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Abstract

With a growing demand for adopting ML models for a variety
of application services, it is vital that the frameworks serving
these models are capable of delivering highly accurate predic-
tions with minimal latency along with reduced deployment
costs in a public cloud environment. Despite high latency,
prior works in this domain are crucially limited by the accu-
racy offered by individual models. Intuitively, model ensem-
bling can address the accuracy gap by intelligently combining
different models in parallel. However, selecting the appro-
priate models dynamically at runtime to meet the desired
accuracy with low latency at minimal deployment cost is a
nontrivial problem. Towards this, we propose Cocktail, a cost
effective ensembling-based model serving framework. Cock-
tail comprises of two key components: (i) a dynamic model
selection framework, which reduces the number of models
in the ensemble, while satisfying the accuracy and latency
requirements; (ii) an adaptive resource management (RM)
framework that employs a distributed proactive autoscaling
policy, to efficiently allocate resources for the models. The
RM framework leverages transient virtual machine (VM) in-
stances to reduce the deployment cost in a public cloud. A
prototype implementation of Cocktail on the AWS EC2 plat-
form and exhaustive evaluations using a variety of workloads
demonstrate that Cocktail can reduce deployment cost by
1.45 %, while providing 2 x reduction in latency and satisfy-
ing the target accuracy for up to 96% of the requests, when
compared to state-of-the-art model-serving frameworks.

1 Introduction

Machine Learning (ML) has revolutionized user experience
in various cloud-based application domains such as product
recommendations [70], personalized advertisements [44], and
computer vision [13,43]. For instance, Facebook [44, 82]
serves trillions of inference requests for user-interactive ap-
plications like ranking new-feeds, classifying photos, etc. It
is imperative for these applications to deliver accurate predic-
tions at sub-millisecond latencies [27,34,35,39,44,83] as they
critically impact the user experience. This trend is expected
to perpetuate as a number of applications adopt a variety of
ML models to augment their services. These ML models are
typically trained and hosted on cloud platforms as service end-
points, also known as model-serving framework [6, 28, 60].
From the myriad of ML flavours, Deep Neural Networks

(DNNSs) [54] due to their multi-faceted nature, and highly gen-
eralized and accurate learning patterns [45,73] are dominating
the landscape by making these model-serving frameworks
accessible to developers. However, their high variance due to
the fluctuations in training data along with compute and mem-
ory intensiveness [59, 65, 84] has been a major impediment in
designing models with high accuracy and low latency. Prior
model-serving frameworks like InFaas [83] are confined by
the accuracy and latency offered by such individual models.

Unlike single-model inferences, more sophisticated tech-
niques like ensemble learning [15] have been instrumental
in allowing model-serving to further improve accuracy with
multiple models. For example, by using the ensembling '
technique, images can be classified using multiple models in
parallel and results can be combined to give a final prediction.
This significantly boosts accuracy compared to single-models,
and for this obvious advantage, frameworks like Clipper [27]
leverage ensembling techniques. Nevertheless, with ensem-
bling, the very high resource footprint due to sheer number
of models that need to be run for each request [27,56], ex-
acerbates the public cloud deployment costs, as well as leads
to high variation in latencies. Since cost plays a crucial role
in application-provider consideration, it is quintessential to
minimize the deployment costs, while maximizing accuracy
with low latency. Hence, the non-trivial challenge here lies
in making the cost of ensembling predictions analogous to
single model predictions, while satisfying these requirements.

Studying the state-of-the-art ensemble model-serving
frameworks, we observe the following critical shortcomings:

e Ensemble model selection policies used in frameworks
like Clipper [27] are static, as they ensemble all available
models and focus solely on minimizing loss in accuracy. This
leads to higher latencies and further inflates the resource foot-
print, thereby accentuating the deployment costs.

o Existing ensemble weight estimation [87] has high com-
putational complexity and in practice is limited to a small
set of off-the-shelf models. This leads to significant loss in
accuracy. Besides, employing linear ensembling techniques
such as model averaging are compute intensive [80] and not
scalable for a large number of available models.

e Ensemble systems [27,80] are not focused towards model
deployment in a public cloud infrastructure, where resource

I'We refer to ensemble-learning as ensembling throughout the paper.
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selection and procurement play a pivotal role in minimizing
the latency and deployment costs. Further, the resource provi-
sioning strategies employed in single model-serving systems
are not directly extendable to ensemble systems.

These shortcomings collectively motivate the central
premise of this work: how to solve the complex optimiza-
tion problem of cost, accuracy and latency for an ensem-
bling framework? In this paper, we present and evaluate
Cocktail’, which to our knowledge is the first work that pro-
poses a cost-effective model-serving system by exploiting
ensembling techniques for classification-based inference, to
deliver high accuracy and low latency predictions. Cocktail
adopts a three-pronged approach to solve the optimization
problem. First, it uses a dynamic model selection policy to
significantly reduce the number of models used in an ensem-
ble, while meeting the latency and accuracy requirements.

Cost1 Second, it utilizes dis-
tributed autoscaling poli-
cies to reduce the la-
tency variability and re-
source consumption of
hosting ensemble mod-
els. Third, it minimizes
the cost of deploying
ensembles in a public
cloud by taking advan-
tage of transient VMs,
as they can be 70-90% cheaper [3] than traditional VMs.
Cocktail, by coalescing these benefits, is capable of operating
in a region of optimal cost, accuracy and latency (shown in
Figure 1) that prior works cannot achieve. Towards this, the
key contributions of the paper are summarized below:

------- InFaas- Clipper—— Cocktail

Figure 1: Benefits of Cocktail. Re-
sults are normalized (higher the
better).

1. By characterizing accuracy vs. latency of ensemble models,
we identify that prudently selecting a subset of available
models under a given latency can achieve the target ac-
curacy. We leverage this in Cocktail, to design a novel
dynamic model selection policy, which ensures accuracy
with significantly reduced number of models.

2. Focusing on classification-based inferences, it is important
to minimize the bias in predictions resulting from multi-
ple models. In Cocktail, we employ a per-class weighted
majority voting policy, that makes it scalable and effec-
tively breaks ties when compared to traditional weighted
averaging, thereby minimizing the accuracy loss.

3. We show that uniformly scaling resources for all models
in the ensemble leads to over-provisioning of resources
and towards minimizing it, we build a distributed weighted
auto-scaling policy that utilizes the importance sampling
technique to proactively allocate resources to every model.
Further, Cocktail leverages transient VMs as they are
cheaper, to drastically minimize the cost for hosting model-
serving infrastructure in a public cloud.

2Cocktail is ascribed to having the perfect blend of models in an ensemble.
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Figure 2: The overall framework for model-serving in public cloud.

4. We implement a prototype of Cocktail using both CPU
and GPU instances on AWS EC2 [5] platform and ex-
tensively evaluate it using different request-arrival traces.
Our results from exhaustive experimental analysis demon-
strate that Cocktail can minimize deployment cost by 1.4 x
while meeting the accuracy for up-to 96% of the requests
and providing 2x reduction in latency, when compared to
state-of-the-art model serving systems.

5. We show that ensemble models are inherently fault-
tolerant over single models, since in the former, failure of
a model would incur some accuracy loss without complete
failure of the requests. It is observed from our failure-
resilience results that Cocktail can adapt to instance fail-
ures by limiting the accuracy loss within 0.6%.

2 Background and Motivation

We start by providing a brief overview of model-serving in
public cloud and ensembling, followed by a detailed analysis
of their performance to motivate the need for Cocktail.

2.1 Model Serving in Public Cloud

Figure 2 shows the overall architecture of a model-serving
framework. There are diverse applications that are typically
developed, trained and hosted as web services. These services
allow end-users to submit queries via web server interface.
Since these inference requests are often user-facing, it is
imperative to administer them under a strict service level ob-
jective (SLO). We define SLO as the end-to-end response
latency required by an application. Services like Ads and
News Feed [39,44] would require SLOs within 100ms, while
facial tag recommendation [83] can tolerate up to 1000ms.
A myriad of model architectures are available to train these
applications which by themselves can be deployed on appli-
cation frameworks like TensorFlow [1], PyTorch [62] etc.
Table | shows the different models available for image predic-
tion, that are pretrained on Keras using ImageNet [29] dataset.
Each model has unique accuracy and latencies depending on
the model architecture. Typically denser models are designed
with more parameters (ex. NASLarge) to classify complex
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Params Top-1 Latenc;
Model (Acronym) (10K) Accur:cy(%) (ms) YA
MobileNetV1 (MNet) 4,253 70.40 43.45 10
MobileNetV2 (MNetV2) 4,253 71.30 415 10
NASNetMobile (NASMob) 5,326 74.40 78.18 3
DenseNet121 (DNetl121) 8,062 75.00 102.35 3
DenseNet201 (DNet201) 20,242 77.30 152.21 2
Xception (Xcep) 22,910 79.00 119.2 4
Inception V3 (Incep) 23,851 77.90 89 5
ResNet50-V2 (RNet50) 25,613 76.00 89.5 6
Resnet50 (RNet50) 25,636 74.90 98.22 5
IncepResnetV2 (IRV2) 55,873 80.30 151.96 1
NasNetLarge (NasLarge) 343,000 82.00 311 1

Table 1: Collection of pretrained models used for image classification.

classes of images. These 11 models are a representative set

to classify all images belonging to 1000 classes in Imagenet.

Depending on the application type, the maximum ensemble
size can vary from tens to hundreds of models.

The entire model framework is typically hosted on re-

sources like VMs or containers in public cloud. These re-
sources are available in different types including CPU/GPU
instances, burstables and transient instances. Transient in-
stances [69] are similar to traditional VMs but can be revoked
at any time by the cloud provider with an interruption notice.
The provisioning latency, instance permanence and packing
factor of these resources have a direct impact on the latency
and cost of hosting model-serving. We explain instance “pack-
ing factor” and its relationship with latency in Section 2.3.2.
In this paper, we focus on improving the accuracy and latency
from the model selection perspective and consider instances
types from a cost perspective. A majority of the model serving
systems [6, 83, 86] in public cloud support individual model
selection from available models. For instance, InFaas [83]
can choose variants among a same model to maintain accu-
racy and latency requirements. However, denser models tend
to have up to 6x the size and twice the latency of smaller
models to achieve increased accuracy of about 2-3%. Besides
using dense models, ensembling [15] techniques have been
used to achieve higher accuracy.
Why Ensembling? An Ensemble is defined as a set of clas-
sifiers whose individual decisions combined in some way to
classify new examples. This has proved to be more accurate
than traditional single large models because it inherently re-
duces incorrect predictions due to variance and bias. The
commonly used ensemble method in classification problems
is bagging [33] that considers homogeneous weak learners,
learns them independently from each other in parallel, and
combines them following some kind of deterministic aver-
aging process [18] or majority voting [49] process. For fur-
ther details on ensemble models, we refer the reader to prior
works [14,57,58,61,64,77,78, 88].

2.2 Related Work

Ensembling in practice: Ensembling is supported by com-
mercial cloud providers like Azure ML-studio [11] and AWS
Autogluon [31] to boost the accuracy compared to single
models. Azure initially starts with 5 models and scales up to
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Model abstraction
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Table 2: Comparing Cocktail with other related frameworks.

200 using a hill-climb policy [17] to meet the target accuracy.
AWS combines about 6-12 models to give the best possible
accuracy. Users also have the option to manually mention the
ensemble size. Unlike them, Cocktail’s model selection pol-
icy tries to right-size the ensemble for a given latency, while
maximizing accuracy.

Model-serving in Cloud: The most relevant prior works to
Cocktail are InFaas [83] and Clipper [27], which have been
extensively discussed and compared to in Section 6. Recently
FrugalML [20] was proposed to cost-effectively choose from
commercial MLaaS APIs. While striking a few similarities
with Cocktail, it is practically limited to image-classification
applications with very few classes and does not address re-
source provisioning challenges. Several works [37,38] like
MArk [86] proposed SLO and cost aware resource procure-
ment policies for model-serving. Although our heterogeneous
instance procurement policy has some similarities with MArk,
it is significantly different because we consider ensemble
models. Rafiki [80] considers small model sets and scales
up and down the ensemble size by trading off accuracy to
match throughput demands. However, Cocktail’s resource
management is more adaptive to changing request loads and
does not drop accuracy. Pretzel [52] and Inferline [26] are
built on top of Clipper to optimize the prediction pipeline
and cost due to load variations, respectively. Many prior
works [2,25,35,63,74,75] have extensively tried to reduce
model latency by reducing overheads due to shared resources
and hardware interference. We believe that our proposed
policies can be complementary and beneficial to these prior
works to reduce the cost and resource footprint of ensembling.
There are mainstream commercial systems which automate
single model-serving like TF-Serving [60], SageMaker [6],
AzureML [10], Deep-Studio [28] etc.

Autoscaling in Public Cloud: There are several research
works that optimize the resource provisioning cost in pub-
lic cloud. These works are broadly categorized into: (i)
multiplexing the different instance types (e.g., Spot, On-
Demand) [12,23,34,41,42,68,79], (ii) proactive resource
provisioning based on prediction policies [34,36,40,41,69,86].
Cocktail uses similar load prediction models and auto-scales
VMs in a distributed fashion with respect to model ensem-
bling. Swayam [34] is relatively similar to our work as it han-
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Baseline(BL)| NASLarge | IRV2 Xception | DNetl121 | NASMob
#Models 10 8 7 5 2
BL_Latency | 311(ms) 152(ms) 120(ms) 100(ms) 98(ms)
E_Latency 152(ms) 120(ms) 103(ms) 89(ms) 44(ms)

Table 3: Comparing latency of Ensembling (E_Latency) with single
(baseline) models.

dles container provisioning and load-balancing, specifically
catered for single model inferences. Cocktail’s autoscaling
policy strikes parallels with Swayam’s distributed autoscaling;
however, we further incorporate novel importance sampling
techniques to reduce over-provisioning for under-used models.
Table 2 provides a comprehensive comparison of Cocktail
with the most relevant works across key dimensions.

2.3 Pros and Cons of Model Ensembling

In this section, we quantitatively evaluate (i) how effective
ensembles are in terms of accuracy and latency compared
to single models, and (ii) the challenges in deploying en-
semble frameworks in a cost-effective fashion on a public
cloud. For relevance in comparison to prior work [27, 83]
we chose image inference as our ensemble workload. While
ensembling is applicable in other classification workloads like
product recommendations [24,53], text classification [71] etc,
the observations drawn are generic and applicable to other
applications.

2.3.1 Ensembling Compared to Single Models

To analyze the accuracy offered by ensemble models, we con-
duct an experiment using 10000 images from ImageNet [29]
test dataset, on a C5.xlarge [8] instances in AWS EC2 [5].
For a given baseline model, we combine all models whose
latency is lower than that of the baseline, and call it full-
ensemble. We perform ensembling on the predictions using
a simple majority voting policy. The latency numbers for
the baseline models and the corresponding ensemble models
along with the size of the ensemble are shown in Table 3. In
majority voting, every model votes for a prediction for each
input, and the final output prediction is the one that receives
more than half of the votes. Figure 3a, shows the accuracy
comparison of the baseline (single) and static ensemble (ex-
plained in Section 3) compared to the full-ensemble. It is
evident that full-ensemble can achieve up to 1.65% better
accuracy than single models.

Besides accuracy again, ensembling can also achieve lower
latency. The latency of the ensemble is calculated as the time
between start and end of the longest running model. As shown
in Table 3, in the case of NASLarge, the ensemble latency is
2x lower (151ms) than the baseline latency (311ms). Even
a 10ms reduction in latency is of significant importance to
the providers [35]. We observe a similar trend of higher en-
semble accuracy for other four baseline models with a latency
reduction of up to 1.3x. Thus, depending on the model sub-
set used in the ensemble, it achieves better accuracy than
the baseline at lower latencies. Note that in our example
model-set, the benefits of ensembling will diminish for lower
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Figure 3: Cost and accuracy of ensembling vs single models.

accuracies (< 75%) because single models can reach those
accuracies. Hence, based on the user constraints, Cocktail
chooses between ensemble and single models.

2.3.2 Ensembling Overhead

While ensembling can boost accuracy with low latency, their
distinctive resource hungry nature drastically increases the
deployment costs when compared to single models. This is
because more VMs or containers have to be procured to match
the resource demands. However, note that the “Packing factor”
(Py) for each model also impacts the deployment costs. Py in
this context is defined as the number of inferences that can be
executed concurrently in a single instance without violating
the inference latency (on average). Table 1 provides the Py for
11 different models when executed on a C5.xlarge instance.
There is a linear relationship between Py and the instance size.
It can be seen that smaller models (MNet, NASMob) can be
packed 2-5x more when compared to larger models (IRV2,
NASLarge). Thus, the ensembles with models of higher Py
have significantly lower cost.

The benefits of Py is contingent upon the models chosen
by the model selection policy. Existing ensemble model se-
lection policies used in systems like Clipper use all off-the-
shelf models and assign weights to them to calculate accu-
racy. However, they do not right-size the model selection
to include models which primarily contribute to the major-
ity voting. We compare the cost of hosting ensembles using
both spot (ensemble-spot) and OD (ensemble-OD) instances
with the single models hosted on OD (single-OD) instances.
Ensemble-spot is explained further in the next section. We run
the experiment over a period of 1 hour for 10 requests/second.
The cost is calculated as the cost per hour of EC2 c5.xlarge
instance use, billed by AWS [5]. We ensure all instances are
fully utilized by packing multiple requests in accordance to
the Py. As shown in Figure 3b, Ensemble-OD is always ex-
pensive than single-OD for the all the models. Therefore, it is
important to ensemble an “optimal” number of less compute
intensive models to reduce the cost.

3 Prelude to Cocktail

To specifically address the cost of hosting an ensembling-
based model-serving framework in public clouds without
sacrificing the accuracy, this section introduces an overview
of the two primary design choices employed in Cocktail.

How to reduce resource footprint? The first step towards
making model ensembling cost effective is to minimize the
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number of models by pruning the ensemble, which reduces
the overall resource footprint. In order to estimate the right
number of models to participate in a given ensemble, we
conduct an experiment where we chose top % accurate models
(static) from the full-ensemble of size N. From Figure 3a, it
can be seen that the static policy has an accuracy loss of up
to 1.45% when compared to full-ensemble, but is still better
than single models. This implies that the models other than
top % yields a significant 1.45% accuracy improvement in
the full-ensemble but they cannot be statically determined.
= ViNety2mmm RV NASLarge Therefore, a full-ensemble
model participation is not
required for all the inputs
because, every model is in-
dividually suited to classify
certain classes of images
when compared to other
classes. Figure 4 shows the class-wise accuracy for three
models on 5 distinct classes. It can be seen that for simpler
classes like Slug, MNetV2 can achieve similar accuracy as the
bigger models, while for difficult classes, like Cup and Quill,
it experiences up to 3% loss in accuracy. Since the model
participation for ensembling can vary based on the class of
input images being classified, there is a scope to develop a dy-
namic model selection policy that can leverage this class-wise
variability to intelligently determine the number of models
required for a given input.
Key Takeaway: Full ensemble model-selection is an overkill,
while static-ensemble leads to accuracy loss. This calls for
a dynamic model selection policy which can accurately de-
termine the number of models required, contingent upon the
accuracy and scalability of the model selection policy.
How to save cost? Although dynamic model selection poli-
cies can significantly reduce the resource footprint as shown
in Figure 3b, the cost is still 20-30% higher when compared
to a single model inference. Most cloud providers offer tran-
sient VMs such as Amazon Spot instances [69], Google Pre-
emptible VMs [9], and Azure Low-priority VMs [7], that can
reduce cloud computing costs by as much as 10x [3]. In Cock-
tail, we leverage these transient VMs such as spot instances
to drastically reduce the cost of deploying ensembling model
framework. As an example, we host full-ensembling on AWS
spot instances. Figure 3b shows that ensemble-spot can re-
duce the cost by up to 3.3x when compared to ensemble-OD.
For certain baselines like IRV2, ensemble-spot is also 1.5
cheaper than single-OD. However, the crucial downside of
using transient VMs is that they can be unilaterally preempted
by the cloud provider at any given point due to reasons like in-
crease in bid-price or provider-induced random interruptions.
As we will discuss further, Cocktail is resilient to instance
failures owing to the fault-tolerance of ensembling by com-
puting multiple inferences for a single request.
Key takeaway: The cost-effectiveness of transient instances,
is naturally suitable for hosting ensemble models.
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4 Opverall Design of Cocktail

Motivated by our observations, we design a novel model-
serving framework, Cocktail, that can deliver high-accuracy
and low-latency predictions at reduced cost. Figure 5 depicts
the high-level design of Cocktail. Users submit requests to
a master VM, which runs a model selection algorithm, @
to decide the models to participate in the ensemble. The
participating models are made available in a model cache )
for faster access and avoid re-computation for requests having
similar constraints. Then, individual queries are dispatched
to instances pools @ dedicated for each model. The results
from the workers are ensembled using an weighted majority
voting aggregator @ to agree upon a correct prediction. To
efficiently address the resource management and scalability
challenges, Cocktail applies multiple strategies.

First, it maintains dedicated instance pools to serve indi-
vidual models which simplifies the management and load
balancing overheads for every model. Next, the resource con-
troller @ handles instance procurement, by exploiting both
CPU and GPU instances @) in a cost-aware @ fashion, while
the load balancer @ ensures all procured instances are bin-
packed by assigning queries to appropriate instances. We
also design an autoscaler @, which utilizes a prediction pol-
icy @ to forecast the request load and scale instances for
every model pool, thereby minimizing over-provisioning of
resources. The autoscaler further employs an importance sam-
pling @ algorithm to estimate the importance of each model
pool by calculating percentage of request served by it in a
given time interval. The key components of the design are
explained in detail below.

Autoscaler @

4
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4.1 Dynamic Model Selection Policy

We use a window-based dynamic model selection policy using
two objective functions as described below.

Objective functions: In order to reduce cost and latency
while maximizing the accuracy, we define a latency-accuracy
metric (uaz) and cost metric (u.):

Acc target

paL = S =

i inst_cost
Lattarget m=1 P Sm

where N is the number of models used to ensemble and
inst_cost is the VM cost. Each model m has a packing factor
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Py, and k is a constant which depends on the VM size in
terms of vCPUs (xlarge, 2xlarge, etc). Our first objective
function (Oy) is to the maximize p4z such that target accuracy

(Accrarger) 18 reached within the target latency (Latiarger)-

Acctarget > Acctarget :l:ACCmargin

max ar,
{ Latiarger < Latyarger + Latmargin

To solve Oy, we determine an initial model list by choosing
the individual models satisfying Lat;q¢.; and then create a
probabilistic ensemble that satisfies the Accigreer. Cocktail
takes the accuracy of each model as a probability of cor-
rectness and then iteratively constructs a model list, where
the joint probability of them performing the classification is
within the accuracy target. We tolerate a 0.2% (AcCnargin)
and 5Sms (Latyargin) variance in Accygrger and Latigrger, T€SPEC-
tively. Next, we solve for the second objective function (O;)
by minimizing uc, while maintaining the target accuracy.

minyc : { Acctarget > Accmrget iAccmargin

(0») is solved by resizing the model list of size N and fur-
ther through intelligence resource procurement (described in
section 4.2), and thus maximizing Py and minimizing k simul-
taneously. For N models, where each model has a minimum
accuracy ‘a’, we model the ensemble as a coin-toss problem,
where N biased coins (with probability of head being a) are
tossed together, and we need to find the probability of major-
ity of them being heads. For this, we need at least |5 | + 1
models to give the same results. The probability of correct
prediction is given by

i (1:’) d (1—a)™

SEr

Model Selection Algorithm: To minimize uc, we design
a policy to downscale the number of models, if more than
N/2+1 models vote for the same classification result. Algo-
rithm 1 describes the overall design of the model selection
policy @. For every monitoring interval, we keep track of the
accuracy obtained from predicting all input images within the
interval. If the accuracy of the interval reaches the threshold
accuracy (target + error_margin), we scale down the num-
ber of available models in the ensemble. For consecutive
sampling intervals, we calculate the Mode (most frequently
occurring) of the majority vote received for every input. If
the Mode is greater than needed votes |[N/2| + 1 we prune
the models to |N/2] 4 1. While down-scaling, we drop the
models with the least prediction accuracy in that interval. If
there is a tie, we drop the model with least packing factor
(Pr). It can so happen that dropping models can lead to drop
in accuracy for certain intervals, because the class of images
being predicted are different. In such cases, we up-size the
models (one at a time) by adding most accurate model from
the remaining unused models.

Algorithm 1 Model Selection and Weighted Majority Voting

1: procedure FULL_ENSEMBLE(MODELLIST, SLO)
2: for model € ModelList do

3: if model.latency < SLO.latency then

4: Model.add(model)

S: end if

6: end for

7: end procedure.

8: procedure DYNAMIC_MODEL_SCALING(Models)
9: if curr_accuracy > accuracy_threshold then
10: if max,ore > Y + 1 then
11: to_be_dropped < maxyte — % +1
12: Models.drop(to_be_dropped)
13: end if
14: else
15: addModel + find_models(remaining_models)
16: Models.append(addModel)
17: end if

18: end procedure
19: procedure WEIGHTED_VOTING(Models)
20: for model in VModels do

21: class <— model.predicted_class

22: weighted_vote[class]+ = weights|model .class)
23: end for

24: Pejass < max(weighted_vote, key = class)

25: returnP,y,

26: end procedure

4.1.1 Class-based Weighted Majority Voting

The model selection policy described above ensures that we
only use the necessary models in the majority voting. In or-
der to increase the accuracy of majority voting, we design
a weighted majority voting policy €. The weight matrix is
designed by considering the accuracy of each model for each
class, giving us a weight matrix of L X N dimension, where L
is the number of unique labels and N is the number of models
used in the ensemble. The majority vote is calculated as a
sum of model-weights for each unique class in the individual
prediction of the ensemble. For instance, if there are 3 unique
classes predicted by all the ensemble models, we sum the
weights for all models of the same class. The class with the
maximum weight (P,s;) is the output of the majority vote.
Hence, classes that did not get the highest votes can still be
the final output if the models associated with that class has a
higher weight, than the combined weights of highest voted
class. Unlike commonly used voting policies which assign
weights based on overall correct predictions, our policy incor-
porates class-wise information to the weights, thus making it
more adaptable to different images classes.

In order to determine the weight of every class, we use
a per-class dictionary that keeps track of the correct predic-
tions of every model per class. We populate the dictionary
at runtime to avoid any inherent bias that could result from
varying images over time. Similarly, our model selection pol-
icy is also changed at runtime based on correct predictions
seen during every interval. An important concern in majority
voting is tie-breaking. Ties occur when two sets of equal
number of models predict a different result. The effectiveness

1046 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



Algorithm 2 Predictive Weighted Instance Auto Scaling

1: procedure WEIGHTED_AUTOSCALING(Stages)
2: Predicted_load <+ DeepARN_Predict(load)

3 for every Interval do

4 for model in YModels do

5: modelyeign < get_popularity(model)
6: Weight .append(model,,eigh: )

7 end for

8 end for

9 if Predicted_load > Current_load then
10: for model in VModels do
11: I_n < (Predicted_load - Current_load) X model,ign
12: launch_workers(est_VMs)
13: model.workers.append(est_VMs)
14: end for
15: end if

16: end procedure

of weighted voting in breaking ties is discussed in Section 6.
4.2 Resource Management

Besides model selection, it is crucial to design an optimized
resource provisioning and management scheme to host the
models cost-effectively. We explain in detail the resource
procurement and autoscaling policy employed in Cocktail.

4.2.1 Resource Controller

Resource controller determines the cost-effective combina-
tion of instances to be procured. We explain the details below.
Resource Types: We use both CPU and GPU instances @
depending on the request arrival load. GPU instances are
cost-effective when packed with a large batch of requests for
execution. Hence, inspired from prior work [27, 86], we de-
sign an adaptive packing policy such that it takes into account
the number of requests to schedule at time 7" and Py for every
instance. The requests are sent to GPU instances only if the
load matches the Py of the instance.

Cost-aware Procurement: The cost of executing in a fully
packed instance determines how expensive is each instance.
Prior to scaling-up instances, we need to estimate the cost )
of running them along with existing instances. At any given
time 7', based on the predicted load (L,) and running instances
Ry, we use a cost-aware greedy policy to determine the num-
ber of additional instances required to serve as A, = L, — C,,
where C, = YV | Py, is the request load which can be handled
with Ry. To procure A, instances, we greedily calculate the
least cost instance as minyjcnsrances COSti X A/ Py,. Depend-
ing on the cost-effectiveness ratio of A, /Ps, GPUs will be
preferred over CPU instances.

Load Balancer: Apart from procuring instances, it is
quintessential to design a load balancing and bin-packing @
strategy to fully utilize all the provisioned instances. We
maintain a request queue at every model pool. In order to
increase the utilization of all instances in a pool at any given
time, the load balancer submits every request from the queue
to the lease remaining free slots (viz. instance packing factor
Py). This is similar to an online bin-packing algorithm. We
use an idle-timeout limit for 10 minutes to recycle unused

instances from every model pool. Hence, greedily assigning
requests enables early scale down of lightly loaded instances.

4.2.2 Autoscaler

Along with resource procurement, we need to autoscale
instances to satisfy the incoming query load. Though reactive
policies (used in Clipper and InFaas) can be employed which
take into account metrics like CPU utilization [83], these
policies are slow to react when there is dynamism in request
rates. Proactive policies with request prediction are know
to have superior performance [86] and can co-exist with
reactive policies. In Cocktail, we use a load prediction model
that can accurately forecast the anticipated load for a given
time interval. Using the predicted load @), Cocktail spawns
additional instances, if necessary, for every instance pool. In
addition, we sample SLO violations for every 10s interval
and reactively spawn additional instances to every pool
based on aggregate resource utilization of all instances. This
captures SLO violations due to mis-predictions.

Prediction Policy: To effectively capture the

different load arrival patterns, Model RMSE

we design a DeepAR- MWA 71.5

estimator (DeepARest) based EWMA 88.25
Linear R. 87.5

Prediction modejl. We Zer(?ed Logsitc R, | 78.34
in on the choice of using Simple FE._ | 45.45
DeepARest by conducting LSTM 28.56
(Table 4) an in-depth com- DeepArEst | 26.67
parison of the accuracy loss
when compared with other
state-of-the-art traditional and ML-based prediction models
used in prior works [47,86]. As shown in Algorithm 2, for
every model under a periodic scheduling interval of 1 minute
(Ty), we use the Predicted_load (Lp) at time T + T, and
compare it with the current_load to determine the number
of instances (I,).T, is defined as the average launch time
for new instances. (7) is set to 1 minute as it is the typical
instance provisioning time for EC2 VMs. To calculate (L),
we sample the arrival rate in adjacent windows of size W
over the past S seconds. Using the global arrival rate from all
windows, the model predicts (L) for 7, time units from 7.
T, is set to 10 minutes because it is sufficient time to capture
the variations in long-term future. All these parameters are
tunable based on the system needs.

Importance Sampling: An important concern in autoscaling
is that the model selection policy dynamically determines
the models in the ensemble for a given request constraints.
Autoscaling the instances equally for every model based on
predicted load, would inherently lead to over-provisioned
instances for under-used models. To address this concern,
we design a weighted autoscaling policy which intelligently
auto-scales instances for every pool based on the weights.
As shown in Algorithm 2, weights are determined by
frequency in which a particular model is chosen for requests
(get_popularity) with respect to other models in the ensemble.

Table 4: Prediction models.
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The weights are multiplied with the predicted load to scale
instances (launch_workers) for every model pool. We name
this as an importance sampling @ technique, because the
model pools are scaled proportional to their popularity.

S Implementation and Evaluation

We implemented a prototype of Cocktail and deployed it on
AWS EC2 [5] platform The details of the implementation
are described below. Cocktail is open-sourced at https://
github.com/jashwantraj92/cocktail

5.1 Cocktail Prototype Implementation

Cocktail is implemented using 10KLOC of Python. We de-
signed Cocktail as a client-server architecture, where one
master VM receives all the incoming requests which are sent
to individual model worker VMs.

Master-Worker Architecture: The master node handles the
major tasks such as (i) concord model selection policy, (ii)
request dispatch to workers VMs as asynchronous future tasks
using Python asyncio library, and (iii) ensembling the pre-
diction from the worker VMs. Also all VM specific metrics
such as current_load, CPU utilization, etc. reside in the mas-
ter node. It runs ona C5.16x [8] large instance to handle
these large volume of diverse tasks. Each worker VMs runs a
client process to serve its corresponding model. The requests
are served as independent parallel threads to ensure timely
predictions. We use Python Sanic web-server for commu-
nication with the master and worker VMs. Each worker VM
runs tensorflow-serving [60] to serve the inference requests.
Load Balancer: The master VMs runs a separate thread
to monitor the importance sampling of all individual model
pools. It keeps track of the number of requests served per
model in the past 5 minutes. This information is used for cal-
culating the weights per model for autoscaling decisions. We
integrate a mongodb [21] database in the master node to main-
tain all information about procured instances, spot-instance
price list, and instance utilization. The load prediction model
resides in the master VM which constantly records the arrival
rate in adjacent windows. Recall that the details of the pre-
diction were described in Section 4.2.2. The DeepAREst [4]
model was trained using Keras [22] and Tensorflow, over
100 epochs with 2 layers, 32 neurons and a batch-size of 1.
Model Cache: We keep track of the model selected for en-
sembling on a per request constraint basis. The constraints are
defined as <latency, accuracy> pair. The queries arriving
with similar constraints can read the model cache to avoid
re-computation for selecting the models. The model cache
is implemented as a hash-map using Redis [16] in-memory
key-value store for fast access.

Constraint specification: We expose a simple API to de-
velopers, where they can specify the type of inference task
(e.g., classification) along with the <latency, accuracy>
constraints. Developers also need to indicate the primary ob-
jective between these two constraints. Cocktail automatically

Dataset Application | Classes | Train-set | Test-set
ImageNet [29] Image 1000 1.2M 50K
CIFAR-100 [50] Image 100 50K 10K
SST-2 [72] Text 2 9.6K 1.8K
SemEval [66] Text 3 50.3K 12.2K

Table 5: Benchmark Applications and datasets.

chooses a set of single or ensemble models required to meet
the developer specified constraints.

Discussion: Our accuracy and latency constraints are limited
to the measurements from the available pretrained models.
Note that changing the models or/and framework would lead
to minor deviations. While providing latency and top-1% ac-
curacy of the pretrained models is an offline step in Cocktail,
we can calculate these values through one-time profiling and
use them in the framework. All decisions related to VM au-
toscaling, bin-packing and load-prediction are reliant on the
centralized mongodb database, which can become a potential
bottleneck in terms of scalability and consistency. This can be
mitigated by using fast distributed solutions like Redis [16]
and Zookeeper [46]. The DeepARest model is pre-trained
using 60% of the arrival trace. For varying load patterns,
the model parameters can be updated by re-training in the
background with new arrival rates.

5.2 Evaluation Methodology

We evaluate our prototype implementation on AWS EC2 [8]
platforms.  Specifically, we use C5.xlarge, 2xlarge,
4xlarge, 8xlarge for CPU instances and p2.xlarge for
GPU instances.

Load Generator: We use different traces which are given
as input to the load generator. Firstly, we use real-world re-
quest arrival traces from Wikipedia [76], which exhibit typical
characteristics of ML inference workloads as it has recurring
diurnal patterns. The second trace is production twitter [48]
trace which is bursty with unexpected load spikes. We use
the first 1 hour sample of both the traces and they are scaled
to have an average request rate of 50 req/sec.

Workload: As shown in Table 5 we use image-classification
and Sentiment Analysis (text) applications with two datasets
each for our evaluation. Sentiment analysis outputs the sen-
timent of a given sentence as positive negative and (or) neu-
tral. We use 9 different prominently used text-classification
models from transformers library [81] (details available in
appendix) designed using Google BERT [30] architecture
trained on SST [72] and SemEval [66] dataset. Each request
from the load-generator is modelled after a query with spe-
cific <latency, accuracy> constraints. The queries consist
of images or sentences, which are randomly picked from the
test dataset. In our experiments, we use five different types of
these constraints.

As an example for the Imagenet dataset shown in Figure 6,
each constraint is a representative of <latency, accuracy> com-
bination offered by single models (shown in Table 1). We
use one constraint (blue dots) each from five different regions
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Figure 6: Constraints used in our workloads.

(categorized by dotted lines) picked in the increasing order
of accuracy. Each of these picked constraints (named const1
- constS in the Figure) represents a single baseline model,
whose corresponding ensemble size ranges from small (2) to
large (10), as shown in Table 3. Note that the latency is the
raw model execution latency, and does not include the addi-
tional network-transfer overheads incurred. We picked the
constraints using a similar procedure by ordering constraints
across five different categories for CIFAR-100, SST-2 and
SemEval (twitter tweets) datasets. The list of models used
for them are given in the Appendix. We model two different
workload mixes by using a combination of these five query
constraint types. Based on the decreasing order of accuracy,
we categorize them into Strict and Relaxed workloads.

5.2.1 Evaluation Metrics

Most of our evaluations of Cocktail for image-classification
are performed using the Imagenet dataset. To further demon-
strate the sensitivity of Cocktail to dataset and applicability
to other classification applications, we also evaluate it us-
ing CIFAR-100 and Sentiment-Analysis application. We use
three important metrics: response latency, cost and accuracy
for evaluating and comparing our design to other state-of-
the-art systems. The response latency metric includes model
inference latency, communication/network latency and syn-
chronization overheads. Queries that do not meet response
latency requirements (>700ms) are considered as SLO vio-
lations. The cost metric is the billing cost from AWS, and
the accuracy metric is measured as the percentage of requests
that meet the target accuracy requirements.

We compare these metrics for Cocktail against (i) In-
Faas [83], which is our baseline that employs single model
selection policy; (ii) Clipper [27], which uses static full model
selection policy (analogous to AWS AutoGluon); and (iii)
Clipper-X which is an enhancement to Clipper with a simple
model selection (drop one model at a time) that does not uti-
lize the mode-based policy enforced in Cocktail. Both InFaas
and Clipper share Cocktail’s implementation setup to ensure
a fair comparison with respect to our design and execution
environment. For instance, both Clipper and InFaas employ
variants of a reactive autoscaler as described in Section 4.2.2.
However, in our setup, both benefit from the distributed au-
toscaling and prediction policies, thus eliminating variability.
Also note that InFaas is deployed using OnDemand instances,
while both Clipper and Cocktail use spot instances.

6 Analysis of Results

This section discusses the experimental results of Cocktail
using the Wiki and Twitter traces. To summarize the overall
results, Cocktail providing 2x reduction in latency, while
meeting the accuracy for up-to 96% of the requests under
reduced deployment cost by 1.4x, when compared to InFaaS
and Clipper.

6.1 Latency, Accuracy and Cost Reduction

Latency Distribution: Figure 7 shows the distribution of to-
tal response latency in a standard box-and-whisker plot. The
boundaries of the box-plots depict the 1st quartile (25th per-
centile (PCTL)) and 3rd quartile (75th PCTL), the whiskers
plot the minimum and maximum (tail) latency and the middle
line inside the box depict the median (50 PCTL). The total
response latency includes additional 200-300ms incurred for
query serialization and data transfer over network. It can
be seen that the maximum latency of Cocktail is similar to
the 75th PCTL latency of InFaas. This is because the single
model inference have up to 2x higher latency to achieve higher
accuracy. Consequently, this leads to 35% SLO violations
for InFaas in the case of Strict workload. In contrast, both
Cocktail and Clipper can reach the accuracy at lower latency
due to ensembling, thus minimizing SLO violations to 1%.

Also, the tail latency is higher for Twitter trace (Figure 7c,
7d) owing to its bursty nature. Note that the tail latency
of Clipper is still higher than Cocktail because Clipper
ensembles more models than Cocktail, thereby resulting in
straggler tasks in the VMs. The difference in latency between
Cocktail and InFaas is lower for Relaxed workload when
compared to Strict workload (20% lower in tail). Since the
Relaxed workload has much lower accuracy constraints,
smaller models are able to singularly achieve the accuracy
requirements at lower latency.

Accuracy violations: The accuracy is mea-
sured as a moving window average  with
size 200 for all the requests in the workload.
Both Clipper and Cock- Accuracy Met (%)
R Scheme -
tail can meet the ac- Strict | Relaxed
curacy for 56% of re- IC”[F aas i; ;;
. . ipper
quests, which is 26% Cof lfmil 55 9%

and 9% more than In-
Faas and Clipper re-
spectively. This is be-
cause, intuitively ensembling leads to higher accuracy than
single models. However, Cocktail is still 9% better than Clip-
per because the class-based weighted voting, is efficient in
breaking ties when compared to weighting averaging used in
Clipper. Since majority voting can include ties in votes, we
analyzed the number of ties, which were correctly predicted
for all the queries. Cocktail was able to deliver correct predic-
tions for 35% of the tied votes, whereas breaking the ties in
Clipper led only to 20% correct predictions.

Table 6: Requests meeting target
accuracy averaged for both Trace.
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Figure 9: Benefits of dynamic model selection policy.

Note that, changing the target accuracy to tolerate a 0.5%
loss, increases the percentage of requests that meet accuracy
to 81% for Cocktail, when compared to 61% for InFaas.
The requests meeting accuracy are generally higher for the
Relaxed workload because the target accuracy is much lower.
Overall, Cocktail was able to deliver an accuracy of 83%
and 79.5% on average for the Strict and Relaxed workloads,
respectively. This translates to 1.5% and 1% better accuracy
than Clipper and InFaas. We do not plot the results for
Clipper-X, which achieves similar accuracy to Cocktail, but
uses more models as explained in Section 6.2.1.

Cost Comparison: Figure 8 plots the cost savings of
Cocktail when compared to InFaas, Clipper and Clipper-X
policies. It can be seen that, Cocktail is up to 1.45x more
cost effective than InFaas for Strict workload. In addition,
Cocktail reduces cost by 1.35x and 1.27x compared to
Clipper and Clipper-X policies, owing to its dynamic model
selection policy, which minimizes the resource footprint of
ensembling. On the other hand, Clipper uses all models
in ensemble and the Clipper-X policy does not right size
the models as aggressively as Clipper, hence they are more
expensive. Note that, all the schemes incur higher cost for
twitter trace (Figure 8b) compared to wiki trace (Figure 8a).
This is because the twitter workload is bursty, thereby leading
to intermittent over-provisioned VMs.

6.2 Key Sources of Improvements

The major improvements in terms of cost, latency, and accu-

racy in Cocktail are explained below. For brevity in explana-
tion, the results are averaged across Wiki and Twitter traces
for strict workload.

6.2.1 Benefits from dynamic model selection

Figure 9a plots the average number of models used for queries
falling under the first four different constraint (const) types.
Here, Cocktail reduces the number of models by up to 55%
for all four query types. This is because our dynamic pol-
icy ensures that the number of models are well within N/2
most of the time, whereas the Clipper-X policy does not ag-
gressively scale down models. Clipper, on the other hand,
is static and always uses all the models. The percentage of
model-reduction is lower for Const2, 3 and 4 because, the
total models used in the ensemble is less than ConstI (8, 7
and 6 models, respectively). Still, the savings in terms of
cost will be significant because even removing one model
from the ensemble amounts to ~20% cost savings in the long
run (Clipper vs Clipper-X ensemble in Figure 8). Thus, the
benefits of Cocktail are substantial for large ensembles while
reducing the number of models for medium-sized ensembles.

Figure 9b shows the breakdown of the percentage of re-
quests (Constl) served by the each model. As seen, Incep-
tionResNetV2, Densenet-201, Densenet121, NasnetMobile
and Xception are the top-5 most used models in the ensem-
ble. Based on Table 1, if we had statically taken the top N/2
most accurate models, NasNetmobile would not have been
included in the ensemble. However, based on the input im-
ages sent in each query, our model selection policy has been
able to identify NasNetMobile to be a significantly contribut-
ing model in the ensemble. Further, the other 5 models are
used by up to 25% of the images. Not including them in the
ensemble would have led to severe loss in accuracy. But, our
dynamic policy with the class-based weighted voting, adapts
to input images in a given interval by accurately selecting the
best performing model for each class. To further demonstrate
the effectiveness of our dynamic model selection,

Figure 10b,10c plots the number models in every sampling
interval along with cumulative accuracy and window accuracy
within each sampling interval for three schemes. We observe
that Cocktail can effectively scale up and scale down the mod-
els while maintaining the cumulative accuracy well within the
threshold. More than 50% of the time the number of models
are maintained between 4 to 5, because the dynamic policy is
quick in detecting accuracy failures and recovers immediately
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Figure 12: Sensitivity analysis of VMs.

by scaling up models. However, Clipper-X does not scale
down models as frequently as Cocktail, while ensuring similar
accuracy. Clipper is less accurate than Cocktail and further it
uses all 10 models throughout.

6.2.2 Benefits from Autoscaling

Figure 11 plots the reduction in the number of VMs used by all
four schemes. It can be seen that both Cocktail and Clipper-X
spawn 49% and 20% fewer VMs than Clipper for workload-1
on Twitter trace. Cocktail spawns 29% lesser VMs on top of
Clipper-X, because it is not aggressive enough like Cocktail
to downscale more models at every interval. It is to be noted
that the savings are lower for Relaxed workload because, the
number of models in the ensemble are inherently low, thus
leading to reduced benefits from scaling down the models.
Intuitively, InFaas has the least number of VMs spawned
because it does not ensemble models. Cocktail spawns upto
50% more VMs than InFaas, but in turns reduces accuracy
loss by up to 96%.

To further capture the benefits of the weighted autoscal-
ing policy, Figure 12a plots the number of VMs spawned
over time for the top-3 most used models in the ensemble
for Constl. The Bline denotes number of VMs that would
be spawned without applying the weights. Not adopting an
importance sampling based weighted policy would result in
equivalent number of VMs as the Bline for all models. How-
ever, since Cocktail exploits importance sampling by keeping
track of the frequency in which models are selected, the num-

ber of VMs spawned for modell, model2 and model-3 is upto
3x times lesser than uniform scaling. Figure 9b shows the
most used models in decreasing order of importance. The au-
toscaling policy effectively utilizes this importance factor in
regular intervals of 5 minutes. Despite using multiple models
for a single inference, importance sampling combined with
aggressive model pruning, greatly reduces the resource foot-
print which directly translates to the cost savings in Cocktail.

6.2.3 Benefits of Transient VMs

The cost-reductions in Cocktail are akin to cost-savings of
transient VMs compared to On-Demand (OD) VMs. We pro-
file the spot price of 4 types of C5 EC2 VMs over a 2-week
period in August 2020. It was seen that, the spot instance
prices have predictable fluctuations. When compared to the
OD price , they were up to 70% cheaper. This price gap is cap-
italized in Cocktail to reduce the cost of instances consumed
by ensembling. Note that, we set the bidding price conser-
vatively to 40% of OD. Although, Cocktail spawns about
50% more VMs than InFaas, the high Py of small models
and spot-instance price reductions combined with autoscaling
policies lead to the overall 30-40% cost savings.

6.3 Sensitivity Analysis

In this section, we analyze the sensitivity of Cocktail with
respect to various design choices which include (i) sampling
interval of the accuracy measurements, (ii) spot-instance fail-
ure rate and (iii) type of datasets and applications.

6.3.1 Sampling Interval

To study the sensitivity with respect to the sampling interval
for measure accuracy loss/gain, we use four different intervals
of 10s, 30s, 60s and 120s. Figure 13 plots the average number
of models (bar- left y-axis) and cumulative accuracy (line-
right y-axis) for the different sampling intervals for queries
with three different constraints. It can be seen that the 30s
interval strikes the right balance with less than 0.2% loss in
accuracy and has average number models much lesser than
other intervals. This is because, increasing the interval leads
to lower number of scale down operations, thus resulting in a
bigger ensemble. As a result, the 120s interval has the highest
number of models.
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Figure 13: Sensitivity analysis of model selection with respect to sampling interval. The average number of models is in primary axis and

cumulative accuracy in secondary axis.
6.3.2 Cocktail Failure Resilience

We use spot instances to host models in Cocktail. As previ-
ously discussed in Section 3, spot instances interruptions can
lead to intermittent loss in accuracy as certain models will be
unavailable in the ensemble. However for large ensembles
(5 models are more), the intermittent accuracy loss is very
low. Figure 12b plots the failure analysis results for top three
constraints by comparing the ensemble accuracy to the target
accuracy. The desired accuracy for all three constraints are
plotted as BL1, BL2 and BL3. We induce failures in the in-
stances using chaosmonkey [19] tool with a 20% failure proba-
bility. It can be seen that queries in all three constraints suffer
an intermittent loss in accuracy of 0.6% between the time
period 240s and 800s. Beyond 800s, they quickly recover
back to the required accuracy because additional instances are
spawned in place of failed instances. However, in the case of
InFaas, this would lead to 1% failed requests due to requests
being dropped from the failed instances.

An alternate solution would be to restart the queries in
running instances but that leads to increased latencies for the
1% requests. In contrast, Cocktail incurs a modest accuracy
loss of well within 0.6% and quickly adapts to reach the
target accuracy. Thus, Cocktail is inherently fault-tolerant
owing to the parallel nature in computing multiple inferences
for a single request. We observe similar accuracy loss or
lower for different probability failures of 5%, 10% and 25%,
respectively (results/charts omitted in the interest of space).
Discussion: For applications that are latency tolerant, we can
potentially redirect requests from failed instances to existing
instances, which would lead to increased tail latency. The
results we how are only for latency intolerant applications.
Note that, the ensembles used in our experiments are at-least
4 models or more. For smaller ensembles, instance failures
might lead to higher accuracy loss, but in our experiments,
single models typically satisfy their constraints.

6.3.3 Sensitivity to Constraints

Figure 14 plots the sensitivity of model selection policy un-
der a wide-range of latency and accuracy constraints. In
Figure 14a, we vary the latency under six different constant
accuracy categories. It can be seen that for fixed accuracy of
72%, 78% and 80%, the average number of models increase
with increase in latency, but drops to 1 for the highest latency.
Intuitively, singe large models with higher latency can satisfy
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Figure 14: Sensitivity Constraints under fixed latency and accuracy.
Bar graphs (latency) plotted using primary y-axis and line graph
(#models) plotted using secondary y-axis.
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Figure 15: Average number of models used in the ensemble.

the accuracy, while short latency models need to be ensem-
bled to reach the same accuracy. For accuracy greater than
80%, the ensemble size drops with higher latencies. This is
because the models which offer higher accuracy are typically
dense and hence, smaller ensembles are sufficient. In Fig-
ure 14b, we vary the accuracy under six different constant
latency categories. It can be seen that for higher accuracies,
Cocktail tries to ensemble more models to reach the accuracy,
while for lower accuracy it resorts to using single models.

6.3.4 Sensitivity to Dataset

To demonstrate the applicability of Cocktail to multiple
datasets, we conducted similar experiments as elucidated in
Section 5.2.1 using the CIFAR-100 dataset [50]. It comprises
of 100 distinct image classes and we trained 11 different
models including the nine that are common from Table 1. Fig-
ure 15a plots the average number of models used by the three
policies for the top four constraints. It can be seen that Cock-
tail shows similar reduction (as Imagenet) while using only
4.4 models on average. As expected, Clipper and Clipper-X
use more models than Cocktail (11 and 5.4, respectively) due
to non-aggressive scaling down of the models used.

Figure 16a plots the latency reduction and accuracy boost
when compared to InFaaS$ (baseline). While able to reduce
60% of the models used in the ensemble, Cocktail also re-
duces latency by up to 50% and boosts accuracy by up to
1.2%. Cocktail was also able to deliver modest accuracy gain
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Figure 17: Cost savings of Cocktail for Sentiment Analysis.

of 0.5% than Clipper (not plotted). The accuracy gain seen
in CIFAR-100 is lesser than ImageNet dataset because the
class-based weighted voting works effectively when handling
large number of classes (100 in CIFAR vs 1000 in ImageNet).
Nevertheless, Cocktail is able to deliver the accuracy at 2x
lower latency than InFaaS and 1.35x lower cost than Clipper.

6.4 General Applicability of Cocktail

To demonstrate the general applicability of Cocktail to other
classification tasks, we evaluated Cockrail using a Sentiment
Analysis application for two datasets. The results reported
are averaged across both the datasets. Figure 15b plots the
average number of models used by the three policies for the
top four constraints. As shown for Constl, Cocktail shows
similar reduction (as image-classification) with only using
4.8 models on average, which is 40% and 26% lower than
Clipper and Clipper-X, respectively. Cocktail is also able to
reduce the number of models by 30% and 50% for medium
ensembles (Const2 & Const3) as well.

Figure 16b plots the latency reduction and accuracy gain,
compared to InFaaS$ (baseline). While being able to reduce
50% of the models used in the ensemble, Cocktail also re-
duces latency by up to 50% and improves accuracy by up
to 1.3%. Both Cocktail and Clipper deliver the same overall
accuracy (96%, 94.5%, 93.5%, and 92%)). Since sentiment
analysis only has 2-3 classes, there are no additional accuracy
gains by using the class-based weighted voting. However, the
model selection policy effectively switches between differ-
ent models based on the structure of input text (equivalent to
classes in images). For instance, complex sentences are more
accurately classified by denser models compared to smaller.
Despite the lower accuracy gains, Cocktail is able to reduce
the cost (Figure 17) of model-serving by 1.45x and 1.37x
for Wiki trace compared to InFaaS$ and Clipper, respectively.

7 Concluding Remarks

There is an imminent need to develop model serving systems
that can deliver highly accurate, low latency predictions at re-
duced cost. In this paper, we propose and evaluate Cocktail, a
cost-effective model serving system that exploits ensembling
techniques to meet high accuracy under low latency goals.
In Cocktail, we adopt a three-fold approach to reduce the
resource footprint of model ensembling. More specifically,
we (i) develop a novel dynamic model selection, (ii) design a
prudent resource management scheme that utilizes weighted
autoscaling for efficient resource allocation, and (iii) lever-
age transient VM instances to reduce the deployment costs.
Our results from extensive evaluations using both CPU and
GPU instances on AWS EC2 cloud platform demonstrate that
Cocktail can reduce deployment cost by 1.4 x, while reducing
latency by 2x and satisfying accuracy for 96% of requests,
compared to the state-of-the-art model-serving systems.
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Appendix
A Modeling of Ensembling

While performing an ensemble it is important to be sure that
we can reach the desired accuracy by combining more models.
In our design, we solve our first objective function (described
in Section 4.1) by combining all available models which
meet the latency SLO. To be sure that the combination will
give us the desired accuracy of the larger model, we try to
theoretically analyse the scenario. We formulate the problem
conservatively as following.

We perform an inference by ensembling "N’ models, and
each of these models have accuracy ’a’. Therefore the prob-
ability of any model giving a correct classification is ’a’.
We assume the output to be correct if majority of them, i.e.
N/2| + 1 of them give the same result. Then, the final ac-
curacy of this ensemble would be the probability of at least
|N/2] + 1 of them giving a correct result.

To we model this problem as a coin-toss problem involving
N biased coins with having probability of occurrence of head
to be a. Relating this to our problem, each coin represents
a model, and an occurrence of head represents the model
giving the correct classification. Hence, the problem boils
down to find the probability of at least |[N/2| + 1 heads when
all N coins are tossed together. This is a standard binomial
distribution problem and can be solved by using the following
formula:

N N\ . )
Phead = Z <l> a (l_a)(Nil).

i=5]+1

To further quantify, let us consider the case where we need
to determine if we can reach the accuracy of NasNetLarge
(82%) by combining rest of the smaller models which have
lesser latency than NasNetLarge. We have 10 (therefore N =
10) such models and among them the least accurate model is
MobileNetV1 (accuracy 70%, therefore a = 0.70). We need to
find the probability of at least 6 of them being correct. Using
the equation above we find the probability to be

0 10 . .
Phead = Z ( . ) 0.7 (1 —0.7)“07[) =0.83
= Q] 41=6 '

This corresponds to an accuracy of 83%, which is greater than
our required accuracy of 82%). Given all the other models
have higher accuracy, the least accuracy we can expect with
such an ensemble is 83%. This analysis forms the base of our
ensemble technique, and hence proving the combination of
multiple available models can be more accurate than the most
accurate individual model.

B Why DeepARest Model?

We quantitatively justify the choice of using DeepARest by
conducting a brick-by-brick comparison of the accuracy loss
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when compared with other state-of-the-art prediction models
used in prior work.

Table 4 shows the root mean squared error (RMSE) in-
curred by all the models. The ML models used in these
experiments are pre-trained with 60% of the Twitter arrival
trace. It is evident that the LSTM and DeepAREst have lowest
RMSE value. DeepARest is 10% better than LSTM model.
Since the primary contribution in Cocktail is to provide high
accuracy and low latency predictions at cheaper cost, appli-
cation developers can adapt the prediction algorithm to their
needs or even plug-in their own prediction models.

C System Overheads

We characterize the system-level overheads incurred due
to the design choices in Cocktail. The mongodb database
is a centralized server, which resides on the head-node.
We measure the overall average latency incurred due to all
reads/writes in the database, which is well within 1.5ms.
The DeepARest prediction model which is not in the critical
decision-making path runs as a background process incurring
2.2 ms latency on average. The weighted majority voting
takes 0.5ms and the model selection policy takes 0.7ms. The
time taken to spawn new VM takes about 60s to 100s de-
pending on the size of the VM instance. The time taken to
choose models from the model-cache is less than 1ms. The
end-to-end response time to send the image to a worker VM
and get the prediction back, was dominated by about 300ms
(at maximum) of payload transfer time.

D Instance configuration and Pricing

Instance vCPUs | Memory | Price

C5a.xlarge 4 8 GiB $0.154
C5a.2xlarge 8 16 GiB $0.308
C5a.4xlarge 16 32 GiB $0.616
C5a.8xlarge 32 64 GiB $1.232

Table 7: Configuration and Pricing for EC2 C5 instances.
E CIFAR-100 and BERT Models

Table 8 shows the different models available for image predic-
tion, that are pretrained on Keras using CIFAR-100 dataset.

Params Top-1 Latency

Model M) Accuracy(%) (ms) Py
Albert-base [51] 11 91.4 55 7
CodeBert [32] 125 89 79 6
DistilBert [67] 66 90.6 92 5
Albert-large 17 92.5 120 4
XLNet [85] 110 94.6 165 3
Bert [30] 110 92 185 3
Roberta [55] 355 94.3 200 2
Albert-xlarge 58 93.8 220 1
Albert-xxlarge 223 95.9 350 1

Table 9: Pretrained models for Sentiment Analysis using BERT.

Similarly Table 9 shows the different models trained for
BERT-based sentiment analysis on twitter dataset.

Model [Params (M) Topl Accuracy % ‘Latency (ms) Pf
Squeezenet 4,253,864 70.10 43.45 10
MobileNEt V2 4,253,864 68.20 415 10
Inception V4 23,851,784 76.74 74 6
Resnet50 95,154,159 79.20 98.22 5
ResNet18 44,964,665 76.26 35 6
DenseNet-201 20,242,984 79.80 152.21 2
DenseNet-121 8,062,504 78.72 102.35 3
Xxception 22,910,480 77.80 119.2 4
NasNet 5,326,716 77.90 120 3
InceptionResnetV2 2,510,000 80.30 251.96 1

Table 8: Pretrained models for CIFAR-100 using Imagenet.

F Spot Instance Price Variation

We profile the spot price of 4 types of C5 EC2 VMs over a
2-week period in August 2020. The price variation is shown
in Figl8.
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Figure 18: Spot instance price variation (time is in hours).
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