
Guiding Pretraining in Reinforcement Learning with Large Language Models

Yuqing Du * 1 Olivia Watkins * 1 Zihan Wang 2 Cédric Colas 3 4 Trevor Darrell 1 Pieter Abbeel 1

Abhishek Gupta 2 Jacob Andreas 3

Abstract
Reinforcement learning algorithms typically
struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated explo-
ration methods address this limitation by reward-
ing agents for visiting novel states or transitions,
but these methods offer limited benefits in large
environments where most discovered novelty is
irrelevant for downstream tasks. We describe a
method that uses background knowledge from
text corpora to shape exploration. This method,
called ELLM (Exploring with LLMs) rewards an
agent for achieving goals suggested by a language
model prompted with a description of the agent’s
current state. By leveraging large-scale language
model pretraining, ELLM guides agents toward
human-meaningful and plausibly useful behav-
iors without requiring a human in the loop. We
evaluate ELLM in the Crafter game environment
and the Housekeep robotic simulator, showing
that ELLM-trained agents have better coverage of
common-sense behaviors during pretraining and
usually match or improve performance on a range
of downstream tasks.

1. Introduction
Reinforcement learning algorithms work well when learners
receive frequent rewards that incentivize progress toward
target behaviors. But hand-defining such reward functions
requires significant engineering efforts in all but the simplest
cases (Amodei et al., 2016; Lehman et al., 2020). To master
complex tasks in practice, RL agents may therefore need to

*Equal contribution 1Department of Electrical Engineer-
ing and Computer Science, University of California, Berke-
ley, USA 2University of Washington, Seattle 3Massachusetts In-
stitute of Technology, Computer Science and Artificial Intelli-
gence Laboratory 4Inria, Flowers Laboratory. Correspondence to:
Yuqing Du <yuqing du@berkeley.edu>, Olivia Watkins <olivi-
awatkins@berkeley.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Cut down the tree.
2. Craft a pickaxe.
3. Eat cow.
4. Sleep.

 . . .
k. Build a wood house.

You see trees,
cows, grass,
table, and

bushes. You have
wood in your

inventory. You
feel hungry,
thirsty, and

sleepy.

LLM

Prompt:
What should
you do next?

Figure 1: ELLM uses a pretrained large language model
(LLM) to suggest plausibly useful goals in a task-agnostic
way. Building on LLM capabilities such as context-
sensitivity and common-sense, ELLM trains RL agents to
pursue goals that are likely meaningful without requiring
direct human intervention. Prompt is illustrative; see full
prompt and goal format in Appendix D.

learn some behaviors in the absence of externally-defined
rewards. What should they learn?

Intrinsically motivated RL methods answer this question
by augmenting rewards with auxiliary objectives based on
novelty, surprise, uncertainty, or prediction errors (Belle-
mare et al., 2016; Pathak et al., 2017; Burda et al., 2019;
Zhang et al., 2021; Liu & Abbeel, 2021; Yarats et al., 2021).
But not everything novel or unpredictable is useful: noisy
TVs and the movements of leaves on a tree may provide an
infinite amount of novelty, but do not lead to meaningful
behaviors (Burda et al., 2019). More recent approaches com-
pute novelty with higher-level representations like language
(Tam et al., 2022; Mu et al., 2022), but can continue driving
the agent to explore behaviors that are unlikely to corre-
spond to any human-meaningful goal—like enumerating
unique configurations of furniture in a household. It is not
sufficient for extrinsic-reward-free RL agents to optimize
for novelty alone: learned behaviors must also be useful.

In this paper, we describe a method for using not just
language-based representations but pretrained language
models (LLMs) as a source of information about useful
behavior. LLMs are probabilistic models of text trained on
large text corpora; their predictions encode rich information
about human common-sense knowledge and cultural conven-

1

Guiding Pretraining in Reinforcement Learning with Large Language Models

tions. Our method, Exploring with LLMs (ELLM), queries
LMs for possible goals given an agent’s current context and
rewards agents for accomplishing those suggestions. As a
result, exploration is biased towards completion of goals
that are diverse, context-sensitive, and human-meaningful.
ELLM-trained agents exhibit better coverage of useful be-
haviors during pretraining, and outperform or match base-
lines when fine-tuned on downstream tasks.

2. Background and Related Work
Intrinsically Motivated RL. When reward functions are
sparse, agents often need to carry out a long, specific se-
quence of actions to achieve target tasks. As action spaces
or target behaviors grow more complex, the space of alter-
native action sequences agents can explore grows combi-
natorially. In such scenarios, undirected exploration that
randomly perturbs actions or policy parameters has little
chance of succeeding (Ten et al., 2022; Ladosz et al., 2022).

Many distinct action sequences can lead to similar out-
comes (Baranes & Oudeyer, 2013)—for example, most
action sequences cause a humanoid agent to fall, while
very few make it walk. Building on this observation, in-
trinsically motivated RL algorithms (IM-RL) choose to
explore outcomes rather than actions (Oudeyer & Kaplan,
2009; Ten et al., 2022; Ladosz et al., 2022). Knowledge-
based IMs (KB-IMs) focus on maximising the diversity of
states (reviews in Aubret et al., 2019; Linke et al., 2020).
Competence-based IMs (CB-IMs) maximise the diversity
of skills mastered by the agent (review in Colas et al., 2022).
Because most action sequences lead to a very restricted part
of the outcome space (e.g. all different ways of falling on
the floor likely correspond to a single outcome), these meth-
ods lead to a greater diversity of outcomes than undirected
exploration (Lehman et al., 2008; Colas et al., 2018).

However, maximizing diversity of outcomes may not always
be enough. Complex environments can contain sources of
infinite novelty. In such environments, seeking ever-more-
novel states might drive learning towards behaviors that
have little relevance to the true task reward. Humans do
not explore outcome spaces uniformly, but instead rely on
their physical and social common-sense to explore plausibly-
useful behaviors first. In video games, they know that keys
should be used to open doors, ladders should be climbed,
and snakes might be enemies. If this semantic information
is removed, their exploration becomes severely impacted
(Dubey et al., 2018). The approach we introduce in this
paper, ELLM, may be interpreted as a CB-IM algorithm
that seeks to explore the space of possible and plausibly-
useful skills informed by human prior knowledge.

Linguistic Goals and Pretrained Language Models.
One way of representing a diverse outcome space for ex-

ploration is through language. Training agents to achieve
language goals brings several advantages: (1) goals are easy
to express for non-expert users; (2) they can be more abstract
than standard state-based goals (Colas et al., 2022); and (3)
agents can generalize better thanks to the partial composi-
tionality and recursivity of language (Hermann et al., 2017;
Hill et al., 2019; Colas et al., 2020). Such linguistic goals
can be used as instructions for language-conditioned imita-
tion learning or RL. In RL, agents typically receive language
instructions corresponding to the relevant reward functions
(Luketina et al., 2019) and are only rarely intrinsically mo-
tivated (with the exception of Mu et al., 2022; Colas et al.,
2020; Tam et al., 2022), where language is also used as a
more general compact state abstraction for task-agnostic
exploration.

Representing goals in language unlocks the possibility of us-
ing text representations and generative models of text (large
language models, or LLMs) trained on large corpora. In im-
itation learning, text pretraining can help learners automat-
ically recognize sub-goals and learn modular sub-policies
from unlabelled demonstrations (Lynch & Sermanet, 2020;
Sharma et al., 2021), or chain pre-trained goal-oriented poli-
cies together to accomplish high-level tasks (Yao et al., 2020;
Huang et al., 2022a; Ahn et al., 2022; Huang et al., 2022b).
In RL, LM-encoded goal descriptions greatly improve the
generalization of instruction-following agents across instruc-
tions (Chan et al., 2019) and from synthetic to natural goals
(Hill et al., 2020). LLMs have also been used as proxy
reward functions when prompted with desired behaviors
(Kwon et al., 2023). Unlike these approaches, ELLM uses
pretrained LLMs to constrain exploration towards plausibly-
useful goals in a task-agnostic manner. It does not assume a
pretrained low-level policy, demonstrations, or task-specific
prompts. Most similar to our work, Choi et al. (2022) also
prompt LLMs for priors. However, they use LM priors to
classify safe and unsafe states to reward, which is a subset
of common-sense exploratory behaviors ELLM should gen-
erate. Also similar to our work, Kant et al. (2022) query
LLMs for zero-shot commonsense priors in the Housekeep
environment, but they apply these to a planning task rather
than as rewards for reinforcement learning.

3. Structuring Exploration with LLM Priors
3.1. Problem Description

We consider partially observed Markov decision processes
defined by a tuple (S,A,O,⌦, T , �,R), in which obser-
vations o 2 ⌦ derive from environment states s 2 S and
actions a 2 A via O(o | s, a). T (s0 | s, a) describes the
dynamics of the environment while R and � are the envi-
ronment’s reward function and discount factor.

IM agents optimize for an intrinsic reward Rint alongside

2

Guiding Pretraining in Reinforcement Learning with Large Language Models

Text
obs

- Cut down the tree.
- Dig in the grass.
- Attack the cow.

“You see grass,
trees, bushes, cows,
and a crafting table.
Your inventory has

wood.”

Valid actions: sleep, eat, attack, chop,
drink, place, make, mine. You are a player
playing a game. Suggest the best actions the
player can take based on the things you see
and the items in your inventory. Only use
valid actions and objects.

You see plant, tree, and skeleton. You are
targeting skeleton. What do you do?
- Eat plant , chop tree , attack skeleton

{current obs}
What do you do?

LLM

(a) Policy parametrization for ELLM. We optionally condition on embeddings of
the goals Etext(g

1:k
t) and state Etext(Cobs(ot)).

LM Embed LM Embed

- Cut down the tree.
- Dig in the grass.
- Attack the cow.

“Chop tree”

- Cut down the tree.
- Dig in the grass.
- Attack the cow.

(b) LLM reward scheme. We reward the agent for
the similarity between the captioned transition and
the goals.

Figure 2: ELLM uses GPT-3 to suggest adequate exploratory goals and SentenceBERT embeddings to compute the similarity
between suggested goals and demonstrated behaviors as a form of intrinsically-motivated reward.

or in place of R. CB-IM methods, in particular, define Rint
via a family of goal-conditioned reward functions:

Rint(o, a, o
0) = Eg⇠G [Rint(o, a, o

0
| g)] . (1)

A CB-IM agent is expected to perform well with respect to
the original R when the intrinsic reward Rint is both easier
to optimize and well aligned with R, such that behaviors
maximizing Rint also maximize R. Every CB-IM algorithm
must define two elements in Equation 1: (1) the distribution
of goals to sample from, i.e. G, and (2) the goal-conditioned
reward functions Rint(o, a, o0 | g). Given these, A CB-IM
algorithm trains a goal-conditioned policy ⇡(a | o, g) to
maximize Rint. For some intrinsic reward functions, agents
may achieve high reward under the original reward function
R immediately; for others, additional fine-tuning with R

may be required. In Equation (1), the space of goals G is
determined by the goal-conditioned reward function Rint(· |
g): every choice of g induces a corresponding distribution
over optimal behaviors.

3.2. Goal-based Exploration Desiderata

How should we choose G and Rint(· | g) to help agents
make progress toward general reward functions R? Goals
targeted during exploration should satisfy three properties:

• Diverse: targeting diverse goals increases the chance
that the target behavior is similar to one of them.

• Common-sense sensitive: learning should focus on
feasible goals (chop a tree > drink a tree) which
are likely under the distribution of goals humans care
about (drink water > walk into lava).

• Context sensitive: learning should focus on goals that
are feasible in the current environment configuration
(e.g. chop a tree only if a tree is in view).

Most CB-IM algorithms hand-define the reward functions
Rint (2) and the support of the goal distribution (1) in align-
ment with the original task R, but use various intrinsic mo-
tivations to guide goal sampling (1): e.g. novelty, learning
progress, intermediate difficulty (see a review in Colas et al.,
2022). In Exploring with Large Language Models (ELLM),
we propose to leverage language-based goal representations
and language-model-based goal generation to alleviate the
need for environment-specific hand-coded definitions of (1)
and (2). We hypothesize that world knowledge captured in
LLMs will enable the automatic generation of goals that are
diverse, human-meaningful and context sensitive.

3.3. Goal Generation with LLMs (G)

Pretrained large language models broadly fall into three cat-
egories: autoregressive, masked, or encoder-decoder mod-
els (Min et al., 2021). Autoregressive models (e.g. GPT;
Radford et al., 2018), are trained to maximize the log-
likelihood of the next word given all previous words, and are
thus capable of language generation. Encoder-only models
(e.g. BERT; Devlin et al., 2018), are trained with a masked
objective, enabling effective encoding of sentence seman-
tics. Pretraining LMs on large text corpora yields impressive
zero- or few-shot on diverse language understanding and
generation tasks, including tasks requiring not just linguistic
knowledge but world knowledge (Brown et al., 2020).

ELLM uses autoregressive LMs to generate goals and
masked LMs to build vector representations of goals. When
LLMs generate goals, the support of the goal distribution
becomes as large as the space of natural language strings.
While querying LLMs unconditionally for goals can offer
diversity and common-sense sensitivity, context-sensitivity
requires knowledge of agent state. Thus, at each timestep
we acquire goals by prompting the LLM with a list of the

3

Guiding Pretraining in Reinforcement Learning with Large Language Models

agent’s available actions and a text description of the current
observation via a state captioner Cobs : ⌦! ⌃⇤, where ⌃⇤

is the set of all strings (see Figure 2).

We investigate two concrete strategies for extracting goals
from LLMs: (1) open-ended generation, in which the LLM
outputs text descriptions of suggested goals (e.g. next you
should...), and (2) closed-form, in which a possible goal
is given to the LLM as a QA task (e.g. Should the agent
do X? (Yes/No)). Here the LLM goal suggestion is only
accepted when the log-probability of Yes is greater than
No. The former is more suited for open-ended exploration
and the latter is more suited for environments with large
but delimitable goal spaces. While the LLM does not have
prior knowledge of all possible goals, we can provide some
guidance towards desirable suggestions through few-shot
prompting. See Appendix D for the full prompt.

3.4. Rewarding LLM Goals (Rint)

Next we consider the goal-conditioned reward (2). We com-
pute rewards for a given goal g (Rint in Eq. 1) by measuring
the semantic similarity between the LLM-generated goal
and the description of the agent’s transition in the envi-
ronment as computed by a transition captioner Ctransition :
⌦⇥A⇥ ⌦! ⌃:

Rint(o, a, o
0
| g) =

(
�(Ctransition(o, a, o0), g) if > T

0 otherwise.

Here, the semantic similarity function �(· , ·) is defined as
the cosine similarity between representations from an LM
encoder E(·) of captions and goals:

�(Ctransition(o, a, o
0), g) =

E(Ctransition(o, a, o0)) · E(g)

kE(Ctransition(o, a, o0))kkE(g)k
.

In practice, we use a pretrained SentenceBERT model
(Reimers & Gurevych, 2019) for E(·). We choose cosine
similarity to measure alignment between atomic agent ac-
tions and freeform LLM generations, as done in prior work
(Huang et al., 2022a). When the caption of a transition is
sufficiently close to the goal description (� > T), where
T is a similarity threshold hyperparameter, the agent is re-
warded proportionally to their similarity. Finally, since there
can be multiple goals suggested, we reward the agent for
achieving any of the k suggestions by taking the maximum
of the goal-specific rewards:

�max = max
i=1...k

�
�
Ctransition(ot, at, ot+1), g

i
t

�
.

As a result, the general reward function of CB-IM methods
from Equation 1 can be rewritten:

Rint(o, a, o
0) = ELLM(g1 .. k|Cobs(o)) [�

max] . (2)

3.5. Implementation Details

The full ELLM algorithm is summarized in Algorithm 1.
See Figure 1 for the high-level pipeline. To impose a nov-
elty bias, we also filter out LM suggestions that the agent
has already achieved earlier in the same episode. This pre-
vents the agent from exploring the same goal repeatedly. In
Appendix L we show this step is essential to the method.

We consider two forms of agent training: (1) a goal-
conditioned setting where the agent is given a sentence
embedding of the list of suggested goals, ⇡(a | o,E(g1:k)),
and (2) a goal-free setting where the agent does not have ac-
cess to the suggested goals, ⇡(a | o). While Rint remains the
same in either case, training a goal-conditioned agent intro-
duces both challenges and benefits: it can take time for the
agent to learn the meaning of the different goals and connect
it to the reward, but having a language-goal conditioned pol-
icy can be more amenable to downstream tasks than an agent
just trained on an exploration reward. We also consider two
types of policy inputs– (1) just the partially observed pixel
observations, or (2) the pixel observations combined with
the embedded language-state captions E(Cobs(o)). Since
(2) performs better (see analysis in Appendix A), we use
(2) for all paper experiments unless otherwise specified. All
variants are trained with the DQN algorithm (Mnih et al.,
2013), with implementation details in Appendix H.

This paper focuses on the benefits of LLM priors for RL
exploration and mostly assumes a pre-existing captioning
function. In simulation, this can be acquired for free with
the ground truth simulator state. For real world applications,
one can use object-detection (Zaidi et al., 2022), caption-
ing models (Stefanini et al., 2022), or action recognition
models (Kong & Fu, 2022). Alternatively, one could use
multi-modal vision-language models with a similar LM
component (Alayrac et al., 2022). To test the robustness of
our method under varying captioning quality, Section 4.1
studies a relaxation of these assumptions by looking at a
variant of ELLM using a learned captioner trained on human
descriptions.

4. Experiments
Our experiments test the following hypotheses:

• (H1) Prompted pretrained LLMs can generate
plausibly-useful exploratory goals satisfying the
desiderata listed in Section 3.2: diversity, common-
sense and context sensitivity.

• (H2) Training an ELLM agent on these exploratory
goals improves performance on downstream tasks com-
pared to methods that do not leverage LLM-priors.

We evaluate ELLM in two complex environments:
(1) Crafter, an open-ended environment in which explo-
ration is required to discover long-term survival strategies

4

Guiding Pretraining in Reinforcement Learning with Large Language Models

Algorithm 1 ELLM Algorithm
Initialize untrained policy ⇡
t 0
ot env.RESET()
while t < max env steps do

Generate k suggestions, filtering achieved ones
g1:kt ←PREV ACHIEVED(LLM(Cobs(ot)))
Interact with the environment
at ⇠ ⇡(at|ot, E(Cobs(ot))), E(g1:kt))
st+1 env.STEP(at)
Compute suggestion achievement reward
rt 0
�max

 maxi=1...k�(Ctransition(ot, at, ot+1), git)
if �max > threshold then

rt = �max

end if
Update agent using any RL algorithm
Buffert+1 ←Buffert [(ot, at, g1:kt , rt, ot+1)
⇡ ←UPDATE(⇡, Buffert+1)

end while

You see {observation}.
You have in your inventory {items}*.
You feel {health status}*.

 *omitted if empty.

You see bush, grass, plant, tree, and
water. You have in your inventory
sapling.

- Plant sapling
- Chop tree
- Chop bush

Seen objects: {object, receptacle}.
Seen receptacles: {receptacles}.
You are holding {gripped_object}.

Seen objects: clock in kitchen sink.
Seen receptacles: kitchen bottom
cabinet, kitchen sink, living room
shelf, living room carpet …
You are holding a cereal box.

- Place cereal box in kitchen cabinet
- Pick clock

Figure 3: Sample templated captions and suggested goals.

(Hafner, 2021), and (2) Housekeep, an embodied robotics
environment that requires common-sense to restrict the ex-
ploration of possible rearrangements of household objects
(Kant et al., 2022). Besides environment affordances, these
environments also differ in viewpoint (3rd vs 1st person) and
action space (large high-level vs low-level). In each envi-
ronment, we compare ELLM with existing IM-RL methods
(Liu & Abbeel, 2021; Burda et al., 2019), an oracle with
ground-truth rewards, and ablations of ELLM; see Table 1.

4.1. Crafter

Environment description. We first test ELLM in the
Crafter environment, a 2D version of Minecraft (Hafner,
2021). Like Minecraft, Crafter is a procedurally generated
and partially observable world that enables collecting and
creating a set of artifacts organized along an achievement
tree which lists all possible achievements and their respec-
tive prerequisites (see Figure 4 in Hafner, 2021). Although

Crafter does not come with a single main task to solve, we
can track agent progress along the achievement tree.

We modify the original game in two ways. Crafter’s original
action space already incorporates a great deal of human
domain knowledge: a single do action is interpreted in dif-
ferent ways based on the agent’s context, each of which
would correspond to a very different low-level action in a
real environment (‘do’ means ‘attack’ in front of a zombie
but ‘eat’ in front of a plant). We remove this assistance
by augmenting the action space with more specific verb +
noun pairs that are not guaranteed to be useful (e.g. ‘eat
zombie’). This makes it possible in Crafter to attempt a
wide range of irrelevant/nonsensical tasks, providing an
opportunity for an LM narrow the goal space down to rea-
sonable goals. See Appendix C for details. Second, to
make RL training easier across all conditions, we increase
the damage the agent does against enemies and reduce the
amount of wood required to craft a table from 2 to 1; see
Appendix Figure 10 for comparisons.

We use Codex (Chen et al., 2021) as our LLM with the
open-ended suggestion generation variant of ELLM, where
we directly take the generated text from the LLM as the set
of suggested goals to reward. Each query prompt consists
of a list of possible verbs the agent can use (but not a list of
all possible nouns), a description of the agent’s current state,
and the question ‘What do you do?’. We add two examples
of similar queries to the start of the prompt in order to guide
the language model to format suggestions in a consistent
way; see the full prompt in Appendix D.

Goals suggested by the LLM. To answer H1, we study
the goals suggested by the LLM in Table 2: are they diverse,
context-sensitive and common-sensical? The majority of
suggested goals (64.9%) are context-sensitive, sensible, and
achievable in the game. Most of the 5% of goals not allowed
by Crafter’s physics (e.g. build a house) are context- and
common-sensitive as well. The last third of the goals vi-
olate either context-sensitivity (13.6%) or common-sense
(16.4%). See Appendix K for details.

Pretraining exploration performance. A perfect explo-
ration method would unlock all Crafter achievements in
every episode, even without prior knowledge of the set
of possible achievements. Thus, we measure exploration
quality as the average number of unique achievements per
episode across pretraining (Figure 4). Although it is not
given access to Crafter’s achievement tree, ELLM learns
to unlock about 6 achievements every episode, against 9
for the ground-truth-reward Oracle (Figure 4). It outper-
forms all exploration methods that only focus on generat-
ing novel behaviors (APT, RND, Novelty) — all limited to
less than 3 achievements in average. As shown in Table 2,
ELLM does not only focus on novelty but also generates

5

Guiding Pretraining in Reinforcement Learning with Large Language Models

Method Description

ELLM (ours) Rewards the agent for achieving any goal suggested by the LLM using the similarity-based reward functions Rint
defined in Eq. 2. It only rewards the agent for achieving a given goal once per episode (novelty bias).

Oracle The upper bound: it suggests all context-sensitive goals at any step, only common-sensical ones (from the list of
(Crafter only) valid goals) and uses the same novelty bias as ELLM. Rewards are computed exactly with a hard-coded Rint.

Novelty

This baseline removes the common-sense sensitivity assumption of the Oracle and rewards the agent for
achieving any of the goals expressible in the environment including invalid ones (e.g. drink tree) as long as the
agent performs the goal-reaching action in the right context (e.g. while facing a tree). Uses a hard-coded Rint and
a novelty bias like the Oracle.

Uniform This variant removes the novelty bias from Novelty and samples uniformly from the set of expressible goals.

APT State-of-the-art KB-IM algorithm that maximizes state entropy computed as the distance between the current

(Liu & Abbeel, 2021)
state’s embedding es and its K nearest neighbors es[1..K] within a minibatch uniformly sampled from memory.
There is no goal involved and Rint = log kes � es[1..K]k.

RND State-of-the-art KB-IM algorithm that rewards the agent for maximizing a form of novelty estimated by the
(Burda et al., 2019) prediction error of a model h trained to predict the output of a random network h̃. Rint = kh(s, a) � h̃(s, a)k.

Table 1: Descriptions of the compared algorithms. (Additional comparisons in Appendix N).

Suggested Rewarded

Context-Insensitive 13.6% 1.1%
Common-Sense Insensitive 16.4% 32.4%
Good 64.9% 66.5%
Impossible 5.0% 0%

Table 2: Fractions of suggested and rewarded goals that fail
to satisfy context-sensitivity or common-sense sensitivity;
that satisfy these properties and are achievable in Crafter
(Good); or that are not allowed by Crafter’s physics. See
Appendix K for examples of each.

Figure 4: Ground truth achievements unlocked per episode
across pretraining, mean±std across 5 seeds.

common-sensical goals. This boosts exploration in Crafter,
supporting H1.

As discussed in Section 3.5, we also test variants of each
method (with / without goal conditioning, with / without
text observations) where applicable. We do not find goal
conditioning to bring a significant advantage in performance
during pretraining. The non-conditioned agent might infer
the goals (and thus the rewarded behaviors) from context
alone. Similarly to Mu et al. (2022) and Tam et al. (2022),
we find that agents trained on visual + textual observations
(as computed by E(Cobs(o))) outperform agents trained on
visual observations only for all the tested variants (opaque
vs semi-transparent bars in Appendix Figure 8). That said,
optimizing for novelty alone, whether in visual or semantic
spaces, seems to be insufficient to fully solve Crafter.

The naı̈ve approach of finetuning a pretrained policy on
the downstream task performs poorly across all pretraining
algorithms. We hypothesize this is because relevant features
and Q-values change significantly between pretraining and
finetuning, especially when the density of rewards changes.
Instead, we find it is more effective to use the pretrained
policy for guided exploration. We initialize and train a new
agent, but replace 50% of the algorithm’s randomly-sampled
✏-greedy exploration actions with actions sampled from the
pretrained policy. In Appendix M we include the poor
finetuning results discuss why we think guided exploration
does better.

Figure 5 compares the downstream performance of ELLM
to the performance of the two strongest baselines RND and
APT using both transfer methods. (full comparisons with all
baselines shown in Appendix B). For the goal-conditioned
version of ELLM, we provide the agent with the sequence
of subgoals required to achieve the task. Even though not all

6

Guiding Pretraining in Reinforcement Learning with Large Language Models

subgoals were mastered during pretraining, we still observe
that the goal-conditioned pretrained agents outperform the
unconditioned ones.

Performance of the different methods varies widely task-
to-task and even seed-to-seed since each task requires a
different set of skills, and any given agent may or may
not have learned a particular skill during pretraining. For
instance, ELLM agents typically learn to place crafting
tables and attack cows during pretraining, leading to low-
variance learning curves. They typically do not learn to
make wood swords, so we see a high-variance learning curve
which depends on how quickly each agent stumbles across
the goal during finetuning. Despite the variance, we see that
goal-conditioned ELLM stands out as the best-performing
method on average. Notably, ELLM (both goal-conditioned
and goal-free) is the only method with nonzero performance
across all tasks.

ELLM with imperfect transition captioner. Perfect cap-
tioners might not be easy to obtain in some environments.
However, trained captioners might generate more linguis-
tic diversity and make mistakes. To test the robustness of
ELLM to diverse and imperfect captions, we replace the
oracle transition captioner Ctransition with a captioner trained
on a mixture of human and synthetic data (847+900 labels)
using the ClipCap algorithm (Mokady et al., 2021b). Syn-
thetic data removes some of the human labor while still
providing a diversity of captions for any single transition
(3 to 8). Appendix J presents implementation details and
analyzes how the trained captioner might cause errors in
generated rewards. Although its false negative rate is low
(it detects goal achievements well), its false positive rate
is rather high. This means it might generate rewards for
achievements that were not unlocked due to a high simi-
larity between the generated caption and goal description
generated by the LLM. In ELLM pretraining, we use the
learned captioner to caption transitions where an action is
successful and use that caption to compute the reward via the
similarity metric (see Section 3). Figure 6 shows that ELLM
performance is overall robust to this imperfect captioner.

4.2. Housekeep

Environment description. Housekeep is an embodied
robotics environment where the agent is tasked with clean-
ing up a house by rearranging misplaced objects (Kant et al.,
2022). The agent must successfully match the environment’s
ground truth correct mapping of objects to receptacles with-
out direct instructions specifying how objects need to be re-
arranged. This mapping was determined via crowd-sourcing
common-sense object-receptacle combinations. An exam-
ple layout of the task can be found in Figure 1 in Kant et al.
(2022). Common-sense priors are necessary for learning to
rearrange misplaced objects into reasonable configurations.

Task 1 Task 2 Task 3 Task 4
Match Acc. 85.7% 87.5% 50% 66.7%
Mismatch Acc. 93.8% 90.1% 94.0% 87.6%

Table 3: Classification accuracy of LLM for each Housekeep
task (top row is true positives, bottom row is true negatives).

We focus on a simplified subset of Housekeep consisting
of 4 different scenes with one room each, each with 5 dif-
ferent misplaced objects and a suite of different possible
receptacles; see Appendix F for details. Because the agent
does not have access to the ground truth target locations,
we use the game reward’s rearrangement success rate as
a measure of exploration quality: common-sensical explo-
ration should perform better. A success rate of 100% means
the agent has picked and placed all 5 misplaced objects in
correct locations. Note that we intentionally focus on a
domain where the downstream application benefits strongly
from exploring reasonable goals during pretraining. Rather
than designing reward functions that correspond to all cor-
rect rearrangements for all possible objects, we investigate
whether ELLM can be a general purpose method that guides
learning human-meaningful behaviors.

Unlike Crafter’s combinatorial and high-level action space,
Housekeep operates with low-level actions: moving forward,
turning, looking up or down, and picking or placing an ob-
ject. This allows us to investigate whether ELLM enables
high-level exploration despite using lower-level control. We
assume access to an egocentric instance segmentation sensor
to generate captions of in-view objects and receptacles, and
use the text-davinci-002 InstructGPT model (Ouyang
et al., 2022) as our LLM. Given a description of visible
objects, the receptacles the objects are currently in, and all
previously seen receptacles, we create a list of all possible
object-receptacle mappings. We use the closed-form vari-
ant of ELLM and query the LLM for whether each object
should be placed in each receptacle as a yes/no question.
By querying for each object-receptacle combination indi-
vidually, we are able to cache and efficiently reuse LLM
queries. The agent can be given two types of goals: (1) pick-
ing an object if it is not already in a suggested receptacle,
and (2) placing a gripped object in a suggested receptacle.

Goals suggested by LLM. In Housekeep, we assess LLM
goals by looking at the classification accuracy of correct
and incorrect arrangements (Table 3). We find that the LLM
accuracy at identifying mismatches (e.g. vase in kitchen
sink) are all above 87%, however, accuracy of identifying
matches varies greatly depending on the available objects
and receptacles (ranging from 50-90%). Since there are
only a few correct positions, each false negative hurts ac-
curacy greatly. Taking a closer look, we find that some

7

Guiding Pretraining in Reinforcement Learning with Large Language Models

Figure 5: Success rates across training for each of the seven downstream tasks in the Crafter environment. Each run trains
an agent from scratch while leveraging a pretrained policy for exploration. Plots show mean ± std for 5 seeds. Some plots
have multiple overlapping curves at 0.

Figure 6: Pretraining with a learned captioner vs a ground
truth captioner. We see performance drops, especially for
ELLM, but still relatively good performance. (3 seeds,
mean± std.)

LLM labels are reasonable despite disagreeing with the en-
vironment mapping: e.g. suggesting vase in living room
table, and not suggesting pan in living room cabinet.
This suggests that there are ambiguities in the ground truth
mappings, likely due to human disagreement.

Pretraining and downstream performance. To investi-
gate H1, we compare ELLM against the strongest baselines
(RND, APT, Novelty) described in Table 1. In Housekeep
the novelty baseline rewards the agent for novel instances of
pick or place actions in an episode, allowing us to differenti-
ate between success attributable solely to the captioner and
the pick/place prior, and success attributable to any LLM
common-sense priors. For brevity, we focus only on the
pixel + text-observation variant of all methods. Sample ef-
ficiency curves measuring the ground truth rearrangement
success during both pretraining and finetuning are shown
in Figure 7a. In three of the four tasks, we find that the
ELLM bias leads to higher success rates during pretraining,
suggesting coverage better aligned with the downstream
task compared to the baselines. We also find much higher
pretraining success rates in the first two tasks. Since Table 3
shows higher LLM accuracy for these two tasks, this differ-
ence shows the impact of LLM inaccuracies on pretraining.

For H2, we test two different ways of using the pretrained
models in the downstream rearrangement task. First, we
directly finetune the pretrained model on the ground truth
correct rearrangement; shown after the dashed vertical line
in Figure 7a. Here, the success rates for finetuned ELLM

matches or outperform the baselines, especially if pretrain-
ing has already led to high success rates. Interestingly, we
also find that the goal-conditioned ELLM variant consis-
tently suffers a drop in performance when finetuning starts.
We hypothesize this is due to the treatment of all suggested
goals as a single string, so if any single goal changes be-
tween pretraining and finetuning the agent must relearn the
goal embedding changes. Second, in Figure 7b we present
results for directly training a new agent on the downstream
task, using the frozen pretrained model as an exploratory
actor during ✏-greedy exploration. Once again, we observe
that ELLM consistently matches or outperforms all base-
lines. We also see here that the KB-IM baselines are more
competitive, suggesting that this training scheme is better
suited for pretrained exploration agents that are not well-
aligned to the downstream task.

5. Conclusions and Discussion
We have presented ELLM, an intrinsic motivation method
that aims to bias exploration towards common-sense and
plausibly useful behaviors via a pretrained LLM. We have
shown that such priors are useful for pretraining agents in
extrinsic-reward-free settings that require common-sense
behaviors that other exploration methods fail to capture.

ELLM goes beyond standard novelty search approaches by
concentrating exploration on common-sensical goals. This
is helpful in environments offering a wide array of possible
behaviors among which very few can said to be plausibly
useful. It is less helpful in environments with little room
for goal-based exploration, when human common-sense
is irrelevant or cannot be expressed in language (e.g. fine-
grained manipulation), or where state information is not
naturally encoded as a natural language string.

LLM performance is sensitive to prompt choice. Even with
a well-chosen prompt, LLMs sometimes make errors, often
due to missing domain-specific knowledge. False nega-
tives can permanently prevent the agent from learning a
key skill: in Crafter, for example, the LLM never suggests
creating wood pickaxes. There are multiple avenues to ad-
dress this limitation: (1) combining ELLM rewards with
other KB-IM rewards like RND, (2) prompting LLMs with
descriptions of past achievements (or other feedback about

8

Guiding Pretraining in Reinforcement Learning with Large Language Models

(a) Pretraining and finetuning: pretraining for 4M steps then fine-
tuning for 1M steps on the ground truth correct arrangement.

(b) Downstream evaluation: Using the frozen pretrained exploration
policies only for ✏-greedy-style action selection for 1M steps.

Figure 7: Housekeep: Correct arrangement success rates on 4 object-receptacle task sets. Mean ± std over 5 seeds.

environment dynamics) so that LLMs can learn about the
space of achievable goals, (3) injecting domain knowledge
into LLM prompts, or (4) fine-tuning LLMs on task-specific
data. While ELLM does not rely on this domain knowledge,
when this information exists it is easy to incorporate.

ELLM requires states and transition captions. Our learned
captioner experiments Figure 6 suggest we can learn these
from human-labeled samples, but in some environments
training this captioner might be less efficient than collecting
demonstrations or hard-coding a reward function. Still, we
are optimistic that as progress in general-purpose caption-
ing models continues, off-the-shelf captioners will become
feasible for more tasks. Lastly, suggestion quality improves
considerably with model size. Querying massive LLMs
regularly may be time- and cost-prohibitive in some RL
environments.

As general-purpose generative models become available in
domains other than text, ELLM-like approaches might also
be used to suggest plausible visual goals, or goals in other
state representations. ELLM may thus serve as a platform
for future work that develops even more general and flexible
strategies for incorporating human background knowledge
into reinforcement learning.

6. Acknowledgements
YD and OW are funded by the Center for Human-
Compatible Artificial Intelligence. CC received funding
from the European Union’s Horizon 2020 research and in-
novation programme under the Marie Skłodowska-Curie
grant agreement No. 101065949. This material is based
upon work supported by the National Science Foundation
under Grant No. 2212310 to AG and JA. OpenAI credits for
GPT-3 access were provided through OpenAI’s Researcher
Access Program. We thank Sam Toyer and the members of
the RLL for feedback on early iterations of this project.

References
Abid, A., Farooqi, M., and Zou, J. Persistent anti-muslim

bias in large language models. In Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society,

pp. 298–306, 2021.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,
and Bellemare, M. G. Deep reinforcement learning at
the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 2021.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Gopalakrishnan, K., Hausman, K.,
Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B., Irpan,
A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth, S., Joshi,
N. J., Julian, R., Kalashnikov, D., Kuang, Y., Lee, K.-
H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor, P.,
Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D., Ser-
manet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke, V.,
Xia, F., Xiao, T., Xu, P., Xu, S., and Yan, M. Do as i can,
not as i say: Grounding language in robotic affordances,
2022. URL https://arxiv.org/abs/2204.01691.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,
Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., et al. Flamingo: a visual language model for few-shot
learning. arXiv preprint arXiv:2204.14198, 2022.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Aubret, A., Matignon, L., and Hassas, S. A survey on
intrinsic motivation in reinforcement learning. arXiv
preprint arXiv:1908.06976, 2019.

Baranes, A. and Oudeyer, P.-Y. Active learning of inverse
models with intrinsically motivated goal exploration in
robots. Robotics and Autonomous Systems, 61(1):49–73,
2013.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. On the dangers of stochastic parrots: Can
language models be too big? In Proceedings of the 2021
ACM conference on fairness, accountability, and trans-
parency, pp. 610–623, 2021.

9

https://arxiv.org/abs/2204.01691

Guiding Pretraining in Reinforcement Learning with Large Language Models

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. In Seventh
International Conference on Learning Representations,
pp. 1–17, 2019.

Chan, H., Wu, Y., Kiros, J., Fidler, S., and Ba, J.
Actrce: Augmenting experience via teacher’s advice
for multi-goal reinforcement learning. arXiv preprint
arXiv:1902.04546, 2019.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Choi, K., Cundy, C., Srivastava, S., and Ermon, S. LMPriors:
Pre-trained language models as task-specific priors. arXiv
preprint arXiv:2210.12530, 2022.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. Gep-pg: Decou-
pling exploration and exploitation in deep reinforcement
learning algorithms. In International conference on ma-
chine learning, pp. 1039–1048. PMLR, 2018.

Colas, C., Karch, T., Lair, N., Dussoux, J.-M., Moulin-
Frier, C., Dominey, P., and Oudeyer, P.-Y. Language
as a cognitive tool to imagine goals in curiosity driven
exploration. Advances in Neural Information Processing
Systems, 33:3761–3774, 2020.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-
Y. Autotelic agents with intrinsically motivated goal-
conditioned reinforcement learning: a short survey. Jour-
nal of Artificial Intelligence Research, 74:1159–1199,
2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., and
Efros, A. A. Investigating human priors for playing video
games. arXiv preprint arXiv:1802.10217, 2018.

Hafner, D. Benchmarking the spectrum of agent capabilities.
arXiv preprint arXiv:2109.06780, 2021.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R.,
Soyer, H., Szepesvari, D., Czarnecki, W. M., Jaderberg,
M., Teplyashin, D., et al. Grounded language learning in
a simulated 3d world. arXiv preprint arXiv:1706.06551,
2017.

Hill, F., Lampinen, A., Schneider, R., Clark, S., Botvinick,
M., McClelland, J. L., and Santoro, A. Environmental
drivers of systematicity and generalization in a situated
agent. arXiv preprint arXiv:1910.00571, 2019.

Hill, F., Mokra, S., Wong, N., and Harley, T. Hu-
man instruction-following with deep reinforcement learn-
ing via transfer-learning from text. arXiv preprint
arXiv:2005.09382, 2020.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022b.

Kant, Y., Ramachandran, A., Yenamandra, S., Gilitschenski,
I., Batra, D., Szot, A., and Agrawal, H. Housekeep: Tidy-
ing virtual households using commonsense reasoning.
In Avidan, S., Brostow, G., Cissé, M., Farinella, G. M.,
and Hassner, T. (eds.), Computer Vision – ECCV 2022,
pp. 355–373, Cham, 2022. Springer Nature Switzerland.
ISBN 978-3-031-19842-7.

Kong, Y. and Fu, Y. Human action recognition and predic-
tion: A survey. International Journal of Computer Vision,
130(5):1366–1401, 2022.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. Re-
ward design with language models. In International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=10uNUgI5Kl.

Ladosz, P., Weng, L., Kim, M., and Oh, H. Exploration
in deep reinforcement learning: A survey. Information
Fusion, 2022.

Lehman, J., Stanley, K. O., et al. Exploiting open-endedness
to solve problems through the search for novelty. In
ALIFE, pp. 329–336, 2008.

Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg,
L., Beaulieu, J., Bentley, P. J., Bernard, S., Beslon, G.,
Bryson, D. M., Cheney, N., Chrabaszcz, P., Cully, A.,
Doncieux, S., Dyer, F. C., Ellefsen, K. O., Feldt, R., Fis-
cher, S., Forrest, S., Fŕenoy, A., Gagńe, C., Le Goff,
L., Grabowski, L. M., Hodjat, B., Hutter, F., Keller,

10

https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=10uNUgI5Kl

Guiding Pretraining in Reinforcement Learning with Large Language Models

L., Knibbe, C., Krcah, P., Lenski, R. E., Lipson, H.,
MacCurdy, R., Maestre, C., Miikkulainen, R., Mitri, S.,
Moriarty, D. E., Mouret, J.-B., Nguyen, A., Ofria, C.,
Parizeau, M., Parsons, D., Pennock, R. T., Punch, W. F.,
Ray, T. S., Schoenauer, M., Schulte, E., Sims, K., Stan-
ley, K. O., Taddei, F., Tarapore, D., Thibault, S., Watson,
R., Weimer, W., and Yosinski, J. The Surprising Cre-
ativity of Digital Evolution: A Collection of Anecdotes
from the Evolutionary Computation and Artificial Life
Research Communities. Artificial Life, 26(2):274–306,
05 2020. ISSN 1064-5462. doi: 10.1162/artl a 00319.
URL https://doi.org/10.1162/artl a 00319.

Linke, C., Ady, N. M., White, M., Degris, T., and White,
A. Adapting behavior via intrinsic reward: A survey
and empirical study. Journal of Artificial Intelligence
Research, 69:1287–1332, 2020.

Liu, H. and Abbeel, P. Behavior from the void: Unsuper-
vised active pre-training. Advances in Neural Information
Processing Systems, 34, 2021.

Luketina, J., Nardelli, N., Farquhar, G., Foerster, J., Andreas,
J., Grefenstette, E., Whiteson, S., and Rocktäschel, T. A
survey of reinforcement learning informed by natural
language. arXiv preprint arXiv:1906.03926, 2019.

Lynch, C. and Sermanet, P. Language conditioned imi-
tation learning over unstructured data. arXiv preprint
arXiv:2005.07648, 2020.

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen,
T. H., Sainz, O., Agirre, E., Heinz, I., and Roth, D. Re-
cent advances in natural language processing via large
pre-trained language models: A survey. arXiv preprint
arXiv:2111.01243, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Mokady, R., Hertz, A., and Bermano, A. H. Clipcap:
Clip prefix for image captioning, 2021a. URL https:
//arxiv.org/abs/2111.09734.

Mokady, R., Hertz, A., and Bermano, A. H. Clip-
cap: Clip prefix for image captioning. arXiv preprint
arXiv:2111.09734, 2021b.

Mu, J., Zhong, V., Raileanu, R., Jiang, M., Goodman, N.,
Rocktäschel, T., and Grefenstette, E. Improving intrinsic
exploration with language abstractions. arXiv preprint
arXiv:2202.08938, 2022.

Nadeem, M., Bethke, A., and Reddy, S. Stereoset: Mea-
suring stereotypical bias in pretrained language models.
arXiv preprint arXiv:2004.09456, 2020.

Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation?
a typology of computational approaches. Frontiers in
neurorobotics, pp. 6, 2009.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. 11 2019. URL
http://arxiv.org/abs/1908.10084.

Sharma, P., Torralba, A., and Andreas, J. Skill induc-
tion and planning with latent language. arXiv preprint
arXiv:2110.01517, 2021.

Stanić, A., Tang, Y., Ha, D., and Schmidhuber, J. Learning
to generalize with object-centric agents in the open world
survival game crafter. arXiv preprint arXiv:2208.03374,
2022.

Stefanini, M., Cornia, M., Baraldi, L., Cascianelli, S., Fia-
meni, G., and Cucchiara, R. From show to tell: a survey
on deep learning-based image captioning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2022.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge, 1998.

11

https://doi.org/10.1162/artl_a_00319
https://arxiv.org/abs/2111.09734
https://arxiv.org/abs/2111.09734
http://arxiv.org/abs/1908.10084

Guiding Pretraining in Reinforcement Learning with Large Language Models

Tam, A. C., Rabinowitz, N. C., Lampinen, A. K., Roy,
N. A., Chan, S. C., Strouse, D., Wang, J. X., Banino,
A., and Hill, F. Semantic exploration from language ab-
stractions and pretrained representations. arXiv preprint
arXiv:2204.05080, 2022.

Ten, A., Oudeyer, P.-Y., and Moulin-Frier, C. Curiosity-
driven exploration. The Drive for Knowledge: The Sci-
ence of Human Information Seeking, pp. 53, 2022.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International conference on
machine learning, pp. 1995–2003. PMLR, 2016.

Yao, S., Rao, R., Hausknecht, M., and Narasimhan, K. Keep
calm and explore: Language models for action generation
in text-based games. arXiv preprint arXiv:2010.02903,
2020.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. In Inter-
national Conference on Machine Learning, pp. 11920–
11931. PMLR, 2021.

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., As-
ghar, M., and Lee, B. A survey of modern deep learning
based object detection models. Digital Signal Processing,
pp. 103514, 2022.

Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonza-
lez, J. E., and Tian, Y. Noveld: A simple yet effective
exploration criterion. Advances in Neural Information
Processing Systems, 34, 2021.

12

Guiding Pretraining in Reinforcement Learning with Large Language Models

A. Crafter Pretraining Ablation

Figure 8: Number of ground truth achievements unlocked per episode at the end of pretraining. We show the median,
interquartile mean (IQM) and mean of the achievements measured in 10 evaluation trials, each averaged over 10 episodes
and 5 seeds (50 points) (Agarwal et al., 2021). Opaque bars represent variants leveraging textual observations in addition of
visual ones and dashed lines represent the gap with vision-only variants (less opaque). We report results for each method
described in Table 1. Results show that providing textual observations increases performance across all conditions.

B. Crafter Downstream Training
We finetune on seven downstream Crafter tasks plus the Crafter game reward:

• Place Crafting Table - agent must chop a tree and then create a crafting table. This is an easy task most agents will
have seen during pretraining.

• Attack Cow - agent must chase and attack a cow. This is also an easy task often seen during pretraining in most
methods.

• Make Wood Sword - agent must chop a tree, use it to make a crafting table, chop a second tree, use the wood at the
crafting table to make a wood sword. This task could be achieved during the pretraining env, but many agents rarely or
never achieved it because of the sheer number of prerequisites.

• Mine Stone - agent must chop a tree, use it to make a crafting table, chop a second tree, use the wood at the crafting
table to make a wood pickaxe, seek out stone, and then mine stone. This task is so challenging that we replaced the
fully sparse reward (where all pretraining methods fail) with a semi-sparse reward for achieving each subtask.

• Deforestation - agent must chop 4 trees in a row. This task tests whether having goal conditioning improves performance
by directing the agent. During pretraining most agents will have chopped a tree, but novelty bias should deter agents
from regularly chopping 4 trees in a row.

• Gardening Like above, this task tests the value of goal conditioning. The agent must first collect water and then chop
the grass. Both skills maybe have been learned during pretraining, but never in sequence.

• Plant Row - agent must plant two plants in a row. This task is challenging because even a highly skilled ELLM agent
cannot have learned this task 0-shot because the state captioner has no concept of a “row”.

C. Crafter Env Modifications
The default Crafter action space contains an all purpose “do” action which takes different actions depending on what object
the agent is facing - for instance attacking a skeleton, chopping a tree, or drinking water.

We modify the action space to increase the exploration problem by turning the general ‘do’ action into more precise
combinations of action verbs + noun arguments. Whereas ‘do’ previously was an all purpose action that could attack a

13

Guiding Pretraining in Reinforcement Learning with Large Language Models

Figure 9: Goal completion success rate for different tasks in the Crafter environment. RL training uses sparse rewards. Each
method trains an agent from scratch while using a pretrained policy for exploration. Each line shows the mean across 5
seeds with shaded stds.

Figure 10: Training without the environment simplifications described in Section 4.1. Left: pretraining results (comparable
to Figure 4). Right: original vs modified env performance. Curves average over 3 seeds with std shading. We see minor
performance changes across most algorithms but no change in the rank-order of methods.

skeleton, chop a tree, or drink water, the agent must now learn to choose between the actions as arbitrary verb + noun
combinations, ‘attack skeleton’, ‘chop tree’, ‘drink water.’ The exploration problem becomes more difficult as
this larger combinatorial action space is not restricted to admissible actions and the agent could try to drink skeleton
or attack water. Whereas the old action space was 17-dimensional, our new combinatorial one contains 260 possible
actions. One way to impose human priors is to design the agent’s action space explicitly to disallow invalid combinations
(e.g. ’drink’ + ’furnace’). However, manually designing and imposing such constraints is also unlikely to be scalable.
We hypothesize that our method, guided by common-sense knowledge from LLMs, will focus on learning to use only
meaningful action combinations. For the purposes of the Novelty and Uniform baselines, which reward agents for achieving
even nonsensical goals, we consider a goal “achieved” if the agent takes an action in front of the appropriate target object
(e.g taking “drink furnace” in front of a furnace).

D. Crafter Prompt
Valid actions: sleep, eat, attack, chop, drink, place, make, mine

You are a player playing a game. Suggest the best actions the player can take based on the things
you see and the items in your inventory. Only use valid actions and objects.

You see plant, tree, and skeleton. You are targeting skeleton. What do you do?

- Eat plant

- Chop tree

14

Guiding Pretraining in Reinforcement Learning with Large Language Models

- Attack skeleton

You see water, grass, cow, and diamond. You are targeting grass. You have in your inventory plant.
What do you do?

- Drink water

- Chop grass

- Attack cow

- Place plant

In total, the actions present in the prompt make up:

• 6 / 10 (60%) of the good actions the ELLM agent receives.

• 6 / 21 (28.6%) of all rewarded actions the agent receives.

• 7 / 15 (50%) of all good action suggested.

• 7 / 51 (13.7%) of all actions suggested.

In future work, it would be interesting to explore how performance changes with fewer actions included in the prompt. As a
preliminary experiment, we have found that pretraining performance is maintained if you provide a prompt with only one
example of a list of valid goals. The list only contains two goals. Instead, we use more extensive instructions to tell the
agent what good suggestions look like. See the prompt below and pretraining comparison in Figure 11. This new prompt
comes with a decrease in the fraction of “Good” suggestions (shown in Table 4, showing that suggestion accuracy is not
perfectly correlated with success.

New prompt: Valid actions: sleep, eat, attack, chop, drink, place, make, mine

You are a player playing a Minecraft-like game. Suggest the best actions the player can take
according to the following instructions.

1. Make suggestions based on the things you see and the items in your inventory.

2. Each scene is independent. Only make suggestions based on the visible objects, status, and
inventory in the current scene.

3. Each suggestion should either be a single valid action, or a phrase consisting of an action and
an object. (example: "Eat plant").

4. Do not make suggestions which are not possible or not desirable, such as ‘‘Eat skeleton’’.

5. Only make suggestions which are reasonable given the current scene (e.g. only ‘‘Eat plant’’ if
a plant is visible).

6. You may suggest multiple actions with the same object, but do not duplicate list items.

7. Use your knowledge of Minecraft to make suggestions.

8. Prioritize actions which involve the object you are facing or which the agent hasn’t achieved
before.

9. Each scene will include a minimum and maximum number of suggestions. Stick within this range.

New scene: You see plant, cow, and skeleton. You are facing skeleton. What do you do (include 1-2
suggestions)?

- Eat plant

- Attack skeleton

New scene: You see [INSERT CURRENT SCENE DESCRIPTION.] What do you do (include 2-7 suggestions)?

15

Guiding Pretraining in Reinforcement Learning with Large Language Models

Suggested Rewarded

Context-Insensitive 21.0% 0.8%
Common-Sense Insensitive 20.5% 54.8%
Good 34.1% 44.4%
Impossible 24.5% 0%

Table 4: Fractions of suggested and rewarded goals which are good, generated with the modified two-example prompt.

Figure 11: Comparison between performance of the prompt containing 7 suggested goals (used throughout the paper) and a
modified prompt which only includes 2 examples.

E. Crafter Action Space
We expand the action space of Crafter to increase exploration difficulty and study if ELLM can learn to avoid nonsensical or
infeasible actions. The full action space consists of just verbs (for actions that do not act on anything, such as sleep) or
verb + noun combinations as follows:

• Verbs: do nothing (no noun), move left (no noun), move right (no noun), move up (no noun), move down (no
noun), sleep (no noun), mine, eat, attack, chop, drink, place, make

• Nouns: zombie, skeleton, cow, tree, stone, coal, iron, diamond, water, grass, crafting table,
furnace, plant, wood pickaxe, stone pickaxe, iron pickaxe, wood sword, stone sword, iron sword

For example, an action can be drink water or drink grass.

F. Housekeep Tasks
The original Housekeep benchmark features a large set of different household scenes and episodes with different objects and
receptacles possibly instantiated. The ground truth correct object-receptacle placements were determined by crowdsourcing
humans. However, since our focus is on RL pretraining, we do not make use of the mapping and planning methods from the
original benchmark. To scope the problem for RL, we focus on the first 4 tasks with 5 different misplaced objects per task.

Misplaced Objects
Task 1 peppermint, lamp, lantern, herring fillets, vase
Task 2 lamp, sparkling water, plant, candle holder, mustard bottle
Task 3 pepsi can pack, electric heater, helmet, golf ball, fruit snack
Task 4 chocolate, ramekin, pan, shredder, knife

Table 5: Objects per task

16

Guiding Pretraining in Reinforcement Learning with Large Language Models

Name Value (Crafter) Value (Housekeep)
Frame Stack 4 4

� .99 .99
Seed Frames 5000 5000

n-step 3 3
batch size 64 256

lr 6.25e-5 1e-4
target update ⌧ 1.0 1.0

✏-min 0.01 0.1
update frequency 4 4

Table 6: DQN Hyperparameters

G. Housekeep Prompt
You are a robot in a house. You have the ability to pick up objects and place them in new locations.
For each example, state if the item should be stored in/on the receptacle.

Should you store a dirty spoon in/on the chair: No.

Should you store a mixing bowl in/on the dishwasher: Yes.

Should you store a clean sock in/on the drawer: Yes.

H. Algorithmic Details
We make use of DQN (Mnih et al., 2013), with double Q-learning (Van Hasselt et al., 2016), dueling networks (Wang et al.,
2016), and multi-step learning (Sutton et al., 1998).

For both environments, policies take in 84⇥ 84 images which are encoded using the standard Nature Atari CNN (Mnih et al.,
2015). The image is then passed through a linear layer to output a 512 dimensional vector. If the policy is text-conditioned,
we compute the language embedding of the state caption using paraphrase-MiniLM-L3-v2 SBERT model (Reimers &
Gurevych, 2019), and if the policy is goal-conditioned we similarly compute the language embedding of the goals g1:k
using paraphrase-MiniLM-L3-v2. We encode all goals as a single text sequence as we did not see any improvement from
encoding them each separately and summing or concatenating the embeddings. The image and text embeddings are then
concatenated together before being passed to the Q-networks. Each of the value and advantage streams of the Q-function are
parametrized as 3-layer MLPs, with hidden dimensions of 512 and ReLU nonlinearities.

In the Crafter environment, we swept over the following hyperparameters for the Oracle and Scratch (no-pretraining)
conditions: learning rate, exploration decay schedule, and network update frequency. We then applied these hyperparameters
to all conditions, after confirming that the hyperparameters were broadly successful in each case.

For Housekeep pretraining, we swept lr 2 [1e� 3, 1e� 4, 1e� 5], ✏-min 2 [0.1, 0.01], and batch size 2 [64, 256].

I. Hard-coded Captioner Details
Crafter The state captioner is based on the template shown in Figure 3 (left). This consists of three components: the
observation, the items, and the agent status.

• Observation: We take the underlying semantic representation of the current image from the simulator. Essentially this
maps each visible grid cell to a text description (e.g. each tree graphic is mapped to “tree”). We then take this set of
descriptions (i.e. not accounting for the number of each object) and populate the “observation” cell of the template.

• Items: We convert each of the inventory items to the corresponding text descriptor, and use this set of descriptions to
populate the “item” cell of the template.

• Health status: We check if any of the health statuses are below maximum, and if so, convert each to a corresponding
language description (e.g. if the hunger status is < 9, we say the agent is “hungry”).

17

Guiding Pretraining in Reinforcement Learning with Large Language Models

The transition captioner uses the action labels. Each action maps to a predefined verb + noun pairing directly (e.g. “eat
cow”).

Housekeep The state captioner is based on the template shown in Figure 3 (right). We use the simulator’s semantic sensor
to get a list of all visible objects, receptacles, and the currently held object. The transition captioner is also based on the
simulator’s semantic sensor, which indicates which receptacles the visible objects are currently in.

J. Learned Crafter Captioner
The captioner is trained with a slightly modified ClipCap algorithm (Mokady et al., 2021a) on a dataset of trajectories
generated by a trained policy using the PPO implementation from Stanić et al. (2022). Visual observations at timestep t and
t+1 are embedded with a pretrained and frozen CLIP ViT-B-32 model (Radford et al., 2021) and concatenated together with
the difference in semantic embeddings between the two corresponding states. Semantic embeddings include the inventory
and a multi-hot embedding of the set of objects present in the local view of the agent. This concatenated representation of
the transition is then mapped through a learned mapping function to a sequence of 10 tokens. Finally, we use these 10 tokens
as a prefix and pursue decoding using a pretrained and frozen GPT-2 to generate the caption (Radford et al., 2019). We
train the mapping from transition representation to GPT tokens on a dataset of 847 human labels and 900 synthetic labels
obtained by sampling from a set of between 3 and 8 different captions for each each distinct type of transitions. Instead of
the programmatic “chop tree” and “attack zombie,” labeled captions involve fully-formed sentences: “You collected
a sapling from the ground,” “You built a sword out of wood,” or “You just stared at the sea.” Because of
this additional linguistic diversity, we compare captions to goals with a lower cosine similarity threshold of .5.

Imperfect captioners can cause learning issues in two different ways: (1) they can generate wrong captions all together
and (2) they can generate a valid caption that still lead to faulty reward computations. If the caption is linguistically too
different from the achievement it captions, the similarity-based reward might not be able to pick it up (false negative reward).
This same linguistic variability might cause the reward function to detect the achievement of another achievement that was
not achieved (false positive reward). Figure 12 measures all these issues at once. For each row, it answers: what is the
probability that the reward function would detect a positive reward for each of the column achievements when the true
achievement is the row label? The false negative rate is 11% on average (1 - the diagonal values), with a much higher
false negative rate for chop grass (100%). Indeed, human caption mentioned the outcome of that action instead of the
action itself (collect sapling); which the similarity-based reward fails to capture. The false positive rate (all non diagonal
values) is significant here: the agent can get rewarded for several achievements it did not unlock. This often occurs when
achievements share words (e.g. wood, stone, collect). This indicates a difficulty of the semantic similarity to differentiate
between achievements involving these words.

K. Crafter LLM Analysis
Table 2 shows that the actions agents are rewarded for are dominated by good actions (66.5%) and bad actions (32.4%).
This makes sense; impossible actions can never be achieved. Most context-insensitive cannot be achieved (e.g. “drink
water” suggested when no water is present). We consider an action a “success” by checking whether the agent attempted a
particular action in front of the right object, so the agent occasionally is rewarded when it takes a context-insensitive action
in the appropriate physical location but without the necessary prerequisites (e.g. mining stone without a pickaxe).

Table 7 gives examples of LLM suggestions in Crafter.

Suggestion Type Examples
Good chop tree, attack skeleton, place plant
Context-Insensitive make crafting table (without wood), mine stone (without a pickaxe or not by stone)
Common-Sense-Insensitive mine grass, make diamond, attack plant
Impossible make path, make wood, place lava

Table 7: Classification accuracy of LLM for each Housekeep task (left column is true positives, right column is true
negatives).

18

Guiding Pretraining in Reinforcement Learning with Large Language Models

Figure 12: Reward confusion matrix. Each row gives the probability that any of the column achievement is detected when
the row achievement is truly unlocked. For instance, in row 2, when the agent chops a tree, with high probability the agent
will be rewarded for the “chop tree” and “chop grass” actions. Tested on trajectories collected from an expert PPO policy,
each row estimates probabilities using between 27 and 100 datapoints (27 for mine iron, the rarest achievements). Rows do
not sum to one, as a given achievement, depending on its particular caption, could potentially trigger several rewards.

L. Novelty Bonus Ablation
We ablate the importance of ELLM’s novelty bias in Figure 13 by allowing the agent to be rewarded repeatedly for achieving
the same goal. We see that without the novelty bonus the agent only learns to repeat a small set of easy goals and fails to
explore diversely.

M. Analysis of Downstream Training Approaches
We explored two methods for using exploratory policies: finetuning, where the weights of the exploration policy are finetuned
and the guided exploration method, where a new policy is trained from scratch and the pretrained policy is used for ✏-greedy
exploration.

We found that in Housekeep both methods are effective for ELLM (Figure 7a and Figure 7b). However, in Crafter we found
that the finetuning method performed poorly across all methods (ELLM, baselines, and oracles). Often, we observed that
early in finetuning, the agent would unlearn all of its previous useful behaviors, including moving around the environment
to interact with objects. We hypothesize that this due to a mismatch in the density and magnitude of rewards between
pretraining and finetuning. When the finetuning agent finds it is achieving much lower than the expected return for taking
its typical actions, it down-weights the likelihood of taking those actions and unlearns its previous skills. We found that
decreasing the learning rate, freezing early layers of the network, manually adjusting finetuning rewards to be at the same
scale as pretraining rewards, and decreasing the initial exploration rate partially mitigated this problem. However, these
also decrease the sample efficiency and/or performance at convergence of the finetuned policy compared to a training-from-
scratch baseline. In Figure 14), across all methods this method is less reliable than the guided exploration method (Figure
5).

These findings are consistent with our Housekeep findings. In that environment, the ELLM pretraining task (achieving
object placements suggested by a LLM) and the finetuning task (achieving object placements suggested by humans) are
similar enough we only see minor dips in performance when finetuning starts. However, the RND and APT baselines have a
greater pretrain-finetune mismatch, and we observe those methods did comparatively better with the guided exploration
method.

19

Guiding Pretraining in Reinforcement Learning with Large Language Models

(a) Crafter pretraining runs (similar to Figure 4), including the
“ELLM without novelty” ablation where ELLM’s novelty bias is
removed.

(b) Housekeep pretraining runs (similar to Figure 7a), including the “ELLM without novelty” ablation where
ELLM’s novelty bias is removed.

Figure 13

Figure 14: Success rates across training for each of the seven downstream tasks in the Crafter environment. Each run
finetunes the pretrained agent using a lower learning rate than used during pretraining (2e� 5). Plots show mean ± std for 5
seeds

N. Additional Baselines
We also include experiments with NovelD (Zhang et al., 2021) in Figure 15, a state-of-the-art exploration method which
uses an estimate of state novelty to reward the agent for moving to more novel states. During pretraining, we find it performs
similarly to the other prior-free intrinsic motivation methods.

O. Code and Compute
All code will be released soon, licensed under the MIT license (with Crafter, Housekeep licensed under their respective
licenses).

For LLM access, we use OpenAI’s APIs. Initial experiments with the smaller GPT-3 models led to degraded performance,
hence choosing Codex and Davinci for our experiments. Codex is free to use and Davinci is priced at $0.02/1000 tokens.
We find caching to be significantly helpful in reducing the number of queries made to the API. Each API query takes .02
seconds, so without caching a single 5-million step training run would spend 27 hours querying the API (and far more once
we hit the OpenAI rate limit) and cost thousands of dollars. Since we cache heavily and reuse the cache across runs, by the
end of our experimentation, were make almost no API queries per run.

We use NVIDIA TITAN Xps and NVIDIA GeForce RTX 2080 Tis, with 2-3 seeds per GPU and running at roughtly

20

Guiding Pretraining in Reinforcement Learning with Large Language Models

(a) Crafter pretraining curve as in Figure 4, including NovelD baseline

(b) Housekeep pretraining curves as in Figure 7a, including NovelD baseline

Figure 15: Additional pretraining curves including NovelD.

100ksteps/hour. Across all the ablations, this amounts to approximately 100 GPUs for pretraining.

P. Societal Impact
While LLMs priors have been shown to exhibit impressive common-sense capabilities, it is also well-known that such
models are highly prone to harmful social biases and stereotypes (Bender et al., 2021; Abid et al., 2021; Nadeem et al.,
2020). When using such models as reward functions for RL, as in ELLM, it is necessary to fully understand and mitigate
any possible negative behaviors that can be learned as a result of such biases. While we focus on simulated environments
and tasks in this work, we emphasize that more careful study is necessary if such a system is deployed to more open-ended
learning in the real world. Potential mitigations with ELLM specifically can be: actively filtering LLM generations for
harmful content before using them as suggested goals, prompting the LM with guidelines about what kinds of prompts to
output, and/or using only the closed-form ELLM variant with more carefully constrained goal spaces.

21

