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Complexity of Linear Regions in Deep Networks

Boris Hanin * 1     David Rolnick * 2

Abstract

It is well-known that the expressivity of a neural
network depends on its architecture, with deeper
networks expressing more complex functions. In
the case of networks that compute piecewise lin-
ear functions, such as those with ReLU activation,
the number of distinct linear regions is a natural
measure of expressivity. It is possible to construct
networks with merely a single region, or for which
the number of linear regions grows exponentially
with depth; it is not clear where within this range
most networks fall in practice, either before or
after training. In this paper, we provide a mathe-
matical framework to count the number of linear
regions of a piecewise linear network and mea-
sure the volume of the boundaries between these
regions. In particular, we prove that for networks
at initialization, the average number of regions
along any one-dimensional subspace grows lin-
early in the total number of neurons, far below the
exponential upper bound. We also find that the
average distance to the nearest region boundary at
initialization scales like the inverse of the number
of neurons. Our theory suggests that, even after
training, the number of linear regions is far below
exponential, an intuition that matches our empiri-
cal observations. We conclude that the practical
expressivity of neural networks is likely far below
that of the theoretical maximum, and that this gap
can be quantified.

1. Introduction

A  growing field of theory has sought to explain the broad
success of deep neural networks via a mathematical charac-
terization of the ability of these networks to approximate dif-
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Figure 1. How many linear regions? This figure shows a two-
dimensional slice through the 784-dimensional input space of
vectorized MNIST, as represented by a fully-connected ReLU
network with three hidden layers of width 64 each. Colors denote
different linear regions of the piecewise linear network.

ferent functions of input data. Many such works consider the
expressivity of neural networks, showing that certain func-
tions are more efficiently expressible by deep architectures
than by shallow ones (e.g. Bianchini & Scarselli (2014);
Montufar et al. (2014); Telgarsky (2015); Lin et al. (2017);
Rolnick & Tegmark (2018)). It has, however, also been
noted that many expressible functions are not efficiently
learnable, at least by gradient descent (Shalev-Shwartz et al.,
2018). More generally, the typical behavior of a network
used in practice, the practical expressivity, may be very dif-
ferent from what is theoretically attainable. To adequately
explain the power of deep learning, it is necessary to con-
sider networks with parameters as they will naturally occur
before, during, and after training.

Networks with a piecewise linear activation (e.g. ReLU,
hard tanh) compute piecewise linear functions for which in-
put space is divided into pieces, with the network computing a
single linear function on each piece (see Figures 1-4). Fig-ure
2 shows how the complexity of these pieces, which we refer
to as linear regions, changes in a deep ReLU net with two-
dimensional inputs. Each neuron in the first layer splits the
input space into two pieces along a hyperplane, fitting a
different linear function to each of the pieces. Subsequent
layers split the regions of the preceding layers. The local
density of linear regions serves as a convenient proxy for
the local complexity or smoothness of the network, with the
ability to interpolate a complex data distribution seeming to
require fitting many relatively small regions. The topic of
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counting linear regions is taken up by a number of authors
(Telgarsky, 2015; Montufar et al., 2014; Serra et al., 2018;
Raghu et al., 2017).

A  worst case estimate is that every neuron in each new
layer splits each of the regions present at the previous layer,
giving a number of regions exponential in the depth. Indeed
this is possible, as examined extensively e.g. in Montufar
et al. (2014). An example of Telgarsky (2015) shows that a
sawtooth function with 2n teeth can be expressed exactly
using only 3n +  4 neurons, as shown in Figure 3. However,
even slightly perturbing this network (by adding noise to
the weights and biases) ruins this beautiful structure and
severely reduces the number of linear pieces, raising the
question of whether typical neural networks actually achieve
the theoretical bounds for numbers of linear regions.

Figure 3. The sawtooth function on the left with 2n  teeth can be
expressed succinctly by a ReLU network with only 3n + 4 neurons
(construction from Telgarsky (2015)). However, slight perturba-
tion of the weights and biases of the network (by Gaussian noise
with standard deviation 0:1) greatly simplifies the linear regions
captured by the network.

network with piecewise linear activations (such as ReLU)
before, during, and after training. Our main contributions
are as follows:

Figure 2. Evolution of linear regions within a ReLU network for
2-dimensional input. Each neuron in the first layer defines a linear
boundary that partitions the input space into two regions. Neurons
in the second layer combine and split these linear boundaries into
higher level patterns of regions, and so on. Ultimately, the input
space is partitioned into a number of regions, on each of which the
neural network is given by a (different) linear function. During
training, both the partition into regions and the linear functions on
them are learned.

Figure 1 also invites measures of complexity for piecewise
linear networks beyond region counting. The boundary
between two linear regions can be straight or can be bent in
complex ways, for example, suggesting the volume of the
boundary between linear regions as complexity measure for
the resulting partition of input space. In the 2D example of
Figure 1, this corresponds to computing perimeters of the
linear pieces. As we detail below, this measure has another
natural advantage: the volume of the boundary controls the
typical distance from a random input to the boundary of
its linear region (see §2.2). This measures the stability of
the function computed by the network, and it is intuitively
related to robustness under adversarial perturbation.

Our Contributions. In this paper, we provide mathematical
tools for analyzing the complexity of linear regions of a

 For networks at initialization, the total surface area of
the boundary between linear regions scales as the
number of neurons times the number of breakpoints
of the activation function. This is our main result,
from which several corollaries follow (see Theorem 3,
Corollary 4, and the discussion in §2).

 In particular, for any line segment through input space,
the average number of regions intersecting it is linear
in the number of neurons, far below the exponential
number of regions that is theoretically attainable.

 Theorem 3 also allows us to conclude that, at initial-
ization, the average distance from a sample point to
the nearest region boundary is bounded below by a
constant times the reciprocal of the number of neurons
(see Corollary 5).

 We find empirically that both the number of regions
and the distance to the nearest region boundary stay
roughly constant during training and in particular are
far from their theoretical maxima. That this should be
the case is strongly suggested by Theorem 3, though
not a direct consequence of it.

Overall, our results stress that practical expressivity lags sig-
nificantly behind theoretical expressivity. Moreover, both
our theoretical and empirical findings suggest that for cer-
tain measures of complexity, trained deep networks are
remarkably similar to the same networks at initialization.
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In the next section, we informally state our theoretical and
empirical results and explore the underlying intuitions. De-
tailed descriptions of our experiments are provided in §3.
The precise theorem statements for ReLU networks can be
found in §5. The exact formulations for general piecewise
linear networks are in Appendix A, with proofs in the rest of
the Supplementary Material. In particular, Appendix B  con-
tains intuition for how our proofs are shaped, while details
are completed in §C-D.

The constructions in Montufar et al. (2014); Telgarsky
(2015); Raghu et al. (2017); Serra et al. (2018) indicate
that the bound in (1) is very far from sharp for shallow and
wide networks but that exponential growth in the number
of regions can be achieved in deep, skinny networks for
very special choices of weights and biases. This is a man-
ifestation of the expressive power of depth, the idea that
repeated compositions allow deep networks to capture com-
plex hierarchical relations more efficiently per parameter
than their shallow cousins. However, there is no non-trivial
lower bound for the number of linear regions:

min #fregionsg =  1; 8N :

Figure 4. Graph of function computed by a ReLU net with input
and output dimension 1 at initialization. The weights of the net-
work are He normal (i.i.d. normal with variance = 2=fan-in) and
the biases are i.i.d. normal with variance 10     6 .

2. Informal Overview of Results

This section gives an informal introduction to our results.
We begin in §2.1 by describing the case of networks with in-
put dimension 1: In §2.2, we consider networks with higher
input dimension. For simplicity, we focus throughout this
section on fully connected ReLU networks. We emphasize,
however, that our results apply to any piecewise linear acti-
vation. Moreover, the upper bounds we present in Theorems
1, 2, and 3 (and hence in Corollaries 4 and 5) can also be
generalized to hold for feed-forward networks with arbitrary
connectivity, though we do not go into details in this work,
for the sake of clarity of exposition.

2.1. Number of Regions in 1D

Consider the simple case of a ReLU net N  with input and
output dimensions equal to 1: Such a network computes
a piecewise linear function (see Figure 4), and we are in-
terested in understanding both at initialization and during
training the number of distinct linear regions. There is a
simple universal upper bound:

max #fregionsg  2#neurons; (1)

where the maximum is over all settings of weight and biases.
This bound depends on the architecture of N  only via the
number of neurons. For more refined upper bounds which
take into account the widths of the layers, see Theorem 1 in
Raghu et al. (2017) and Theorem 1 in Serra et al. (2018).

The minimum is attained by setting all weights and biases
to 0: This raises the question of the behavior for the average
number of regions when the weights and biases are chosen
at random (e.g. at initialization). Intuitively, configurations
of weights and biases that come close to saturating the
exponential upper bound (1) are numerically unstable in
the sense that a small random perturbation of the weights
and biases drastically reduces the number of linear regions
(see Figure 3 for an illustration). In this direction, we prove a
somewhat surprising answer to the question of how many
regions N  has at initialization. We state the result for ReLU
but note that it holds for any piecewise linear, continuous
activation function (see Theorems 3 and 6).

Theorem 1 (informal). Let N  be a network with piecewise
linear activation with input and output dimensions of N
both equal 1. Suppose the weights and biases are randomly
initialized so that for each neuron z, its pre-activation z (x)
has bounded mean gradient

E [krz (x)k]   C ; some C  >  0: (2)

This holds, for example, for ReLU networks initialized with
independent, zero-centered weights with variance 2=fan-in:
Then, for each subset I   R  of inputs, the average number of
linear regions inside I  is proportional to the number of
neurons times the length of I

E [#fregions in I g]  jI j  T  #fneuronsg;

where T is the number of breakpoints in the non-linearity
of N  (for ReLU nets, T =  1). The same result holds when
computing the number of linear regions along any fixed
1-dimensional curve in a high-dimensional input space.

This theorem implies that the average number of regions
along a one-dimensional curve in input space is proportional
to the number of neurons, but independent of the arrange-
ment of those neurons. In particular, a shallow network and
a deep network will have the same complexity, by this mea-
sure, as long as they have the same total number of neurons.
Of course, as jI j grows, the bounds in Theorem 1 become
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less sharp. We plan to extend our results to obtain bounds
on the total number of regions on all of R  in the future. In
particular, we believe that at initialization the mean total
number of linear regions N  is proportional to the number
of neurons (this is borne out in Figure 5, which computes
the total number of regions on an infinite line).

Theorem 1 defies the common intuition that, on average,
each layer in N  multiplies the number of regions formed
up to the previous layer by a constant larger than one. This
would imply that the average number of regions is expo-
nential in the depth. To provide intuition for why this is
not true for random weights and biases, consider the effect
of each neuron separately. Suppose the pre-activation z (x)
of a neuron z satisfies jz0(x)j =  (1), a hallmark of any
reasonable initialization. Then, over a compact set of inputs,
the piecewise linear function x  !  z (x) cannot be highly
oscillatory over a large portion of the range of z. Thus, if
the bias bz is not too concentrated on any interval, we expect
the equation z (x) =  bz to have O(1) solutions. On average,
then, we expect that each neuron adds a constant number of
new linear regions. Thus, the average total number of
regions should scale roughly as the number of neurons.

Theorem 1 follows from a general result, Theorem 3, that
holds for essentially any non-degenerate distribution of
weights and biases and with any input dimension. If
krz ( x )k  and the bias distribution b      are well-behaved,
then throughout training, Theorem 3 suggests the number
of linear regions along a 1-dimensional curve in input space
scales like the number of neurons in N . Figures 5-6 show
experiments that give empirical verification of this heuristic.

2.2. Higher-Dimensional Regions

For networks with input dimension exceeding 1; there are
several ways to generalize counting linear regions. A  unit-
matching heuristic applied to Theorem 1 suggests

#fregionsg =  #fneuronsgni n  ; nin =  input dim:

Proving this statement is work in progress by the authors.
Instead, we consider here a natural and, in our view, equally
important generalization. Namely, for a bounded K   R n i n  , we
consider the (nin 1)-dimensional volume density

volni n  1 ( B N  \  K ) volni n  ( K ) ; (3)

where

B N  =  f x  j r N ( x )  is not continuous at xg (4)

is the boundary of the linear regions for N . When nin =  1,

vol0 ( B N  \  K )  +  1 =  #fregions in K g ;

and hence the volume density (3) truly generalizes to higher
input dimension of the number of regions. One reason for

studying the volume density (3) is that it gives bounds from
below for distance (x; BN ), which in turn provides insight
into the nature of the computation performed by N : Indeed,
the exact formula
distance (x; BN ) =  

ne
min 

z  
jz (x)      bz j krz (x)k ;

shows that distance (x; BN )  measures the sensitivity over
neurons at a given input x. In this formula, z (x) denotes
the pre-activation for a neuron z and bz is its bias, so that
ReLU(z (x)    bz ) is the post-activation. Moreover, the
distance from a typical point to B N  gives a heuristic lower
bound for the typical distance to an adversarial example:
two inputs closer than the typical distance to a linear region
boundary likely fall into the same linear region, and hence
are unlikely to be classified differently. Our next result
generalizes Theorem 1.

Theorem 2 (informal). Let N  be a network with a piece-
wise linear activation, input dimension nin and output di-
mension 1: Suppose its weights and biases are randomly
initialized as in (2). Then, for K   R d i n  bounded, the aver-
age volume of the linear region boundaries in K  satisfies:

E
vol n

vol n

(B
K

\  K )
 

 T  #fneuronsg;

where T is the number of breakpoints in the non-linearity
of N  (for ReLU nets, T =  1). Moreover, if x  2  [0; 1]nin is
uniformly distributed, then the average, over both x  and the
weights/biases of N , distance from x  to B N  satisfies

E [distance (x; BN )]  C  (#fneuronsg) 1 ; C  >  0:

Experimentally, distance (x; BN )  remains comparable to
(#fneuronsg) throughout training (see Figure 6).

3. Experiments

We empirically verified our theorems and further examined
how linear regions of a network change during training. All
experiments below were performed with fully-connected
networks, initialized with He normal weights (i.i.d. with
variance 2=fan-in) and biases drawn i.i.d. normal with vari-
ance 10 6 (to prevent collapse of regions at initialization,
which occurs when all biases are uniquely zero). Training
was performed on the vectorized MNIST (input dimension
784) using the Adam optimizer at learning rate 10     3. Al l
networks attain test accuracy in the range 95      98%.

3.1. Number of Regions Along a Line

We calculated the number of regions along lines through the
origin and and a random selected training example in input
space. For each setting of weights and biases within the
network during training, the number of regions along each
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Figure 5. We here show how the number of regions along 1D lines in input space changes during training. In accordance with Theorem 3, we
scale the number of regions by the number of neurons. Plots show (a) early training, up through 0.5 epochs, and (b) later training, up
through 20 epochs. Note that for all networks, number of regions is a fixed constant times the number of neurons at initialization, as
predicted, and that the number decreases (slightly) early in training before rebounding. [n1; n2; n3] in the legend corresponds to an
architecture with layer widths 784 (input); n1; n2; n3; 10 (output).

Figure 6. We here consider the average distance to the nearest boundary, as evaluated over 10000 randomly selected sample points. In (a) we
show that this distance is essentially bounded between 0:4=#fneuronsg and 1:5=#fneuronsg. Accordingly, in the next plot, we
normalize the distance to the nearest boundary by dividing by the number of neurons. We plot this quantity against (b) epoch and (c) test
accuracy. Observe that, in keeping with the findings of Figure 5, the distance to the nearest boundary first increases quickly (as the number
of regions decreases), then rebounds more slowly as the network completes training. [n1; n2; n3] in the legend corresponds to an architecture
with layer widths 784 (input); n1; n2; n3; 10 (output).

line is calculated exactly by building up the network one
layer at a time and calculating how each region is split by
the next layer of neurons. Figure 5 represents the average
over 5 independent runs, from each of which we sample 100
lines; variance across the different runs is not significant.

Figure 5 plots the average number of regions along a line, di-
vided by the number of neurons in the network, as a function
of epoch during training. We make several observations:

1. As predicted by Theorem 3, all networks start out with
the number of regions along a line equal to a constant
times the number of neurons in the network (the con-
stant in fact appears very close to 1 in this case).

2. Throughout training, the number of regions does not
deviate significantly from the number of neurons in the
network, staying within a small constant of the value
at initialization, in keeping with our intuitive under-
standing of Theorem 3 described informally around
Theorem 1 above.

3. The number of regions actually decreases during the
initial part of training, then increases again. We explore
this behavior further in other experiments below.

3.2. Distance to the Nearest Region Boundary

We calculated the average distance to the nearest boundary
for 10000 randomly selected input points, for various net-
works throughout training. Points were selected randomly
from a normal distribution with mean and variance matching
the componentwise mean and variance of MNIST training
data. Results were averaged over 12 independent runs, but
variance across runs is not significant. Rerunning these ex-
periments with sample points selected randomly from (i)
the training data or (ii) the test data yielded similar results to
random sample points.

In keeping with our results in the preceding experiment,
the distance to the nearest boundary first increases then de-
creases during training. As predicted by Theorem 2, we find
that for all networks, the distance to the nearest boundary
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is well-predicted by 1=#fneuronsg. Throughout training,
we find that it approximately varies between the curves
0:4=#fneuronsg and 1:5=#fneuronsg (Figure 6(a)). At
initialization, as we predict, all networks have the same
value for the product of number of neurons and distance to
the nearest region boundary (Figure 6(b)); these prod-ucts
then diverge (slightly) for different architectures, first
increasing rapidly and then decreasing more slowly.

We find Figure 6(c) fascinating, though we do not com-
pletely understand it. It plots the product of number of
neurons and distance to the nearest region boundary against
the test accuracy. It suggests two phases of training: first
regions expand, then they contract. This lines up with ob-
servations made in Arpit et al. (2017) that neural networks
“learn patterns first” on which generalization is simple and
then refine the fit to encompass memorization of individual
samples. A  generalization phase would suggest that regions
are growing, while memorization would suggest smaller
regions are fit to individual data points. This is, however,
speculation and more experimental (and theoretical) explo-
ration will be required to confirm or disprove this intuition.
We found it instructive to consider the full distribution of

Figure 7. Distribution of log distances from random sample points to
the nearest region boundary for a network of depth 4 and width 16,
at initialization and after 1 and 20 epochs of training on MNIST.

distances from sample points to their nearest boundaries,
rather than just the average. For a single network (depth 4,
width 16), Figure 7 indicates that this distribution does not
significantly change during training, although there appears
to be a slight skew towards larger regions, in agreement
with the findings in Novak et al. (2018). The histogram
shows log-distances. Hence, distance to the nearest region
boundary varies over many orders of magnitude. This is
consistent with Figures 1 and 4, which lend credence to the
intuition that small distances to the nearest region bound-
ary are explained by the presence of many small regions.
According to Theorem 3, this should correlate with a com-
bination of regions in input space at which some neurons
have a large gradient and neurons with highly peaked biases
distributions. We hope to return to this in future work.

3.3. Regions Within a 2D Plane

We visualized the regions of a network through training.
Specifically, following experiments in Novak et al. (2018),
we plotted regions within a plane in the 784-dimensional in-
put space (Figure 8) through three data points with different
labels (0, 1, and 2, in our case) inside a square centered at
the circumcenter of the three examples. The network shown
has depth 3 and width 64. We observe that, as expected from
our other plots, the regions expand initially during training
and then contract again. We expect the number of regions
within a 2-dimensional subspace to be on the order of the
square of the number of neurons – that is, (643)2  4104,
which we indeed find.

Our approach for calculating regions is simple. We start
with a single region (in this case, the square), and subdi-
vide it by adding neurons to the network one by one. For
each new neuron, we calculate the linear function it defines
on each region, and determine whether that region is split
into two. This approach terminates within a reasonable
amount of time precisely because our theorem holds: there
are relatively few regions. Note that we exactly determine
all regions within the given square by calculating all region
boundaries; thus our counts are exact and do not miss any
small regions, as might occur if we merely estimated regions
by sampling points from input space.

4. Related Work

There are a number of works that touch on the themes of this
article: (i) the expressivity of depth; (ii) counting the number
of regions in networks with piecewise linear activations; (iii)
the behavior of linear regions through training; and (iv) the
difference between expressivity and learnability. Related to
(i), we refer the reader to Eldan & Shamir (2016); Telgarsky
(2016) for examples of functions that can be efficiently
represented by deep but not shallow ReLU nets. Next, still
related to (i), for uniform approximation over classes of
functions, again using deep ReLU nets, see Yarotsky (2017);
Rolnick & Tegmark (2018); Yarotsky (2018); Petersen &
Voigtlaender (2018). For interesting results on (ii) about
counting the maximal possible number of linear regions in
networks with piecewise linear activations see Bianchini &
Scarselli (2014); Montufar et al. (2014); Poole et al. (2016);
Arora et al. (2018); Raghu et al. (2017). Next, in the vein
of (iii), for both a theoretical and empirical perspective on
the number of regions computed by deep networks and
specifically how the regions change during training, see
Poole et al. (2016); Novak et al. (2018). In the direction
of (iv), we refer the reader to Shalev-Shwartz et al. (2018);
Hanin & Rolnick (2018); Hanin (2018). Finally, for general
insights into learnability and expressivity in deep vs. shallow
networks see Mhaskar & Poggio (2016); Mhaskar et al.
(2016); Zhang et al. (2017); Lin et al. (2017); Poggio et al.
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Figure 8. Here we show the linear regions that intersect a 2D plane through input space for a network of depth 3 and width 64 trained on
MNIST. Black dots indicate the positions of the three MNIST training examples defining the plane. Note that we obtain qualitatively
different pictures from Novak et al. (2018), which may result partially from our using ReLU activation instead of ReLU6.

(2017); Neyshabur et al. (2017).

5. Formal Statement of Results

To state our results precisely, we fix some notation. Let
d; nin; n1; : : : ; nd  1 and consider a depth d fully con-
nected ReLU net N  with input dimension nin, output di-
mension 1, and hidden layer widths nj ; j  =  1; : : : ; d   1:
As explained in the introduction, a generic configuration of
its weights and biases partitions the input space R n i n  into a
union of polytopes P j  with disjoint interiors. Restricted to
each P j ;  N  computes a linear function.

Our main mathematical result, Theorem 3, concerns the
set B N  of points x  2  R n i n  at which the gradient r N  is
discontinuous at x  (see (4)). For each k =  1; : : : ; nin; we
define

B N ; k  =  the \(nin      k)–dimensional piece” of B N  : (5)

More precisely, we set BN ; 0  : =  ;  and recursively define
B N ; k  to be the set of points x  2  B N  n f B N ; 0 [ [ B N ; k  1g so
that in a neighborhood of x  the set B N  nfBN ; 0  [   [  B N ; k

1g coincides with a co-dimension k hyperplane.

For example, when nin =  2; the linear regions P j  are poly-
gons, the set BN ; 1  is the union of the open line segments
making up the boundaries of the P j ,  and BN ; 2  is the collec-
tion of vertices of the P j :  Theorem 3 provides a convenient
formula for the average of the (nin      k) dimensional vol-
ume of B N ; k  inside any bounded, measurable set K   R n i n  .
To state the result, for every neuron z in N  we will write

z (x) : =  pre-activation at z; ‘(z ) =  layer index of z
(6)

and bz     : =  bias at z: Thus, for a given input x  2  R n 0  , the
post-activation of z is

Z ( x )  : =  ReLU(z (x))  =  maxf0; z(x)      bz g: (7)

Theorem 3 holds under the following assumption on the
distribution of weights and biases:

A1: The conditional distribution of any collection of biases
bz ; : : : ; bz , given all the other weights and biases,
has a density b z  ;:::;bz      (b1; : : : ; bk) with respect to
Lebesgue measure on Rk .

A2: The joint distribution of all the weights has a density
with respect to Lebesgue measure on R#weights .

These assumptions hold in particular when the weights and
biases of N  are independent with marginal distributions that
have a density relative to Lebesgue measure on R  (i.e. at ini-
tialization). They hold much more generally, however, and
can intuitively be viewed as a non-degeneracy assumption
on the behavior of the weights and biases of N .  Specifically,
they are used in Proposition 10 to ensure that the set B N ; k

consists of inputs where exactly k neurons turn off/on. As-
sumption (A1) also allows us, in Proposition 11, to apply
the co-area formula (29) to compute the expect volume of
the set of inputs where a given collection of neurons turn
on/off. Our main result is the following.

Theorem 3. Suppose N  is a feed-forward ReLU net
with input dimension n0; output dimension 1, and ran-
dom weights/biases.      Assume that the distribution of
weights/biases satisfies Assumptions A1 and A2 above.
Then, with the notation (6), for any bounded measurable set
K   R n i n  and any k =  1; : : : ; nin; the average (nin      k)
dimensional volume E [voln  k (B N ; k  \  K ) ]  of B N ; k  in-
side K  is

E [voln i n  k (B N ; k  \  K ) ] (8)

of B N ; k  inside K  is, in the notation (6),

X Z     
EYz  ;:::;z (x)dx;

distinct neurons         K
1 k

where Yz 1 ; : : : ;z k  (x )  is

kJz 1 ; : : : ; z k  (x)k b z 1  ; : : : ;bz k  
(z1 (x); : : : ; zk (x))
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times the indicator function of the event that zj  is good at x
for each j  =  1; : : : ; k. Here, J z  ;:::;z     is the k  nin Jaco-
bian of the map x  !  (z1(x); : : : ; zk (x));

kJz 1 ; : : : ; z k  (x)k : =  det Jz 1 ; : : : ; z k  (x) (J z 1 ; : : : ; z k  (x ) ) T  1=2 
;

the function b     ;:::;b is the density of the joint distribution
of the biases bz ; : : : ; bz , and we say a neuron z is good at x
if there exists a path of neurons from z to the output in the
computational graph of N  so that each neuron along this
path is open at x).

To evaluate the expression in (8) requires information on the
distribution of gradients r z ( x ) ,  the pre-activations z (x),
and the biases bz : Exact information about these quantities
is available at initialization (Hanin, 2018; Hanin & Rol-
nick, 2018; Hanin & Nica, 2018), yielding the following
Corollary.

Corollary 4. With the notation and assumptions of Theorem
3, suppose the weights are independent are drawn from a
fixed probability measure  on R  that is symmetric around 0
and then rescaled to have Var[weights] =  2=fan-in. Fix k 2
f1; : : : ; ning. Then there exists C  >  0 for which

E [voln i n  k (B N ; k  \  K ) ]
volni n  ( K )
#fneuronsg

k grad bias

where
Cbias =  sup sup b (b)

b 2 R

and

Cgrad =  sup sup E
h

krz (x)k2 k
i1 = k      

 C e C  
P

j = 1  n j

x 2 R  i n

where C  >  0 depends only on  but not on the architecture of
N  and nj  is the width of the j t h  hidden layer. Moreover, we
also have similar lower bounds

#fneuronsg E [voln i n  k (B N ; k  \  K ) ]
k                bias                               volni n  ( K )

where
cbias =  

j
inf

 
b z  (b);

and
0 1

 =  @
supx 2 K  kxk2 

+  
d     

2 A e C 0  P
j = 1  n j  ; in

j = 1

with C 0 >  0 depending only on the distribution  of the
weights in N .

We prove Corollary 7 in Appendix D. Let us state one final
corollary of Theorem 3
Corollary 5. Suppose N  is as in Theorem 3 and satisfies
the hypothesis (14) in Corollary 7. Then, for any compact
set K   R n i n  let x  be a uniform point in K :  There exists c >
0 independent of K  so that

E [distance(x; BN )]  
CbiasCgrad#fneuronsg

:

We prove Corollary 8 in §E. The basic idea is simple. For
every  >  0; we have

E [distance(x; BN )]  P (distance(x; BN )  >  ) ;

with the probability on the right hand side scaling like

1      volni n  (T(BN  ) \  K )= voln i n  ( K ) ;

where T(B N  ) is the tube of radius  around B N  : We ex-
pect that its volume like voln  1 (B N  ). Taking " =
c=#fneuronsg yields the conclusion of Corollary 8.

6. Conclusions and Further Work

The question of why depth is powerful has been a persistent
problem for deep learning theory, and one that recently has
been answered by works giving enhanced expressivity as
the ultimate explanation. However, our results suggest that
such explanations may be misleading. While we do not
speak to all notions of expressivity in this paper, we have
both theoretically and empirically evaluated one common
measure: the linear regions in the partition of input space
defined by a network with piecewise linear activations. We
found that the average size of the boundary of these linear
regions depends only on the number of neurons and not
on the network depth – both at initialization and during
training. This strongly suggests that deeper networks do
not learn more complex functions than shallow networks.
We plan to test this interpretation further in future work
– for example, with experiments on more complex tasks,
as well as by investigating higher order statistics, such as
the variance.

We do not propose a replacement theory for the success of
deep learning; however, prior work has already hinted at
how such a theory might proceed. Notably, Ba & Caruana
(2014) show that, once deep networks are trained to perform
a task successfully, their behavior can often be replicated by
shallow networks, suggesting that the advantages of depth
may be linked to easier learning.
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A. Formal Statement of Results for General
Piecewise Linear Activations

In §5, we stated our results in the case of ReLU activation,
and now frame these results for a general piecewise linear
non-linearity. We fix some notation. Let  : R  !  R  be a
continuous piecewise linear function with T breakpoints 0

=   1  <  1 <  2 <   <  T  <  T + 1  =  1 :  That is, there exist
pj ; qj  2  R  so that

t 2  [ j ; j + 1 ] ) (t) =  qj t +  pj ; q j  =  q j + 1 :  (11)

The analog of Theorem 3 for general  is the following.

Theorem 6. Let  : R  !  R  be a continuous piecewise
linear function with T breakpoints 1 <   <  T  as in (11).
Suppose N  is a fully connected network with input
dimension nin; output dimension 1, random weights and
biases satisfying A1 and A2 above, and non-linearity .

Let J z  ;:::;z      be the k  nin Jacobian of the map x  !
(z1(x); : : : ; zk (x));

kJz 1 ; : : : ; z k  (x)k : =  det Jz 1 ; : : : ; z k  (x) (J z 1 ; : : : ; z k  (x ) ) T  1=2 
;

and write b     ;:::;b for the density of the joint distribution
of the biases bz ; : : : ; bz . We say a neuron z is good at x
if there exists a path of neurons from z to the output in the
computational graph of N  so that each neuron zb along this
path is open at x  (i.e. 0(zb(x)      bzb) =  0).

Then, for any bounded, measurable set K   R n i n  and any k
=  1; : : : ; nin; the average (nin      k)–dimensional volume

E [voln i n  k (B N ; k  \  K ) ]

of B N ; k  inside K  is, in the notation of (6),

X X Z     
EY ( : :

; : : : ; i k  ) (x)dx; (12)
distinct neurons i 1 ; : : : ; i k = 1         K

1 k

where Y ( : :
; : : : ; i k  ) (x )  equals

kJz 1 ; : : : ; z k  (x)k b z 1  ; : : : ;bz k  
(z1 (x)      i 1  ; : : : ; zk (x)      i

1
)

)
multiplied by the indicator function of the event that zj  is
good at x  for every j :

Note that if in the definition (11) of  we have that the pos-
sible values 0(t) 2  fq0; : : : ; qT g do not include 0, then we

may ignore the event that zj  are good at x  in the definition
(      ;:::;     )

z 1 ; : : : ; z k

Corollary 7. With the notation and assumptions of Theo-
rem 6, suppose in addition that the weights and biases are
independent. Fix k 2  f1; : : : ; ning and suppose that for

every collection of distinct neurons z1; : : : ; zk, the average
magnitude of the product of gradients is uniformly bounded:

2 3  k

neurons z  ;:::;z 
E 4 k r z j ( x ) k 5   Cgrad: (14)

inputs x

Then we have the following upper bounds

E [voln

v
 k (B N ; k  \  K ) ]

(15)

#fneuronsg
k grad     bias

where T is the number of breakpoints in the non-linearity
of N  (see (11)) and

Cbias =  sup sup b (b):
b 2 R

We prove Corollary 7 in §D and state a final corollary of
Theorem 3:

Corollary 8. Suppose N  is as in Theorem 3 and satisfies the
hypothesis (14) in Corollary 7 with constants Cbias; Cgrad .
Then, for any compact set K   R n i n     

 let x  be a uniform
point in K :  There exists c >  0 independent of K  so that

E [distance(x; BN )]  
CbiasCgrad#fneuronsg

;

where, as before, T is the number of breakpoints in the
non-linearity  of N .

We prove Corollary 8 in §E. The basic idea is simple. For
every  >  0; we have

E [distance(x; BN )]  P (distance(x; BN )  >  ) ;

with the probability on the right hand side scaling like
1      volni n  (T(B N  ) \  K )vol n i n  ( K ) ;

where T(B N  ) is the tube of radius  around B N  : We ex-
pect that its volume like voln  1 (B N  ). Taking " =
c=#fneuronsg yields the conclusion of Corollary 8.

B. Outline of Proof of Theorem 6

The purpose of this section is to give an intuitive explanation
of the proof of Theorem 3. We fix a non-linearity  : R  !  R
with breakpoints 1 <   <  T  (as in (11)) and consider a fully
connected network N  with input dimension nin  1, output
dimension 1, and non-linearity : For each neuron z in N , we
write

‘(z ) : =  layer index of z (16)
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and set

S z  : =  f x  2  R n i n  j z (x)      bz 2  f1; : : : ; T gg: (17)

at which the output of N  is affected by the post-activations
of these neurons. Proposition 9 shows that we may represent
B N  as a disjoint union

We further
S z  : =  S z  \  O; (18)

n i n

B N  = BN ; k ;
where

n 8  j =1; : : : ;d  9  neuron z  with
‘ ( z ) = j  s.t.  ( z ( x )  b z ) = 0

Intuitively, the set S z  is the collection of inputs for which
the neuron z turns from on to off. In contrast, the set O is
the collection of inputs x  2  R n i n  for which N  is open in
the sense that there is a path from the input to the output of
N  so that all neurons along this path compute are not
constant in a neighborhood x. Thus, S z  is the set of inputs at
which neuron z switches between its linear regions and at
which the output of neuron z actually affects the function
computed by N :

We remark here that O =  ;  if in the non-linearity  there are no
linear pieces at which the slopes on  equals 0 (i.e. qj  =  0 for all
j  in the definition (11) of ). If, for example,  is ReLU, then
O need not be empty.

The overall proof of Theorem 3 can be divided into several
steps. The first gives the following representation of B N  :
Proposition 9. Under Assumptions A1 and A2 of Theorem
3, we have, with probability 1;

B N      =
[

Sz :
neurons z

The precise proof of Proposition 9 can be found in §C.1
below. The basic idea is that if for all y near a fixed
input x  2  R n i n  ; none of the pre-activations z(y)   bz
cross the boundary of a linear region for , then x  2  B N  :
Thus, B N                Sz :  Moreover, if a neuron z satisfies

z (x)   bz =  S i  for some i  but there are no open paths
from z to the output of N  for inputs near x, then z is
dead at x  and hence does not influence N  at x: Thus, we
expect the more refined inclusion B N       z  Sz .  Finally, if x

2  S z  for some z then x  2  B N  unless the contribution
from other neurons to r N ( y )  for y near x  exactly cancels
the discontinuity in r z ( x ) :  This happens with probability 0.

The next step in proving Theorem 3 is to identify the por-
tions of B N  of each dimension. To do this, we write for any
distinct neurons z1; : : : ; zk,

Sz 1 ; : : : ; z k  : =  
\  

S z j  :
j = 1

The set S z  ;:::;z     is, intuitively, the collection of inputs at
which z j (x)  b z j  switches between linear regions for  and

k = 1

where
0 1

B N ; k  : =
[

Sz 1 ; : : : ; z k  \  @      
[

S z A  :
distinct neurons z = z 1 ; : : : ; z k

1 k

In words, B N ; k  is the collection of inputs in O at which ex-
actly k neurons turn from on to off. The following Proposi-
tion shows that B N ; k  is precisely the “(nin  k)-dimensional
piece of B N  ” (see (5)).
Proposition 10. Fix k =  1; : : : ; nin; and k distinct neurons
z1; : : : ; zk in N :  Then, with probability 1; for every x  2
B N ; k  there exists a neighborhood in which B N ; k  coincides
with a (nin      k) dimensional hyperplane.

We prove Proposition 10 in §C.2. The idea is that each
S z  ;:::;z      is piecewise linear and, with probability 1, at
every point at which exactly the neurons z1; : : : ; zk con-
tribute to B N  , its co-dimension is the number of linear
conditions needed to define it. Observe that with prob-
ability 1, the bias vector (bz ; : : : ; bz ) for any collec-
tion z1; : : : ; zk+1 of distinct neurons is a regular value for
x  !  (z1 (x); : : : ; zk+1 (x)). Hence,

 volni n

k       S z 1 ; : : : ; z k
+ 1         

 =  0:

Proposition 10 thus implies that, with probability 1;

volni n  k  (B N ; k )  =
X

volni n  k  Sz 1 ; : : : ; z k  :
distinct neurons

1 k

The final step in the proof of Theorem 3 is therefore to prove
the following result.
Proposition 11. Let z1; : : : ; zk be distinct neurons in N :
Then, for any bounded, measurable K   R n i n  ,

h i
E  volni n  k       Sz 1 ; : : : ; z k

=  
ZT

E
h
Y ( S

: : :
; : : : ; S i k  ) (x )

i
dx;  K

i 1 ; : : : ; i k = 1

where Y ( S
: : :

; : : : ; S i k  )  is defined as in (13).

We provide a detailed proof of Proposition 11 in §C.3. The
intuition is that the image of the volume element dx under x
!  z (x)      S i  is the volume element

kJz 1 ; : : : ; z k  (x)k dx
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from (13). The probability of an infinitesimal neighborhood
dx of x  belonging to a (nin      k)-dimensional piece of B N

is therefore the probability

b z 1  ; : : : ;b z k  
(z1 (x)      S i 1  ; : : : ; zk (x)      S i k  )

kJz 1 ; : : : ; z k  (x)k dx

that the vector of biases (bz ; j  =  1; : : : ; k) belongs to
the image of dx under map z j (x)       S i  ; j  =  1; : : : ; k for
some collection of breakpoints S i  : The formal argument
uses the co-area formula (see (29) and (30)).

C.  Proof of Theorem 3

C.1. Proof of Proposition 9

Recall that the non-linearity  : R  !  R  is continuous and
piecewise linear with T breakpoints 1 <   <  T  ; so that, with
0 =   1 ;  T + 1  =  1 ,  we have

t 2  ( i ; i + 1 ) ) (t) =  qit +  pi

with qi =  qi+1 : For each x  2  R n i n  ; write
Z +  : =  z 

 
z (x)      bz 2  ( i ; i + 1 )  and qi =  0 for some i  Z x

: =  z  z (x)      bz 2  ( i ; i + 1 )  and qi =  0 for some i
Z x  : =  z  z (x)      bz =  i  for some i

Intuitively, Z +  are the neurons that, at the input x  are open
(i.e. contribute to the gradient of the output N (x))  but do
not change their contribution in a neighborhood of x, Z
are the neurons that are closed, and Z 0  are the neurons that, at
x, produce a discontinuity in the derivative of N : Thus, for
example, if  =  ReLU; then

Z x  : =  fz  j sgn(z(x)      bz ) =  g;  2  f + ;  ; 0g: We

begin by proving that B N   
S  e by checking the

contrapositive
! c

S z  B c  : (19)
z

Fix x  2 z  S z . Note that Z x      are locally constant
in the sense that there exists " >  0 so that for all y with
ky      xk <  ", we have

Z x   Z y  ; Z x   Z y  ; Z y  [  Z y   Z x  [  Z x :  (20)

Moreover, observe that if in the definition (11) of  none of the
slopes qi equal 0, then Z   =  ;  for every y. To prove (19),
consider any path  from the input to the output in the
computational graph of N : Such a path consists of d +  1
neurons, one in each layer:

 =  z0); : : : ; z(d)      ; ‘ (z ( j ) )  =  j :

To each path we may associate a sequence of weights:

w ( j )  : =  weight connecting z ( j  1) to z (j ) ; j  =  1; : : : ; d:

We will also define

T

q ( j ) (x)  : =  
i = 0  

q i 1 f
z
( x )  b

z ( j )  2 ( i ; i + 1 ] g :

For instance, if  =  ReLU, then

q ( j ) (x)  =  1 f z ( j ) ( x )  bz 0g ;

and in general only one term in the definition of q ( j ) (x)  is
non-zero for each z: We may write

N (y ) =  
X

y i
X Y  

q ( j ) (y )w ( j )  +  constant;
i = 1 paths : i ! o u t  j = 1

(21)
Note that if x  2         z  S z        , then for any path  through a

neuron z 2  Z 0 , we have

9 j  s.t. z ( j )  2  Z x  :

This is an open condition in light of (20), and hence for all y in
a neighborhood of x  and for any path  through a neuron z 2
Z x  we also have that

9 j  s.t. z ( j )  2  Z y  :

Thus, since the summand in (21) vanishes identically if
\  Z   =  ; ,  we find that for y in a neighborhood of any x

2 z  S z      
c 

we may write

N (y ) =  
X

y i
X Y  

q ( j ) (y )w ( j )  +  constant:
i = 1 paths : i ! o u t  j = 1

Z +

(22)
But, again by (20), for any fixed x, all y in a neighborhood
of x  and each z 2  Z + ;  we have z 2  Z +  as well. Thus, in
particular,

z (x)      bz 2  ( i ; i + 1 ) ) z(y)      bz 2  ( i ; i +1 ):

Thus, for y sufficiently close to x; we have for every path in
the sum (22) that

q ( j ) (y ) =  q ( j ) (x):

Therefore, the partial derivatives (@N =@yi)(y) are indepen-
dent of y in a neighborhood of x  and hence continuous at x.
This proves (19). Let us now prove the reverse inclusion:

[
S z        B N (23)

z
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Note that, with probability 1; we have

volni n      1  (S z 1  \  S z 2  )  =  0

for any pair of distinct neurons z1; z2: Note also that since
x  !  N ( x )  is continuous and piecewise linear, the set B N
is closed. Thus, it is enough to show the slightly weaker
inclusion 0 1

[
@ S z

 [  
S zb A       B N (24)

z zb= z

since the closure of S z
S

zb = z  S zb  equals Sz :  Fix a neuron z and
suppose x  2  S z Szb.  By definition, we have that
for every neuron zb =  z; either

zb 2  Z x or     zb 2  Z x  :

This has two consequences. First, by (20), the map y !
z(y) is linear in a neighborhood of x: Second, in a neighbor-
hood of x; the set S z  coincides with Sz .  Hence, combining
these facts, near x  the set S z  coincides with the hyperplane

f x  j z (x)      bz =  ig; for some i: (25)

We may take two sequences of inputs y+ ; y   on opposite
sides of this hyperplane so that

lim yn     = lim yn     =  x

and

0 (z(y+ )      bz ) =  qi ; 0 (z (y+ )      bz ) =  qi 1;     8n;

where the index i  the same as the one that defines the hyper-
plane (25). Further, since B N  has co-dimension 1 (it is con-
tained in the piecewise linear co-dimension 1 set Sz ,  for
example), we may also assume that y+ ; y   2  B N  : Consider
any path  from the input to the output of the computational
graph of N  passing through z (so that z =  z ( j )  2  ). By
construction, for every n, we have

q ( j ) (y + )  =  q ( j ) (y      );

and hence, after passing to a subsequence, we may assume
that the symmetric difference

Z +  Z +       =  ; (26)
n n

of the paths that contribute to the representation (21) for
y + ;  y  is fixed and non-empty (the latter since it always
contains z). For any y 2  B N  ; we may write, for each
i  =  1; : : : ; nin

@
N

 
(y) =

X Y  
q ( j ) (y )w (j ) : (27)

i                        paths : i ! o u t  j = 1
Z +

Substituting into this expression y =  y, we find that there
exists a non-empty collection   of paths from the input to
the output of N  so that

@
N

 
(y + )    

@
N

 
(y     )  =  

X  
aj  

Y

c( j ) w ( j )  i i 2  j = 1

where

aj  2  f  1; 1g; c( j )  2  fq0; : : : ; qT g:

Note that the expression above is a polynomial in the
weights of N .  Note also that, by construction, this polyno-
mial is not identically zero due to the condition (26). There
are only finitely many such polynomials since both aj  and
c( j )  range over a finite alphabet. For each such non-zero
polynomial, the set of weights at which it vanishes has
co-dimension 1. Hence, with probability 1; the difference
@N (yn )    @N (yn )  is non-zero. This shows that the par-
tial derivatives @N are not continuous at x  and hence that

x  2  B N  :

C.2. Proof of Proposition 10

Fix distinct neurons z1; : : : ; zk and suppose x  2  Sz 1 ; : : : ; z k

but not in S z  for any z =  z1; : : : ; zk: After relabeling, we
may assume that they are ordered by layer index:

‘(z1 )    ‘(zk ):

Since x  2  O, we also have that x  2  S z  for any z =
z1; : : : ; zk: Thus, there exists a neighborhood U of x  so
S z  \  U =  ;  for every z =  z1; : : : ; zk: Thus, there exists a
neighborhood of x  on which y !  z1(y) is linear.

Hence, as explained near (25) above, S z      is a hyperplane
near x: We now restrict our inputs to this hyperplane and
repeat this reasoning to see that, near x; the set Sz 1 ; z 2  is
a hyperplane inside S z       and hence, near x, is the inter-
section of two hyperplanes in R n i n  . Continuing in this
way shows that in a neighborhood of x; the set S z  ;:::;z

is equal to the intersection of k hyperplanes in R n i n  : Thus,

Sz 1 ; : : : ; z k  n        z = z 1 ; : : : ; z k  
S z          is precisely the intersection of

k hyperplanes in a neighborhood of each of its points.

C.3. Proof of Proposition 11

Let z1; : : : ; zk be distinct neurons in N ; and fix a com-
pact set K   R n i n  . We seek to compute the mean of

volni n  k       Sz 1 ; : : : ; z k  \  K  , which we may rewrite as
Z

1 n z j  is good at x o  dvoln  k (x ) (28)
S z  ; : : : ; z      \ K j = 1 ; : : : ; k

T Z
=  

i 1 ; : : : ; i k = 1      S
(  

; :  
; : : : ; i k  

)
\ K  

1n z j
j
i s  good at xo dvoln i n  k (x);
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where, as in (13), Yz  ;:::;z (x )  is
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where we’ve set

S (
; : :

; : : : ; i k  )  =  f x  j z j (x)       b z j  =  i j  ; j  =  1; : : : ; kg:

Note that the map x  !  (z1 (x); : : : ; zk (x)) is Lipschitz, and
recall the co-area formula, which says that if 2  L 1 ( R n )
and g : R n  !  R m  with m  n is Lipschitz, then

Z Z

times the indicator function of the even that zj  is good at
x  for every j :  When the weights and biases of N  are
independent, we may write b z 1  ; : : : ;b z k  

(b1; : : : ; bk) as

Y  
(b )   

     
sup sup  (b)

k 

=  C k       :
j = 1                                        

 neurons z  b 2 R

(x) dvoln m (x)dt
R m         g     1 ( t )

equals Z
(x) kJ g (x)k dvoln (x);

R n

where J g  is the m  n Jacobian of g and

kJ g(x)k =  det
 

( J g (x) ) ( J g (x) ) T  1=2 :

(29) Hence,

Yz 1 ; : : : ;z k  (x )   Cbias det Jz 1 ; : : : ; z k  (x) (J z 1 ; : : : ; z k  (x ) ) T  1=2 
: (30)

Note that

Jz 1 ; : : : ; z k  (x) (J z 1 ; : : : ; z k  (x ) ) T  =  Gram (rz1 (x); : : : ; rzk (x)) ;

We assumed that the biases bz ; : : : ; bz     have a joint condi-
tional density

b z  =  b z 1  ; : : : ;b z k

given all other weights and biases. The mean of the term in
(28) corresponding to a fixed  =  ( i  ; : : : ; i )  over the
conditional distribution of bz1  ; : : : ; bzj is therefore
Z Z

dbb  (b) 1 n z j  is good at x o  dvoln

k (x);  R k                                              f z  b = g \ K              j = 1 ; : : : ; k

where we’ve abbreviated b  =  (b1; : : : ; bk) as well as
z(x)  =  (z1(x); : : : ; zk (x)). This can rewritten as
Z Z

db b  (z (x)  )1 n z j  is good at xo dvoln  k (x):
R k                    

 f z = b g \ K                                                j = 1 ; : : : ; k

Thus, applying the co-area formula (29), (30) shows that
the average of (28) over the conditional distribution of
bz1  ; : : : ; bzj is precisely

Z
Yz ;:::;z (x) dx:

K

Taking the average over the remaining weighs and biases,
we may commute the expectation E [] with the dx integral
since the integrand is non-negative. This completes the
proof of Proposition 11.

where for any vi 2  R n

Gram(v1; : : : ; vk )i;j =  hvi ; vj i

is the associated Gram matrix. The Gram identity says that

det J z 1 ; : : : ; z k  (x) ( J z 1 ; : : : ; z k  (x ) ) T      1=2 
equals

krz 1 ( x )  ^   ^  rz k ( x )k ;

which is the the k-dimensional volume of the parallelopiped
in R n i n  spanned by f r z j ( x ) ;  j  =  1; : : : ; kg: We thus have

det Jz 1 ; : : : ; z k  (x) ( J z 1 ; : : : ; z k  (x ) ) T  1=2     
 

k      

krz j (x )k :
j = 1

The estimate (14) proves the upper bound (15). For the
special case of  =  ReLU we use the AM-GM inequality
and Jensen’s inequality to write

2 3 2 0 1  3
k                                                                    k

E 4 k r z j ( x ) k 5   E 4@ k r z j ( x ) k A  5
j = 1 j = 1

k h i
E  k r z j k      :

j = 1

D. Pr oof of Corollary 7 Therefore, by Theorem 1 of Hanin & Nica (2018), there

We begin by proving the upper bound in (15). By Theorem
exist C1 ; C2 >  0 so that

3, E [vol (BN ; k  \  K ) ]  equals

Z E 4 k r z j ( x ) k 5  C1 eC 2 j = 1  n j :

E  Y ( : :
; : : : ; i k  ) (x )  (x)dx; j = 1

distinct neurons z 1 ; : : : ; z k  i 1 ; : : : ; i k = 1      K                                                                          
This completes the proof of the upper bound in (15). To

( i 1  ; : : : ; i k  )                                                                                     prove the power bound, lower bound in (15) we must argue
1 k in a different way. Namely, we will induct on k and use the

kJz 1 ; : : : ; z k  (x)k b z 1  ; : : : ;bz k  
(z1 (x)      i 1  ; : : : ; zk(z)      i k  ) following facts to prove the base case k =  1:
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1. At initialization, for each fixed input x; the random
variables f1 f z ( x ) > b  gg are independent Bernoulli ran-
dom variables with parameter 1=2: This fact is proved
in Proposition 2 of Hanin & Nica (2018). In particular,
the event fz  is good at xg, which occurs when there
exists a layer j  2  ‘(z ) +  1; : : : ; d in which z (x)  bz for
every neuron, is independent of fz (x); bz g and
satisfies

d

P (z is good at x )   1  2 n j
 : (31)

j = 1

2. At initialization, for each fixed input x, we have

2 ‘ ( z )

E  z (x)2     = + 2 ; (32)
in            j = 1

where 2 : =  Var[biases at layer j ]. This is Equation
(11) in the proof of Theorem 5 from Hanin & Rolnick
(2018).

3. At initialization, for every neuron z and each input x;
we have h i

E  krz (x )k =  2: (33)

This follows easily from Theorem 1 of Hanin (2018).

4. At initialization, for each 1  j   nin and every x  2
R n i n

"
2

! # ‘ ( z )

E  log     nin @xj 
(x ) =    

2 
j = 1  

nj      
(34)

plus O 
P ‘ ( z )  

n 2  , where nj  is the width of the j th

hidden layer and the implied constant depends only on
the 4th moment of the measure  according to which
weights are distributed. This estimate follows immedi-
ately by combining Corollary 26 and Proposition 28 in
Hanin & Nica (2018).

We begin by proving the lower bound in (15) when k =  1:
We use (31) to see that E [voln  1 ( B N  \  K ) ]  is bounded
below by

1      
X

2  n j
 

X Z     
E [krz (x)k b  (z (x))] dx:

j = 1                     neurons z      K

Next, we bound the integrand.     Fix x  2  R n i n       and a
parameter  >  0 to be chosen later. The integrand
E [krz (x)k b z  (z (x))] is bounded below by

E krz (x )k b z  (z (x))1f j z ( x ) j g

jbj 
b z  (b) E krz (x)k 1f j z ( x ) j g ;

which is bounded below by

j
inf

 
b z  (b)E [krz (x)k]      E krz ( x )k 1 f j z ( x ) j g > :

Using Cauchy-Schwarz, the term E krz ( x ) k 1 f j z ( x ) j g >
 
is

bounded above by

E [krz (x)k]2  P (jz(x)j >  )
1=2 

;

which using (33) and (32) together with Markov’s inequality,
is bounded above by

2     
0

kxk2 ‘ ( z )       
2 

11=2

1=2                                              j
j = 1

Next, using Jensen’s inequality twice, we write
h i

log E [krz (x)k]  E  log krz (x )k
2 0 1 3

=  
1

E 4 log @
n i n @z 

(x)
2

A 5  j = 1               j

2

 
2

E log     n1=2 

@xj 
(x )

1‘ ( z ) ‘ ( z )

=    
4 

j = 1  
nj  

+  O
 
@

j = 1  
n2 

A ;

where in the last inequality we applied (34). Putting this all
together, we find that exists c >  0 so that

E [krz (x)k  (z (x))]  c inf  (b) ;
jbj

where
0 1

5 d  1  ‘ ( z )   1

  4 + 2 e 4 j = 1  n j j = 1  n j         :
in            j = 1

In particular, we may take
0 1

 =  @
supx 2 K  kxk2 

+  
d     

2 A e C  
P

j = 1  
 1

in j = 1

for C  sufficiently large. This completes the proof of the
lower bound in (15) when k =  1. To complete the proof of
Corollary 7, suppose we have proved the lower bound in (15)
for all ReLU networks N  and all collections of k 1
distinct neurons. We may assume after relabeling that the
neurons z1; : : : ; zk are ordered by layer index:

‘(z1 )    ‘(zk ):
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With probability 1; the set S z       R n i n  is piecewise linear,
co-dimension 1 with finitely many pieces, which we denote

by P. We may therefore rewrite volni n  k       Sz 1 ; : : : ; z k  \  K

volni n  k       Sz 2 ; : : : ; z k  \  P  \  K  :

We now define a new neural network N, obtained by
restricting N  to P: The input dimension for N  equals nin
1; and the weights and biases of N  satisfy all the as-
sumptions of Corollary 7. We can now apply our inductive
hypothesis to the k      1 neurons z2; : : : ; zk in N  and to the set
K  \  P: This gives

" #
E            volni n  k       Sz 2 ; : : : ; z k  \  P  \  K

k  1
inf inf  (b) E [vol (P  \  K ) ] :

jbj

Summing this lower bound over  yields h
i

E  volni n  k       Sz 1 ; : : : ; z k  \  K
k  1 h i

inf inf  (b) E  vol S \  K :
jbj

Applying the inductive hypothesis once more completes the
proof.

where we abbreviated Sd 1 : =  
S

k = 0  Sk :  Using that

voln (B" (N (Sd )))  =  vold(Sd) voln d (B " ( R n  d ))

=  vold(Sd)"n d ! n  d

and repeating this argument d  1 times completes the proof.

We are now ready to prove Corollary 2. Let x  2  K  =
[0; 1]nin be uniformly chosen. Then, for any " >  0, using
Markov’s inequality and Lemma 12, we have

E [distance(x; BN )]
 "P (distance(x; BN ) >  ")
=  " (1      P (distance(x; BN )   ")) =
" (1      E [voln i n  (T" ( B N  ))])

n i n

 "     1  ! n i n  k " n i n      k  E  voln i n      k  (B N ; k )
k = 1 !

i n

 "     1  (Cgrad Cbias"#fneuronsg)k

k = 1

 " (1      C 0CgradCbias"#fneuronsg)

for some C 0 >  0: Taking " to be a small constant times
1=(Cgrad #fneuronsg) completes the proof.

E.  Pr oof of Corollary 8

We will need the following observation.

Lemma 12. Fix a positive integer n  1, and let S   R n  be
a compact continuous piecewise linear submanifold with
finitely many pieces. Define S0 =  ;  and let S k  be the
union of the interiors of all k-dimensional pieces of
S n(S0 [   [  S k  1). Denote by T " ( X )  the " tubular
neighborhood of any X   R n :  We have

voln (T" (S ))   
X

! n  k "n k  volk (Sk ) ;
k = 0

where ! d  : =  volume of ball of radius 1 in Rd :

Proof. Define d to be the maximal dimension of the linear
pieces in S: Let x  2  T" (S ): Suppose x  2  T" (Sk )  for all
k =  0; : : : ; d      1: Then the intersection of the ball of radius
" around s with S  is a ball inside Sd =  U  Rd . Using the
convexity of this ball, there exists a point y in Sd so that
the vector x       y is parallel to the normal vector to Sd at y.
Hence, x  belong to the normal "-ball bundle B " (N (S d ) )
(i.e. the union of the fiber-wise "-balls in the normal bundle
to Sd). Therefore, we have

voln (T" (S ))   voln (B" (N (Sd )))  +  voln (T" (Sd 1)) ;


