
Cypress : Input size–Sensitive Container Provisioning
and Request Scheduling for Serverless Platforms

Vivek M. Bhasi
The Pennsylvania State University

vmb5204@psu.edu

Jashwant Raj Gunasekaran
Adobe Research

jgunasekaran@adobe.com

Aakash Sharma
The Pennsylvania State University

abs5688@psu.edu

Mahmut Taylan Kandemir
The Pennsylvania State University

mtk2@psu.edu

Chita Das
The Pennsylvania State University

cxd12@psu.edu

Abstract
The growing popularity of the serverless platform has seen

an increase in the number and variety of applications (apps)
being deployed on it. The majority of these apps process
user-provided input to produce the desired results. Existing
work in the area of input-sensitive pro!ling has empirically
shown that many such apps have input size–dependent ex-
ecution times which can be determined through modelling
techniques. Nevertheless, existing serverless resource man-
agement frameworks are agnostic to the input size–sensitive
nature of these apps. We demonstrate in this paper that this
can potentially lead to container over-provisioning and/or
end-to-end Service Level Objective (SLO) violations. To ad-
dress this, we propose Cypress, an input size–sensitive re-
source management framework, that minimizes the contain-
ers provisioned for apps, while ensuring a high degree of SLO
compliance. We perform an extensive evaluation of Cypress
on top of a Kubernetes-managed cluster using 5 apps from
the AWS Serverless Application Repository and/or Open-
FaaS Function Store with real-world traces and varied input
size distributions. Our experimental results show that Cy-
press spawns up to 66% fewer containers, thereby, improving
container utilization and saving cluster-wide energy by up
to 2.95× and 23%, respectively, versus state-of-the-art frame-
works, while remaining highly SLO-compliant (up to 99.99%).
CCS Concepts
•Computer systems organization→Cloud Computing;
Resource-Management; Scheduling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro!t or commercial advantage and that copies bear
this notice and the full citation on the !rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci!c permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563464

Keywords
serverless, input size, resource-management, scheduling

ACM Reference Format:
Vivek M. Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mah-
mut Taylan Kandemir, and Chita Das. 2022. Cypress : Input size–
Sensitive Container Provisioning and Request Scheduling for Server-
less Platforms. In SoCC ’22: ACM Symposium on Cloud Computing
(SoCC ’22), November 7–11, 2022, San Francisco, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3542929.3563464

1 Introduction
The growth in popularity of serverless platforms is being

accompanied by a rapid increase in the variety of applica-
tions (apps) being deployed on them [22, 36, 37, 50]. The
vast majority (∼96%) of these apps are short-running, with
execution times lesser than 30s [65]. This includes apps such
as Sentiment Analysis and Audio Translation, which are being
deployed in user-facing settings like automated chat modera-
tion for real-time events [8, 10, 20] and advanced multimedia
messaging [13, 21, 23], respectively. Being user-facing, such
apps have been envisioned being administered under strict
SLOs in terms of response time requirements [2, 27, 39, 43,
55, 58, 59]. Achieving a low tail latency is also critical for
these apps as it is an integral part of the Quality of Service
(QoS) delivered to the end-user [26, 27, 33, 34, 52, 55, 56, 62].

A signi!cant portion of these apps are composed of one or
more functions that process user-provided inputs to produce
the desired output [11, 12, 16, 18, 35]. Existing work in the
area of input-sensitive pro!ling has shown that many such
apps, which we will call Input size–Sensitive apps (IS apps),
have execution times that depend heavily on the provided
input size [25, 31, 35, 38, 41]. This introduces challenges
with respect to container provisioning and maintaining a
high degree of SLO compliance, that are not currently ad-
dressed by state-of-the-art serverless Resource Management
frameworks (RM frameworks) in both industry and academia
[9, 12, 16, 27, 40, 43, 55]. The two main concerns that arise
from this are:
• Existing RM frameworks, being agnostic to the input size–
sensitive characteristics of the above apps, resort to using

257

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3542929.3563464&domain=pdf&date_stamp=2022-11-07

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

the average execution times of their composite functions to
determine the number of containers needed during autoscal-
ing decisions. As we will discuss later, this leads to spawning
an inappropriate number of containers.
• Incoming requests to the IS app will inevitably have starkly
di"erent execution times depending on their corresponding
input sizes. Due to having an agreed-upon SLO for the app
[27, 43], requests with a higher execution time will have a
lower ‘bu"er time’ before violating the SLO. Existing RM
frameworks do not account for this.

To address these concerns, we propose Cypress1, an input
size–sensitive serverless RM framework that minimizes re-
source consumption, while maintaining a high degree of SLO
compliance by virtue of its policies that adapt to the distribu-
tion of the input sizes associated with the request trace (we
will, henceforth, refer to this simply as input size distribu-
tion). Two of Cypress’s chief policies are Input size–Sensitive
Request Batching (IS Batching) and Input size–Sensitive Re-
quest Reordering (IS Reordering). IS Batching refers to batching
multiple requests onto fewer containers by taking their in-
put size–dependent execution times and respective SLOs
into account. IS Reordering reorders requests in the incoming
request queue such that requests with higher potential exe-
cution times (and typically, higher input sizes) are executed
!rst so as to meet the SLOs of as many requests as possible.
These policies are utilized by the scaling services of Cypress,
which are: (i) the Proactive Scaler, that deploys containers
for functions in advance through prediction of future request
loads and input size distributions, (ii) the Reactive Scaler, that
scales containers appropriately to recover from potential re-
source mismanagement resulting from possible load/input
size mis-predictions of the other scaling services, and (iii)
the Look-Ahead Scaler, that allocates containers for down-
stream functions in advance as requests arrive at the initial
functions in multi-function apps. Apart from IS Batching and
IS Reordering, Cypress leverages Chained Prediction, wherein
the input size distribution of downstream functions are also
predicted using a variation of input-sensitive pro!ling, so as
to cater speci!cally to the idiosyncrasies of multi-function
apps. Note that we focus on input-sensitive pro!ling speci!c
to input sizes, which we will henceforth refer to as Input
size–Sensitive Pro!ling (IS Pro!ling). This is leveraged in
all relevant aspects of Cypress’s architecture to facilitate the
above policies/services.
We implement Cypress using OpenFaaS, an open source

serverless framework [17], and extensively evaluate it using
real-world datacenter traces subject to various input size dis-
tributions on a 288 core Kubernetes cluster. Our results show
that Cypress spawns up to 66% fewer containers, thereby,

1Our scheme adapts to practically all input size distributions of the request
trace, mimicking the climate resilience of the Cypress evergreen tree.

Features At
ol
l[
55
]

Se
rv
er
les

sC
os
tP

re
di
ct
io
n
[3
5]

Po
w
er
-c
hi
ef

[6
3]

Fi
fe
r[
40
]

Xa
na
du

[3
2]

Gr
an
dS
LA

m
[4
3]

Se
qu

oi
a[

57
]

H
yb

rid
H
ist
og

ra
m

[5
1]

Ci
rr
us

[3
0]

Q
-Z
ill
a
[4
6]

K
ra
ke
n
[2
7]

Cy
pr
es
s

SLO Guarantees ! " " ! ! ! ! ! ! ! ! !
Input size–Sensitive Pro!ling " ! " " " " " " " " " !

Future Input Size Prediction for function chains " " " " " " " " " " " !
Input size–Sensitive Batching " " " " " " " " " " " !

Input size–Sensitive Request Prioritization " " " " " " " " " ! " !
Energy E"cieny " " ! ! ! " " ! ! " ! !

Request Arrival Prediction ! " " ! ! ! " ! " " ! !
Satisfactory Tail Latency ! " " ! " ! ! ! ! ! ! !

Table 1: Comparison of Cypress against related work pertaining to
serverless and/or microservice-based applications.

improving container utilization and cluster-wide energy sav-
ings by up to 2.95× and 23%, respectively, versus state-of-the
art serverless RM frameworks. Furthermore, Cypress guar-
antees the SLO requirements for up to 99.99% of requests.
2 Background and Motivation
This section provides a brief background of serverless

computing and input size–sensitive functions, followed by
themotivation for incorporating input size–sensitive policies
into RM frameworks.
2.1 Serverless Computing
In serverless computing, the user writes code for a func-

tion, uploads it to the serverless platform and registers an
event (such as an HTTP request or a !le upload) to invoke
the function (henceforth, we will use ‘event’ and ‘request’ in-
terchangeably). Depending on the app, these functions may
process input provided as part of an incoming request and/or
input !les from a storage service to produce the desired out-
put (which may also be a !le that gets stored). Such functions
are supported in commercial serverless platforms including
AWS Lambda [9], Microsoft Azure Functions [16] and Google
Cloud Functions [12]. The registered event triggers function
execution, possibly accompanied by a “cold start" latency,
which is associated with launching a new container, setting
up the runtime environment and deploying the function by
downloading its code.

Cold starts can take up a signi!cant proportion of a func-
tion’s response time (up to tens of seconds [5, 6]) and can,
thus, lead to SLO violations. That being the case, a wealth
of existing research [24, 28, 29, 47, 48, 54, 64] focuses on
mitigating cold start overheads. Another approach involves
hiding the e"ects of cold starts via proactive container pro-
visioning [19, 32, 55, 57]. Additionally, some of these provi-
sioning policies minimize containers by batching multiple
requests onto fewer containers, as opposed to spawning one
for each request (as is the norm) [27, 40, 43]. Kraken [27]
and Fifer [40] are two such serverless RM frameworks that
accomplish batching using the average execution time and
function’s SLO. For a comparison of Cypress against related
work, we refer the reader to Table 1.

258

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

2.2 Input size–Sensitive Functions
Interestingly, works such as [25, 31, 35, 38, 41] have demon-

strated that the execution time of some functions can vary
depending on various input parameters. Input-Sensitive pro-
!ling encompasses a set of techniques which can be used
to empirically determine the execution time of individual
routines as a function of such parameters. In particular, this
can be done using the input size as the input parameter. We
refer to this technique as Input size–Sensitive Pro!ling (IS
Pro!ling). One key aspect in which this di"ers from theo-
retical computational complexity (that uses notations such
as Big-O bounds to describe the scalability of algorithms)
is that it can actually estimate the value of running time of
the function in practice, as opposed to identifying the bound-
ing factors of the growth rates of algorithms. IS Pro!ling
typically achieves this by (i) performing multiple pro!ling
runs of the function/routine with workloads spanning sev-
eral magnitudes of input size, (ii) observing the performance
and (iii) !tting these observations to a statistical model that
predicts metrics (such as execution time) as a mathematical
function of workload size. Note that this is a generalized
approach that produces a model applicable to any input size.
As we will demonstrate, the above techniques also apply
to certain serverless functions, which we refer to as Input
size–Sensitive functions (IS functions). Table 2 presents some
IS apps from the AWS Serverless Application Repository
[11] and/or the OpenFaaS Function Store [18]. Below, we in-
vestigate the implications of IS functions on state-of-the-art
serverless resource provisioning policies.

IS App Composite Functions
Sentiment Analysis Sentiment Analysis
QR Code QR Code
Image Compression Image Compression
Email Categorization Text Summary → Text Classify
Audio Translation Audio Transcribe → Text Translate → Send Message

Table 2: Examples of IS apps from the AWS serverless app repository
and OpenFaaS function store. The last two apps consist of multiple
functions.

2.3 Motivation
Challenge 1: Input size–Sensitive Container allocation
As mentioned earlier, the container provisioning policies
of some state-of-the-art works (such as Kraken [27] and
Fifer [40]) batch requests using the average execution times
and SLOs of functions (relative to the app’s SLO) to determine
the function’s batch size (de!ned as the number of requests
that can be served by a container without violating the SLO).
This, in turn, is used to calculate the required number of
containers. However, as we will demonstrate shortly, when
the execution time is input size–dependent, request batching
using average execution times proves to be inaccurate, as
there is considerable variation in request execution times.
This can lead to inappropriate container provisioning. Addi-
tionally, the input size distribution itself has to be predicted

99.10%

99.40%

99.70%

100.00%

0

40

80

120

No Batch Static Batch IS Batch

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

95.50%

97.00%

98.50%

100.00%

0

40

80

120

No Batch Static Batch IS Batch

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

Figure 1: Number of containers spawned vs. SLOs satisfied for the
Sentiment Analysis app under the heavy and light distributions for
a Poisson trace (mean = 100 rps).

to facilitate proactive container provisioning.
Opportunity 1: In order to accurately provision the required
number of containers, it is essential to incorporate an Input
size–Sensitive container provisioning policy in the RM frame-
work that can both predict the input size distribution and load
of future requests as well as batch requests according to their
input size–dependent execution times.
To this end, we propose Input size–Sensitive Batching (IS

Batching), which is a request batching policy that takes into
account the input size–dependent execution time of each
request and each function’s SLO while performing request
batching akin to the First Fit Bin Packing algorithm [45].
Here, the requests are ‘packed’ into containers depending on
their potential execution times (estimated using IS pro!ling),
and a new container is spawned when none of the existing
containers can take an additional request without violating
the function’s SLO. Note that IS Batching needs to be per-
formed together with input size distribution prediction to
proactively spawn the requisite containers.
To explore the bene!ts of the above policies, we conduct

an experiment on our multi-node cluster that pits a scheme,
IS Batch, that has both input size distribution prediction
and IS Batching against two others that use state-of-the-art
policies, namely, No Batch (which spawns a container per
incoming request, as in Atoll [55]) and Static Batch (which
uses a static batch size, based on average execution time, to
batch requests, as in Kraken/Fifer [27, 40]) (Figures 1a, 1b).
Here, ‘heavy’ and ‘light’ are with regards to the relative input
size of the majority of requests of the distribution. For the

259

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

heavy distribution (Figure 1a), IS Batch spawns 30% fewer
containers compared to No Batch and Static Batch. This is
because IS Batch spawns the requisite containers, whereas
the other schemes over-provision containers, as No Batch
does not perform batching and Static Batch inaccurately cal-
culates the batch size using the function’s average execution
time (which skews towards the higher side here). However,
partly due to spawning fewer containers, and, thereby, in-
creasing the queuing at containers, IS Batch has lower SLO
compliance compared to other schemes (99.57% vs. 99.99%).

In case of the light distribution (Figure 1b), IS Batch spawns
41% fewer containers than No Batch, which spawns the same
number of containers as it does for the heavy distribution
(being agnostic to input size distributions). Similarly, the
SLO compliance of IS Batch is lower than that of No Batch
(99.35% vs. 99.99%). However, since, here, the average func-
tion execution time skews towards the lower side, Static
Batch under-provisions containers (13% fewer containers
than IS Batch). Consequently, IS Batch has higher SLO com-
pliance compared to it (99.35% vs. 97.78%).
Challenge 2: Input size–Sensitive Request Scheduling
Although IS Batch seems to provision the requisite contain-
ers, its SLO compliance needs to be improved. Apart from
allocating fewer containers, the other reason for this is that
IS Batch is intended to spawn containers so as to meet each
individual request’s SLO by only considering its potential ex-
ecution time and the First-Fit Bin Packing algorithm. It does
not account for the queuing delays each request would face
due to its relative position in the request queue. As a result,
heavier requests queued behind lighter ones may potentially
cause SLO violations, as they have a shorter ‘bu"er’ time
to execute (Section 1). To address this, we incorporate Input
size–Sensitive Request Reordering (IS Reordering) on top of
the IS Batch scheme to reorder the request queue to prioritize
heavier requests over lighter ones (similar to the First-Fit
Descending Bin Packing Algorithm [42]).
Opportunity 2: Although the IS Batch scheme is useful for
spawning the requisite containers to meet the SLOs of a large
portion of requests, it is vital to perform Input size–Sensitive
Request Reordering to maximize SLO compliance, while main-
taining the same, minimal number of containers.
Adding the IS Reordering policy to the previous IS Batch

scheme substantially improves the SLO compliance of the
resultant scheme (which we call IS (Batch+RR)), while spawn-
ing the same number of containers. For instance, for the pre-
vious experiment, under the light distribution, IS (Batch+RR)
has improved SLO compliance compared to IS Batch (99.98%
vs. 99.35%) (with equal containers) and nearly matches No
Batch’s SLO compliance (99.99%) (using 41% fewer contain-
ers). While Static Batch provisions 13% fewer containers than

99.90%

99.93%

99.95%

99.98%

100.00%

3800

4000

4200

4400

4600

No CP CP CP + LAS

Pe
rc

en
ta

ge

R
es

po
ns

e
Ti

m
es

 (m
s)

E2E Response Times SLOs satisfied

Figure 2: End-to-end response time vs. SLOs satisfied for the Audio
Translation app for a Poisson trace (mean = 100 rps) under a uniform
input size distribution.

IS (Batch+RR), IS (Batch+RR) greatly surpasses it in terms of
SLO compliance (99.98% vs. 97.78%). 2
Challenge 3: Multi-Function Applications While the
above policies can help single-function apps remain highly
SLO-compliant with the requisite containers, they may not
su#ce when the serverless app is composed of multiple IS
functions (forming a ‘function chain’). One reason is that
the input size distribution for each IS function will be dif-
ferent since each function processes its input and produces
an output, which then becomes the input for the subsequent
function(s). Therefore, predicting only a particular IS func-
tion’s input size distribution in a multi-function IS app is
insu#cient to perform e"ective IS Batching for all its func-
tions.

A possible solution to this is, what we refer to as, Chained
Prediction. This predicts the input size distribution of both
the !rst IS function as well as those of subsequent IS func-
tions. This is done by inferring the intermediate input sizes
between each IS function in the function chain by using a
variation of IS Pro!ling. Although Chained Prediction can
help estimate the number of containers required for all func-
tions, errors in prediction may arise, especially given that
multiple predictions are done at once (for future request load
as well as initial and intermediate input size distributions).
Normally, reactive scaling is used to appropriately scale

containers to compensate for prediction errors in proactive
scaling. However, this can potentially lead to cold starts if
containers have to be scaled up. Oneway tomitigate this (and
potentially improve SLO compliance) is to perform, what
we call, Look-Ahead Scaling (LA Scaling), wherein containers
are appropriately scaled in advance for all IS functions that
appear later in the function chain (descendent functions)
when requests arrive at the initial IS function(s). Note that
LA Scaling, like Proactive Scaling, also uses Chained Predic-
tion with IS batching.
To demonstrate the bene!ts of Chained Prediction and LA
Scaling, we compare three schemes, namely, No CP, CP and
2The numbers for IS (Batch+RR) are not depicted anywhere

260

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

0

50

100

150

200

250

No CP CP CP + LAS

C

on
ta

in
er

s

Send_Message Text_Translate Audio_Transcribe

Figure 3: Breakdown of containers spawned for the Audio Trans-
lation app for a Poisson trace (mean = 100 rps) under the uniform
input size distribution.

CP+LAS. No CP (No Chained Prediction) predicts the input
size distribution for only the !rst IS function in the app
and defaults to using static batch sizes to proactively spawn
containers for subsequent IS functions. CP uses Chained Pre-
diction to proactively spawn containers for all IS functions in
the app according to their predicted input size distributions,
whereas CP+LAS adds LA Scaling on top of this to provision
containers for descendent functions early while requests
arrive. Note that all three schemes leverage IS Batching.
CP improves upon both the response time (5%) and SLO

compliance (99.95% vs. 99.93%) compared to No CP (Figure 2).
This is because CP accurately provisions the requisite con-
tainers for all IS functions, including Text_Translate (which
appears later in the function chain), as evidenced by Figure
3, which depicts the breakdown of containers spawned by
each scheme. From Figure 2, it can also be seen that CP+LAS
betters CP in terms of response time (∼3%) and SLO com-
pliance (99.98% vs. 99.95%) as it can alleviate potential cold
start e"ects for descendent functions by accurately spawn-
ing containers for them in advance. Note that the above
improvements in SLO compliance translate to a 4% and 6%
improvement in tail latency for CP versusNo CP and CP+LAS
versus CP, respectively3. These improvements, as we will
later see, are magni!ed under larger-scale request traces.
Opportunity 3: Multi-function apps require additional poli-
cies that are cognizant of some aspects of their function chains
(such as Chained Prediction and Look-Ahead Scaling) to be
incorporated into the RM framework to e!ectively provision
the requisite containers and maximize SLO compliance.

As we will see in Section 6, all these policies synergize to
help the resultant scheme outperform state-of-the-art RM
frameworks in terms of resource consumption and/or SLO
compliance.

3Not shown in any !gure

3 Input size–Sensitive Pro!ling of
Real-World Serverless Applications

As elucidated in the previous section, it is essential to
incorporate IS Pro!ling into the RM framework as this grants
it visibility into the input size–dependent function execution
times, thereby, enabling intelligent container scaling and
request scheduling decisions to be made. In this section, we
describe the variations of IS Pro!ling that are employed by
the framework on real-world serverless apps. These will be
instrumental in the policies that will be discussed later.
3.1 Mapping Input Size to Execution Time
One of the primary goals of integrating IS Pro!ling into

the system is to determine a function’s execution time as
a mathematical function of its input size. To achieve this,
online model-!tting is performed using function execution
times that are sampled across time for various runs for a
multitude of input sizes [1, 3, 7, 49, 53]. This yields a statistical
model that estimates the function’s execution time, given
an input size. Figures 4, 5 depict various plots showing the
relationship between input size and execution time for the IS
functions for di"erent ranges of input sizes that are typically
seen for the corresponding app [1, 3, 7, 49, 53]. Note that
Send Message is treated as a non-IS function here since its
execution time is practically the same for the input sizes it
receives as part of Audio Translation’s function chain.
Once pro!ling causes the model to attain su#cient accu-

racy, the framework automatically infers input size classes
for each function to aid in input size distribution predic-
tion. An input size class is a range of input sizes that results
in a distinct batch size for the function, given its SLO (the
class boundaries are determined using the latest IS Pro!ling
model). Input size classes are introduced to simplify predic-
tion and facilitate the use of a light-weight, history-based
prediction model (EWMA) (overhead of ∼ 10−3 ms). Input
size distribution prediction is carried out by predicting the
fraction of future requests that will fall under each of the
constructed input size classes.
For our purposes, model-!tting for IS pro!ling is per-

formed with least-squares linear regression and powerlaw
regression (as in [31, 38]). Regression selects model parame-
ters (! and " below) so as to minimize some measure of error.
Linear Models: For a set of points (#! ,$!), least-squares
linear regression constructs a model that can predict $ as
$̂ (#) def= ! +"# . Therefore, for a particular data point (#! ,$!),
the predicted $ value, $̂! , is $̂!

def= $̂ (#!) = ! + "#! , whereas
the actual $ value is denoted simply as $! . The quantity
%!

def= $! − $̂! is called the residual of the !t at (#! ,$!). Linear
regression chooses ! and " to minimize the sum of squared

261

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

0

750

1500

2250

3000

0 3 6 9

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Input Size (MB)

(a) Image Compression.

0

500

1000

1500

2000

0 100 200 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Input Size (characters)

(b) QR Code.

0

1000

2000

3000

0 750 1500 2250

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Input Size (Bytes)

(c) Sentiment Analysis.

Figure 4: Input size vs. execution time profiles of the single-function apps.

0

2500

5000

7500

10000

0 75 150 225

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Input Size (KB)

(a) Audio Transcribe.

0

500

1000

1500

2000

0 30 60 90 120 150

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Input Size (Bytes)

(b) Text Translate.

0

1000

2000

3000

4000

0 300 600 900 1200
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Input Size (Bytes)

(c) Text Summary.

0

300

600

900

1200

0 100 200 300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Input Size (Bytes)

(d) Text Classifier.

Figure 5: Input size vs. execution time profiles of functions composing the multi-function apps.

0

50

100

150

0 100 200 300

O
ut

pu
t S

iz
e

(B
yt

es
)

Input Size (KB)

(a) Audio Transcribe.

0

100

200

300

400

0 300 600 900 1200

O
ut

pu
t S

iz
e

(B
yt

es
)

Input Size (Bytes)

(b) Text Summary.

Figure 6: Input size vs. output size profiles of the IS functions that
appear earlier in the multi-function apps.

residuals:
"∑
!=1

% 2! =
"∑
!=1

($! − $̂!)2 =
"∑
!=1

($! − (! + "#!))2

Powerlaw Models: A powerlaw model, on the other hand,
predicts $ as $̂ (#) def= !## . Since the plot of a powerlaw
model is a straight line on log-log axes, linear regression
can be used on (&'(#! , &'($!) to !t observations to the model.
Thus, we !nd ! and " that minimizes the following quantity:

"∑
!=1

(log$! − (log! + " log#!))2 =
"∑
!=1

(
log $!

!##!

)2

Since regression, by itself, does not evaluate the suitability of
the model, Cypress utilizes the)2 statistic to select the best-
!tting model from the two.)2 is a measure of the model’s
goodness-of-!t that quanti!es the fraction of the variance
in $ accounted for by a least-squares linear regression on #

[38]:

)2 def=
∑"

!=1 ($̂! − $̄)2∑"
!=1 ($! − $̄)2

=

(∑"
!=1 (#! − #̄) ($! − $̄)

)2
(∑"

!=1 (#! − #̄)2
) (∑"

!=1 ($! − $̄)2
)

Note that $̄ and #̄ denote the sample means of k-vectors$ and
, respectively. This formula also applies to powerlaw !ts,
but with # and $ replaced by &'(# and &'($, respectively.)2

can take values ranging from 0 (bad) to 1 (excellent). Cypress
chooses the !t with the highest)2 value as the best-!tting
model for a function.
3.2 Mapping Input Size to Output Size
So far, we have discussed IS pro!ling in the context of

predicting execution times of functions as a mathematical
function of their input sizes. However, achieving this for
multi-function apps is challenging as descendant IS func-
tions will receive requests with di"erent input sizes from
those that the initial one(s) received (Challenge 3, Section 2.3).
Chained Prediction is used to address this. It uses a variation
of IS pro!ling wherein the input size of a function is used to
predict its resultant output size. This can be used to predict
the intermediate input sizes of each function in the function
chain, given an initial input size. This is achieved using tech-
niques similar to those seen earlier: the input-to-output size
pro!les collected for IS functions that appear earlier in the
function chain (Figures 6a, 6b) are used to construct mod-
els online from which the one with the highest)2 value is
chosen to be the best !tting. In addition to Proactive Scaling,

262

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

OVERLOAD
DETECTION

POLICIES/
FEATURES

Used Features

SCALING SERVICES

IDLING
DETECTIONIS REORDERING

INPUT SIZE
DISTRIBUTION
PREDICTION

REQUEST LOAD
PREDICTION IS BATCHING CHAINED

PREDICTION

PROACTIVE SCALER REACTIVE SCALER LOOK-AHEAD SCALER

7

7

8

8

9

9

14

14

11

11 1412

12

9

13

13

3 5 6

APPLICATION
Request Queue Function

Orchestrator
SERVERLESS PLATFORM

SCALING
DECISION

Metrics

SCRAPE
METRICS

CYPRESS

1

4
2

10

9

Figure 7: High-level view of Cypress’s design.

LA Scaling also leverages the above techniques to estimate
the requisite containers for descendent functions. Note that
for both variants of IS Pro!ling seen thus far, the best-!tting
model’s predicted values are within ∼7% of the actual val-
ues, on average (which is su#cient for our purposes). As
we will now see, incorporating IS pro!ling into all scaling
services enables them to make intelligent scaling/scheduling
decisions.
4 Overall Design of Cypress

Figure 7 outlines the overall design of Cypress. Users trig-
ger the invocation of apps 1 hosted on a Serverless plat-
form 2 by submitting requests to them (either in the form of
HTTP requests or through actions like uploading input !les
to a storage service). The function execution times and cor-
responding input sizes are sampled to perform IS pro!ling
and thereby, construct a statistical model online (and cor-
responding input size classes) to use in the various policies
that will be described shortly. In Cypress, containers are pro-
visioned in advance for the app’s functions by the Proactive
Scaler (PS) 3 to serve the incoming requests by avoiding cold
starts. The PS accomplishes this by making use of relevant
metrics obtained from the serverless platform’s monitoring
tools/logs 4 and Cypress’s other scaling service(s) 5 / 6 .
These metrics, in addition to a developer-provided app de-
scriptor, are then used by the PS along with the input size
classes inferred from IS pro!ling to perform Input Size Dis-
tribution Prediction 7 . This is, in turn, coupled with Request
Load Prediction 8 to estimate the number of future requests
of each input size class. With this information, the PS uses
IS Batching 9 to calculate the required number of contain-
ers and noti!es the underlying resource orchestrator 10 to
proactively spawn them.

Cypress also employs a Reactive Scaler (RS) 5 that makes
use of two key features to further reduce the app’s SLO vio-
lations. Firstly, the RS performs IS Reordering 11 to prioritize
heavier requests over lighter ones to improve SLO compli-
ance. Secondly, it also uses Overload Detection 12 to keep

track of request overloading at functions bymonitoring queu-
ing delays at containers. In case of an overload, it triggers
container scaling after calculating the additional containers
needed to mitigate the delay. The RS also utilizes Idling De-
tection 13 to scale down the number of containers when an
excess is detected. Both Overload and Idling Detection aid in
coping with the PS’s potential mis-prediction of load and/or
input size distribution(s).
For multi-function apps, Cypress employs an additional

scaling service called the Look-Ahead Scaler (LAS) 6 that
uses Chained Prediction 14 to scale containers appropriately
for the app’s descendent functions as incoming requests ar-
rive at the initial function(s). This performs a more accurate
allocation of containers compared to proactive scaling, while
also reducing cold start e"ects that could arise from reactive
scaling. Chained Prediction is also leveraged by the PS to
e"ectively spawn containers for all functions in the func-
tion chain in advance. Note that IS Batching permeates the
container scaling process employed in the PS, RS and LAS.
Below, we discuss these aspects of Cypress’s design in more
detail.
4.1 Proactive Scaler (PS)
The PS is an integral component of Cypress designed to

accurately provision the requisite containers in advance. As
shown in Algorithm 1, this is done for each function such that
enough containers will be provisioned for them at the end of
!xed timewindows (a in Algorithm 1). This requires not only
the prediction of future request load (as in [27, 40, 55]), but
also that of future input size distributions (a feature unique
to Cypress). For this, the PS makes use of input size classes
(derived from the latest IS pro!ling model) and a pluggable
statistical model (EWMA, in our case) to predict the fraction
of future requests that will belong to di"erent input size
classes based on the corresponding fractions seen in previ-
ous prediction windows. Thus, PS, in e"ect, performs input
size distribution prediction (c in Algorithm 1). This is used
in conjunction with the prediction for the total number of fu-
ture requests (also using a statistical model) (b in Algorithm
1) to estimate how many of them will fall under each input
Algorithm 1 Proactive Scaling
1: from REACTIVE_SCALER get current_queue_details
2: for Every Monitor_Interval= PW do a
3: Proactive_Scaler(∀$ %&' ∈ $ %&'(!)&*)
4: procedure Proactive_Scaler(func)
5: cl ← Current_Load($ %&')
6: +,!+"# ← Load_Predictor(',,+,!) b
7: if multifunc == False then
8: '!*- ← Curr_Input_Size_Distr($ %&')
9: +!*-!+"# ← Input_Size_Distr_Prediction('!*-,+!*-!) c
10: else
11: +!*-!+"# ← Chained_Prediction($ %&') d
12: ./0_0%/%/!+"# ← Predict_Request_Queue (+,!+"# ,+!*-!+"#) e
13: reqd_con ← Calc_Reqd_Containers(./0_0%/%/!+"#) f
14: Scale_Containers($ %&', ./0-_')&)

263

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

size class. Note that a bit of history information is allowed to
accumulate (typically for a few prediction windows) before
the aforementioned statistical models are used to make pre-
dictions for subsequent windows. All the above information
serves as an approximation for the future request queue (e
in Algorithm 1), which is used together with IS Batching to
calculate the required number of containers to proactively
spawn (f in Algorithm 1).

For multi-function apps, the PS is augmentedwithChained
Prediction (d in Algorithm 1) to help predict the input size
distribution for all IS functions so as to spawn the requisite
containers for them. This is achieved by additionally infer-
ring all the intermediate input sizes between each function
in the app’s function chain by performing Input-to-Output
size mapping (Section 3).

Once the required number of containers is estimated, the
PS instructs the underlying orchestrator to provision them.
Note that, for non-IS functions, the PS defaults to simply
predicting the future number of requests alone and considers
the average execution time of each of them for calculating
the required containers (as in [27, 40, 55]).
4.2 Input size–Sensitive Request Batching

(IS Batching)
Many serverless frameworks [9, 12, 16, 32, 55, 57, 61]

spawn one container to serve each incoming request to a
function. While this can help minimize SLO violations, com-
parable performance can be achieved with fewer containers
by exploiting the notion of slack. Slack refers to the di"er-
ence in expected response time (based on the function’s SLO,
calculated relative to the app’s SLO) and actual execution
time of functions within an app. This allows requests to meet
their SLO deadlines, even if they incur a queuing delay. Note
that this is equally applicable to single and multi-function
apps. Slack is leveraged by works such as Kraken [27] and
Fifer [40] to batch multiple requests to fewer containers by
queuing the requests at them, thus, reducing the number of
containers spawned. For this, the batch size of a function, * ,
is calculated as Batch Size (*) =

⌊
Function SLO ($)

Average Execution Time ($)

⌋
.

However, as execution time is input size–dependent for IS
functions, request batching using average execution times
proves to be inaccurate (Section 2), as it is unaware of the
considerable variation in execution times that, in turn, leads
to variable slack. To account for these facts, we introduce IS
Batching, which is a request batching policy that is cognizant
of the input size–dependent execution times of IS functions.
To this end, it !rst uses IS Pro!ling to map each request’s
associated input size to the corresponding execution time
(Section 3). With this knowledge, request batching is per-
formed as in the First-Fit Bin Packing algorithm, as alluded
to in Section 2. Note that for non-IS functions, the average

64 168 55 72 120 216 96

55 64 72 96 120 168 216

55 64 72 96 120 168 216

Application

ISB

ISR

ISB

LAS

Incoming Request Queue

Input Size

Input size–Sensitive == True?

ISR IS Reordering
ISB IS Batching RS Reactive Scaler

LAS Look-Ahead Scaler

Function 1 Function 2 Function 3

RS RS RS

ISR

ISB

ISR

ISB

RS

Container

Batched Requests
Container Scaling

PS

x x x x x x x
Predicted Request Queue(s)

CP

CP

PS Proactive Scaler
CP Chained Prediction

Queue Head

Figure 8: A schematic diagram of Cypress’s key components.

execution time is used to perform batching as it is indepen-
dent of the input size in such cases. As mentioned earlier, IS
Batching is used throughout all of Cypress’s scaling services
(Figure 7) to calculate the number of required containers to
serve a given request queue to an IS app.
4.3 Reactive Scaler (RS)

Although proactive scaling and IS Batching can ensure that
the requisite containers are spawned, further optimization is
required to maximize SLO compliance (Challenge 2, Section
2.3). This is because these policies aid in spawning containers
to meet each individual request’s SLO by considering only its
potential execution time and the First-Fit bin packing policy
and not the queuing delay caused by the relative position
of the request in the request queue. Furthermore, the PS
may mis-predict future request loads and/or input size dis-
tributions, potentially leading to container mismanagement,
thereby, adversely a"ecting SLO compliance.
To address these concerns, Cypress employs the RS to

perform request queue management in addition to reactive
container scaling. The RS performs IS Reordering to prioritize
heavier requests over lighter ones in the incoming request
queue (Heaviest Job First) (a in Algorithm 2). This ensures
that the heavier requests (that have lower slack) are served
earlier so as to minimize SLO violations. This resultant con-
tainer allocation policy resembles the First-Fit Descending
Algorithm 2 Reactive Scaling
1: for Every Monitor_Interval= RW do
2: Reactive_Scaler(∀$ %&' ∈ $ %&'(!)&*)
3: for Every Monitor_Interval= RW ∗ do
4: IS_Reorder (Current_Queue($ %&')) a
5: procedure Reactive_Scaler(func)
6: existing_con ← Current_Replicas($ %&')
7: req_queue ← Current_Queue($ %&')
8: if Calc_Reqd_Containers(./0_0%/%/)<existing_con then b
9: reqd_con ← Calc_Required_Containers(./0_0%/%/)
10: else
11: delayed_req_queue ← Delayed_Requests($ %&') c
12: extra_con ← Calc_Required_Con(-/,12/-_./0_0%/%/)
13: reqd_con ← existing_con + extra_con
14: Scale_Containers($ %&', ./0-_')&)

264

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Bin Packing algorithm. To deal with potential container
under-provisioning, the RS leverages Overload Detection
(c in Algorithm 2) to, !rstly, calculate the estimated wait
times of queued requests at existing containers. Then, if it de-
tects requests whose wait times exceed the cost of spawning
a new container (the cold start of the function), overload-
ing is said to have occurred at the function. If so, Cypress
spawns new containers to serve the delayed requests as they
would get served faster this way, as opposed to waiting at
an overloaded container.
Similarly, the RS uses Idling Detection (b in Algorithm

2) for functions where container over-provisioning has oc-
curred. The RS gradually scales down its allocated containers
to the appropriate number, if excess containers are detected
for serving the current request load. Note that the RS incor-
porates IS Batching into all of its container scaling decisions.
4.4 Look-Ahead Scaler (LAS):
For multi-function apps, as mentioned earlier, multiple

predictions have to be made to provision containers proac-
tively: request load prediction, input size distribution pre-
diction for the initial IS function and Chained Prediction for
the descendent IS functions. This may lead to inappropri-
ate container allocation, which can be recti!ed using the
RS. However, the reactive scaling entailed may lead to SLO
violations when new containers are spawned. To mitigate
this, Cypress leverages the LAS to appropriately provision
containers in advance for all descendent IS functions when
requests arrive at the initial function(s). It accomplishes this
by utilizing Chained Prediction and IS Batching to predict the
number of containers needed for the descendent functions
based on the initial request queue (a and b in Algorithm
3). Since the container scaling here is done based on the
actual request queue at the initial IS function(s), as opposed
to their predicted counterparts, it is more accurate. Addi-
tionally, it takes advantage of the bu"er time between the
requests arriving at the initial function(s) to !nally reaching
the concerned functions to spawn containers in advance,
thereby, alleviating the potential cold start e"ects of reactive
scaling.
Thus, Cypress, by leveraging its scaling services and re-

source management/scheduling policies (Figure 8), remains
highly SLO compliant with a minimal resource footprint.
Algorithm 3 Look-Ahead Scaling
1: for Every Monitor_Interval= LW do
2: LookAhead_Scaler(∀$ %&' ∈ $ %&'(!)&*)
3: procedure Look-Ahead_Scaler(func)
4: if has_descendant(func) == True then
5: cl ← Current_Load($ %&')
6: for desc_func in descendants($ %&') do
7: desc_isd ← Chained_Prediction(-/*'_$ %&') a
8: desc_req_queue ← Predict_Request_Queue(',,-/*'_!*-)
9: reqd_con ← Calc_Reqd_Containers(-/*'_./0_0%/%/) b
10: Scale_Containers(-/*'_$ %&', ./0-_')&)

Policy Implemented using/as

IS Batching

• Collected Metrics
• Persisting Containers in Memory
• First-Fit Descending Bin Packing Algorithm
• IS Pro!ling (input size to execution time)

IS Reordering Daemons to intercept and reorder incoming
requests to each function

Chained Prediction • Collected Metrics
• IS Pro!ling (input size to output size)

Table 3: Implementation details of Cypress’s key policies.

5 Implementation and Experimental Setup
Cypress is implemented using Python and Go on top of

OpenFaaS [17], an open-source serverless platform. Open-
FaaS is deployed with Kubernetes [15] as the container or-
chestrator. We disable OpenFaaS’s default Alert Manager
module (that detects load surges) to deploy our scaling ser-
vices (Figure 7) that leverage Cypress’s policies (Table 3).
Cypress uses dynamically populated hash tables (that are
looked up on demand) to map input !le names to their corre-
sponding input sizes. Note that performing the lookup and
IS Reordering (Table 3) together incur minimal overhead (e.g.
∼1 ms per request queue of 200 requests).
Evaluation Methodology: We evaluate the Cypress proto-
type on a 6 nodeKubernetes cluster with a dedicated manager
node. Each node is equipped with 48 cores (Intel Cascade
Lake), 192 GB of RAM, 1 TB of storage and a 10 Gigabit
Ethernet connection [44]. For energy measurements, we use
the Intel CPU Energy Meter [14] that measures the energy
consumed by all sockets in a node.
Request Traces: We use a synthetic Poisson arrival trace
with an average rate + = 250 rps and real-world traces from
Wiki [60] and Twitter [4]. The Twitter trace is erratic and
has a large peak-to-mean ratio (5450:3139) compared to that
of the Wiki trace (331:302). We choose these traces and scale
their request loads based on the trend of increasing request
rates evidenced by a recent study on Azure traces [65] and
also envisioned in other related work [27, 55]. For most ex-
periments, we use 3 input size distributions, namely, Heavy,
Medial and Light, where input sizes are randomly generated
such that the majority (50-55%) will be in the !rst, second or
third terciles (∼33%, descending), respectively.
Applications:We implement 5 apps in OpenFaaS by com-
posing one or more IS functions based on those from the
AWS Serverless Application Repository [11] and/or Open-
FaaS Function Store [18]. To model the characteristics of
the original functions, we invoke sleep timers within our
functions (as in [27]), with their durations determined by
adding a salt term (based on the model’s error) to the value
given by the !tted model obtained from IS Pro!ling. This
includes the time for reading input and state recovery (if
any), as they are also billable [11]. Note that we set all app
SLOs to be ∼20% higher than the app’s maximum possible
execution time [27].

265

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

99.40%

99.60%

99.80%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

97.75%

98.50%

99.25%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

97.00%

98.00%

99.00%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(c) Medial.

Figure 9: Real System: number of containers spawned vs. SLOs satisfied by each scheme for the Sentiment Analysis app under various input
size distributions averaged across the stable traces (Wiki and Poisson).

99.70%

99.80%

99.90%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

97.75%

98.50%

99.25%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

97.75%

98.50%

99.25%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(c) Medial.

Figure 10: Real System: number of containers vs. SLOs satisfied by each scheme for the QR Code app for the same cases as above.

97.75%

98.50%

99.25%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

95.50%

97.00%

98.50%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

97.00%

98.00%

99.00%

100.00%

0

100

200

300

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(c) Medial.

Figure 11: Real System: number of containers vs. SLOs satisfied by each scheme for the Image Compression app for the same cases as above.

Resource Management schemes: We compare Cypress
against the container provisioning schemes of Atoll [55],
Kraken [27] and Fifer [40], which wewill, henceforth, refer to
as Atoll, Kraken and Fifer, respectively. Note that commercial
providers spawn the same containers as Atoll [9, 12, 16], but
have worse SLO compliance [27, 55] and, hence, are not pre-
sented in our experiments. Additionally, we compare Cypress
against the scheme, IS Batch, which uses all policies/features
of Cypress except IS Reordering and LA Scaling.
Large Scale Simulation: To evaluate the e"ectiveness of
Cypress in large-scale systems, we built a high !delity, multi-
threaded simulator in Python using container cold start la-
tencies and function execution times pro!led from our real-
system counterpart. We have validated its correctness for
scaled-up versions of all traces by correlating various met-
rics of interest generated from experiments run on the real
system (e.g. the Twitter trace was scaled up from having
a peak of 250 rps in the real system to 5450 rps here). The
simulator allows us to evaluate our model for a larger setup
with a ∼6.4k core cluster which can handle up to ∼5500 re-
quests (22× more than the real system). Additionally, it aids
in comparing the resource footprint and SLO compliance of
Cypress against that of a clairvoyant scheme (Oracle) that
has 100% load and input prediction accuracy.

6 Results and Analysis
This section presents a thorough evaluation of Cypress using
the real system and our simulator. Unless mentioned oth-
erwise, most of the plots presented here pertain to either
averaged or speci!c values for theWiki and/or Poisson traces
(which we will, henceforth, refer to as stable traces, owing
to their relatively low peak-to-mean ratios) for various input
size distributions. Note that, for isolated examples, similar
results are seen for other apps and workload mixes, wherever
applicable. Furthermore, the brick-by-brick analyses shown
in Section 2.3 extend to the results presented here as well.
6.1 Real System Results
6.1.1 Containers Spawned vs. SLOs Satisfied :Figures
9, 10, and 11 show the number of containers versus SLOs
satis!ed by all schemes for the single-function apps whereas
Figures 12 and 13 represent the same for the multi-function
apps.
Single-function apps: From Figures 9, 10, and 11, we ob-
serve that Atoll spawns the most containers in all scenarios
because (i) it is agnostic to the input size variations of re-
quests and (ii) it spawns a container per request, without
performing request batching. Cypress spawns much fewer
containers thanAtoll while ensuring near-identical SLO com-
pliance (within 0.01%). Cypress accomplishes this by using

266

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

99.25%

99.50%

99.75%

100.00%

0

200

400

600

Atoll Kraken Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

98.40%

98.80%

99.20%

99.60%

100.00%

0

150

300

450

600

Atoll Kraken Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

98.50%

99.00%

99.50%

100.00%

0

200

400

600

Atoll Kraken Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(c) Medial.

Figure 12: Real System: number of containers spawned vs. SLOs satisfied by each scheme for the Email Categorization app for various input
size distributions averaged across the stable traces (Wiki and Poisson).

98.40%

98.80%

99.20%

99.60%

100.00%

0

200

400

600

800

Atoll Kraken Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

97.00%

97.75%

98.50%

99.25%

100.00%

0

200

400

600

800

Atoll Kraken Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

97.40%

98.05%

98.70%

99.35%

100.00%

0

200

400

600

800

Atoll Kraken Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(c) Medial.

Figure 13: Real System: number of containers vs. SLOs satisfied by each scheme for the Audio Translation app for the same cases as above.

IS Batching to only spawn the requisite containers while
also performing IS Reordering to maximize SLO compliance.
Heavy distributions tend to decrease the extent of request
batching in Cypress (compared to the medial and light dis-
tributions), thereby increasing containers spawned, since
the higher number of heavier requests in the trace would
likely need dedicated containers to reduce app SLO viola-
tions. For instance, for Image Compression, Cypress spawns
43% fewer containers versus Atoll for the heavy distribution
(Figure 11a), but for the light distribution, it spawns 66%
fewer containers, due to batching more (Figure 11b).
Kraken and Fifer have the same container scaling poli-

cies for single-function apps, where they use the average
function execution time to statically calculate batch sizes
for request batching. Owing to this, they inappropriately
allocate containers. For the heavy distributions, since the
average execution time would skew towards the higher side
(due to the majority of heavy requests), the calculated batch
size generally becomes lower (Section 4.2). This leads to
container over-provisioning since there will be lighter re-
quests that do not need as many containers as the heavier
ones. On the other hand, Cypress, by leveraging IS Batching,
only spawns the requisite containers. For example, Cypress
spawns 34% fewer containers thanKraken/Fifer for Sentiment
Analysis for the heavy distributions, while also matching its
SLO compliance using IS Reordering (Figure 9a).
For the light and medial distributions, Kraken/Fifer tend

to under-provision containers (leading to SLO violations)
due to the calculated batch size being too high because of a
low average execution time. For example, although Cypress
spawns 9% more containers than Kraken/Fifer for Image
Compression for the medial distribution, it has 99.99% SLO
compliance compared to Kraken/Fifer’s 98.05% (Figure 11c).
Cypress spawns the same number of containers as IS Batch,

since both schemes use IS Batching. Despite this, Cypress
outperforms IS Batch in terms of SLO compliance in all cases
as it uses IS Reordering.
Multi-function apps: For the same reasons as with the
single-function apps, Atoll is seen to spawn the most con-
tainers in almost all scenarios, with Cypress provisioning
much fewer containers than it (Figures 12, 13). For exam-
ple, Cypress spawns 33% fewer containers than Atoll for the
Audio Translation app for the light distribution (Figure 13b).
Moreover, Cypress has even better (if not, as good) SLO com-
pliance compared to not only Atoll, but all other schemes,
for multi-function apps, with a minimum of 99.97%. This is
because the other ‘input size–agnostic’ RM frameworks are
adversely a"ected by the presence of multiple IS functions
in the app, as this exacerbates the e"ects of queued heavy
requests on SLO violations (Challenge 2, Section 2.3).

Fifer is seen to su"er from the same e"ects of using static
batch sizes as in single-function apps, leading to inappropri-
ate container provisioning. For example, it over-provisions
containers for Email Categorization for the heavy distribu-
tion, with Cypress spawning 30% fewer containers than it
(Figure 12a). For the light distribution, although Cypress
spawns 8% more containers than Fifer, it has an SLO compli-
ance of 99.97% versus Fifer’s 99.13% (Figure 12b). Kraken has
a similar container provisioning strategy to Fifer, with the
exception that it provisions extra containers for functions
considered important, depending on their position in the
function chain. As a result, Cypress is observed to spawn
fewer containers than it, while also having higher SLO com-
pliance in all cases. For instance, Cypress allocates 21% fewer
containers than Kraken for Audio Translation for the heavy
distribution while having an SLO compliance of 99.98% ver-
sus Kraken’s 99.31% (Figure 13a). Compared to IS Batch, sim-
ilar trends to those of single-function apps can be observed

267

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

0

1000

2000

3000

4000

5000

Atoll Kraken Fifer IS Batch Cypress

R
es

po
ns

e
Ti

m
e

(m
s)

Queuing Cold Start Execution Time

Figure 14: Real System: end-to-end response time breakdown for
the Audio Translation app for the Poisson trace under the light
distribution.

here as well. Note that Cypress leverages IS Reordering and
LA Scaling to remain highly SLO compliant.
6.1.2 End-to-End Response Times and Latency Distri-
bution :While we observed that Cypress has near-identical
SLO compliance to Atoll, it also has slightly higher execution
times (4% on average) than the latter for both single-function
and multi-function apps. This is primarily due to Cypress
spawningmuch fewer containers thanAtoll (40% on average),
thereby, causing queuing, in turn, increasing the queuing
delay of requests. For example, the relatively higher queuing
time of Cypress versus Atoll leads to an 11% increase in its
response time for Audio Translation (Figure 14). However, in
this case, Cypress spawns 32% fewer containers than Atoll.
Moreover, as we will shortly see, Cypress remains within the
SLO for all workload mixes for all functions at the tail (P99).
These bene!ts more than compensate for the slightly higher
execution times versus Atoll.
It can be observed from Figure 14 that Cypress achieves

15%, 10% and 6% less execution time than Fifer, Kraken, and
IS Batch, respectively. Although the di"erence in the number
of containers is just within 6% compared to these schemes,
Cypress achieves its lower execution time primarily by virtue
of its IS Reordering, LA Scaling and IS Batching. From Figure
15, we observe that Atoll, like Cypress, meets the SLO at
P99. However, it does this using 70% more containers than
Cypress. Compared to Kraken/Fifer, although Cypress spawns
11% more containers, it remains SLO-compliant as opposed
to those schemes, that exceed the SLO by 50% at P99. This is
re1ected in the SLO compliance ofKraken/Fifer, which is only
98.19% in this case 4. Note that, since IS Reordering prioritizes
heavier requests, the fastest executing requests of Cypress
are slowed down slightly in exchange for a much lower tail
latency. This ensures that no isolated request su"ers from
abysmal response times (unlike in Kraken/Fifer and IS Batch).
6.1.3 Analysis of other Key Benefits:This subsection dis-
cusses a few other key bene!ts o"ered by Cypress.

4Note that not all numbers speci!ed here have been shown in the graphs.

0

1500

3000

4500

0.25 0.5 0.75 0.98 0.99

R
es

po
ns

e
Ti

m
e

(m
s)

CDF
Atoll Kraken/Fifer IS Batch Cypress SLO

Figure 15: Real System: response time distribution for the Image
Compression app for the Poisson trace under the heavy distribution.

0
400
800

1200
1600

Atoll Kraken/Fifer IS Batch CypressJo
bs

 p
er

 c
on

ta
in

er

(a) Heavy.

0

750

1500

2250

Atoll Kraken/Fifer IS Batch CypressJo
bs

 p
er

 C
on

ta
in

er

(b) Light.

Figure 16: Real System: container utilization of the Sentiment Anal-
ysis app for the Wiki trace under the heavy and light distributions.

Container Utilization: Here, we de!ne container utiliza-
tion as the jobs (requests served) per container. Hence, a
scheme should ideally have high container utilization (by
packing more jobs onto fewer containers) with minimal SLO
violations. As per Figure 16, Cypress has 52% and 71% more
container utilization compared to Atoll for the heavy and
light distributions, respectively. This is because Cypress per-
forms IS Batching, thereby, provisioning only the requisite
containers as opposed to Atoll, that does not batch requests
(and thus, over-provisions containers). For the heavy dis-
tribution, Kraken/Fifer use a static batch size of 1, thereby,
behaving similarly to Atoll. However, for the light distribu-
tion, they have 11% more container utilization than Cypress
since they under-provision containers as a result of inac-
curate batching. In this case, Cypress has much better SLO
compliance than them (99.98% versus 99.32%) and meets the
SLO at P99, which they do not. Although, IS Batch has the
same utilization as Cypress (due to provisioning the same
number of containers), it has worse SLO compliance for both
the heavy (99.82% versus 99.99%) and light (99.80% versus
99.98%) distributions than Cypress as a result of not having
Cypress’s additional policies. 5
Energy E"ciency: We measure the energy consumption
as the total energy consumed by a scheme divided by total
time. Cypress consumes 19% and 22% less energy than Atoll
for the heavy and light distributions, respectively (Figures
17a and 17b). The energy savings of Cypress are a direct con-
sequence of the savings in compute and memory used by
the fewer containers it spawns. For the same reason, Cypress

5 Not all numbers have been shown in the Figures/Tables

268

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

0

0.25

0.5

0.75

1

Atoll Kraken Fifer IS BatchCypressEn
er

gy
 C

on
su

m
pt

io
n

R
at

e

(a) Heavy.

0

0.25

0.5

0.75

1

Atoll Kraken Fifer IS BatchCypressEn
er

gy
 C

on
su

m
pt

io
n

R
at

e

(b) Light.

Figure 17: Real System: normalized energy consumption rate of
Email Categorization for the Poisson trace under the heavy and
light distributions.

96.00%

97.00%

98.00%

99.00%

100.00%

0

40

80

120

160

Atoll Kraken/Fifer IS Batch Cypress
Pe

rc
en

ta
ge

C

on
ta

in
er

s

Containers SLO Guarantees

(a) Heavy.

92.00%

94.00%

96.00%

98.00%

100.00%

0

40

80

120

160

Atoll Kraken/Fifer IS Batch Cypress

Pe
rc

en
ta

ge

C

on
ta

in
er

s

Containers SLO Guarantees

(b) Light.

Figure 18: Real System: number of containers spawned vs. SLOs
satisfied for the Sentiment Analysis app under the heavy and light
distributions for the erratic trace (Twi!er).

consumes 23% and 19% less energy than Kraken and Fifer,
respectively, for the heavy distribution (Figure 17a). For the
light distribution, Cypress consumes 1% less and 1% more
energy than Kraken and Fifer, respectively (Figure 17b). This
implies that the extra containers spawned by Cypress versus
Fifer (9% in this case) translates to a much lower di"erence
in energy consumption. Note that despite the relatively low
di"erence in energy consumption between Cypress, Kraken,
and Fifer, Cypress outperforms the others in terms of SLO
compliance (99.96% versus 98.79% and 98.56%) and minimiz-
ing tail latency (the others exceed the SLO by 30% at the
tail) 5. Similarly, IS Batch, while consuming the same amount
of energy, also has worse SLO compliance and tail latency,
regardless of distribution.
Resilience to Erratic traces: As noted earlier (Section
5), the Twitter trace is highly erratic, with a high peak-to-
mean ratio (∼2:1) and therefore, can adversely a"ect the SLO
compliance of various schemes. For the heavy distribution,
it is observed that Cypress outperforms the other schemes,
both in terms of containers spawned (34% lesser than Atoll,
Kraken/Fifer and equal to IS Batch) and SLOs satis!ed (99.72%
versus 97.46% of Atoll, Kraken/Fifer and IS Batch’s 97.65%)
(Figure 18a). This is because, despite the erratic request load,
Cypress’s features such as input size distribution prediction,
IS Batching and IS Reordering combined with its load pre-
diction enable it to tolerate the in1ux of various input sizes

that accompanies the variable load. For the light distribution
(Figure 18b), almost all schemes improve their SLO compli-
ance (including Cypress, with the highest, 99.91%), which
may be due to the request trace inherently having a majority
of lighter requests (which have more execution slack). To
highlight the e"ects of the other schemes’ low SLO compli-
ance on their tail latencies, we can refer to Table 4 that shows
all P99 values (in ms) corresponding to Figure 18. For both
the heavy and light distributions, Cypress is the only scheme
to remain SLO compliant at the tail, with Atoll, Kraken/Fifer
and IS Batch violating the SLO at P99 by as much as 57%, 89%
and 55%, respectively.

Distribution Scheme SLOAtoll Kraken/Fifer IS Batch Cypress
Heavy 5256 5260 5189 2989 3340Light 5059 6262 5022 2889

Table 4: Real System: P99 values (in ms) of all schemes for Sentiment
Analysis under the heavy and light distributions for the erratic trace.

6.2 Simulator Results
Seeing that the real system implementation is limited to a

288 core cluster, we use our in-house simulator, that can sim-
ulate a 6.4k core cluster, to study the scalability of Cypress. To
this end, we also use large-scale versions of the Poisson trace
(+ = 1000 rps), Wiki (+ = 302 rps) and Twitter (+ = 3139 rps)
traces. The simulator results are observed to closely correlate
to those of the real system (Table 5). Generally, for the heavy
distribution, Cypress spawns fewer containers than all other
schemes (up to 43% fewer) while being highly SLO compliant
(up to 99.99%). For the light and medial distributions, Cypress
spawns even fewer containers, especially compared to Atoll
(up to 65% fewer). While Cypress does spawn more contain-
ers than Kraken/Fifer in similar scenarios, it has superior
SLO compliance and tail latency compared to them. For ex-
ample, although Cypress spawns 15% more containers than
Kraken/Fifer for Image Compression for the light distribution
for the stable trace, it has an SLO compliance of 99.98% versus
Kraken/Fifer’s 99.17%. Moreover, Cypress remains within the
SLO at P99, whereas Kraken/Fifer violates it by 30% for the
same case6. IS Batch, as expected, spawns the same number
of containers as Cypress on average, but is outperformed by
it in terms of SLO compliance and tail latency as well. For
similar reasons as in the real system, Cypress outperforms the
other schemes in both metrics, for multi-function apps, on
many occasions. For instance, Cypress spawns 20% fewer con-
tainers than Kraken and has higher SLO compliance (99.99%
vs. 99.81%) for Audio Translation for the stable trace under
the heavy distribution. Cypress is also more resilient to the
erratic trace than other schemes, as in the real system.
6.2.1 Sensitivity Study:This subsection compares Cypress
against Oracle, an ideal policy assumed to be able to predict
6Not shown in Table

269

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

App Scheme Heavy Light Medial
Stable Erratic Stable Erratic Stable Erratic

Sentiment Analysis

Atoll (304, 99.99%) (3141, 97.40%) (304, 99.99%) (3141, 98.22%) (304, 99.99%) (3140, 97.55%)
Kraken/Fifer (304, 99.99%) (3140, 97.40%) (160, 99.28%) (1617, 94.62%) (169, 99.32%) (1708, 95.40%)
IS Batch (211, 99.78%) (2078, 97.61%) (184, 99.75%) (1847, 98.36%) (189, 99.79%) (1945, 97.40%)
Cypress (211, 99.99%) (2078, 99.68%) (184, 99.98%) (1847, 99.89%) (189, 99.99%) (1945, 99.77%)

QR Code

Atoll (304, 99.99%) (3141, 99.43%) (304, 99.99%) (3141, 99.70%) (304, 99.99%) (3140, 99.58%)
Kraken/Fifer (304, 99.99%) (3141, 99.43%) (161, 99.24%) (1691, 96.38%) (171, 99.36%) (1738, 95.83%)
IS Batch (223, 99.95%) (2206, 98.50%) (184, 99.88%) (1960, 99.00%) (192, 99.82%) (1993, 98.36%)
Cypress (223, 99.99%) (2206, 99.71%) (184, 99.95%) (1960, 99.91%) (192, 99.99%) (1993, 99.90%)

Image Compression

Atoll (304, 99.99%) (3141, 98.50%) (304, 99.99%) (3141, 99.20%) (304, 99.99%) (3140, 98.81%)
Kraken/Fifer (165, 99.45%) (1673, 95.23%) (96, 99.17%) (966, 92.78%) (112, 99.38%) (1198, 95.35%)
IS Batch (173, 99.70%) (1845, 97.98%) (110, 99.70%) (1130, 98.20%) (129, 99.80%) (1381, 98.01%)
Cypress (173, 99.98%) (1845, 99.90%) (110, 99.98%) (1130, 99.95%) (129, 99.98%) (1381, 99.93%)

Email Categorization

Atoll (608, 99.97%) (6280, 99.12%) (608, 99.99%) (6280, 99.80%) (608, 99.99%) (6280, 99.62%)
Kraken (688, 99.98%) (7095, 99.23%) (419, 99.83%) (4173, 98.47%) (447, 99.86%) (4767, 98.49%)
Fifer (608, 99.97%) (6280, 99.12%) (374, 99.71%) (3861, 98.30%) (406, 99.37%) (4160, 98.29%)

IS Batch (455, 99.78%) (4721, 98.65%) (408, 99.88%) (4082, 98.84%) (430, 99.92%) (4455, 98.88%)
Cypress (455, 99.98%) (4721, 99.89%) (408, 99.99%) (4082, 99.93%) (430, 99.99%) (4455, 99.95%)

Audio Translation

Atoll (912, 99.99%) (9423, 99.83%) (912, 99.98%) (9423, 99.88%) (912, 99.99%) (9423, 99.84%)
Kraken (848, 99.81%) (8668, 98.33%) (652, 99.56%) (6719, 97.80%) (691, 99.59%) (7030, 97.82%)
Fifer (777, 99.69%) (7955, 97.96%) (604, 98.84%) (6116, 97.58%) (627, 99.38%) (6416, 97.57%)

IS Batch (678, 99.70%) (6938, 98.11%) (629, 99.69%) (6412, 98.29%) (653, 99.71%) (6733, 98.47%)
Cypress (678, 99.99%) (6938, 99.93%) (629, 99.99%) (6412, 99.96%) (653, 99.99%) (6733, 99.96%)

Table 5: Simulator: (# containers spawned, SLOs satisfied) for all schemes for all apps under three input size distributions for a stable (Wiki)
and erratic (Twi!er) trace.

App Heavy Light Medial
Cypress Oracle Cypress Oracle Cypress Oracle

34 (875, 99.95%) (831,4) (531, 99.97%) (515,4) (637, 99.96%) (617,4)
56 (1015, 99.88%) (923,4) (925, 99.95%) (869,4) (940, 99.95%) (893,4)
78 (999, 99.88%) (939,4) (876, 99.95%) (840,4) (913, 99.93%) (876,4)

34: Image Compression 56: QR Code 78: Sentiment Analysis
4: 100%
Table 6: Simulator: comparison of (# containers spawned, SLO com-
pliance) of Cypress and Oracle averaged across all traces.

future request load as well as the exact pattern of future in-
put sizes to all functions with 100% accuracy. Note that apart
from being clairvoyant, Oracle uses the same policies as Cy-
press. By comparing against Oracle, we intend to isolate the
e"ects of Cypress’s load/input size mis-prediction(s) on its
performance for individual functions and hence, perform the
experiments for the single-function apps. Generally, Cypress
is seen to be conservative in dealing with load/input pattern
prediction errors by slightly over-provisioning containers,
via reactive scaling, in response to them. From Table 6, we
can see that Cypress over-provisions containers by 4%, 7%,
and 5% on average for the Image Compression, QR Code, and
Sentiment Analysis apps, respectively, in comparison to Ora-
cle. Although Oracle outperforms Cypress in terms of SLOs
satis!ed owing to its clairvoyance, Cypress remains within
0.12% of its SLO compliance, even during its least performant
scenarios. This can be attributed to the synergy of its various
policies compensating for its prediction errors.
7 Concluding Remarks

Adopting the serverless platform for input size–sensitive
apps introduces critical request scheduling and resourceman-
agement challenges for the cloud provider. To address these,
we design, implement, and evaluate Cypress, an input size–
sensitive serverless resource management framework, for

e#ciently running such apps with minimal resources, while
remaining highly SLO-compliant.

To this end, Cypress employs various scaling services that
leverage its policies/features, that include Input size–Sensitive
Request Batching, Input size–Sensitive Request Reordering, and
Chained Prediction, among others. Our experimental eval-
uation on a 288 core cluster using 5 apps from the AWS
Serverless App Repository and the OpenFaaS Function Store
with real-world traces and various input size distributions
demonstrates that Cypress spawns up to 66% fewer contain-
ers, thereby improving container utilization and cluster-wide
energy savings by up to 2.95× and 23%, respectively, com-
pared to state-of-the-art serverless resource management
frameworks.
8 Acknowledgement
We are indebted to our anonymous reviewers and shep-

herd, Lei Zhang, for their insightful comments. This research
was partially supported by NSF grants #1931531, #1955815,
#1763681, #2116962, #2122155 and #2028929. We also thank
the NSF Chameleon Cloud project CH-819640 for their gen-
erous compute grant. All product names used here are for
identi!cation purposes only and may be trademarks of their
respective companies.
References
[1] 2020. Email Length Best Practices. https://www.campaignmonitor.

com/blog/email-marketing/email-length-best-practices-for-email-
marketers-and-email-newbies/.

[2] 2020. Establishing E"ective SLOs. https://www.datadoghq.com/blog/
establishing-service-level-objectives/.

[3] 2020. Findings about Search Engine Optimization. https://backlinko.
com/search-engine-ranking.

270

Cypress : Input size–Sensitive Container Provisioning and Request Scheduling for Serverless SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

[4] 2020. Twitter Stream traces. https://archive.org/details/twitterstream.
Accessed: 2020-05-07.

[5] 2021. AWS Lambda Cold Starts. https://mikhail.io/serverless/
coldstarts/aws/.

[6] 2021. Azure Functions Cold Starts. https://mikhail.io/serverless/
coldstarts/azure/.

[7] 2021. Image Compression with Lambda. https://dev.to/aarongarvey/
size-matters-image-compression-with-lambda-and-s3-40bf.

[8] 2022. Amazon Automated Chat Moderation. https://aws.amazon.com/
blogs/business-productivity/automated-moderation-and-sentiment-
analysis-with-amazon-chime-sdk-messaging/.

[9] 2022. AWS Lambda. https://aws.amazon.com/lambda/.
[10] 2022. AWS Lambda for Sentiment Analysis. https:

//aws.amazon.com/blogs/compute/using-aws-lambda-and-amazon-
comprehend-for-sentiment-analysis/.

[11] 2022. AWS Serverless Application Repository. https://aws.amazon.
com/serverless/serverlessrepo/.

[12] 2022. Google Cloud Functions. https://cloud.google.com/functions/
docs/.

[13] 2022. HappyScribe: Online Audio Transaltion Service. https://www.
happyscribe.com/.

[14] 2022. Intel CPU Energy Meter. https://github.com/sosy-lab/cpu-
energy-meter.

[15] 2022. Kubernetes. https://kubernetes.io/.
[16] 2022. Microsoft Azure Serverless Functions. https://azure.microsoft.

com/en-us/services/functions/.
[17] 2022. OpenFaaS. https://www.openfaas.com/.
[18] 2022. OpenFaaS Function Store. https://github.com/openfaas/store.
[19] 2022. Provisioned Concurrency. https://docs.aws.amazon.com/

lambda/latest/dg/con!guration-concurrency.html.
[20] 2022. Sentiment Analysis of Social Media. https:

//docs.aws.amazon.com/whitepapers/latest/big-data-analytics-
options/example-3-sentiment-analysis-of-social-media.html.

[21] 2022. Serverless Speech to Text. https://awscloudfeed.com/whats-
new/videos/serverless-speech-to-text-using-s3-and-lambda.

[22] 2022. The State of Serverless. https://www.datadoghq.com/state-of-
serverless/.

[23] 2022. Translating documentswithAmazon Translate andAWSLambda.
https://aws.amazon.com/blogs/machine-learning/translating-
documents-with-amazon-translate-aws-lambda-and-the-new-
batch-translate-api/.

[24] Istemi Ekin Akkus et al. 2018. SAND: Towards High-Performance
Serverless Computing. In ATC.

[25] A. Alourani, M.A.N. Bikas, and M. Grechanik. 2016. Input-Sensitive
Pro!ling: A Survey. Advances in Computers, Vol. 103. Elsevier, 31–52.
https://doi.org/10.1016/bs.adcom.2016.04.002

[26] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. 2018. RobinHood: Tail Latency Aware Caching –
Dynamic Reallocation from Cache-Rich to Cache-Poor. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). USENIX Association, Carlsbad, CA, 195–212. https://www.usenix.
org/conference/osdi18/presentation/berger

[27] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021.
Kraken: Adaptive Container Provisioning for Deploying Dynamic
DAGs in Serverless Platforms. In Proceedings of the ACM Symposium
on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association for
Computing Machinery, New York, NY, USA, 153–167. https://doi.org/
10.1145/3472883.3486992

[28] Marc Brooker, Andreea Florescu, Diana-Maria Popa, Rolf Neugebauer,
Alexandru Agache, Alexandra Iordache, Anthony Liguori, and Phil
Piwonka. 2020. Firecracker: Lightweight Virtualization for Serverless

Applications. In NSDI.
[29] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make
serverless fast. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1–15.

[30] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML
Work1ows. In Proceedings of the ACM Symposium on Cloud Computing
(Santa Cruz, CA, USA) (SoCC ’19). Association for Computing Ma-
chinery, New York, NY, USA, 13–24. https://doi.org/10.1145/3357223.
3362711

[31] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-
Sensitive Pro!ling. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (Beijing, China)
(PLDI ’12). Association for Computing Machinery, New York, NY, USA,
89–98. https://doi.org/10.1145/2254064.2254076

[32] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu:
Mitigating cascading cold starts in serverless function chain deploy-
ments. In Proceedings of the 21st International Middleware Conference.
356–370.

[33] Je"rey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (feb 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[34] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (Stevenson, Wash-
ington, USA) (SOSP ’07). Association for Computing Machinery, New
York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[35] Simon Eismann, Johannes Grohmann, Erwin van Eyk, Nikolas Herbst,
and Samuel Kounev. 2020. Predicting the Costs of Serverless Work-
1ows. In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (Edmonton AB, Canada) (ICPE ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 265–276.
https://doi.org/10.1145/3358960.3379133

[36] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
http://www.usenix.org/conference/atc19/presentation/fouladi

[37] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. 2017. Encoding, Fast
and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 363–
376. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/fouladi

[38] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. 2007.
Measuring Empirical Computational Complexity. In Proceedings of
the the 6th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07). Association
for Computing Machinery, New York, NY, USA, 395–404. https:
//doi.org/10.1145/1287624.1287681

[39] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Tay-
lan Kandemir, Bhuvan Urgaonkar, George Kesidis, and Chita Das.
2019. Spock: Exploiting Serverless Functions for SLO and Cost Aware
Resource Procurement in Public Cloud. In 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD). 199–208. https:
//doi.org/10.1109/CLOUD.2019.00043

271

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA V. Bhasi, J.R. Gunasekaran et al.

[40] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C
Nachiappan, Mahmut Taylan Kandemir, and Chita R Das. 2020. Fifer:
Tackling Resource Underutilization in the Serverless Era. In Proceedings
of the 21st International Middleware Conference. 280–295.

[41] Ling Huang, Jinzhu Jia, Bin Yu, Byung-gon Chun, Petros Maniatis,
and Mayur Naik. 2010. Predicting Execution Time of Computer
Programs Using Sparse Polynomial Regression. In Advances in Neu-
ral Information Processing Systems (NeurIPS), J. La"erty, C. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta (Eds.), Vol. 23. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2010/!le/
995665640dc319973d3173a74a03860c-Paper.pdf

[42] David S Johnson. 1973. Near-Optimal Bin Packing Algorithms. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[43] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guaranteeing
SLAs for Jobs in Microservices Execution Frameworks. In EuroSys.

[44] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex
Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon
Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[45] Bernhard Korte and Jens Vygen. 2018. Bin-Packing. In Combinatorial
Optimization. Springer, 489–507.

[46] Amirhossein Mirhosseini, Brendan L. West, Geo"rey W. Blake, and
Thomas F. Wenisch. 2020. Q-Zilla: A Scheduling Framework and
Core Microarchitecture for Tail-Tolerant Microservices. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 207–219. https://doi.org/10.1109/HPCA47549.2020.00026

[47] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile cold starts for
scalable serverless. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19).

[48] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
USENIX ATC.

[49] Ruth Rettie and Lisa Chittenden. 2003. Email marketing: Success factors.
Kingston Business School, Kingston University.

[50] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. 2021. What Serverless Computing
is and Should Become: The next Phase of Cloud Computing. Commun.
ACM 64, 5 (apr 2021), 76–84. https://doi.org/10.1145/3406011

[51] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 205–218. https://www.usenix.org/
conference/atc20/presentation/shahrad

[52] Aakash Sharma, Saravanan Dhakshinamurthy, George Kesidis, and
Chita R. Das. 2021. CASH: A Credit Aware Scheduling for Public Cloud
Platforms. In 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). 227–236. https://doi.org/10.
1109/CCGrid51090.2021.00032

[53] Christy Sich. 2017. A Comparison of Traditional Book Reviews and
Amazon.com Book Reviews of Fiction Using a Content Analysis Ap-
proach. Evidence Based Library and Information Practice 12, 1 (Mar.
2017), 85–96. https://doi.org/10.18438/B8CW4N

[54] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.
Prebaking Functions to Warm the Serverless Cold Start. In Proceedings

of the 21st International Middleware Conference. 1–13.
[55] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mo-

hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2021. Atoll: A Scalable Low-Latency Serverless Platform. In
Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA,
USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 138–152. https://doi.org/10.1145/3472883.3486981

[56] Amoghavarsha Suresh and Anshul Gandhi. 2021. ServerMore: Oppor-
tunistic Execution of Serverless Functions in the Cloud. In Proceed-
ings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). Association for Computing Machinery, New York, NY, USA,
570–584. https://doi.org/10.1145/3472883.3486979

[57] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. 2020. Sequoia: Enabling quality-of-service in serverless com-
puting. In Proceedings of the 11th ACM Symposium on Cloud Computing.
311–327.

[58] Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma,
Mahmut Taylan Kandemir, and Chita R. Das. 2017. Phoenix: A
Constraint-Aware Scheduler for Heterogeneous Datacenters. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 977–987. https://doi.org/10.1109/ICDCS.2017.262

[59] Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma,
Mahmut Taylan Kandemir, and Chita R. Das. 2019. Kube-Knots: Re-
source Harvesting through Dynamic Container Orchestration in GPU-
based Datacenters. In 2019 IEEE International Conference on Cluster
Computing (CLUSTER). 1–13. https://doi.org/10.1109/CLUSTER.2019.
8891040

[60] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2009.
Wikipedia workload analysis for decentralized hosting. Computer
Networks (2009).

[61] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In ATC.

[62] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. 2013.
Bobtail: Avoiding Long Tails in the Cloud. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 13).
USENIX Association, Lombard, IL, 329–341. https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/xu_yunjing

[63] Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang,
and Jason Mars. 2017. PowerChief: Intelligent power allocation for
multi-stage applications to improve responsiveness on power con-
strained CMP. In Computer Architecture News.

[64] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.
KylinX: a dynamic library operating system for simpli!ed and e#cient
cloud virtualization. In 2018 USENIX Annual Technical Conference. 173–
186.

[65] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and Cheaper Serverless Computing on Harvested Resources.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 724–739. https:
//doi.org/10.1145/3477132.3483580

272

