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Abstract— Neuromuscular injuries can impair hand function
and profoundly impacting the quality of life. This has motivated
the development of advanced assistive robotic hands. However,
the current neural decoder systems are limited in their ability
to provide dexterous control of these robotic hands. In this
study, we propose a novel method for predicting the extension
and flexion force of three individual fingers concurrently using
high-density electromyogram (HD-EMG) signals. Our method
employs two deep forest models, the flexor decoder and the
extensor decoder, to extract relevant representations from the
EMG amplitude features. The outputs of the two decoders are
integrated through linear regression to predict the forces of
the three fingers. The proposed method was evaluated on data
from three subjects and the results showed that it consistently
outperforms the conventional EMG amplitude-based approach
in terms of prediction error and robustness across both target
and non-target fingers. This work presents a promising neural
decoding approach for intuitive and dexterous control of the
fingertip forces of assistive robotic hands.

I. INTRODUCTION

To restore impaired or lost hand function for people
with neuromuscular impairments, the design of assistive
devices, such as prosthetic hands and exoskeleton gloves,
has advanced to imitate movements of the human biological
hand [1], [2], [3]. However, the clinical translation of these
robotic devices has been limited by the lack of a robust
neural-machine interface that can reliably decode the user’s
intent into executable control commands for the devices.

Surface electromyogram (SEMG) signals are commonly
used as the source of neural control for robotic hands. While
pattern recognition has advanced in identifying a finite set
of intended movements from sEMG features [4], [5], it falls
short in providing continuous and proportional control of
finger kinetics. One possible solution is to extend the control
strategies by using a regressor between the EMG amplitudes
and the kinetic variables, however, the performance of this
approach is often unsatisfactory and prone to interference.
This is due to the limitations of the regressor in establishing
complex muscle-force mapping when dealing with a large
number of features, as well as the co-activation between
fingers that affects the pattern of amplitude features, making
it difficult to accurately estimate individual finger forces.
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To address these challenges, this study proposes a deep
forest-based neural decoding approach to concurrently pre-
dict the extension and flexion force of three individual fin-
gers (index, middle, and ring-pinky) from sEMG amplitude
features. The approach uses two deep forests [6] to extract
prominent representations from the SEMG amplitude features
that are highly relevant to the finger flexion and extension
force. The outputs of the two deep forests are integrated
through linear regression to predict the forces of the three
fingers. This establishes the mapping between the sEMG
amplitude and the finger kinetic variables. The proposed
approach was evaluated on data from three subjects and
showed improved accuracy in predicting fingertip forces
compared to the conventional sSEMG amplitude approach.
Overall, the proposed neural decoding approach presents a
promising solution for the dexterous control of finger force,
providing insightful perspectives into the feasibility of using
deep forest-based neural decoding for assistive robotic hand
control.

II. METHODS

A. Experimental setup

Three neurologically intact participants were recruited in
the study. All subjects gave informed consent with protocols
approved by the Institutional Review Board of the University
of North Carolina at Chapel Hill.

Two 8x16 electrode arrays with a 3-mm single-electrode
diameter and a 10-mm inter-electrode distance covered the
anterior and posterior sides of the forearm to record EMG
signals from the finger flexor (FDS) and extensor (extensor
digitorum communis (EDC)), respectively (Fig. 1 (A)). The
placement of the electrode was determined by palpating the
finger flexor or extensor when the subjects flexed or extended
fingers. The EMG-USB2+(OT Bioelettronica) system was
used to amplify and sample the monopolar EMG signals with
a gain of 1000, a pass band of 10-900 Hz and a sampling rate
of 2048 Hz. The reference was placed at the wrist. The index,
middle, ring, and pinky fingers were individually secured to
four miniature load cells (SM-200N, Interface), to measure
the flexion and extension forces of individual fingers at 1000
Hz. The forearm was supported at the neutral position with
the wrist fixed by two stiff foam pads. Before each trial,
the offsets of individual load cells were removed such that
a positive force reading represented flexion and a negative
reading represented extension.
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Fig. 1.  The experiment settings. (A): Monopolar EMG signals were
recorded from the finger extensor and flexor, respectively, with two 8x16
electrode arrays, and the flexion/extension forces of the index, middle, ring,
and pinky fingers were recorded. Bottom: The trapezoidal force target from
the single-finger extension and flexion trial (B) and the multi-finger trial (C).
The force target of the multi-finger trial was shown with different colors to
represent the three fingers, i.e. index (red), middle (brown), and ring-pinky
(green) as the target finger, respectively.

B. Experiment procedure

The maximum voluntary contraction (MVC) force of
each finger was measured for both flexion and extension.
During the experiment, the subjects were asked to follow a
predefined force target that had a repeated trapezoidal pattern
with a maximum force of 50% MVC for each finger (Fig.
1 (B) ). Due to high enslavement between ring and pinky
fingers [7], the subjects were asked to extend or flex the two
fingers simultaneously all the time. These two fingers were
considered as one finger (ring-pinky finger) during the study.
The MVC of the ring-pinky finger was the sum of the MVC
of the ring and pinky fingers. The force measurements from
the ring and pinky fingers were always added together and
displayed to the subjects on the monitor.

This study involved two types of trials performed by the
subjects. The first type was the single-finger trial, where
the subjects were asked to flex or extend a single finger
following a predefined single trapezoid while avoiding co-
contraction of other fingers. The subjects performed four
single-finger trials for each finger, both for flexion and
extension, resulting in a total of eight single-finger trials per
finger. The second type of trial was the multi-finger trial,
where the subjects were asked to flex and extend at least two
fingers sequentially. The force target in this trial contained
multiple trapezoids, with the fingers flexing and extending
in sequence (See in Fig.1 (C) as an example of three-finger
trial). During a period , one finger was designated as the
target finger and was asked to maintain the targeted force,
while the other two fingers were allowed to co-activate. The
order of the target fingers was randomized across the multi-
finger trials, and each subject performed a total of 16 multi-
finger trials.

C. Deep forest decoder

An overview of the proposed method is shown in Fig.2.
The EMG signals were processed via a high pass filter
(Butterworth zero-phase shift with an order of 4). The Root
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Fig. 2. Overview of the poposed method. The proposed method employs
two deep forest-based decoders to predict the flexion and extension forces
separately. The predicted force is obtained through a bivariate linear
regression on the DF-drive information generated by the decoders.

Mean Square (RMS) value was extracted as input features
for training from each EMG channel within a window of 0.5
second and moving step of 0.1 second. The same window
and overlap is also applied to the recorded force. To predict
the concurrent flexion and extension force of the fingers in a
dexterous manner, the proposed model uses two deep forests,
the flexor decoder and the extensor decoder, to establish the
relationship between the EMG features and the pattern of
force (target finger, force direction, and the force strength).
The flexor decoder is designed to learn the information
related to finger flexion, while the extensor decoder is trained
to identify the features that are highly relevant to finger
extension. To enable the disentanglement of finger cross-
talk, we embed the force information into a dense vector by
discretizing the continuous values into different classes and
assigning a different class to the force from different fingers.
This technique, which we call Force Embedding, gives a
comprehensive representation of the force information. The
resulting outputs, termed DF-drive information, is obtained
from both decoders and the finger force is predicted through
bivariate linear regression with the ground truth force.

F; = aD%(X) + bD.(X) (1)

where F; is the force of the ithﬁnger ( one of index, middle,
and ring-pinky), and D}(X ) and Di(X) are the obtained
DF-drive information of the i*" finger by the flexor and
extensor decoders from input X, respectively. a and b are
regression coefficients.

The parameters used in this study are as follows: for deep
forest, two estimators in each layer were utilized, which
consisted of both a random forest and a completely random
forest. The model was trained incrementally, layer by layer.
Early stopping was applied if adding a new layer did not
result in an improvement in the validation performance on
the training set. A Kalman filter was applied to the DF-drive
information produced by the deep forest models.
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Fig. 3.

Performance comparison between proposed and EMG-amp methods. The comparison includes both regression test results, where the regression

is performed on a trial-by-trial basis, and near-online test results, where the regression coefficients are obtained over all training trials. The results for
non-target fingers in regression test (A and B) and near-online test (G and H) are shown, as well as the results for target fingers in regression test (D, E,
and F) and near-online test (J, K, and L). The results of force estimation on a representative three-finger trial in both regression test (C) and near-online

test (I) is illustrated. Error bars represent the standard error.
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Fig. 4. The learned feature importance maps of the proposed decoder for
a representative subject are shown. Specifically, the importance map of the
flexor side of the flexor decoder (A) and the extensor side of the extensor
decoder (B) are depicted. The channels refined by the EMG-amp method
are highlighted by the encircled dashed lines.

D. Force prediction using EMG amplitude

The conventional EMG-amplitude method has been im-
proved significantly through the refinement of the EMG
channel set for each finger, demonstrating its potential for
dexterous finger force control [8]. As such, it serves as the
benchmark in this study. First, six sets of channels were
defined for each finger’s flexor and extensor muscles (i.e.,
index-flexor, index-extensor, middle-flexor, middle-extensor,
ring-pinky-flexor, and ring-pinky-extensor), by selecting the
top 60 channels with the highest Root Mean Square (RMS)
values out of the 128 channels, averaged over all single-
finger trials. Then, the channel sets were further refined by
comparing the regression performance between the RMS
values of each channel and the smoothed force of each finger.
If the highest coefficient of determination (R?) value was
obtained for the force of the finger that matches the channel
set’s assignment, the channel was kept. Otherwise, it was
removed from the pool of EMG channels. As a result, the
most informative EMG channels that are strongly correlated
with the force of each finger are selected. A bivariate linear
regression is performed between the average RMS over the



optimized channels and the ground truth:
F, = aA% + bA, 2)

where F; represents the force of the ith finger (index, middle,
or ring-pinky), and A’]} and A! denote the average RMS
values calculated over the optimized flexor and extensor
channels of the i*" finger, respectively.

E. Validation Protocol

For each subject, the proposed decoders were trained
using only the single-trial data cross the experiments. The
EMG-amp method, by contrast, requires multi-trial data for
channel refinement. Therefore, we performed a 4-fold-cross-
validation on all the multi-trial data by randomly selecting
a quarter of trials for training while the hold-out trials for
testing. The performance was evaluated in two ways. The
first was a trial-by-trial regression test, where the regres-
sion was performed on each testing trial. The resulting R?
and RMSE, as well as the Pearson correlation coefficient
(COR) were reported. The second evaluation obtained the
regression coefficients over all the training trials and testing
the coefficients on the testing trials, which was considered a
near-online test.

III. RESULTS

The results of the force prediction performance compari-
son between the proposed DF-drive method and the EMG-
amp method are shown in Fig. 3. The performance was
evaluated using the RMSE, COR, and R? metrics averaged
over all cross-validation folds and subjects. In the regression
test, the proposed DF-drive method showed lower average
estimation error on target fingers with a RMSE value of
8.50 £ 0.218 % MVC (mean =+ standard error), compared
to the EMG-amp method with a RMSE of 12.88 + 0.38.
Additionally, the DF-drive method exhibited a higher corre-
lation with the recorded force with R? = 0.82 4+ 0.01 and
COR = 0.90 + 0.01, compared to the EMG-amp method
with R? = 0.65 &+ 0.02 and COR = 0.79 &+ 0.01. In
the near-online test, the estimation error of the EMG-amp
method increased to 16.33 £ 0.27, and the R? showed a
significant drop (R? = 0.48 £ 0.01). On the other hand,
the performance of the proposed DF-drive method remained
relatively stable, with only a slight degradation in estimation
error and correlation metrics compared to the regression
test (RMSE = 9.20 & 0.43, R? = 0.80 £ 0.02, COR =
0.90£0.01). For the non-target fingers, the DF-drive method
showed a lower correlation with the recorded force in both
the regression test and the near-online test, compared to the
EMG-amp method.

The force predictions for a representative three-finger trial
by both methods are shown in Fig. 3 (C) and 3 (I). The
DF-drive method accurately fits the actual forces of the
three fingers during both the regression test and the near-
online test, with minimal error forces predicted for the non-
target fingers. In contrast, the force prediction of the EMG-
amp method showed large deviations from the actual forces
throughout the trial, and these deviations increased when

shifting from the regression test to the near-online test. One
notable observation is that the DF-drive method tends to
predict zero force for the non-target fingers, despite small
forces being recorded.

Furthermore, the importance of the EMG features in
predicting finger force and target fingers by the deep forest
is visualized in Fig.4. The mean decrease impurity of the
decision trees in both decoders are shown, with the refined
channels of the EMG-amp method encircled by dashed
lines. The results indicates that the most prominent features
identified by the decoders are often located in the overlap
region between different fingers, particularly in the extensor
decoder. This information can provide valuable guidance for
developing neural-interfaces with minimal channels.

IV. CONCLUSION

In this study, a novel neural decoder was proposed to
predict the flexion and extension force of the index,middle
and ring-pinky fingers concurrently. The proposed method,
based on deep forest, was evaluated on data from three
subjects and showed improved performance compared to
the conventional EMG-amp method. The proposed method
also shows robustness in near-online testing, making it a
promising approach for dexterous finger force control. In
addition, the feature importance map could potentially offer
valuable insights into the explainability of the method, which
might be useful for further improvement and development of
the neural control. Future work should focus on exploring the
generalizability of the proposed method on a larger subject
population and long-term usability of such methods.
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