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Abstract

We propose stochastic variance reduced algorithms for solving convex-concave saddle point prob-
lems, monotone variational inequalities, and monotone inclusions. Our framework applies to extra-
gradient, forward-backward-forward, and forward-reflected-backward methods both in Euclidean
and Bregman setups. All proposed methods converge in the same setting as their deterministic
counterparts and they either match or improve the best-known complexities for solving structured
min-max problems. Our results reinforce the correspondence between variance reduction in vari-
ational inequalities and minimization. We also illustrate the improvements of our approach with
numerical evaluations on matrix games.

Keywords: Variational inequality, extragradient, stochastic methods, variance reduction, oracle
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1. Introduction

In this paper, we focus on solving variational inequalities (VI):
find z, € Z suchthat (F(z.),z—2.) +9(z) —g(z«) >0, VzeZ, (1)

where F' is a monotone operator and g is a proper convex lower semicontinuous function. This
formulation captures optimality conditions for minimization/saddle point problems, see (Facchinei
and Pang, 2007, Sec. 1.4.1).

In the last decade there have been at least two surges of interest to VIs. Both were motivated by
the need to solve min-max problems. The first surge came from the realization that many nonsmooth
problems can be solved more efficiently if they are formulated as saddle point problems (Nes-
terov, 2005; Nemirovski, 2004; Chambolle and Pock, 2011; Esser et al., 2010). The second has
been started by machine learning community, where solving nonconvex-nonconcave saddle point
problems became of paramount importance (Gidel et al., 2019; Gemp and Mahadevan, 2018; Mer-
tikopoulos et al., 2019). Additionally, VIs have applications in game theory, control theory, and
differential equations, see (Facchinei and Pang, 2007).

A common structure encountered in min-max problems is that the operator F' can be written as
a finite-sum: ' = I} +- - -+ Fly, see App. D for concrete examples. Variance reduction techniques
use this specific form to improve the complexity of deterministic methods in minimization. Existing
results on variance reduction for saddle point problems show that these techniques improve the
complexity for bilinear problems compared to deterministic methods. However, in general these
methods require stronger assumptions to converge than the latter do (see Table 1). At the same
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time, stochastic methods that have been shown to converge under only monotonicity do not have
complexity advantages over the deterministic methods.

Such a dichotomy does not exist in minimization: variance reduction comes with no extra as-
sumptions. This points out to a fundamental lack of understanding for its use in saddle point prob-
lems. Our work shows that there is indeed a natural correspondence between variance reduction
in variational inequalities and minimization. In particular, we propose stochastic variants of extra-
gradient (EG), forward-backward-forward (FBF), and forward-reflected-backward (FoRB) methods
which converge under mere monotonicity. For the bilinear case our results match the best-known
complexities, while for the nonbilinear, we do not require bounded domains as in the previous work
and we improve the best-known complexity by a logarithmic factor, using simpler algorithms. Han
et al. (2021) established the optimality of our algorithms with matching lower bounds, for solving
(potentially nonbilinear) convex-concave min-max problems with finite sum form.

We also show application of our techniques for solving monotone inclusions and strongly mono-
tone problems. Our results for monotone inclusions potentially improve the rate of deterministic
methods (depending on the Lipschitz constants) and they seem to be the first such result in the
literature. We illustrate practical benefits of our new algorithms by comparing with deterministic
methods and an existing variance reduction scheme in App. E.

1.1. Related works

Variational inequalities. The standard choices for solving VIs have been methods such as ex-
tragradient (EG)/Mirror-Prox (MP) (Korpelevich, 1976; Nemirovski, 2004), forward-backward-
forward (FBF) (Tseng, 2000), dual extrapolation (Nesterov, 2007) or reflected gradient/forward-
reflected-backward (FoRB) (Malitsky, 2015; Malitsky and Tam, 2020)'. These methods differ in
the number of operator calls and projections (or proximal operators) used each iteration, and conse-
quently, can be preferable to one another in different settings. The standard convergence results for
these algorithms include global iterates’ convergence, complexity O(e~!) for monotone problems
and linear rate of convergence for strongly monotone problems.

Variance reduction. Variance reduction has revolutionized stochastic methods in optimization.
This technique applies to finite sum minimization problem of the form miny % Ef\; 1 fi(x). In-
stead of using a random sample g = V f;(xx) as SGD does, variance reduction methods use

gr = Vf(wg)+ Vfi(xk) — Vfi(wg). 2

A good choice of wy, decreases the “variance” E ||gx — V f(xx)||* compared to E ||V fi(xy) —
V f(x1)||? that SGD has. A simple idea that is easy to explain to undergraduates, easy to imple-
ment, and most importantly that provably brings us a better convergence rate than pure SGD and
GD in a wide range of scenarios. Classical works include (Johnson and Zhang, 2013; Defazio et al.,
2014). For a more thorough list of references, see the recent review (Gower et al., 2020).

Variance reduction and VIs. One does not need to be meticulous to quickly find finite sum prob-
lems where existing variance reduction methods do not work. In the convex world, the first that
comes to mind is non-smoothness. As already mentioned, saddle point reformulations often come
to rescue.

1. In the unconstrained setting, this method is also known as Optimistic Mirror Descent (OMD) or Optimistic Gradient
Descent Ascent (OGDA) (Rakhlin and Sridharan, 2013; Daskalakis et al., 2018) and is also equivalent to the classical
Popov’s method (Popov, 1980)



VARIANCE REDUCTION FOR VIS

Assumptions Complexity
EG/MP, FBF, FoRB!  F is monotone o (@)
EG/MP* F is monotone & z — (F(z) + Vg(z),z — u) 0 <N n \/NL>

is convex for any u £
EG/MP* F is monotone & bounded domains O ( N + \/Eﬁ L)
FoRB* F' is monotone O ( N + %)
This paper . \/NL>
EG/MP. FBE, FoRB F' is monotone O (N + =

Table 1: Table of algorithms with F'(z) = Zivzl F;(z). EG: Extragradient, MP: Mirror-Prox, FBF: forward-backward-
forward, FoRB: forward-reflected-backward. @g denotes a subgradient of g. f(Korpelevich, 1976; Tseng, 2000; Ne-
mirovski, 2004; Malitsky and Tam, 2020), 1(Carm0n et al., 2019), *(Alacaoglu et al., 2021).

The work (Balamurugan and Bach, 2016) was seminal in using variance reduction for saddle
point problems and monotone inclusions in general. In particular, the authors studied stochastic vari-
ance reduced variants of forward-backward algorithm and proved linear convergence under strong
monotonicity. For bilinearly coupled problems, the complexity in (Balamurugan and Bach, 2016)
improves the deterministic method in the strongly monotone setting. Chavdarova et al. (2019) de-
veloped an extragradient method with variance reduction and analyzed its convergence under strong
monotonicity assumption. Unfortunately, the worst-case complexity in this work was less favorable
than (Balamurugan and Bach, 2016).

Strong monotonicity may seem like a fine assumption, similar to strong convexity in minimiza-
tion. While algorithmically it is true, in applications with min-max, the former is far less frequent.
For instance, the operator F’' associated with a convex-concave saddle point problem is monotone,
but not strongly monotone without further assumptions. Thus, it is crucial to remove this assump-
tion.

An influential work in this direction is by Carmon et al. (2019), where the authors proposed a
randomized variant of Mirror-Prox. The authors focused primarily on matrix games and for this
important case, they improved complexity over deterministic methods. However, because of this
specialization, more general cases required additional assumptions. In particular, for problems be-
yond matrix games, the authors assumed that either z — (F(z) + Vg(z),z — u) is convex for all
u (Carmon et al., 2019, Corollary 1) or that domain is bounded (Carmon et al., 2019, Algorithm 5,
Corollary 2): in particular, domain diameter is used as a parameter for this algorithm. As one can
check, the former might not hold even for convex minimization problems with F' = V f. The lat-
ter, on the other hand, while already restrictive, requires a more complicated three-loop algorithm,
which incurred an additional logarithmic factor into total complexity.

There are other works that did not improve complexity but introduced new ideas. An algorithm
similar in spirit to ours is due to Alacaoglu et al. (2021), where variance reduction is applied to
FoRB. This algorithm was the first to converge under only monotonicity, but did not improve com-
plexity of deterministic methods. Several works studied VI methods in the stochastic setting and
showed slower rates with decreasing step sizes (Mishchenko et al., 2020; Bohm et al., 2020), or
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increasing mini-batch sizes (Iusem et al., 2017; Bot et al., 2021; Cui and Shanbhag, 2021), or extra
assumptions (Gorbunov et al., 2022).

1.2. Outline of results and comparisons
Throughout the paper, we assume access to a stochastic oracle F¢ such that E[F¢(z)] = F(z).

Complexity and c-accurate solution. A point z is an e-accurate solution if E [Gap(z)] < e, where
the gap function is defined in Section 2.3.1. Complexity of the algorithm is defined as the number
of calls to F¢ to reach an e-accurate solution. In general, we suppose that evaluation of F"is /N times
more expensive than F¢. For specific problems with bilinear coupling, we measure the complexity
in terms of arithmetic operations.

Nonbilinear finite-sum problems. We consider the problem (1) with F' = Zf\; 1 Fi where F'is
monotone, L p-Lipschitz, and it is L-Lipschitz in mean, in view of Assumption 1(iv). In this setting,
our variance reduced variants of EG, FBF, and FoRB (Corollary 6, Corollary 20, Corollary 25) have
complexity O (N + VN La_l) compared to the deterministic methods with O (N L Fs_l).

Our methods improve over deterministic variants as long as L < v/N Lp. This is a similar im-
provement over deterministic complexity, as accelerated variance reduction does for minimization
problems (Woodworth and Srebro, 2016; Allen-Zhu, 2017).

To our knowledge, the only precedent with a result similar to ours is the work (Carmon et al.,
2019), where spurious assumptions were required (see Section 1.1 and Table 1), complexity had
additional logarithmic terms and a complicated three-loop algorithm was needed.

Bilinear problems. When we focus on bilinear problems (App. D.1), the complexity of our methods
is O (nnz(A) + /nnz(A)(m + n)Lsfl), where L = ||A||lpop With Euclidean setup and L =
|| A||max With simplex constraints and the entropic setup. In contrast, the complexity of deterministic
method is O (nnz(A)Lpe~'), where Lp = ||A|| with Euclidean setup and Ly = ||A||max With the
entropic setup. Our complexity shows strict improvements over deterministic methods when A is
dense. Our variance reduced variants for FBF and FORB enjoy similar guarantees and obtain the
same complexities (Corollary 20, Corollary 25).

In both settings this complexity was first obtained by (Carmon et al., 2019). Our results general-
ize the set of problems where this complexity applies due to less assumptions (for example, linearly
constrained convex optimization) and also use more practical/simpler algorithms (see App. E for
an empirical comparison). We also remark that our variance reduced Mirror-Prox (see Alg. 2) is
different from the Mirror-Prox variant in (Carmon et al., 2019, Alg. 1, Alg. 2).

1.3. Organization

Most of the main body of the paper is devoted to proving the result in the case of Euclidean setup, see
Section 2. These proofs contain the essential ideas that make the other results in the paper possible.
In Section 3, we present our algorithm in the more general Bregman setup and highlight the main
changes. The detailed proofs in this case are given in App. B. Section 4 includes an application of
our results for linearly constrained convex optimization, not completely covered by previous results.

App. C includes extensions of our results to different algorithms, FBF (Tseng, 2000) and FORB
(Malitsky and Tam, 2020) which improve extragradient in terms of proximal operator’s evaluation
in every iteration. App. C.3 shows a linear convergence result when g is strongly convex, in the
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Euclidean setup. Unlike the existing results in this case, we do not require the knowledge of strong
convexity parameter.

2. Euclidean setup

To illustrate our technique, we pick extragradient method due to the simplicity of its analysis, its
extension to Bregman distances and its wide use in the literature.

2.1. Preliminaries

Let Z be a finite dimensional vector space with Euclidean inner product (-, -) and norm || - ||. The
notation [N] represents the set {1,..., N}. We say F'is monotone if for all x, y, (F(x)— F(y),x—
y) > 0. Proximal operator is defined as prox,(x) = argmin, {g(y) + 3lly — x||?}. For a proper
convex lower semicontinuous (Isc) g, domain is defined as domg = {z: g(z) < +oo} and the
following prox-inequality is standard

zZ=prox,(z) <= (Z—zu—7) >g(z)—g(u), Vue Z. 3)

We continue with our assumptions and refer to Facchinei and Pang (2007) for sufficient conditions
for Assumption 1(i).

4 Assumption 1 )
(i) The solution set Sol of (1) is nonempty.
(ii) The function g: Z — R U {400} is proper convex lower semicontinuous.
(iii) The operator F': dom g — Z is monotone.
(iv) The operator F' has a stochastic oracle F¢ that is unbiased F(z) = E [F¢(z)] and L-
Lipschitz in mean:
L E[|Fe(u) — Fe(v)|?] < L*lu—v|? Vu,veZ. )

Finite sum. Suppose F' has a finite sum representation F' = Zf\i 1 Fi, where each Fj is L;-
Lipschitz and the full operator F'is L g-Lipschitz. By triangle inequality it follows, of course, that
Lp < Zf\i 1 Li. On one hand, Zf\i 1 L; can be much larger than L. On the other, it might be the
case that L; are easy to compute, but not a true L. Then the latter inequality gives us the most
natural upper bound on Lr. The two simplest stochastic oracles can be defined as follows

1. Uniform sampling: F¢(z) = NF;(z), ¢ = Pr{¢ =i} = . Inthiscase, L = , /N > ie[N] L2

2. Importance sampling: F¢(z) = %Fi(z), g = Pr{¢ =i} = s In this case,
L= Zie[N] L;.
This example is useful in several regards. First, it is one of the most general problems that

proposed algorithms can tackle and for concreteness it is useful to keep it as a reference point.
Second, this problem even in its generality already indicates possible pitfalls caused by non-optimal
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Algorithm 1 Extragradient with variance reduction

Input: Set p € (0, 1], probability distribution @, step size 7, « € (0, 1), zg = wy

for k=0,1,...do
Zr = QZp + (1 — Oz)Wk
Zi1/2 = Prox,  (Z — TF(wy))
Draw an index & according to ()
Zj41 = ProX,o(Zk — T[F(Wg) + Fe, (Zpy1/2) — Fe, (Wg)])
Zi+1, with probability p
Wk+1 = . e
wg, with probability 1 —p
end for

stochastic oracles. If L of our stochastic oracle is much worse (meaning larger) than L, it may
eliminate all advantages of cheap stochastic oracles. In the sequel, for finite-sum problems, we
assume that £ € [IN], similar to the two oracles described above.

2.2. Extragradient with variance reduction

The classical stochastic variance reduced gradient (SVRG) (Johnson and Zhang, 2013) uses a double
loop structure (looped): the full gradients are computed in the outer loop and the cheap variance
reduced gradients (2) are used in the inner loop. Works (Kovalev et al., 2020; Hofmann et al.,
2015) proposed a loopless variant of SVRG, where the outer loop was eliminated and instead full
gradients were computed once in a while according to a randomized rule. Both methods share
similar guarantees, but the latter variant is slightly simpler to analyze and implement.

We present the loopless version of extragradient with variance reduction in Alg. 1. Every iter-
ation requires two stochastic oracles F¢ and one F' with probability p. Parameter « is the key in
establishing a favorable complexity. While convergence of (zy,) to a solution will be proven for any
a € [0,1), a good total complexity requires a specific choice of «. Therefore, the specific form of
7y, is important. Later, we see that with &« = 1 — p, Alg. 1 has the claimed complexity in Table 1. It
is interesting to note that by eliminating all randomness, Alg. 1 reduces to extragradient.

2.3. Analysis

In Alg. 1, we have two sources of randomness at each iteration: the index &, which is used for

computing zj1 and the choice of wy, (the snapshot point). We use the following notation for the

conditional expectations: E[-|o(&p, . . ., §k—1, Wi)] = Ex[] and E[-|o (&0, - - - , &y Wk)] = Epg jo[]-
For the iterates (zy), (wy) of Alg. 1 and any z € dom g, we define

11—«

Dy (z) = |z, — z||* + |wy, — z||2.

We see in the following lemma how ®;, naturally arises in our analysis as the Lyapunov function.

Lemma 1 Let Assumption I hold, o € [0,1), p € (0,1], and 7 = =27, for v € (0,1). Then for
(z1) generated by Alg. 1 and any z,. € Sol, it holds that

Ex [@p11(2)] < P(z2) = (1= ) (1 = 0)12ks1/0 = Will? + Erllznss — 2611]).

6
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Moreover, it holds that Y, ((1 — )E| 21172 — Wi|* + El|zgs1 — zk+1/2||2) < ﬁ@o(z*).

Proof A reader may find it simpler to follow the analysis by assuming that g is the indicator function
of some convex set. Then since all iterates are feasible, we would have g(z) = 0.

Let us denote F'(zy11/2) = F (W) + Fg, (Zg41/2) — Fe, (Wg). By prox-inequality (3) applied
to the definitions of z; and z /2, we have that for all z,

(Zk+1 — 2k + Tﬁ(ZkH/Q)a z — Zp+1) > 79(Zk+1) — 79(2), @
(Zrg1/2 — Zk + TF(WE), Zk1 — Zpy1/2) > T9(Zg1/2) — 79(Zka 1)
We sum two inequalities, use the definition of F (Zg 11 /2), and arrange to get
(Zha1 — Zks Z — Zht1) + (Zrg1/2 — B Zht 1l — Zht1/2)
+ 7 (Fg (Wi) = Fe, (Zh41/2), Zha1 — Zit1/2)
+ T (F(Zk41/2): 2 — Zig1/2) 2> T[9(Zry1/2) — 9(2)]- 6))

For the first inner product we use definition of Z;, and identity 2(a, b) = ||a + b||?> — ||a]|*> — ||b]|?

2211 — Zk, 2 — Zy1) = 20211 — Zk, 2 — Zgr1) + 2(1 — @) (Zgr1 — Wk, Z — Ziy1)
= (||lze — 2l|* = |21 — )% = 2541 — 2%
+ (=) (lwi = 2|* = 2511 — 2] = l|ze11 — wi]?)
= allzg — 2| = [lzk41 — 2] + (1 — @)|wi — 2l* — aflze1 — z]* = (1 = @) zrs1 — Wil

(6)

Similarly, for the second inner product in (5) we deduce
221172 — 2 Zha1 — Zhr12) = |Zir1 — Zell® = |Zis1 — Zpgrjoll® + (1= @)||Zprr — wiel?
- QHZk+1/2 - ZkH2 —(1- a)|’Zk+1/2 - WkHQ- (N

For the remaining terms in (5), we plug in z = z,, use that z; | /5, Wy, is deterministic under the
conditioning of By, and Ex[F(zj1/2)] = Ey [F(Wk) + Fe, (Zq1/2) — F, (wk)} = F(241/2) to
obtain

Eg <ﬁ(zk+1/2)7 Zy — Zk+1/2> +9(z«) — Q(Zk+1/2)}

= (F(Zp41/2), 2+ — Zig1/2) + 9(Z4) — 9(Zpg1/2) (Ex[F(wg) — Fe, (wi)] = 0)
< (F(24), 24 — Zp11)2) + 9(24) — 9(Zp11/2) <0 (monotonicity and (1)) (®)
and

By, [27(Fe, (Wi) — Fe, (2Zg41/2) Zht1 — Zpt1/2)

<Ey [27||Fe, (Wr) — Fe, (Zos1/2) | |Zrg1 — 21 2]l (Cauchy-Schwarz)
2

T :
< > By, [|IFey (Zrs1/2) — Fe (W) 7] +AEx [[12k11 — 2og1/21?] (Young'’s ineq.)
< (1= a)Vl|Zg12 — Will* + VB [ 2011 — Zrr1j2?] . (Assumption 1(iv)) ©)
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We use (6), (7), (8), and (9) in (5), after taking expectation Ej, and letting z = z,, to deduce

Ei (1241 — 2 I°] < allzi — zo)* + (1 — @) |wi — z]|* = (1 = @) (1 = )| Zgos1/2 — Wi)?
— (1 =) Eg [1Zkt1 — ze41,21] - (10)

By the definition of w11 and E; /9, it follows that

1—a

1
Imﬂpwle—MW}=u—ammﬂ—am?+u—a>Q,—Quwk—mw.un

We add (11) to (10) and apply the tower property E []Ek+1/2 [1] = Eg[] to deduce

1l -«
aBy, [|Zrs1 — 2] + Ei [[Wii1 — 2:]1%] < |z — 2| 12

11—«
+7HWk—Z*
p
= (=)= @)llzigj = Wil + B [l2ksr — zes1007] )-

Using the definition of ®(z), we obtain the first result. Applying total expectation and summing
the inequality yields the second result. |

To show the almost sure convergence of the sequence (zy), we need Fy to be continuous for
all £&. For a finite sum example it follows automatically from Assumption 1. The proof is given in
App. A.2.

Theorem 2 Let Assumption 1 hold, F¢ be continuous for all §, o € [0,1), p € (0,1], and T =

Y 1{‘”7, for~ € (0,1). Then, almost surely there exists z, € Sol such that (z;) generated by Alg. 1

converges 10 Zy.

2.3.1. CONVERGENCE RATE AND COMPLEXITY FOR MONOTONE CASE

In the general monotone case, the convergence measure is the gap function given by

Gap(w) = max{(F(z), w — 2z) + g(w) — g(z)},
where C is a compact subset of Z that we use to handle the possibility of unboundedness of dom g
(see (Nesterov, 2007, Lemma 1)). Since we work in probabilistic setting, naturally our convergence
measure will be based on E[Gap(w)]. We start with a simple lemma for “switching” the order
of maximum and expectation, which is required for showing convergence of expected gap. This
technique is standard for such purpose Nemirovski et al. (2009) and the proof is given in App. A.1.

Lemma3 Let F = (Fi)i>0 be a filtration and (uy) a stochastic process adapted to F with
E[ug+1|Fi] = 0. Then for any K € N, xo € Z, and any compact set C C Z,

K-1 1 1 K-1
® e 3 1| < o<+ 3 Bl

We now continue with the main result of this section.
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Theorem 4 Let Assumption 1 hold, p € (0,1, a =1 —p, and 7 = ¥ IL_O")/, for~ € (0,1). Then,
K= % ZkK;()l Zj,11/2, it follows that

E [Gap(z™)] = O (\/;{) :

In particular, for 7 = 2—‘/5, the rate is & [Gap(zK)] < 1\;55[’; max,cc ||zo — z|%

forz

Recall that we measure complexity in terms of calls to the stochastic oracle F¢(-) and we assumed
that the cost of computing F'(-) is IV times that of F¢(-). For a finite sum example, this is a natural
assumption. Below we provide a proof sketch of the theorem and the full proof is given in App. A.1,
along with the proof of Lemma 3.

Remark § For Alg. 1, since per iteration cost is pN + 2 calls to Fy in expectation, the result is
“average” total complexity: expected number of calls to get a small expected gap.

Corollary 6 In the setting of Theorem 4, the average total complexity of Alg. 1 to reach e-accuracy
is O (N—|— (pN +2) (1 + )) In particular, for p = % itis O (N—i— @)

L
V/PE
Proof sketch of Theorem 4 As already mentioned, when all randomness is eliminated, that is
F¢ = Fand p = 1, Alg. 1 reduces to extragradient. In that case, the convergence rate O(1/K)
would follow almost immediately from the proof of Lemma 1. In the stochastic setting the proof is

more subtle and we have to rely on Lemma 3 to deal with the error terms caused by randomness.
Let

Ok11/2(2) = (F(2Z111/2): Zey172 — 2) + 9(Z111/2) — 9(2).
We will proceed as in Lemma 1 before getting (10). In particular, using (6) and (7) in (5), using the
definition of ©y,1 /5 and ®x(z) = (1 — p)||zx — 2| + [[wi — z||* with @ = 1 — p gives
270)41/2(2) + Py 1(2) < Pr(z) + e1(z, k) + e2(z, k)
+27(Fg, (Wi) — Fe, (Zg11/2), 21 — Zit1)2)
= PllZk+1/2 — WkHz — l|Zg+1 — Zk+1/2||27 (12)
where we defined the error terms
e1(z, k) = 27(F(Zpy1/2) — Fe (Zhr1/2) — F(Wi) + Fe (Wk), 21172 — 2),
e2(2, k) = pliwi — 2 + [we1 — )2 = [wi — 2 — pllzgs1 — 2
= 2(pzi1 + (1 = p)wi — Wiy 1,2) — plzera | — (1= p)[Iwll® + [wera |2 (13)

We sum (12) over k =0, ..., K — 1, take maximum over z € C, and take total expectation to get

27KE [Gap(z")] < max ®o(z) + E
VAS

K—1
max Z (e1(z, k) + ea(z, k:))]

k=0
K-1
2 2
—EY (I2rs1 = 2110 + Pllzisr o — wil?)
k=0
K-1
+27E Y [(Fe,(Wk) = Fe, (Zh41/2): Zhi1 — Zhy1/2)) (14)
k=0
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K-1
where we used E | max > Ot /Q(Z)} > KE [Gap(z")], which follows from monotonicity of
z€C k=0

F, linearity of (F(z), - — z) for any z, and convexity of g.
The tower property, the estimation from (9), and 1 — a = p applied on (14) imply

K-1
27KE [Gap(z")] < max ®y(z) + E max kz_o (e1(z, k) + ea(z, k)) | - (15)

Therefore, the proof will be complete upon deriving an upper bound for the second term on RHS.
We instantiate Lemma 3 twice for bounding this term. First, for e1(z, k), Lemma 3 implies

K-1 K-1
E max e1(z, k) < maXszo —z||* + 2722 Z Elzgt1/2 — w2 (16)
¢ =0 k=0

Secondly, for e2(z, k), Lemma 3 implies
K-1

E max ea(z, k) < max |zo — 2||* + p(1 — Z E||zps1 — wi|>. (17)
k=0

We combine (16), (17), and (15), and use the second result of Lemma 1, to estimate terms

K—1
3.5
E kz—o (272L2sz+1/2 - WkH2 +p(1 = p)llzry1 — WkHQ) < ﬁ f?gg Do (2). (18)
By using wg = zg and 7 = ‘[7 and straightforward calculations, we finish the proof. |

3. Bregman setup
3.1. Preliminaries

In this section, we assume that Z is a normed vector space with a dual space Z* and primal-dual
norm pair || - || and || - ||«. Let h: Z — R U {400} be a proper convex lsc function that satisfies (i)
dom g C dom h, (ii) h is differentiable over dom Oh, (iii) h is 1-strongly convex on dom g. Then
we can define the Bregman distance D: dom g x dom Oh — R associated with h by

D(u,v) = h(u) — h(v) — (Vh(v),u —v).

Note that since h is 1-strongly convex with respect to norm || - (u,v) > Lju—v|2
Naturally, we shall say that F': dom g — Z* is Lp-Lipschitz, if || F'(u) — F(v)||« < Lp|ju —

we prefer stochastic oracles F¢ of F' with as small L as possible. Moreover, the proof of Lemma 1
indicates that in k-th iteration we need Lipschitzness only for already known two iterates. Hence,
following (Grigoriadis and Khachiyan, 1995; Carmon et al., 2019), in contrast to Alg. 1, we will
not fix distribution () in the beginning, but allow it to vary from iteration to iteration. Formally, this
amounts to the following definition.
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Algorithm 2 Mirror-prox with variance reduction

1: Input: Step size 7, o € (0,1), K > 0. Let zj_1 =z =w’ =20,Vj € [K]
2: fors=0,1... do

3 fork=0,1... K —1do

4: Z g9 = argminz{g(z) +(F(w*),z) + 2D(z,23) + 1_T’”‘D(z,v'vs)}.
5 Fix distribution QZZ-}—I/Z’WS and sample &} according to it

6

~

Bz 1) = F(w*) + Fig(7h1) — Fep ()
7: z], = argminz{g(z) + <ﬁ(zz+1/2), z) + 2D(z,z}) + 1_TO‘D(Z,V_V“”)}.
8:  end for

wtl = & Zé(:l z,

10:  VA(® ) = LS8 Vh(z)

. s+1 _ _s
11: zy =z
12: end for

Definition 7 We say that F' has a stochastic oracle Fy that is variable L-Lipschitz in mean, if for
any u,v € dom g there exists a distribution QQy v such that

(i) Fisunbiased: F(z) = E¢ g, [Ft(z)] Vz € domg;
(ii) Benquy [[Fe(0) — Fe(V)IZ] < L?[u—v]*

Note that the second condition holds only for given u, v, but the constant L is universal for all u, v.
Changing u, v also changes a distribution, hence the name “variable”. Without loss of generality,
we denote any distribution that realizes the above Lipschitz bound for given u, v by Qu . This
definition resembles the one in (Carmon et al., 2019, Definition 2). It is easy to see when Qy v = @
for all u, v, we get the same definition as before in Assumption 1.

We now introduce Assumption 2 which will replace and generalize Assumption 1(iv).

Assumption 2 The operator F' has a stochastic oracle F¢ that is variable L-Lipschitz in
mean (see Definition 7).

3.2. Mirror-Prox with variance reduction

In this setting, we could simply adjust the steps of Alg. 1 and correspondingly the analysis
of Lemma 1. However, to show a convergence rate, double randomization in Alg. 1 causes technical
complications. For this reason, in the Bregman setup we propose a double loop variant of Alg. 1,
similar to the classical SVRG (Johnson and Zhang, 2013). Our algorithm can be seen as a variant
of Mirror-Prox (Nemirovski, 2004) with variance reduction. Now it should be clear that Alg. 1 is a
randomized version of Alg. 2 with p = + and a particular choice D(z,z’) = 3|z — Z/|3.

The technical reason for this change is the calculation given in (13). In fact, all the other steps in
the previous proofs would go through by using three point identity (see (30)), except this step, which
is inherently using the properties of ¢s-norm. By removing double randomization and introducing
double loop instead, step (13) will not be needed in the analysis of Bregman case.

11
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Compared to Alg. 1, w* serves the same purpose as wy: the snapshot point in the language of
SVRG (Johnson and Zhang, 2013). Since we have two loops in this case, we get w® by averaging,
again, similar to SVRG for non-strongly convex optimization (Reddi et al., 2016; Allen-Zhu and
Yuan, 2016). The difference due to Bregman setup is that we have the additional point w* that
averages in the dual space. This operation does not incur additional cost. Proofs of the results in
this section are given in App. B.

V-«
L

Theorem 8 Let Assumption 1(i, 1, iii ) and Assumption 2 hold, o € [0,1), and T =
€ (0,1). Then, for z° KS Z k _0 Zj 1 /o it follows that

2

E [Gap(zs)] < % <1 + (1 + 18_772)(04 + K(1—- a)) nzaeag(D(z, Zg).

Corollary 9 Let K = anda =1- ? =1- N’ and T = 1L_a’yf0rfy € (0,1). Then the total

complexity of Alg. 2 to reach e-accuracy is O <N + %) In particular, if T = ;ZO‘ = 3\/‘/%]4,

the total complexity is 2N + @ maxzec D(z,20).

4. Application: Linearly constrained minimization

A classical example of bilinear saddle point problems is linearly constrained minimization

min f(x) subjectto Ax =0,

x€eR"
where f is proper convex Isc. The equivalent min-max formulation corresponds to (1) with F'(x,y) =
(ATy, —Ax) and g(x,y) = f(x) + (b,y). For A € R™*" we denote a number of its non-zero
entries by nnz(A). The spectral and Frobenius norms of A are denoted as || A|| and || A||grob. For
i-th row and j-th column of A we use a convenient notation A;. and A.;.

We instantiate Alg. 1 for this problem. To make our presentation clearer, we consider only the

most common scenario when nnz(A) > m+n. In this setting, deterministic methods (extragradient,
FBF, FoRB, etc.) solve (62) with O (nnz(A)||Alle™!) total complexity. As we see now, variance

reduced methods provide us O (nnz(A) + /nnz(A)(m + n) \|A||Fr0b5_1> total complexity.
The oracle is defined as

Fu(z) < LAy
)=\ 1y
—FjA:ij

143 403
, = .
Hfl”%kob ’ ”le%Yob

In view of Assumption 1(iv), F¢ is || A||rrob-Lipschitz in mean (see (60) for the derivation). For an
alternative oracle, see the extended discussion in App. D.1.1.

)’ Pr{¢ = (i,j)} = ricj, =

Complexity. We suppose that computing prox can be done efficiently in @(m + n) complexity.

Our result in Theorem 4 stated that Alg. 1 has the rate O ( ) Given that the expected cost of

VK
each iteration is O (pnnz(A) +m + n), setting p = nZH(Z) gives us the average total complexity
. A Allpr
o (nnz( gy 4 YA £ ) |Fob>' 19

12



VARIANCE REDUCTION FOR VIS

It is easy to see that Alg. 2 has the same complexity if we set K = [%fr‘fﬂ Compared to
the complexity of deterministic methods, this complexity improves depending on the relation be-
tween ||A|lmob and ||A||. In particular, when A is a square dense matrix, due to ||A|pob <
\/rank(A)||A||, the bound in (19) improves that of deterministic method. In (19) we suppress
|zo — z.||? that is common to all methods considered in this paragraph.

Finally, we remark that the analysis in (Carmon et al., 2019, Section 5.2) requires the additional
assumption that z — (F(z) + Vf(z),z — u) is convex for all u to apply to this case, where we

denote a subgradient of f by V f. This assumption requires more structure on f.

5. Conclusions

We conclude by discussing a few potential directions that our results could pave the way for.

Sparsity. An important consideration in practice is to adapt to sparsity of the data. The recent work
by Carmon et al. (2020) built on the algorithm in (Carmon et al., 2019) and improved the complexity
for matrix games in Euclidean setup, for sparse data, by using specialized data structures. We
suspect that these techniques can also be used in our algorithms.

Stochastic oracles. As we have seen for bilinear and nonbilinear problems, harnessing the structure
is very important for devising suitable stochastic oracles with small Lipschitz constants. On top of
our algorithms, an interesting direction is to study important nonbilinear min-max problems and
devise particular Bregman distances and stochastic oracles to obtain complexity improvements.

New algorithms. For brevity, we only showed the application of our techniques for extragradient,
FBF, and FoRB methods. However, for more structured problems other extensions might be more
suitable. Such structured problems arise, for example, when only partial strong convexity is present
or when F' is the sum of a skew-symmetric matrix and a gradient of a convex function.
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Appendix A. Appendix for Section 2
Remark 10 For running Alg. 1 in practice, we suggest p = %, a=1—pandT = %.
Specific problem may require a more careful examination of “optimal” parameters (see App. D.1).

Remark 11 Our rate guarantee on Theorem 4 is on the averaged iterate z', which is shown to be
necessary to get the O(1/K) rate for deterministic extragradient in (Golowich et al., 2020).

A.1. Full proof of Theorem 4

Proof of Lemma 3 First, we define the sequence X1 = X + Ug41. It is easy to see that xy, is
Fj-measurable. Next, by using the definition of (xj), we have

k1 = x[|* =[xk — %% + 2up1, x5 — %) + [Juga .

Summing over k = 0, ..., K — 1, we obtain

K-1 K-1

2(up 1% = xi) < Jxo = x|+ D JJueal.

k=0 k=0

Next, we take maximum of both sides and then expectation
K-1 1 1 K= K-1
2
E |max 2 <uk,x>] < max 5 [lxo —x|" + 5 Z E [llugsl”] + kz_o E [(ups1, k)] -

We use the tower property, Fi-measurability of xj, and E [uy1|Fx] = O to finish the proof, since
K
Sk El(ursr xi)] = iy E[(E [ugsa| 7], xi)] = 0. .

Proof of Theorem 4 As already mentioned, when all randomness is eliminated, that is /y = F’ and
p = 1, Alg. 1 reduces to extragradient. In that case, the convergence rate O(1/K) would follow
almost immediately from the proof of Lemma 1. In the stochastic setting the proof is more subtle
and we have to rely on Lemma 3 to deal with the error terms caused by randomness. Let us recall

F(zpq172) = F(Wg) + Fe, (Zrg1/2) — Fg, (wg) and
Ort1/2(2) = (F(Zps1/2): Zit1/2 — 2) + 9(Zpy1/2) — 9(2).
We will proceed as in Lemma 1 before getting (10). In particular, using (6) and (7) in (5) gives
27011/2(2) + |1Zr1 — 2)* < allzy, — 2]* + (1 - @) |wi, — 2?
+ 27(Fg, (wi) — ka(zk+1/2)> Zk+1 — Zk+1/2>
— (1= )|Zr1/2 — Well* = 12641 — 2t 2]

+27(F(241/2) — ﬁ(zk+1/2)a Zit1/2 — Z), (20)
e1(z,k)

where we call the last term by e1(z, k).
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Now, we set @ = 1 —p. We want to rewrite (20) using @4 (z) = (1 —p)||zx — z||* + || wy — 2|
For this, we need to add ||w 1 — z|> — ||wy — z||? to both sides. Then, we define the error

e2(z, k) = pllwy, — zl|* + Wi — 2|* — [[wy, — 2l|* — pllzg1 — 2|
= 2(pzy1 + (1 = p)Wg — Wii1,2) = pllzesa |2 = (1= p) | wi|® + [wipa |
With this at hand, we can cast (20) as
27O 11/2(2) + Dps1(2) < By(2) + e1(2, k) + ea(z, k)
+ 27 (Fe, (Wi) — Fe, (Zh41/2), Zh1 — Zk1/2)
— pllzgr12 — Will® = [|1Zks1 — Zpr1 2l

We sum this inequality over k¥ = 0,..., K — 1, take maximum of both sides over z € C, and then
take total expectation to obtain

27KE [Gap(z")] < max Dy(z) + E

K—1
max Z e1(z, k) + es(z, k))]
k=0

K—-1
—-E Z <||Zk:+1 = zs1y2l” + DllZg1y2 — Wk||2>
k=
K-1
+27E Y [(Fe, (Wi) — Fe, (2k11/2), Zhi1 — Zis1/2)] 21
k=0

where we used E | max Z Opi1 /2 > K IE Gap )], which follows from monotonicity of
zeC

I—J

F, linearity of (F(z),- — z) for any z, and convexity of g.
The tower property, the estimation from (9), and 1 — a = p applied on (21) imply

27KE [Gap(z")] < max ®y(z) + E
z<

K-1
max Z (e1(z, k) + ea(z, k))] . (22)

k=0

Therefore, the proof will be complete upon deriving an upper bound for the second term on RHS.

We now instantiate Lemma 3 twice for bounding this term. First, for e1(z, k) we set in Lemma 3,
Fr=00,--,&—1,Wk), Xo =120, Wy = QT(ﬁ(ZkH/z) — F(zg41)2)),

where by definition we set Fy = o(&p, &1, wg) = o(&y). With this, we obtain the bound

K-1 K-1 K-1
E k)| =E —E
1;135{ kz_o e1(z, k) Iéleag( z_: (Ug11,2) kZ—O (g1, Zk+1/2>]

=E

K—-1
max E (upy1,2)
zeC

k=0
<II]ELX}HZ0—ZH2+1 ZEHuk 1”2
= zeC 2 2 +

K-1
< mafozo—ZHQ—i—QTQL2 ZEHZ,HUQ — wil, (23)
k=0
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where the second equality follows by the tower property, Ex[ug+1] = 0, and Fj-measurability of
Zp41/2- The last inequality is due to

E [upi1]? = E [Eg [upi1]?]
= 472 E [Ex ||[Fe, (2i41/2) — Fe, (We)] — F(p11/2) — F(wi)||?]
<47’ E By || Fe, (2h41/2) — Fe, (wi)||]
< AT?L*E || 24412 — Wi,

where we use the tower property, E || X — E X|[|? < 2, and Assumption 1(iv).

Secondly, we set in Lemma 3

=00, &k WE), X0 = Z0, U1 = pZpt1 + (1 — D)Wy — Wi,

and use E [Ej 11 o[||Wit1[|? — pllzes1]l* — (1 — p)[[w[|?]] = 0, to obtain the bound

K-1 K—-1
2E |max »
k=0 k=0
K-1
< max [[zo — 2* + Y E [up [
zeC
k=0
K-1
= max||z0 — z[* + p(1 = p) Y _ E [lzns1 — Wi, 24)
k=0

where the inequality follows from Lemma 3 and the second equality from the derivation

E Huk+1”2 =E [Ek+1/2 ||ul<:+1||2} =E []Ek+1/2 | IE1<:+1/2 [(Wet1] — Wk+1||2]
=K [Ek+1/2 HWk+1||2 —l IEk+1/2 (W] ”2]
E [pllzel® + (1 = p)llwil® = [[pzars + (1 — p)wil|’]
=p(l- )EHZk+1 w|?,

whichuses E|| X —EX|?=E|X|? - |EX|?>
Combining (23), (24), and (22), we finally arrive at

K-1
27KE [Gap(z")] < macx<I>o( z) + max f||z() —z|* + 2722 Z E || zg11/2 — Wil
zE
k=0
K—1
+max |z — 2 + p(1 = p) Y Ellzesr — wil|” (25)
k=0
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We have to estimate terms under the sum:

E

K-—1
> (27%L2|Zkg1/2 — Wil + p(1 = p)||Zas — WkH2)]
k=0

<pE

K-1
> Qllzng1z — Well® + l|zrer — well )]
k=0

—1
<pE Z ( (2 + V2)|1Zrs1/2 — Will® + (2 4+ V2) 12141 — Zk+1/2||2>]
2 2 3.5
< 2PV 0(2) < =22 max Bo(z), (26)
11— 1 -7 zec

where the first inequality in (26) uses Lemma 1 and 1 — o = p.
Now we use wg = zg and, hence, ®((z) = (2 —p)||zo — z||* < 2||z0 — z||? in (25). This yields

3 7 1 1
27KE [Gap(zK)] < <2 + -+ ) max ||z — z||> = 7 < + > max ||zo — z||%.
— ) zeC zeC

2 1 2 1-9
Finally, using 7 = fv , we obtain

E [Gap(z™)] < 2\/;{;}{ <; + 1i’y) max |zo — z||> = O (\/}{;}() :
With a stepsize 7 = \QQ, the right-hand side reduces to 1\;5515 max,ec ||z0 — 2|2 [
Proof of Corollary 6 In average each iteration costs pN + 2 calls to F¢. To reach e-accuracy
we need [(’) (ﬁﬂ iterations. Hence, the total average complexity is O <(p ]\:/;2) ) Finally, the
optimal choice p = % gives O (@ complexity. |

A.2. Proof of Theorem 2
Proof of Theorem 2 By the proof of Lemma 1, without removing the term —a||zy,1 /o — 2|

in (7), we have

B [@r11(2.)] < Pr(ze) — (1= 7) (1 = @)l|Zs1/2 — Will* + Ex [ 2611 — 2a41/2]%])
— al|zpare — 7P 27)

By Robbins-Siegmund theorem (Robbins and Siegmund, 1971, Theorem 1), we have that ®(z,)
wp|| converges to 0 a.s.

Let Z, = [Wﬂ and Z, — H then @y (z.) = oz — z.]|? + 52wy — 2% = |Z —
*

Z.|3 with Q = diag(a, ..., q, 1_70‘, s 1_70‘) Then applying (Combettes and Pesquet, 2015,

Proposition 2.3) to the inequality Eg||Zy+1 — Z*HQQ < ||Zx — Z*HQQ, we can construct =, with
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P(Z) = 1, such that for all # € = and Vz, € Sol ||Z;(6) — Z.||g converges and therefore, there
exists = with P(Z) = 1, such that

11—«

V6 € Z and Vz, € Sol, ol|zk(0) — z.|* + |w(0) — z.]|? converges. (28)

Moreover, by taking total expectation on (27), we get >~ E||zx4.1 — 2441/2/* < co. By Fubini-
Tonelli theorem, we have E [ 77 [|Z4+1 — Zg41/2]|*] < oo and since Y 37, [|Zhs1 — Zgi1 /2| is
nonnegative, Y ;% [|Zpt1 — Zg41/2/|* < oo a.s. and thus ||z, — Zg4q /2| converges to 0 a.s.

Let =’ be the probability 1 set such that for all 0 € =’, zg1(0) — z41/2(0) — 0, Zp41/2(0) —
zi(0) — 0, and zy 11 /5(0) — wy(0) — 0. Pick # € =N =’ and let () be a cluster point of the
bounded sequence (z(0)). From z11/5(60) — zx(0) — 0 and 2 /9(0) — wi(0) — 0 it follows
that z(#) is also a cluster point of (w(0)).

By prox-inequality (3) applied to the definition of zx 1,

(2111(0) — 2(0) + 7F (Wi (0)) — 7Fe, (Zg11/2(0)) + TFe, (Wi (0)), 2 — 2141 (0))
+79(z) — 79(2111(0)) >0, VzeZ. (29)

By extracting the subsequence of z(0) if needed, taking the limit along that subsequence and
using the lower semicontinuity of g, we deduce that z(f) € Sol. In doing so, we also used that
(z141(0)) is bounded and F% is continuous for all £ to deduce 7(Fy, (W (0)) — Fe, (Zp41/2(0)), 2 —
zi+1(0)) — 0. Moreover, since z;41(6) — z;(0) — 0 and z;11(0) — wi(0) — 0, it follows that
z11(0) — 2 (0) — 0.

Hence, all cluster points of (z(#)) and (wy(6)) belong to Sol. We have shown that at least
on one subsequence «||z;(0) — z(0)||> + 1_TO‘Hwk;(Q) — 7(0)]|? converges to 0. Then, by (28) we
deduce al|zi(0) — z(9)|*> + 1*TQHW;C(G) — %(0)||*> — 0 and consequently ||z (0) — z(0)||*> — 0.
This shows (zx) converges almost surely to a point in Sol. |

Appendix B. Analysis for Section 3

Remark 12 For running Alg. 2 in practice, we suggest K = % a=1-— % and T = 0'92‘/:5.

We recall the three point identity which can be seen as the analogue of the standard Euclidean
identity 2(a, b) = [la + bl|3 — [lal|3 — [[b]3:

<Vh(X) —Vh(y),Z—X> :D(Zay) _D(Z’X) _D(X7Y) Vx,y,z €Z. (30)
Similar to Euclidean case, we define for the iterates (z; ) of Alg. 2 and any z € dom g,
K
©°(z) == aD(z,23) + (1—a) Y _ D(z,z57"),
j=1

where ®°(z) = (a + K(1 — a))D(z,20), due to the definition of z~! in Alg. 2. Since we have
two indices s, k in Alg. 2, we define F} = a(z(l)/27 . 7Z2—1/27 B g By ) AN B[] =
E 73]
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Lemma 13 Let g be proper convex lsc and

zt = arg;nin {9(z) + (u,z) + aD(z,21) + (1 — a)D(z,22)} .

Then, for any z € Z,

9(z) — g(z+) +(u,z — z+) > D(z, z+) + (D(z+, z1) — D(z, zl))
+(1— ) (D(z*,22) — D(z,22)) .

Proof By optimality of z*,
0€dg(zt)+u+a(Vh(z") = Vi(z1)) + (1 — ) (Vh(z") — Vh(z2)) .
This implies by convexity of g
9(z) — g(z") > (u+ a (Vh(z") — Vi(z1)) + (1 — ) (Vh(z") — Vh(zs)) , 2" — z).
By applying three point identity twice, we deduce

9(z) —g(z") + (w.z—2z") > a(D(z,2") + D(z",21) — D(2,21))
+(1-a)

and by a simple rearrangement we obtain the result. |

We now introduce some definitions to be used in the proofs of this section.

@zH/Q(Z) = <F(Z2+1/z)a Zi“/z —z)+ g(zi+1/2) —9(2), (BD
e(z,5,k) = 7(F(2} 1 1/9) = Fe; (Zh112) — F(W°) + Feg (W), 20115 — 2). (32)
S S S S 1 S S
(s, k) = T<F£,i (w*) — FEZ(ZkJrl/Q)a Zk+1 — Zk+1/2> - §HZk+1 - Zk+1/2H2
l—a, | B
- THZkH/z —w|? (33)

The first expression will be needed for deriving the rate, the second term e(z, s, k) for controlling
the error caused by max,cc E[-] # E max,ec|[+], and the third term 6 (s, k) will be nonpositive after
taking expectation.

Lemma 14 Let Assumption 1 hold, o € [0,1), and 7 = \/1;70‘
following:

(0,1). Then we have the

(i) Foranyz € Z and s, K € N, it holds that

K—1 K
Z 7O} 11/2(2) + aD(z, 75t + Z D(z
k=0 j=1

K K-1
< aD(z,z5) + (1 — «) ZD +Z (z,s,k)+d(s, k)]
j=1 k=0
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(ii) For any solution z., it holds that
1

Eco | Izi112 = wII] -

K-
Eso [25F(2)] < ©°(24) — L= a)él R
k=0

(iii) It holds that 332 o 3120 E |25,y jy — w1 < iy 80 ().

Remark 15 We use Lemma 14(i) and Lemma 14(iii) for proving the convergence rate. Moreover,
Lemma 14(ii) can be used to derive subsequential convergence, which we do not include for brevity.

Proof of Lemma 14 Applying Lemma 13 to z; /2 update, with z = z;  ,, we have

™ (9(7101) = 9(7 1 j0) + (FOW), 2 = 2 ja)) = D 2 o)

+ a(D(2}41/2:7) = D#i1, 7)) + (1= 0) (D215, %) = D240, %)) (34)

Applying Lemma 13 to z; , ; update with a general z € Z, we have

™ (9(2) = 9(zi0)) + (P (211 10): 2~ 7i41) ) = D(z7i)
+ a(D(zZH, z;) — D(z,zi)) +(1-a) (D(Zerl,Ws) — D(z, v_vs)>. (35)
w?), that is

Note that for any u, v, the expression D(u, w®) — D(v, w?®) is linear in terms of Vh(

K
D(u, %) — D(v,w") = % > (D) - Div.z ™). (36)
j=1

Summing up (34) and (35) and using (36) with definition of F (ZZ 41 /2), we obtain

—21p0)) = DAz, 7040) - aD(2,7)

7'<9(Z) = 9(Z541,0) + <ﬁ(ZZ+1/2)»Z
K

1 -« -1
ZD Zi1/20 2

T<F€,§ (Zk+1/2) - Fsg(W )7Zk+1 - Zk+1/2>'

)+ D(Zg 11, Zk+1/2)

(37

By D(u,v) > i|ju — v||* and Jensen’s inequality, we have

(38)

K
— I s L@ 2
> D(2} 1157 )ZTE SlZhs1e =217 2 —— 2k p — W
i=1

K
7=1
D(z} 41, ZZ+1/2) 2 §”ZZ+1 - ZZ+1/2HQ- (39)
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By using (31), (38), and (39) in (37), we deduce

K
1l-« 1
T®z+1/2(z) + D(Z>Zz+1) < aD(z,z;) + e E 1 D(z,z}
j:

11—«
2 2
T<F£z (W) — Fe (ZZ+1/2)7ZZ+1 - ZZ+1/2> - iHZiH - Zz+1/2H T ”ZZH/Q - w

+ T<F(ZZ+1/2> - F(ZZ+1/2)7Z2+1/2 - z),

e(z,s,k)

where we defined the last term as e(z, s, k) (see (32)). We sum this inequality over & to obtain the
result in ().
Next, similar to (9), we estimate by Assumption 2 and Young’s inequality

TEs,k<F§,§ (w?) — F&i (ZZ+1/2)7 Ziq — ZZ+1/2>
2
T 1
< By | TN (W) = Py (a0 )|+ 5281 = 2

(1-a)y?

1
< 5 125172 — W[ + §Es,k||ZZ+1 - ZZ+1/2||27 (40)

since 72L? = (1 — a)y?. We take expectation of (37), plug in z = z,; use (8), (40), (38), and (39)
to get

K
11—« _
Eop [D(22i10)] < aD(ze )+~ > Dz,
7j=1
1—a)(y? -1
Lm0 Dy - wils @
By using E; o[-] = Es 0 [Es x[-]], we have
Lo K
ES,OD(Z*; Zi+1) < IE5,0 OCD(Z*, Zk K Z D Z*, ]
7=1
(1—a)(1 -9
= > 12010 = W] 42)
Summing this inequality over kK = 0,..., K — 1 and using the definition of ®°(z,) together with
75! = 23, we derive (ii).
Finally, we take total expectation of (ii) and sum the inequality over s to obtain (iii). |

In order to prove the convergence rate, we need the Bregman version of Lemma 3.

Lemma 16 Let F = (F})s>0.ke[0,k—1) be afiltration and (uy) a stochastic process adapted to F
with E[uj_ | F}] = 0. Given xo € Z, for any S € N and any compact set C C dom g

S—1K-1 S 1K-1

< max Dx.x0) + 5 3 3 Bl o

E |max 3 3 (o, x) | < max Dlx,xo) el
s=0 k=0 s=0 k=0
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Proof Define for each s > 0 and for k € {0,..., K — 1},

Xp 1 = argmin{(—uj_;,x) + D(x,x})}, and let x“”Jrl x5 .
xEdom g

First, we observe xj is F}-measurable. By the definition of xj, 41, We have for all x € dom g,
(Vh(x}41) — VR(X}) — iy, x — Xjqq) = 0.
We apply three point identity to obtain
D(x,x}) = D(x%, X} 11) = D(Xg 1, X5) = (W1, X = X q) 2 0.
We bound the inner product by using Holder’s, Young’s inequalities, and strong convexity of A,
(W, x —x3 ) = (W, X — X)) + (Wi, X, — XGp)

1
> (0% = X5 = plluf = 5 xia — Xl

Y

1
(Wi, x = x3) = w12 = DO, x3),
which, combined with the previous inequality gives
1
(W1, %) < D06 x3) = D06 X)) + (i, X3) + gl 15 43)

We sum (43)over k=0,...,K —lands=0,...,5 — 1, take maximum use strl = XY and the
same derivations as the end of the proof of Lemma 3 to show Z Y - o E [(uk LX) =01

Proof of Theorem 8 We start with the result of Lemma 14 and proceed similar to Theorem 4. Since

zg+1 = zj, we use definition of *(z), and sum the inequality in Lemma 14(i) over s to obtain
S-1K-1 S-1K-1
DD 1051 0(2) + 85(2) < 0(z) + YD [e(z, 5, k) + 5(s, k)]
5=0 k=0 5=0 k=0

We take maximum and expectation, use £ [maxzec z Z 92+1/2(Z)} > 7K SE [Gap(z®)]
to deduce

S—1K-1 S—1K-1
KSE N < 0 E E .
TKS [Gap(z )] < r;leacx (z) + r;leacxg 2 e(z, s, k)| + g 2 6(3,]{:)]

The term E ZSS;& Zf;ol (s, k) is nonpositive by the tower property, Lipschitzness, Young’s in-
equality, and 7 < % (the same arguments used in (40) can be applied here with (s, k) defined as
(33)). Therefore,

TKSE [Gap(zs)] < max Y(
zE

S—1K—1
maxg E e(z, s, k)
zeC

s=0 k=0
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We bound the second term on RHS, similar to the proof of Theorem 4. For s € {0,...,S — 1} and
ke{0,... . K—1}set Fy = 0(2) )9, 25 1 jgiee 02 g Bhyy o) Wy = TIF (2], o) —
F(zz+1/2)] = 7[F(W?) — Fgs (W°) — F(Zz+1/2) + Fes (z2+1/2)], which help us write

S—1K-1 i S-1K-1
J— s s H
Blumax ) ) eah)| =B uaxd ) riF(zia) = Finy) 2 = 2o
s=0 k=0 L s=0 k=0
r S—1K-1 S—-1K-1
o s s S
=Ejmax > > (uip, Z>] =D D Bz
L s=0 k=0 s=0 k=0
r S—1K-1
= E |max (Wit1,2) |,
zeC
L s=0 k=0

where the last equality is due to the tower property, F; -measurability of z; /2 and E ;[uj_ ;] = 0.

We apply Lemma 16 with the specified F}, uj,_ ; to obtain

S-1K-1
E[r;leacxz > ez, k)]

s=0 k=0
S—1K-1
< mex Dizzo) + || Fey (2,11 2) — Fgy (W*) + F(w*) = Fz},15)]2
s=0 k=0
S—1K-1
= I?géiD(z’zo) + Z 472EHFE£ (Z11/2) — Feg (w2 (44)
s=0 k=0
S—1K-1
S maCXD(27ZO) + 472L2E”ZZ+1/2 —WSH2 (45)
2 s=0 k=0
872L2
< D @0 4
= Lee (2,20) + (1—a)(1—192) (2.), (46)

where (44) is due to the tower property and E||X — EX||?2 < 2E|X||? + 2|EX||? < 4E| X2,
which follows from triangle inequality, Young’s inequality, and Jensen’s inequality. Moreover, (45)
is by variable Lipschitzness of Fg, and the last step is by Lemma 14. Consequently, by ®0(z,) <
maxzec ®0(z) = (a + K(1 — ) maxec D(z,20) and 72L% = (1 — a)? we have

TKSE [Gap(zs)] < max [D(z,zo) + (1 + sTL” )@0(2)]

zeC (1—a)(1—~2)
1+ (1+ el )(a+ K (1~ a) ) max D(z, 2)
= o — max D(z, z
1-— ’y2 @ zEaC P 20h
which gives the result. |
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Proof of Corollary 9 As o = 1 — %, itholds that o + K(1 — ) = 1 — & + 1 < 2. With this,
from Theorem 8 it follows

(1 + (1 + 18_7272) (a+ K(1— a)) I;leacXD(Z,Zo)

L 162 L
< D = — . 47
T VEKAS <3+1—72>I£12CX (2,20) O(sz') @7)

One epoch requires one evaluation of /" and 2K of Fy, therefore in total we have N + 2K = 2N.

To reach € accuracy, we need {(’) (ﬁﬂ epochs. Hence, the final complexity is O (N + %)

Now, by setting v = % in (47), we will get specific constants. In particular, we will have

E [Gap(zs)]

IN

TKS

L 15v2L
= max D(z, zg).
\/NS zeC

Consequently, since 30v/2 < 43, the final complexity is (2N + BYNL ax,ec D(z, z0)>. n

Remark 17 Because we work with general norms, we had to use in (46) a crude inequality E|| X —
EX||2 < 4E| X 2. Of course, in the Euclidean case with D(z,z') = |z — 2'||? this factor 4 is

redundant. It is easy to see that setting T = %Zo‘ and the rest of the parameters as in Corollary 9

leads to <2N + @ maxgec ||z — z0H2> total complexity for the Euclidean setting.

Appendix C. Extensions

In this section, we show how to obtain the variance reduced versions of two other operator split-
ting methods: forward-backward-forward (FBF) (Tseng, 2000) and forward-reflected-backward
(FoRB) (Malitsky and Tam, 2020) for monotone inclusions. We also show how to obtain linear
convergence with Algorithm 1 when g in (1) is strongly convex.

Formally, the monotone inclusion problem is to find

z, € Zsuchthat 0 € (F + G)(z4), (48)

where Z is a finite dimensional vector space with Euclidean inner product and the rest of the as-
sumptions are summarized in Assumption 3.

é Assumption 3 b

(i) The solution set Sol of (48) is nonempty: (F + G)~1(0) # @.
(ii) The operators G: Z = Z and F: Z — Z are maximally monotone.

(iti) The operator F has an oracle F that is unbiased F(z) = F¢ [F¢(z)] and L-Lipschitz in
mean:

Ee [|Fe(u) — Fe(V)|?] < L*lu—v|? Vu,veZ.
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Algorithm 3 FBF with variance reduction

1: Input: Probability p € (0, 1], probability distribution @, step size 7, a € (0,1). Let zg = wyo
2: fork=0,1...do

33 Zrp = azp+ (1 — a)wg

4: Zg11)2 = JTg(ik — TF(Wk))

5:  Draw an index &}, according to )

6. Zg41l = Zpy1/2 — T(Fék (Zk+1/2) — Fy, (Wi))
Zi+1, with probability p

T Wil = . o
wy, with probability 1 —p

8: end for

We remark that one can use variable Lipschitz assumption from Assumption 2 instead of stan-
dard Lipschitzness, but we chose the latter for simplicity. Let us also recall the conditional ex-
pectation definitions based on the iterates of the algorithms: E[-|o(&o, ..., &k—1, Wg)] = Ei[-] and
E[-|o(&0; - - - » Ek> Wi] = Ejq12[-]. Next, the resolvent of an operator G is given by Jg = (I+G)~t
where [ is the identity operator. It is easy to see that when G = Qg for proper convex Isc function
g, inclusion (48) becomes the VIin (1) and Jg = Prox,.

C.1. Forward-Backward-Forward with variance reduction

Forward-backward-forward (FBF) algorithm was introduced by Tseng in (Tseng, 2000). On
one hand, it is a modification of the forward-backward algorithm that does not require stronger
assumptions than mere monotonicity. On the other, it is a modification of the extragradient method
that works for general monotone inclusions and not just for variational inequalities. FBF reads as

Zgt+1/2 = Jrc(zk — TF (2x))
Zk+1 = Zjy1/2 — TF(Zk+1/2) + 7F (z).

It is easy to see that FBF is equivalent to extragradient when G is absent. But when not, FBF
applied to the VI requires one proximal operator every iteration, whereas extragradient requires
two. This advantage can be important for the cases where proximal operator is computationally
expensive (Bohm et al., 2020).

Remark 18 For running Alg. 3 in practice, we suggest p = %, a=1—pandT = 0'92‘/5.

We keep the same notation as Section 2.3 and recall the definition of ®;, for convenience

11—«

Oy (z) = oz —z|> + |wi, — z||%.

‘We now continue with the main result for FBF.

Theorem 19 Let Assumption 3 hold, o € [0,1), p € (0,1}, and 7 = ~ 1L*a'yf0r’y € (0,1). Then
for (zy,) generated by Alg. 3 and any z, € Sol, it holds that

Ex [q)k—l—l(z*)] < (I)k(z*)

Moreover, if F¢ is continuous for all &, then (zy,) converges to some z, € Sol a.s.
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Proof Letz = z. € Sol which gives —F(z) € G(z). Next, by the definition of z;,/, and
resolvent, Zy — 7F(Wy,) € 2j41/2 + TG (Z441/2). Combining these estimates with monotonicity of
G lead to

(Zry1y2 — Zk + TF(WE), 2 — 2g11/2) — T(F(2),2 — Zp11/2) > 0.

We plug in the definition of zj_; into this inequality to obtain

(2h1 — Zi + 7 (Fe, (Zh41/2) — Fep (W) + F(Wy)) 2 — 2441)2) — (F(2),2 — 241/2) > 0.
(49)

We estimate the term with Zz;, as in (6)

2211 — 2k, Z — Zpy1/2) = 202kl — Zhg1/2:% — Zhg1)2) t 2(Zrg1/2 — Zks Z — Zigy)2)
= |1Zrr1 — Zr1p2ll® + 12 = Zisrj2ll* = 12 — 21 1P + 2(2p41/2 — 2002 — 241 /2)
= |1Zks1 — Zpr1p2ll® — 12 — ks |* + allz — 2l + (1 — @) [|wi — 2|

— allzgr1e — zill? = (1= @)||Zg1/2 — will*- (50)

By taking conditional expectation and using that z;, 1 /3 is Fi-measurable, we deduce

27E [(Fe, (2111/2) — Fe, (Wi) + F(Wi), 2 — 241 2)] = 27E [(F(2g11/2), 2 — Zgi1/2)] -
(51

We use (50) and (51) in (49) to obtain
27(F(2) — F(2k41)2),% — Zy1)2) + Billzi — 2)* < allze — 2] + (1 — ) | wy, — 2|
+ Eillzit1 — Zog12ll® — llzise — 26l — (1= @)|Zgr1 /0 — will*.

Note that, the first term in the LHS is nonnegative by monotonicity of F'. Then we add (11) to this
inequality and use ||z11 — Zj41/2/|* < 72L?||2j11/2 — Wi ||? to obtain

l—«o l—«o

Wit — z]|* < alz, — 2] + Wi — 2)|* — a|Zgr1/0 — 2z ||

aE|lzes1 — zl* +
- ((1 —a) — TQLZ) 2k41/2 — wil|.

This derives the first result, which is the analogue of Lemma 1. To show almost sure convergence,
we basically follow the proof of Theorem 2. First, using Robbins-Siegmund theorem and (Com-
bettes and Pesquet, 2015, Proposition 2.3) as in Theorem 2, we obtain that there exists a probability
1 set = of random trajectories such that V6 € = and Vz € Sol, we have that o z;(0) — z||*> +
1_TOCHW]€(9) — z||? converges, zj,11/2(0) — zx(0) — 0, and 241 /5(0) — wi(0) — 0. The latter
implies zyy1(6) — zp41/2(0) — 0. Let z(0) be a cluster point of the bounded sequence (z(0)).
Instead of (29), we use the definitions of zj | 1 /5, resolvent, and zj; to obtain

2r11(0) — 21 (0) + 7 (Fe, (Wi(0)) — Fe, (2141/2(0))) + 7 (F(2k41/2(0)) — F(w(6)))
€T (F + G)(zry41/2(0), (52)
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Algorithm 4 FoRB with variance reduction

1: Input: Probability p € (0, 1], probability distribution @, step size 7, a € (0,1). Let zg = wyo

2. fork=1,2...do

33 Zrp = azp+ (1 — a)wg

4:  Draw an index &, according to )

50 zpy1 = Jra(Zk — TF(wy) — 7(F (2k) — Fe (We-1)))
Zi+1, with probability p

6:  Wgi1 = . .
wy, with probability 1 —p

7. end for

to show that z(0) € (F+G)~1(0). In particular, we use that Fy is continuous for all £, zj 1 —Z), —
0, and zy 1/ — Wy — 0 almost surely. We use the same arguments as the proof of Theorem 2 to
conclude. |

We next give the complexity of the algorithm for solving VI as Section 2.3.1. The derivation is
essentially the same as Section 2.3.1 and therefore omitted.

Corollary 20 Leta=1—-—p=1-— % and z% = % Zi(:_ol Zyy1/2- Then, the total complexity to

get an g-accurate solution to (1) is O <N + @)

C.2. Forward-reflected-backward with variance reduction: revisited

In a similar spirit to FBF, but using a different idea, Malitsky and Tam (2020) proposed FoRB
method

Ziy1 = Jra (Zk — T[F(Zk) + F(Zk) — F(Zk,1>]) .

This scheme generalizes optimistic gradient descent (Rakhlin and Sridharan, 2013; Daskalakis et al.,
2018) and in some particular cases is equivalent to Popov’s method (Popov, 1980). Later, in (Ala-
caoglu et al., 2021), the authors suggested the most straightforward variance reduction modification
of FoRB by combining FORB and loopless SVRG (Kovalev et al., 2020). This algorithm had the
drawback of small step sizes which lead to complexity bounds that do not improve upon the de-
terministic methods. As highlighted in the experiments of (Alacaoglu et al., 2021), the small step
size T ~ % seemed to be non-improvable for the given method. One possible speculation for this
phenomenon might be that the method is too aggressive and therefore prohibits large step sizes. We
will use the retracted iterate z, = azy + (1 — a)wy, instead of the latest iterate zj, in the update to
improve complexity.

The advantage of FORB compared to extragradient is similar to FBF. FORB only needs one
proximal operator, applied to VI. Compared to FBF, FoRB has a simpler update rule and, unlike
FBF, it is easy to adjust to Bregman setting, see (Alacaoglu et al., 2021; Zhang, 2022).

Remark 21 For running Alg. 4 in practice, we suggest p = %, a=1—pandT = w.
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Lyapunov function here is slightly more complicated than the ones in previous sections:

1l -«
[Wii1 — 2)|* + 27(F (2z511) — F(Wy), 2 — Zp41)

®pi1(2) = af|zryr — 2l +
+ (1= )| zrs1 — wal”.

Theorem 22 Let Assumption 3 hold, o € [0,1), p € (0,1], and 7 = 7V(1(Ll_a)vfor’y € (0,1).

Then for (zy,) generated by Alg. 4 and any z, € Sol, it holds that ®(z,) is nonnegative and
Bk [Pr+1(24)] < ().

Moreover, if F¢ is continuous for all &, then (zy,) converges to some z, € Sol a.s.

Remark 23 Note that again when randomness is null, Fx = F and p = 1, Alg. 4 reduces to the
original FoRB algorithm. Moreover, with o = % we recover the result in (Malitsky and Tam, 2020).

Proof of Theorem 22 Nonnegativity of ®(z,) is straightforward to prove by using Lipschitzness
of Fand 7L < /a(l — ).

Let z = z, € Sol which gives —F'(z) € G(z). Next, by the definitions of z;; and resolvent,
z, — 7 [F(Wy) — Fe,(Wi—1) + Fe,(21)] € 241 + 7G(241). Combining these estimates and
monotonicity of G leads to

(Zkr1 — 2k + 7 [F(Wi) — Fg (We—1) + Fe, (21)] .2 — 2p11) — 7(F(2),2 — 2g41) > 0. (53)
We split the first inner product and work with each term separately. First,
T(F(Wi) — Fe, (We—1) + Fg, (2k), 2 — Zhy1)
= 7(F (W) = F(2r41),2 — 2p1) — 7(Fg, (Wr—1) — Fe, (2k), 2 — Zp41)
+ 7(F(2k+1), 2 — Zg41)
= T(F (W) = F(241),2 — 211) — 7(Fg, (Wi—1) — Fe, (2k), 2 — Zp)
— 7(Fg (W—1) — Fe, (21), 21 — Zp1) + 7(F(Zg+1), 2 — Zg1).
Second, as we derived in (6),
2enrs — Znz — 1) = allz — 2] — ||ziss — 2l + (1 - a)|lwi — 2
—allzgir —zi])? = (1= @)z — wi| .
Substituting the last two estimates into (53), we obtain
|12k+1 — 2|* + 27 (F(2141) — F(Wi),2 — 2g41) + 27(F(2) = F(2441),2 — Z441)
< allzy, —z|* + (1 — a)|wy, — 2| + 27 (Fg, (2) — Fe,(Wg—1),2 — 2)
+ 27 (Fy, (24) — Fe,(Wi—1), 26 — 2611) — |z — zel” = (1 = @)||za1 — wil*. (54)

We take expectation conditioning on the knowledge of zy,, wi,, use B Fy, (z,) = F'(z1), EpFe, (Wi—1) =
F(w_1), and monotonicity of F' for the third term in the LHS. This yields

Ex [|2e41 — 2l° + 27(F(241) — F(Wi), 2 — zp41) + (1 — @) ||zrs1 — Wi |?]
< allz, -z + (1= o) |w — 2l|* + 27(F(zr) = F(Wy-1),2 — zx)
+ QTEk [<F§k (Zk) - ng(Wk_l),Zk - Zk+1> - O‘HZk—&-l - Zk||2} . (55)
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Using Assumption 1(iv), Cauchy-Schwarz and Young’s inequalities, we can bound the last line
above as

By, (27 (Fg, (21) — Fe, (We—1), 2 — Z41) — allzirn — 2]
2
.
<E OTWHF& (z1) — Fe,(W—1)||* + al|zis1 — zi||* — al|zgs1 — 2|
(1—

)y
7z Bl Fe(2h) — Fe, (We—D)II” = (1 = Vel zis1 — zl?

<
< (1= a)yllze — wia|? = (1= y)allze -z (56)
Adding (11) and (56) to (55), we obtain
E[®s11(2)] < Op(z) — (1 — a)(1 =)z — Wil = (1 = 9)allzar1 — 2zl

The rest of the proof is the same as Theorem 19. The only difference is that instead of (52), we have

z41(0) = 2(0) + 7 (Fg, (24(0)) — Fe (Wi-1(0))) + 7 (F(2x41(0)) — F(w(0)))
€7 (F +G) (241(9)),

which gives the same conclusion as F¢ is continuous for all £, z;1 — Z — 0, Zp11 — Wy, — 0
almost surely. |

Remark 24 Even though we will set the parameters «, p, T by optimizing complexity, we observe
that the requirements in Theorem 22 allows step sizes arbitrary close to i This already shows
flexibility of the analysis, compared to the strict requirement of T = 7 in (Alacaoglu et al., 2021).

The improvement in the step size choice is due to using z;, which allows us to use tighter estimations
whereas the analysis in (Alacaoglu et al., 2021) needs to make use of multiple Young’s inequalities.
In particular, we use z, as an anchor point in (11), whereas (Alacaoglu et al., 2021) uses zj as
anchor point, which requires Young’s inequalities to transform to z;_; and obtain a telescoping
sum. Finally, as Corollary 20, we give the complexity of the algorithm for solving VI in the spirit
of Section 2.3.1.

Corollary 25 Leta=1—p=1— % and z% = % Zf;ol zy.. Then, the total complexity to get
+ ALY
)

an e-accurate solution to (1) is O (N

C.3. Linear convergence

In this section, we illustrate how to obtain linear convergence of Alg. 1 for solving VI (1) when g
is p-strongly convex. Alternatively, one can replace this assumption with strong monotonicity of
F', which we omit for brevity. One can use the same arguments for FBF and FoRB variants in the
previous sections to show linear convergence for solving strongly monotone inclusions.

Theorem 26 Let Assumption I hold, g be u-strongly convex, and z. be the solution of (1). If we
seta=1—pandT = 2—\/{) in Alg. 1, then it holds that

2 1 g 2 2
Bl 2 < (1507 ) oyl — 2l

ith ¢ = min { 32 YPE
wzthc—mln{g,zL}.
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Proof In (4), we use strong convexity of g to have an additional term &* ||z — z||? on the right-
hand side of the first inequality. Next, we continue as in the proof of Lemma 1 to obtain, instead
of (10),

(1 +71) Ex [l zk41 — 2l*] < allzn—2]°+(1—a) [wi—2||* = (1=a) (1=7) 1251172~ w2 *
— (1= 7)Ex [”Zkﬂ - Zk+1/2H2] .
We add (11) to this inequality after using the tower property, to deduce

11—«

1l -«
(o + 7p) By, [[|Zr1 — 2c]*] + Ey, [[[Wir1 — 2:]°] < aflzg — 2. + ——[|wy — 2.

= (=)= @)llzigjo = Wil + B [l2ksr — zes1007] )-
Sinceweseta =1 —pand v = %, we can rewrite it as
(1 =p+70) B [|12zis1 — 2] + B [[IWie1 — 2 [1?] < (1= p)llze — 2:]1° + [ wi — 2|2
1
—5 (pllZr1/2 — Will® + Bk [ 2641 — 2541,201°]) - (57)

Next, by 2|[ul|? + 2||v||? > ||u + v]||? applied two times,

2c c 2c
gEkHZkH - Z*H2 > gEkHWkH - Z*H2 - gEk [Ek+1/2||zk+1 - Wk+1||2]
c H2 20(1 *p)

= SEp|lwiy1 — 2« 3 Eillzgt1 — wil?

3
c 4c 4c
= gEk”WkH - Z*H2 - gEkHZkH - Zk+1/2H2 - gHZkH/Q - WkHQ-

Using this inequality in (57) and that ¢ < % = T gives us

Cc C
(1=p+5) B [z — 2]+ (1+ 5 ) Bx [Iwis — 2] < (=p)llzn—za |+ [ wi—z.

1 4c
—3 (Pllzrs1/2 — Will]® + Billzegr — Zk+1/2||2)+§ (Izrs1/2 = Will* + Eillzosr — 21 ,20°) -
(58)
By our choice of ¢, we have % < g and, therefore, the second line of (58) is nonpositive. Using
1 —p+ 5> (1-p)(1+ %) and taking total expectation, yields
c
(1+5) B[ =plzers — 2o + [ Wi = 2% < E [(1 = p)llz — 22 + [wi = .7
By iterating this inequality, we obtain
k
1—p)E||z — z:|]? < 2 — —z, %,
(=P~ 2 < (1557 ) @ plao—z]
which gives the result. |
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Corollary 27 Letp = %, T= 2—\/5 The total average complexity is O ((N + @) log %)

pN+2
log(1+§)
%(pN + 2) in total complexity. Using our choice for ¢, we obtain total average complexity

~

Proof The c-accuracy is reached after O(log 2 / log(1+%)) iterations. This yields a factor

8 6L 32 24L 12v/2N L
max{,}(pN+2) <—+ —=16N4+ —.
P /PH P /PH I
We lastly multiply the last estimate with log (5_1). |

Remark 28 In this case, Alg. 1 has complexity O ((N + @) log %), compared to the deter-
ministic methods O (% log %) This complexity recovers the previously obtained result in (Bal-

amurugan and Bach, 2016) and (Carmon et al., 2019, Section 5.4), where our advantage is having
algorithmic parameters independent of | and having more general assumptions.

Appendix D. Applications

D.1. Bilinear min-max problems

In this section, we analyze the overall complexity of our method compared to deterministic extra-
gradient and show the complexity improvements.

Notation. For a vector x we use x; to denote its i-th coordinate and for an indexed vector x;, it is
x,;. Foramatrix A € R™*" we denote a number of its non-zero entries by nnz(A); it is exactly the
complexity of computing Ax or ATy. We use the spectral, Frobenius and max norms of A defined

k(A
25 Al = omax(A). Al = /T0; A2 = /T 04(A)2, and [ Allmax = ma ;|4
For i-th row and j-th column of A we use a convenient notation A;. and A.;. Here, for simplicity,
we measure complexity in terms of arithmetic operations.

Problem. The general problem that we consider is

. A —
:{rel]g’ll ;I.gl]laéz{n< x,y) + 01 (X) 92(3’);

where g1, g2 are proper convex Isc functions. We can formulate this problem as a VI by setting
Aly
F)=Fxy)=(_, ) 9@ =0 +g5y) (59)
D.1.1. LINEARLY CONSTRAINED MINIMIZATION

A classical example of bilinear saddle point problems is linearly constrained minimization

i tAx =
)ErelllRI}lf(x) x = b,

where f is proper convex Isc. The equivalent min-max formulation corresponds to (59) when
91(x) = f(x) and g2(y) = (b,y).
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We will instantiate Alg. 1 for this problem. To make our presentation clearer, we consider
only the most common scenario when nnz(A) > m + n. In this setting, deterministic methods
(extragradient, FBF, FoRB, etc.) solve (62) with O (nnz(A)||Alle~!) total complexity. As we see

in the sequel, variance reduced methods provide us O (nnz(A) + y/nnz(A)(m + n) HAHFrobE_1>

total complexity. We now describe the definition of F¢ with two oracle choices. The first choice is
the version of “importance” sampling described in Section 2.1.

Oracle 1. The fixed distribution (the same in every iteration) is defined as

LA 2 2

- A4:Yq .. HAz”Q ||A||2

F (Z) = < i ’ >’ Pr{g = (’L’J)} = T'C-7 T, = T s C;, = 7‘7
¢ _CijA:jxj Y ' HAH%‘rob ’ HAH%‘rob

In the view of Assumption 1, the Lipschitz constant of /¢ can be computed as

1 1 1 "1
E | Fe(2)5 = E [T'QHAi:?JiH%} +]INEC gHA:jxjH% = Z EHAi:yng + Z cfjHA:jxjﬂg
i J i=1 Jj=1
US| "1
2 2
ZZ;IIAizllg(yi) +Z;||A:j||§(:fj) = (1A Byon 213 (60)
i=1 " j=1 7

Oracle2. The second stochastic oracle is slightly more complicated, since it is iteration-dependent
as (Carmon et al., 2019). We use the setting of Assumption 2. Given u = (u”*,u¥) and v =
(v®,vY), for z = (x,y), we define

LA y Y2 x _ ,x|2

. Y N - |u _U" _ |uj vj‘

e e e = =
Cj .

and call the described distribution as Q(u,v). Similarly, in every iteration of Alg. 2 we define a
distribution Q(z o W ) and sample £ according to it.

Clearly, as before, F¢ is unbiased. It is easy to show that this oracle is variable ||A|pob-
Lipschitz. Its proof is similar to the variable Lipschitz derivation that we will include for matrix
games with Bregman distances, in Section D.1.2.

Complexity. We suppose that computing proximal operators prox, , prox,, can be done effi-

ciently in @(m + n) complexity. Our result in Theorem 4 stated that Alg. 1 has the rate O (ﬁ) .

Given that the expected cost of each iteration is O (pnnz(A) + m + n), setting p = HTS;EZ) gives
us the average total complexity

0] <nnz(A) Y nnZ(A)(m; ”)HA‘“O*’) . 61)

nnz(A)" ‘

m+n
Compared to the complexity of deterministic methods, this complexity improves depending on

the relation between ||A||pop and ||A|l. In particular, when A is a square dense matrix, due to
|A|lFrob < 4/rank(A)||Al|, the bound in (61) improves that of deterministic method. In (61) we
suppress ||z — z.||? that is common to both our methods and deterministic ones.

It is easy to see that Alg. 2 has the same complexity if we set K = [
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Finally, we remark that the analysis in (Carmon et al., 2019, Section 5.2) requires the additional
assumption that z — (F'(z) + V f(z),z — u) is convex for all u to apply to this case, where we
denote a subgradient of f by V f. This assumption requires more structure on f.

D.1.2. MATRIX GAMES

The problem in this case is written as

Ry “
where A € R™*" and X C R", Y C R™ are closed convex sets, projection onto each are easy to
compute. In view of (59), we have ¢g(z) = dx(x) + dy(y). As we shall see, our complexities in this
case recover the ones in (Carmon et al., 2019). We refer to Section 1.1 for a detailed comparison.

In the Euclidean setup, we suppose that the underlying space Z = R™ x R™ has a Euclidean
structure with the norm || - ||2 and, hence, it coincides with the dual Z*. In this case, we can use
Oracle 1 and Oracle 2 from Section D.1.1 and we obtain the same complexity as (61). The same
discussions as Section D.1.1 apply.

BREGMAN SETUP

Let X = A" ={x e R": Y z; =1,2; > 0} and Y = A™. With this, problem (62) is known
as a zero sum game. In this case, deterministic algorithms formulated with a specific Bregman
distance (given below) have O (nnz(A)| Allmaxe!) total complexity. These settings are standard
and we recall them only for reader’s convenience.

For Z = R™™ and z = (x,y) € Z we define ||z| = /||x||§ + ||y||7. Correspondingly,
Z* = (R™*" || - ||,) is the dual space with ||z*|| = \/||x*[|Z, + [ly*||% forz* = (x*,y*). Forz =
(x,y) € A™ x A™ we use the negative entropy hi(x) = Y ., x;logzi, ha(y) = > i~ yilogy;
and set h(z) = hy(x) + ha(y) = S1"+" 2; log z;. Then we define the Bregman distance as

D(z,7') = h(z) — h(z') — (Vh(z'),z — z) = Zzz log 3

Of course, this definition requires z’ to be in the relative interior of A™ x A™; normally it is satisfied
automatically for the iterates of the algorithm (including our Alg. 2).
If we choose zy = (xq,yo) with xg = %Iln, Yo = %]lm, it is easy to see that
D <1 1 =1 .
L ipax, (z,20) < logn + logm = log(mn)
We know that D satisfies D(z,2’) > 1|z — 2| forall z,z’ € A™ x A™. Deterministic algorithms
have constant || A||max in their complexity, since F’ defined in (59) is || A/ max-Lipschitz:
2 T o112 2 2 2 2 2 2
IE @[5 = 14" yll5% + 1A% < TAlmax (X7 + 1y117) = [ Allax]lz]l"-

max

Oracle. The stochastic oracle here is similar to the Oracle 2 in Section D.1.1 for the Euclidean
case, but with adjustment to the ¢;-norm. Again we are in the setting of Assumption 2. Given
u=(u”,u¥)and v = (v*,v¥), for z = (x,y), we define

1
L Ay |u? —v? uf —of
R ) R T e e
J
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and call the described distribution as @ (u,v). We show that F¢ is variable || A||max-Lipschitz in
view of Definition 7. Indeed, we have

E [|Fe(a)—F(V)|= E [|Fe(u—v)|?
M(H’V)H € e(V)II5] 5NQ(U7V)U ¢ -

& [:ZHAZ-;( )Ilmax]

T

1
A (u
E | l4s0 - MMJ

—Z*HA sl —vyl2+z 1A e a5 = 051
Z

Jlj

SE IIAllfnax|Uf*Uﬁ’llluy*"y|l1+E Al axlef = vF|[[u® = vy
; =
—HAH (I = VY117 + [[u? = v7[I7) = [|Allax] I2.
max u Vo u Vot max || —V

Similarly, in every iteration of Alg. 2 we define a distribution Q(z;, +1/27 w?) and sample &} accord-
ing to it. This stochastic oracle was already used in (Grigoriadis and Khachiyan, 1995) and used
extensively after that, see (Nesterov and Nemirovski, 2013; Clarkson et al., 2012) and references
therein. In (Carmon et al., 2019) this oracle was called “sampling from the difference”.

Complexity. In this case, the complexity of deterministic algorithms (Mirror Prox, FoRB) is
O (nnz(A)[|Allmaxe ") Our result in Corollary 9 stated that Alg. 2 has the rate O (ﬁ) Given

nnz(A)
m+n

that the cost of each epoch of Alg. 2 is O (nnz(A) + K(m + n)), setting K = {

the total complexity
5 <nnz | V/nz(A)(m + n)\|A||maX> |

W gives us

3

which, in the square dense case, improves the deterministic complexity by /n.

Updates. For concreteness we specify updates in lines 4-7 of Alg. 2. Let w* = (u,v), w* =

(@, ¥°).

Vhi(Xg41/2) = aVhi(x}) + (1 — @) VR (T°) — ATV
Vh2(yk;+1/2) = aVha(y;) + (1 — a)Vhy(¥%) + TAu®

Then we form a distribution Q(zj,_ /2> w?)

_us

—v; H

|yZ+1/2,i H o |x2+1/2,¢

Pr{f = (’L,])} = ricj, r, =

Wivre v 7 iy~ wh

and sample & = (4, j) according to Q(z2+1/2, w*). Finally, we update xj , and y};_; as

=S S T S S
Vhi(x541) = aVhi(x5) + (1 — a)Vhi (@) — 7ATv* — — A Yy 1j05 — 0F)

= Vhl(XzH/Q) - TAz’:HY/iH/z - v sign(yiﬂ/u - ;)

Vh2(Y/f;+1) = Vh2(YZ+1/2) + TA:jHXZH/z —u’ Sign(wi+1/2,j - “j)
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Switching from dual variables Vhi(x) to primal x is elementary by duality:

(X1, ... eXn)

Dy et

and similarly for y. Updates for w and Vh(W) are straightforward by means of incremental aver-
aging.

X =Vh(x) <= x=Vh(X)=

D.2. Nonbilinear min-max problems

An important example of nonbilinear min-max problems is constrained optimization

min f(x) subjectto h;(x) <0, fori € [N],
xeX

where f, h; are smooth convex functions. We can map this problem to the VI template (1) by setting

_ (Vf(x) + 3N 4iVhi(x)

—(h1(x) ...hN(x))T >’ 9(2) :5X(X)+5Rf(}’)~

One possible choice for stochastic oracles is to set

. Vf(x)+Ny,~Vhi(x)
R = (YT L),

where e; is the i-th standard basis vector. Of course, this form of the oracle will not necessarily be
a good choice for specific applications.

In particular, as discussed in Section 1.2 and in the corollaries of our main theorems, our re-
sults will apply in their full generality and they will improve deterministic complexity as long as
L < V/NLp, where L is the Lipschitz constant corresponding to stochastic oracle in view of As-
sumption 1 and L is for the full operator. However, it is not clear that the generic choice in (63) will
satisfy this requirement. Therefore, one should be careful to design suitable oracles depending on
the particular structure of the problem to ensure complexity improvements. We refer to Section 1.1
for a detailed comparison with related works.

(63)

Appendix E. Numerical experiments

In this section, we provide preliminary empirical evidence” on how variance reduced methods for
VIs perform in practice. By no means, this report is exhaustive, but only an illustration for showing
(i) variance reduction helps in practice compared to deterministic methods and (ii) our approach
is not only more general in theory but also offers practical advantages compared to the previous
approach in (Carmon et al., 2019).

We focus on matrix games with simplex constraints in the Euclidean and entropic setups. In the
Euclidean step, we use the projection to simplex from (Condat, 2016). We compare deterministic
extragradient (EG), existing variance-reduced method (Carmon et al., 2019) (EG-Car+19) and pro-
posed Alg. 1 and Alg. 2. To distinguish from the Euclidean case, we write ‘MP’ instead of ‘EG’

2. Code can be found in https://github.com/ymalitsky/vr_for_vi
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VARIANCE REDUCTION FOR VIS
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Figure 1: Euclidean setup. left: policeman and burglar matrix (Nemirovski, 2013), middle, right: two test matrices given
in (Nemirovski et al., 2009, Section 4.5).

10! o~ MP , wh T T T T - T N T 1 o[ T T T T i~ T N T i
100 F - MP-Car+19 |- ol & MP-Car+19 | - MP-Car+19 |-
w0-1 A MP-Alg2 | -4 MP-Alg2 o2l -~ MP-Alg2 |

102
1072

s S Z 10t E
1073 F g 10-3 1

104 104

Duality gap

107 104

1077 F

Duality gap

100 F 105 F
1077 ¢

1077 F 10-7F

105 10-8

L L L L L L L 3 L I i I I I 070 L L L L
0 500 1000 1500 2000 2500 3,000 0 02 0.1 0.6 0.8 1 0 0.2 0.4 0.6 03
epoch epoch 104 epoch

Figure 2: Entropic setup. The same matrices in Figure 1 used in the same arrangement.

for all algorithms. We have chosen three test problems used in the literature (Nemirovski, 2013;
Nemirovski et al., 2009).

For all problems, we fix m = n = 500 and use the largest step sizes allowed by theory. In
particular, EG uses 1/Lp, where Ly is the Lipschitz constant of the overall operator F'. We also
use the reported parameters from (Carmon et al., 2019) for EG-Car+19. In the Euclidean case, by
tracing the proof of (Carmon et al., 2019, Proposition 2), we observed that one can improve the step
size from ) = {777 to ) = 577, where « is defined to be \L/% therein. Therefore, we use the

improved step size for EG-Car+19 for experiments with Euclidean setup. However, in the Bregman
setup, we did not find a way to improve the step size of EG-Car+19, so we use the reported one.

In our methods, we use the parameters from Remarks 10 and 12. For performance measure,
we use duality gap, which can be simply computed as max;(Ax); — min;(A"y); due to simplex
constraints. Cost of computing one F' is counted as an epoch, and the cost of stochastic oracles are
counted accordingly to match the overall cost.

We report the results in Figures 1 and 2. We see that variance reduced variants consistently
outperform deterministic EG in all cases, as predicted in theory. Within variance reduced methods,
due to the small step sizes of EG-Car+19, except the first dataset in the Euclidean setup, we observe
our algorithms to also outperform EG-Car+19. Especially in the Bregman setting, the difference is
noticeable since the analysis of EG-Car+19 requires smaller step sizes.
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