict

the concurrent flexion and extension force of the fingers in a

dexterous manner, the proposed model uses two deep forests,

the flexor decoder and the extensor decoder, to establish the

relationship between the EMG features and the pattern of

force (target finger, force direction, and the force strength).

The flexor decoder is designed to learn the information

related to finger flexion, while the extensor decoder is trained

to identify the features that are highly relevant to finger

extension. To enable the disentanglement of finger cross-

talk, we embed the force information into a dense vector by

discretizing the continuous values into different classes and

assigning a different class to the force from different fingers.

This technique, which we call Force Embedding, gives a

comprehensive representation of the force information. The

resulting outputs, termed DF-drive information, is obtained

from both decoders and the finger force is predicted through

bivariate linear regression with the ground truth force.

Fi = aD
i
f (X) + bD

i
e(X) (1)

where Fi is the force of the ithfinger ( one of index, middle,

and ring-pinky), and Di
f (X) and Di

e(X) are the obtained

DF-drive information of the ith finger by the flexor and

extensor decoders from input X , respectively. a and b are

regression coefficients.

The parameters used in this study are as follows: for deep

forest, two estimators in each layer were utilized, which

consisted of both a random forest and a completely random

forest. The model was trained incrementally, layer by layer.

Early stopping was applied if adding a new layer did not

result in an improvement in the validation performance on

the training set. A Kalman filter was applied to the DF-drive

information produced by the deep forest models.
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Fig. 3. Performance comparison between proposed and EMG-amp methods. The comparison includes both regression test results, where the regression
is performed on a trial-by-trial basis, and near-online test results, where the regression coefficients are obtained over all training trials. The results for
non-target fingers in regression test (A and B) and near-online test (G and H) are shown, as well as the results for target fingers in regression test (D, E,
and F) and near-online test (J, K, and L). The results of force estimation on a representative three-finger trial in both regression test (C) and near-online
test (I) is illustrated. Error bars represent the standard error.
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Fig. 4. The learned feature importance maps of the proposed decoder for
a representative subject are shown. Specifically, the importance map of the
flexor side of the flexor decoder (A) and the extensor side of the extensor
decoder (B) are depicted. The channels refined by the EMG-amp method
are highlighted by the encircled dashed lines.

D. Force prediction using EMG amplitude

The conventional EMG-amplitude method has been im-

proved significantly through the refinement of the EMG

channel set for each finger, demonstrating its potential for

dexterous finger force control [8]. As such, it serves as the

benchmark in this study. First, six sets of channels were

defined for each finger’s flexor and extensor muscles (i.e.,

index-flexor, index-extensor, middle-flexor, middle-extensor,

ring-pinky-flexor, and ring-pinky-extensor), by selecting the

top 60 channels with the highest Root Mean Square (RMS)

values out of the 128 channels, averaged over all single-

finger trials. Then, the channel sets were further refined by

comparing the regression performance between the RMS

values of each channel and the smoothed force of each finger.

If the highest coefficient of determination (R2) value was

obtained for the force of the finger that matches the channel

set’s assignment, the channel was kept. Otherwise, it was

removed from the pool of EMG channels. As a result, the

most informative EMG channels that are strongly correlated

with the force of each finger are selected. A bivariate linear

regression is performed between the average RMS over the



optimized channels and the ground truth:

Fi = aA
i
f + bA

i
e (2)

where Fi represents the force of the ith finger (index, middle,

or ring-pinky), and Ai
f and Ai

e denote the average RMS

values calculated over the optimized flexor and extensor

channels of the ith finger, respectively.

E. Validation Protocol

For each subject, the proposed decoders were trained

using only the single-trial data cross the experiments. The

EMG-amp method, by contrast, requires multi-trial data for

channel refinement. Therefore, we performed a 4-fold-cross-

validation on all the multi-trial data by randomly selecting

a quarter of trials for training while the hold-out trials for

testing. The performance was evaluated in two ways. The

first was a trial-by-trial regression test, where the regres-

sion was performed on each testing trial. The resulting R2

and RMSE, as well as the Pearson correlation coefficient

(COR) were reported. The second evaluation obtained the

regression coefficients over all the training trials and testing

the coefficients on the testing trials, which was considered a

near-online test.

III. RESULTS

The results of the force prediction performance compari-

son between the proposed DF-drive method and the EMG-

amp method are shown in Fig. 3. The performance was

evaluated using the RMSE, COR, and R2 metrics averaged

over all cross-validation folds and subjects. In the regression

test, the proposed DF-drive method showed lower average

estimation error on target fingers with a RMSE value of

8.50 ± 0.218 % MVC (mean ± standard error), compared

to the EMG-amp method with a RMSE of 12.88 ± 0.38.

Additionally, the DF-drive method exhibited a higher corre-

lation with the recorded force with R2 = 0.82 ± 0.01 and

COR = 0.90 ± 0.01, compared to the EMG-amp method

with R2 = 0.65 ± 0.02 and COR = 0.79 ± 0.01. In

the near-online test, the estimation error of the EMG-amp

method increased to 16.33 ± 0.27, and the R2 showed a

significant drop (R2 = 0.48 ± 0.01). On the other hand,

the performance of the proposed DF-drive method remained

relatively stable, with only a slight degradation in estimation

error and correlation metrics compared to the regression

test (RMSE = 9.20 ± 0.43, R2 = 0.80 ± 0.02, COR =
0.90±0.01). For the non-target fingers, the DF-drive method

showed a lower correlation with the recorded force in both

the regression test and the near-online test, compared to the

EMG-amp method.

The force predictions for a representative three-finger trial

by both methods are shown in Fig. 3 (C) and 3 (I). The

DF-drive method accurately fits the actual forces of the

three fingers during both the regression test and the near-

online test, with minimal error forces predicted for the non-

target fingers. In contrast, the force prediction of the EMG-

amp method showed large deviations from the actual forces

throughout the trial, and these deviations increased when

shifting from the regression test to the near-online test. One

notable observation is that the DF-drive method tends to

predict zero force for the non-target fingers, despite small

forces being recorded.

Furthermore, the importance of the EMG features in

predicting finger force and target fingers by the deep forest

is visualized in Fig.4. The mean decrease impurity of the

decision trees in both decoders are shown, with the refined

channels of the EMG-amp method encircled by dashed

lines. The results indicates that the most prominent features

identified by the decoders are often located in the overlap

region between different fingers, particularly in the extensor

decoder. This information can provide valuable guidance for

developing neural-interfaces with minimal channels.

IV. CONCLUSION

In this study, a novel neural decoder was proposed to

predict the flexion and extension force of the index,middle

and ring-pinky fingers concurrently. The proposed method,

based on deep forest, was evaluated on data from three

subjects and showed improved performance compared to

the conventional EMG-amp method. The proposed method

also shows robustness in near-online testing, making it a

promising approach for dexterous finger force control. In

addition, the feature importance map could potentially offer

valuable insights into the explainability of the method, which

might be useful for further improvement and development of

the neural control. Future work should focus on exploring the

generalizability of the proposed method on a larger subject

population and long-term usability of such methods.
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