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Abstract—With the increased usage of public clouds for hosting
applications, it becomes essential to choose the appropriate
services from the public cloud offerings in order to achieve
satisfactory performance while minimizing deployment expenses.
Prior research has demonstrated that combining different ser-
vices can be more cost-effective than solutions based on a single
service type. However, automating the combination of resources
for applications composed of large graphs of loosely-connected
microservices has not yet been thoroughly explored, especially in
the context of microservice-based cloud applications. Motivated
by this, targeting microservice-based applications, we propose
MicroBlend, an automated framework that mixes Infrastructure-
as-a-Service (IaaS) and Function-as-a-Service (FaaS) cloud ser-
vices in a way that is both cost-effective and performance-
efficient. MicroBlend focuses on: (i) providing an automated
approach for blending resources that takes microservice depen-
dencies into account, (ii) generating FaaS-ready code using a
compiler-based approach, and (iii) suggesting an optimization
plan for combining microservices with user annotation. We
implement MicroBlend on Amazon Web Services (AWS) and
evaluate its performance using real-world traces from three dif-
ferent applications. Our findings demonstrate that by employing
automated microservice-to-cloud service assignment, MicroBlend
can significantly reduce Service Level Objective (SLO) violations
by 9%, compared to traditional VM-based resource procurement
schemes. Additionally, MicroBlend can decrease costs by 11%.

Index Terms—automation, compiler, serverless, microservices,
cloud computing, autoscaling.

I. INTRODUCTION
A variety of tenants are utilizing the public cloud to host

their applications, many of which have performance con-
straints (e.g., latency or throughput), known as service-level
objectives (SLOs). The choice of cloud services acquired to
host these applications has a crucial impact on satisfying such
SLOs and determining costs, which can be termed as the
performance-cost problem. In particular, one may want to find
the minimum-cost solution that satisfies the specified SLO.

Public cloud resources are traditionally acquired through
Infrastructure as a Service (IaaS), including virtual machines
(also known as instances), containers, block storage devices,
etc. Function as a Service (FaaS) and Software as a Service
(SaaS) offerings have increasingly become more accessible.
FaaS and SaaS are often favored over Infrastructure as a
Service (IaaS) due to their finer-grained cost model and
reduced administrative expenses.

Prior studies show that no single service type can satisfy
all application requirements, and combining multiple service

types can potentially help us better address the performance-
cost problem [3], [46]. In particular, integrating Infrastructure-
as-a-Service (IaaS) with Function-as-a-Service (FaaS) has
been found to have numerous advantages over using IaaS
alone. FaaS acts as an agile transition mechanism, enabling
the creation of new virtual machines (VMs) in significantly
less time than traditional VMs take to start, reducing the need
for over-provisioning VMs and addressing performance-cost
issues. Additionally, Splice [48] has demonstrated how the
process of merging IaaS and FaaS can be automated via simple
pragma type annotations in the source code.

Despite the automated method of leveraging diverse ser-
vices, detailed performance analysis and modeling for service
blending have been studied in detail. One specific area of
interest that could benefit from service blending is microser-
vices [1], [2], [14], [38], [39]. In particular, given a microser-
vices architecture diagram, identifying the set of microservices
to implement as FaaS, with performance and cost in mind,
is an interesting research direction. This is a challenging
problem in general due to the back-pressure and cascading
SLO violations caused by dependencies across microservices.
Automating this microservice-to-cloud service assignment can
be of tremendous value to many microservice-based cloud
applications.

Motivated by these observations, in this paper, we present
MicroBlend, an automated framework for blending IaaS
and FaaS services in a way that is both cost-effective and
performance-aware for microservice-based workloads. The
key features of MicroBlend include: (i) an automated strat-
egy for blending cloud services targeting microservice-based
applications considering microservice dependencies; (ii) FaaS-
ready code generation using a compiler-based approach; and
(iii) an optimization plan for merging microservices with user
annotation. The main contributions of this paper can be
summarized as follows:
• We introduce MicroBlend, which allows for the automated

partitioning of microservices into IaaS and FaaS during cluster
autoscaling.
• We demonstrate a heuristic service assignment algorithm

that uses a performance model and a simple learning frame-
work to identify optimal combinations of microservices for
offloading to FaaS.
• We present an optimization plan that merges microser-



vices, if it is beneficial to do so, before offloading them to
FaaS with the help of user annotations.
• We implement MicroBlend using various cloud comput-

ing services provided by AWS and the abstract syntax tree
module. We evaluate the effectiveness of MicroBlend using
real-world request arrival traces (WITS and Wikipedia) and
three microservice benchmark suites (DeathStarBench [22] –
SocialNetwork, MediaReservation, and Online Boutique [41]).
• We demonstrate that MicroBlend can reduce SLO vi-

olations by up to 9%, compared to using only VMs, and
can save up to 11% on costs, compared to standard resource
procurement methods.

II. BACKGROUND AND MOTIVATIONAL EXPERIMENT

A. Background
From the standpoint of application development, it has

been proposed that cloud applications be designed utilizing
a microservice-based architecture [37], [42]. Microservice-
based architecture treats applications as a collection of loosely-
coupled, lightweight, and modular software components and
they are highly suited to the cloud paradigm because of their
small size, modularity, agility, and flexibility [43], [53].

Fig. 1 provides a sample microservice architecture using
the Social Network application. This particular architecture
consists of multiple microservices that are containerized ap-
plications and communicate with each other through HTTP
API or RPC calls. A user request is received at the front-end
layer of the application and, depending on the type of request,
a subset of microservices from the front-end tier, middle-tier
(logic), and back-end tiers (storage) are involved in serving the
request. The microservices are arranged in a directed acyclic
graph (DAG) that represents their dependencies with respect to
one another, with some microservices relying on others. This
dependency graph highlights the complexity of microservice-
based applications when compared to monolithic ones. The
main objective of MicroBlend is to automate the selection
and partitioning of microservices by identifying their hierar-
chical arrangement in a complex network. More specifically,
MicroBlend automatically assigns each microservice in a DAG
to either IaaS or FaaS.

Developers deploy each microservice on one or more
containers while creating a microservice application. Kuber-
netes [30] is representative of a platform for orchestrating
container deployment, scalability, and administration. A Ku-
bernetes cluster consists of a collection of nodes that contain
pods, and a pod is a shared storage and network environment
that contains one or more containerized applications (usually
one). Additionally, each pod has CPU and memory limitations
that restrict how much of the node’s resources it may use.

Kubernetes supports three application autoscaling mecha-
nisms: horizontal autoscaling, vertical autoscaling, and cluster
autoscaling. Horizontal autoscaling adjusts pod numbers in
response to metric changes such as CPU or memory utiliza-
tion. Vertical autoscaling modifies the CPU or memory con-
straints of pods, controlling minimum and maximum resource
allocation. Finally, cluster autoscaling adds or removes nodes

Fig. 1: Social Network as example of microservices architec-
ture with numbered microservices for motivation experiment.

from a cluster. Note that cluster autoscaling is provided by
the underlying infrastructure/cloud provider, such as Amazon
Elastic Kubernetes Service (EKS) [5], Microsoft’s Azure Ku-
bernetes Service (AKS) [9], and Google Kubernetes Engine
(GKE) [25], whereas horizontal and vertical autoscaling are
provided by the Kubernetes system. Cluster autoscaling in
the cloud modifies the size of the cluster and the number of
resources leased from a cloud provider, which directly affects
the cluster’s cost. In this work, we tackle the challenges of
cluster autoscaling in the cloud.

When spinning up new VMs (cluster autoscaling) in case
of a surge in requests, VMs may take tens of seconds to
minutes to start up, resulting in SLO violations and over-
provisioning of VMs. Combining IaaS with FaaS has been
found to reduce operational and runtime expenses, and AWS
Lambdas have been used in a recent study on service blending.
When scaling up IaaS resources and addressing traffic spikes,
prior works [26], [29], [48], [52] generally employ FaaS
as a “transition mechanism”. However, to our knowledge,
automated transition for microservice-based applications has
not been explored.
B. Motivational Experiment

To examine the potential advantages of cloud service
blending for microservices over the use of a single ser-
vice type during cluster autoscaling, we have performed an
experiment involving a microservice-based Social Network
application [22]. Fig. 1 depicts the dependency graph of this
application that comprises an Nginx front-end microservice,
11 functionality-based middle-tier microservices, and 5 Mon-
goDB back-end microservices. We identify 11 functionality-
based microservices that can be blended (using IaaS or FaaS
for each microservice). These microservices are numbered in
the diagram, where some of them are labeled with either “A”
or “B” indicating that they are only called by the microservice
labeled with the corresponding number; the “2” microservice
only invokes microservices “2A” and “2B”. We configure
Lambdas to interact with one of MongoDB microservices
in a distributed fashion. We use the WITS [50] trace to
simulate the scenario where the web service handles different
queries every second. We determine the number of initial
servers required to maintain the average requests per second
for the WITS trace by considering the number of requests
each vCPU can handle simultaneously with a response time
objective of 1000 ms. We assess the SLO violation and cost
reduction by testing various combinations of blended resources
during cluster autoscaling using the initial 30 minutes of the
WITS trace. In particular, combination (1, 3) specifies that



(a) SLO (1000ms) violations and cost reductions for
Social Network application under different combinations
(more details about combinations available in Fig. 2b).

(b) Description of the microservice combinations pre-
sented in Fig. 2a with the billed duration on Lambda.
The corresponding microservice numbers can be iden-
tified from Fig. 1.

Fig. 2: SLO violations and cost reduction under different
microservice combinations.

the UniqueId (1) and Media (3) microservices are mapped to
Lambda, whereas the remaining microservices are executed on
the VM during cluster autoscaling.

Fig. 2a shows the comparison between SLO violation and
cost savings of the Social Network application service, con-
sidering different service blending combinations. The hori-
zontal axis represents different sets of microservices that are
offloaded to Lambda – while (VM) denotes the first baseline
where all microservices are executed on VM. The second y-
axis indicates the monetary cost normalized to the second
baseline, which represents a resource procurement strategy
that solely relies on Lambda. Fig. 2b describes the specific
microservice combination and its billed duration on Lambda.

The combination C1 (HomeTimeline and SocialGraph) in-
volves offloading the microservice with the longest execution
time, which is HomeTimelineService (8). It should be noted
that, HomeTimelineService (8) calls SocialGraphService (8A),
which involves having two separate Lambda functions. The
social-network application consists of parallel microservices
that execute in stages, and the latency of a stage depends
on the microservice with the longest execution time. Even
though executing the HomeTimelineService and SocialGraph
microservices on Lambda is independent of the VM load
surge, the other two microservices (7 and 9) that are involved
in parallel invocations with HomeTimelineService (8) face

performance degradation in the surge of requests, resulting
in similar SLO violation and cost increases (1% and 6%,
respectively). Note that the cost increase is due to the higher
per-unit price of Lambda compared to VMs. Moreover, even
when the subsequent microservices with the longest execution
time are offloaded to Lambda (C3 and C4 combinations),
the workload patterns and linear cost increase of Lambda,
together, negatively impact the cost reduction without any
change in SLO violation reduction.

In order to address the impact of blending resources on
microservices with parallel invocation patterns, we assessed
the impact of offloading these microservices to Lambda using
two combinations: C5 and C7. These combinations have
reduced SLO violations by 16% and 15%, respectively, when
compared to the VM policy. This is due to the fact that
Lambda can handle simultaneous invocations, which reduces
the resource burden on VMs and allows unused VMs to be
scaled-in early, resulting in cost savings of 1% and 2% for C5
and C7, respectively.

To further investigate the impact of blending resources
while considering the dependencies of microservices, we have
selected closely related microservice candidates. For instance,
we have evaluated the combination of HomeTimeline and
SocialGraph microservices as a single Lambda function (C2
combination) instead of having them on separate Lambdas
(C1 combination). We emphasize that, grouping microservices
have allowed microservices to communicate within a Lambda,
instead of between two separate Lambdas, resulting in a
shorter execution time. Similarly, combining the microservices
involved in cascading functions into one (C6 and C8) instead
of separate functions (C5 and C7) resulted in optimal resource
utilization and reduced communication overhead, leading to a
5% reduction in SLO violation for C6 and C8, compared to
C5 and C7, respectively.

Based on our findings, we propose that the automated
identification of microservice dependencies and appropriate
blending of services can lead to better resource utilization and
reduced SLO violations in practice without much programmer
involvement (i.e., increasing programmer’s productivity).

III. MICROBLEND DESIGN

We begin by providing a general overview of MicroBlend’s
structure and components. Next, we provide a comprehensive
guide on building a performance model for each microservice
to determine their suitability for FaaS. We illustrate how
MicroBlend uses a heuristic algorithm to produce FaaS ex-
ecutable code for microservices and an optimization plan that
utilizes a compiler-based approach with user annotation.

A. Proposed Design

MicroBlend is a framework that can automate the inte-
gration of different cloud services to reduce the amount
of human labor required for microservice applications. The
high-level design specifications of MicroBlend are shown in
Fig 3. MicroBlend has a “pragma-based” annotation system
that the programmer may utilize to annotate the application



Fig. 3: High-level design of MicroBlend.

code. The programmer’s purpose would be to impart do-
main knowledge about preferred so-called “basic execution
units” (BEUs), an execution granularity (functionality in mi-
croservices), for blending selections that we would construct.
MicroBlend employs annotations to specify specific BEU-to-
service type translations. Annotated code is analyzed by Mi-
croBlend, which creates an “intermediate representation” (IR)
that our proposed compiler uses to make “cloud-ready” code
automatically. The user defines the workload, service-level
objectives (SLOs), and user annotations. If no annotations are
provided, MicroBlend employs an empirical usage approach,
utilizing performance model and a heuristic service assignment
algorithm, which includes a simple learning framework (logis-
tic regression), to determine the optimal microservice-to-cloud
service assignment.

We begin with the initial servers linked to the load balancer
that is responsible for (i) acquiring resources and (ii) cloud
service assignment. Whenever the load balancer decides to
scale up, it triggers the service assignment component of Mi-
croBlend. MicroBlend interacts with its different components
and instructs the load balancer to utilize blending services
when required.

B. Component Details
1) Compiler: The Compiler is responsible for translat-

ing the source code into compatible executables for both
Infrastructure-as-a-Service (IaaS) and Function-as-a-Service
(FaaS). The process starts by searching for user-annotated
pragmas on microservices, which are then used to transmit
metrics to the Resource Controller. The Compiler automat-
ically enables program analysis and the creation of cloud-
ready code. Once the cloud-ready blended code is generated,
the Resource Controller collects information and directs the
Compiler to upload the executable code to all servers through
remote storage, such as AWS S3 [8]. In cases where user
annotation is absent, the Compiler interacts with the Resource
Controller and generates blended code during autoscaling
whenever blending resources becomes necessary.

2) Profiler: The Profiler is in charge of microservice
observability. It periodically observes the Load-balancer,
container services, and AWS CloudWatch [6]1. It re-
trieves data from CloudWatch at regular intervals, including
CPU and memory usage of running servers. Furthermore,

1AWS CloudWatch allows users to monitor and observe their applications
and infrastructure resources on the AWS Cloud. It provides data and actionable
insights by enabling users to track metrics, monitor log files, and set alarms.

Pragma Type Description
BEU FaaS Placement on a Lambda.
BEU FaaS
[arrival rate >R] Placement on a Lambda with load balancing rule.

BEU FaaS
Combine L1 Grouping microservices to the same Lambda.

TABLE I: Pragmas supported in MicroBlend.

Prometheus [44] is employed to gather various metrics from
containers (further details in Sec. IV).

3) Resource Controller: The Resource Controller is re-
sponsible for autoscaling and cloud service assignment for
microservices. It gathers data from the Compiler’s user an-
notations, if present, and also uses the current request arrival
rate, server metrics, and container metrics. It then determines
the number of additional VM instances required for scaling
out resources. To scale in resources, the Resource Controller
examines VMs that have been idle for more than three minutes
and terminates them to minimize the early termination of
instances caused by short-term request rate fluctuations, as
recommended by Gandhi et al [24].

The Resource Controller has several options based on the
type of user annotation when it comes to scaling-out resources.
These options include increasing VM resources through the
standard auto-scaling policy, managing incoming requests with
blending services while creating more VMs, or solely using
blending services when user-defined metrics are met. For
instance, it can operate in a FaaS-only mode when the request
rate surpasses a particular value. When the specified metric is
met, the Resource Controller notifies the Compiler to deploy
the blended cloud-compatible code to all active servers.

In the absence of user annotation, the Resource Controller
of MicroBlend creates a performance model based on the
Profiler’s metrics and uses a heuristic algorithm to determine
the appropriate allocation of services to microservices. The
Controller then instructs the Compiler to generate a cloud-
ready, service-blended code, and the load balancer directs
incoming requests to leverage the blended code to fulfill
demand while obtaining more resources.

C. User Annotation Schema
In this work, the term “Basic Execution Unit” (BEU)

refers to a code fragment for which MicroBlend decides
whether to use serverless function or VM. Specifically, the
code fragments delimited by programmer pragmas define a
unit of functionality and are potential candidates for serverless
execution, with related functions annotated by explicit pragmas
considered as Lambda functions by developers; otherwise, the
Compiler interprets the logic unit as a VM.

Our pragmas differentiate between single-function and
multi-function specifications, as shown in Table I. Specifically,
pragma BEU FaaS signifies that the function is suitable for
inclusion in a Lambda function. When developers specify the
pragma BEU FaaS [arrival rate > R], they provide domain
knowledge to the load balancer’s service assignment rule,
which MicroBlend should consider, and the cloud-ready code
generated by the Compiler should contain a load-balancing
rule that instructs requests above the user-defined threshold to



be routed to Lambda-based function invocations. Comparison
of R to the current arrival rate is carried out by MicroBlend’s
Resource Controller. We want to emphasize that the rule
mentioned above ([arrival rate > R]) is just an example and
MicroBlend can handle arbitrarily complex rules as well. On
the other hand, the BEU FaaS Combine L1 pragma directs
the Compiler to locate and combine functions with the “L1”
prefix, which offers more flexibility to microservice-based
systems. Combining many BEUs into a single execution unit
(FaaS) may be the most cost-effective approach, especially
if they form a “cascading workflow pattern” with high com-
munication latency, as it reduces communication overheads
and enables FaaS to complete within its allowed duration.
We further discuss using annotations for grouping functions
in service optimization in Sec. III-F.

D. Performance Model
As stated in Sec. II-B, it is crucial to determine appropriate

cloud service assignments for microservices, taking into ac-
count the dependencies and workflow patterns of microservice-
based applications, to minimize SLO violations and maximize
cost savings. To address these concerns, we have developed
a performance model for each microservice, which is used to
identify microservices suitable for FaaS.
Performance Model: Specifically, previous research has
shown that CPU utilization is not the most effective metric for
resource allocation [10], [16], [20]. As an alternative to CPU
utilization, MicroBlend employs “extended Berkeley Packet
Filtering” (eBPF), which is a safe and low-overhead tool for
gathering precise metrics from kernel-level events [18]. Specif-
ically, eBPF measures memory resource allocations, CPU
scheduling decisions, and networking stack packet events.
MicroBlend uses the eBPF Linux scheduler runq latency
(runq latency) metric to determine the performance of each
microservice. runq latency [19] is shown as a histogram
depicting the latencies experienced by threads. runq latency
has been extensively utilized for microservice observability for
various goals, including performance improvements, profiling
and tracing, and security [4], [13], [31]. Note that, runq
latency is preferred over CPU utilization because it shows
how application threads compete for CPU resources and the
requirement for additional (or fewer) CPU resources.
Efficiency of runq latency metric: We conducted an ex-
periment by deploying the Social Network application to
investigate the correlation between the runq latency metric
and the response time of different middle-tier microservices.
In this experiment, we started with an average request rate of
24 requests per second and then doubled it to observe how the
various microservices respond to changes.

The heatmap in Fig. 4b reveals that the middle-tier mi-
croservices, which interact with the back-end microservices,
have experienced an increased response time delay relative to
other microservices. It can be observed that as the number
of requests increases during the experiment, the high response
time spreads from middle-tier microservices that communicate
with back-end microservices to those situated near the front-

(a) Request Arrival Rate. (b) Response Time Increase.

(c) Runq Latency Increase. (d) CPU Utilization.

Fig. 4: Heatmap depicting value increase as the request arrival
rate doubles with different metrics. The middle-tier microser-
vices are arranged on the primary y-axis, with those closely
associated with back-end microservices at the top and those
closely associated with front-end microservice at the bottom.
end microservice. The runq latency depicted in Fig. 4c also
behaves similarly to the response time, gradually growing and
propagating from middle-tier microservices situated near the
back-end microservices and those near the front-end microser-
vice. For each microservice, a high runq latency is strongly
correlated with a high response time. However, as shown in
Fig. 4d, the CPU utilization of most of the microservices
increases as the number of requests increases. In contrast,
the response times of middle-tier microservices located near
the front-end microservice are not consistently affected by an
increase in CPU utilization. While all microservices utilize
a significant amount of the CPU, the response time of mi-
croservices situated near the front-end microservice remained
constant. This is due to the fact that CPU utilization metric
treats each microservice independently and does not account
for their interdependence. To ensure precise monitoring, we
have chosen the runq latency metric as the performance model
for each microservice based on our experimentation.
E. Service Assignment
Heuristic Service Assignment: To enable the identification
and conversion of suitable microservices into FaaS for use
during cluster autoscaling, we introduce a heuristic service
assignment algorithm. The proposed algorithm is designed
to allocate microservices to either IaaS or FaaS, taking
into account the microservice performance and dependencies.
The algorithm utilizes performance models to identify the
most suitable resource combinations based on key metrics,
such as runq latency, and a logistic regression-based learning
framework. Algorithm 1 outlines the steps for heuristic service
assignment. The algorithm takes a set of microservices and a
target SLO as input and outputs a set of microservices that
should be run on FaaS to meet the target SLO.



Algorithm 1: Heuristic Service Assignment
Input: M – Microservices;

S – SLO Target;
Output: Allocated microservices to IaaS or FaaS
P – Prediction Model;
while True do

L ;;
R 0;
for each microservice m 2M do

runq latency  runq sample histogram(m);
observedm  P95(runq latency);
L L [ {(m, observedm)};
R R+ observedm;

Sort L by observedm in descending order;
D  ;;
for each m 2 L do

D  D [ {m};
Subtract observedm from the R;
if R reaches below the predicted runq latency

based on P then
Break out of the loop;

Assign D to FaaS;

To collect performance data on microservices, the algorithm
obtains 60 instances of the runq latency metric histogram
over the previous 60 seconds. From each histogram, the 95th
percentile is selected, and the observed latency is obtained
by calculating the average of the 60 data points. The mi-
croservices are then sorted in descending order based on their
observed latency. The algorithm then employs a “Prediction
Model”, discussed in detail in Sec. III-E, which predicts the
anticipated runq latency for the current request rate, aiming to
achieve a response time that satisfies the SLO target, i.e., a
response time that is less than or equal to the specified SLO.

Based on the predicted runq latency, the algorithm initially
selects the microservice with the highest runq latency value
and subtracts the corresponding runq latency from the sum
of observed runq latency per microservice to determine if it
reaches the predicted runq latency value. If it does not, the
algorithm moves on to the next highest value and repeats the
process until the total runq latency value falls below the pre-
dicted runq latency. Once this value is reached, the algorithm
selects the set of microservices that were previously chosen
and assigns them to Lambda. Note that, if the predicted runq
latency is lower than the observed total runq latency, we do not
assign microservices to FaaS as, in that case, there would be no
benefit in reducing SLO violation (at the expense of additional
costs associated with Lambda execution), as described in Sec.
II-B. We want to emphasize that, by considering both the
performance of microservices as well as their dependencies by
utilizing runq latency, our heuristic service assignment enables
offloading appropriate microservices to Lambda and reduces
the CPU burden on VMs, and this eventually leads to better
performance and a drop in SLO violations.

Fig. 5: MicroBlend compiler pipeline.
Learning Framework: MicroBlend utilizes logistic regres-
sion [27] – which is a statistical method that models the
relationship between a binary outcome variable and predictor
variables – to create a prediction model for microservice
performance. Our model analyzes the relationship between the
outcome variable, which is the runq latency metric in this
case, and predictor variables, such as the median of request
rate and end-to-end response time from the previous minute.
MicroBlend collects these variables from the Profiler every
minute. The prediction model is then utilized in the process
of the service assignment. During scaling-out resources, the
prediction model anticipates the total runq latency required to
meet SLO target based on input of the median value of request
rate observed in the previous minute. Based on the output, the
service assignment assigns proper microservices to Lambda.

F. Service Optimization (with User Annotations)

As mentioned previously in Sec. II-B, properly scheduling
and combining microservices into a single Lambda can be
an effective strategy to enhance performance and decrease
SLO violations. To this end, we present a service optimization
approach that uses user annotation to create a more optimal
service assignment for microservices-based cloud applications.
Specifically, as described in Sec. III-C, developers leverage
the “BEU FaaS Combine L1” pragma annotation to link
multiple microservices that need to be deployed and executed
together, thereby (i) reducing the number of network calls
required between microservices, (ii) improving performance,
and (iii) minimizing SLO violations. Note that, this approach
assumes tenants have insights into the application structure
and dependencies between different microservices.

The service optimization approach performs service assign-
ments based on user annotations instead of using a heuristic
service selection algorithm. During autoscaling, the pragma
is detected by the Compiler and forwarded to the Resource
Controller, which assigns FaaS to the user-annotated mi-
croservices. If there are annotations for function grouping,
the service selection groups the microservices with the same
prefix (such as “L1”) into a single unit. This ensures that the
user’s preferred placements of microservices are carried out
without the need of any manual code rewriting and improves
performance utilization. We quantify the effectiveness of this
service optimization approach in Sec. V-B.

IV. MICROBLEND IMPLEMENTATION

We now elaborate on the implementation details of different
components MicroBlend, on AWS.
Compiler: The MicroBlend system utilizes the Python
AST [45] (Abstract Syntax Tree) package for automated code
transformation, which is a commonly used data structure in
compilers to describe the structure of computer code. The



Workload # of M Response
time (ms)

Requests
per vCPU

Social Network 36 31 16
Media Reservation 38 34 18
Online Boutique 11 16 24

TABLE II: Benchmarks. M in the second column means
microservices. The third column shows the average response
time, and the last column represents the maximum number of
requests that are running in parallel per vCPU for VM.
structure provides a representation of the program that can
be analyzed and altered in various ways. The MicroBlend’s
implementation pipeline, which is comprised of 2500 lines
of Python code, is illustrated in Fig. 5. If the pragma in-
cludes parameters/metrics, it sends them to the Resource
Controller and starts building the required Lambda code by
examining the function name, parameters, libraries to pack,
and global variables. MicroBlend automatically adds required
library modules for the function’s input and output based
on the dependencies, such as function calls or data flow. It
transforms function calls into Lambda-invoked function calls
utilizing data acquired from the outcomes of dependencies.
The Lambda code is then generated with the help of an AWS
Command Line Interface [7] and a deployment zip file, which
is stored in external storage (S3) and contains code for Lambda
function as well as library modules and global variables.
Profiler: To gather performance and resource usage measure-
ments for microservices, an advanced open-source monitoring
tool, Prometheus [44], is employed. Prometheus can collect
data from multiple sources, such as cAdvisor and custom eBPF
Exporter. The cAdvisor [15] tool is used to analyze container
resource utilization, such as CPU/Memory usage and network
bandwidth, on each server. The custom eBPF exporter, using
iovisor’s bcc tools [12], is designed to collect runq latency
histograms per container and export them to Prometheus. The
Prometheus tool includes a time-series database to store metric
values, and the Resource Controller in MicroBlend uses the
query language included in the system to extract these values
from the database.
Resource Controller: As discussed in detail in Sec. III-E, the
heuristic service assignment process uses the runq latencies
of microservices, which are obtained through a custom eBPF
exporter and stored in Prometheus. Specifically, logistic re-
gression is employed to predict the anticipated runq latency for
the observed request rate, such that the resulting value would
correspond to a response time that meets the SLO target. The
scikit-learn Python ML library [47] is used to implement the
logistic regression model.

V. EVALUATION
This section provides a description of our evaluation setup

and presents our results, which highlight the advantages of
using MicroBlend, including the effects of cloud service
assignment and service optimization, as well as the overheads
associated with employing MicroBlend.

A. Experimental Setup
Workload Generator: To evaluate the benefits of MicroB-
lend, an accurate event-driven Workload Generator was cre-

ated. This Workload Generator uses the input provided by the
Request Generator (described in Sec. V-A) to generate request
arrival times based on actual traces from the real world. Three
microservice-based benchmarks were used as our workloads
(Table II): (1) Social Network benchmark from DeathStar-
Bench [22] where users read, upload posts, and follow others’
posts; we use the workload of uploading new posts using 16
out of 36 microservices; (2) Media Reservation benchmark
from DeathStarBench, which consists of 38 microservices
and enables users to browse movie information, review (our
experimental workload of 15 microservices), rate, and stream
movies; and (3) Online Boutique from Google Cloud Plat-
form [41], comprising of 11 microservices that allow users to
add items to their online shopping cart and make purchases
(our experiment workload of 6 microservices). For the current
Python-based compilers, we modify the implementation of the
involved microservices to Python-based microservices. 2

Request Generator: We use two different traces, WITS [50]
and Wikipedia [49] (WIKI), as input for the Request Genera-
tor. The WIKI trace is a constantly updated record of how users
engage with the Wikipedia website. It exhibits irregular bursts
of activity over short periods of time, fluctuations in activity
levels throughout the day, and a rate of user interactions that
follows a Poisson distribution. The WITS trace, on the other
hand, has more spikes than the WIKI trace. We scale both
traces down to an average of 130 requests per second. To
manage this rate, we determine the number of initial servers
based on the number of requests each vCPU can process
simultaneously per workload, aiming for a response time target
of 1000ms (as shown in Table II). We use the first 30 minutes
of both WITS and WIKI traces, which include a total of
216,377 and 215,327 requests, respectively.
Cloud configuration: To conduct a fair comparison, we
adjust the memory configuration of Lambda to ensure an
iso-performance comparison between VM-based and Lambda-
based deployments of microservices. As microservices archi-
tecture treats a single application as a collection of small
and short-lived services, the memory configuration for all
microservices is set to 1344 MB. This value is chosen based on
the experiments’ characteristics, where the average response
time for all microservices is approximately 17 ms.

To serve as a front-end for handling and distributing millions
of concurrent requests, an Amazon EC2 C5.2xlarge (8 vCPUs,
16 GB RAM) instance is used, equipped with an Nginx
load balancer [40]. We utilize the “Least Connection” load
balancing algorithm, which assigns requests to the server
with the fewest active connections. CloudWatch API is used
regularly by the front-end to obtain metrics on the load
balancer, CPU/memory usage of active servers, and AWS
Lambda’s billed duration. The pricing models for both VM
and Lambda cover the front-end’s running time as well as the
number of requests made to the Amazon CloudWatch API.

To handle requests on the server side, we utilize AWS

2The current version of our implementation and workloads for evaluation
are shared in https://github.com/mjaysonnn/MicroBlend.
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Fig. 6: SLO (1000ms) violations and cost reductions for the
Social Network application under different scaling policies.
EC2 C5.2xlarge instances that are equipped with a library for
workload execution and FastAPI [21], a web framework that
enables asynchronous programming and inter-communication.
To ensure sufficient storage for both the microservices codes
and MongoDB data, we utilized an EBS (elastic block store)
with a size of 20GB, which was taken into account in the
cost model. To avoid incurring high data transfer costs, all
our experiments are conducted within the same AWS region.
We use five replicas for each microservice in our experiments.
Cost Model: We determine the cost of virtual machines (VMs)
by adding up the multiplication of the duration of the workload
and the per-second cost of each VM. The cost of Lambda
functions is determined based on four factors: the number of
invocations, the amount of RAM allocated, the execution time,
and the cost of 1 GB-s.
Baselines: For our experiments, we establish a maximum SLO
target of 1000ms. We assess the performance of MicroBlend
by analyzing its response time (as per SLO specifications)
and cost in different scenarios of resource acquisition. We
compare the results of MicroBlend in the following three
scenarios: (i) Deploying entirely on Lambda (All-Lambda);
(ii) Using virtual machines with auto-scaling (VM); and (iii)
Using virtual machines with conservative over-provisioning
(VM-overprovision), i.e., with 1.5 times the required number
of resources. The VM over-provisioning method is commonly
used in auto-scaling to prevent SLO violations. To minimize
the impact of anomalous cloud noise, our workloads are
executed five times.

B. Benefits of MicroBlend

Service Assignment: To evaluate the effectiveness of MicroB-
lend, we compared its SLO violation count and normalized
cost against different scaling policies, as shown in Fig. 6.
Specifically, we considered the traditional VM scaling policy,
the over-provisioning policy, as stated in subsection V-A, and
the optimal solution obtained through an exhaustive search,
which consisted of an optimal set of combinations offloaded
to Lambda. We evaluated the performance of each approach
using a set of workloads and measured the SLO violations
and normalized costs for each approach. Due to page-count
limitation, we present only the figure resulting from the
Social Network application. The x-axis on the figure illustrates
various methods for obtaining resources. The primary y-axis
indicates the percentage of SLO violations (with response time

set at 1000 ms), whereas the secondary y-axis displays the
cost in monetary terms normalized to the All-Lambda resource
procurement scheme, which only uses Lambda.

Our findings, presented in Fig. 6a, clearly demonstrate that
MicroBlend outperforms both the VM and over-provisioning
policies in terms of SLO violation and cost reduction for the
WITS. When compared to the VM scaling policy, MicroBlend
was able to reduce the SLO violations by up to 7% and
achieve up to 2% cost reduction. Also, when compared to the
over-provisioning policy, MicroBlend was able to reduce the
SLO violations by up to 6% while achieving up to 10% cost
reduction. VM-overprovisioning policy is mainly focused on
acquiring more resources, which results in increased costs. In
our experiments with the WITS, out of 216377 total requests,
MicroBlend significantly reduced the number of requests that
violated the SLO, achieving up to 2264 fewer violations
compared to the VM scaling policy and up to 1823 fewer
violations compared to the over-provisioning policy.

Fig. 6b presents the evaluation of the WIKI. It can be
observed that the MicroBlend approach surpassed the VM
scaling policy in terms of both SLO and cost by a small
margin of only 1% and 2%, respectively. The total number of
requests for the WIKI was 215.327 , and MicroBlend achieved
a reduction of up to 194 SLO violations compared to the
VM scaling policy. However, it is important to note that this
reduction in cost and SLO violations may have a negative
impact on the experiment’s duration due to the higher per-
unit price of Lambda in comparison to VMs and fewer peak
requests of WIKI, as compared to WITS.

To evaluate the effectiveness of the MicroBlend, we also
compared its performance against an optimal solution obtained
through exhaustive research, as shown in Fig. 6. The experi-
mental data collected indicates that the MicroBlend method
achieves around 87% of the performance of the optimal
solution for the WITS and up to 94% for the WIKI in
terms of SLO violations. The difference between MicroBlend
and the optimal solution is due to the overheads involved
in finding the best combination of microservices through the
service assignment process. We further discuss the overheads
of MicroBlend in Sec. V-C. However, despite this difference,
MicroBlend still significantly outperforms other traditional
scaling policies in terms of both SLO violation and cost
reduction.

We assess the effectiveness of MicroBlend’s service al-
location by conducting performance tests on two additional
workloads, Media Reservation and Google Online Boutique,
on WITS. MicroBlend results in up to 5% reduction in
SLO violations and up to 8% cost savings for the Media
Reservation workload. For the Google Online Boutique work-
load, MicroBlend achieves a reduction of up to 9% in SLO
violations and cost savings of up to 11%. Our approach with
the Google Online Boutique workload was able to achieve
greater improvements in SLO and cost than the other two
workloads. This is because, in contrast to the other two
workloads, the Google Online Boutique workload uses a se-
quential workflow consisting of six microservices without any
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Fig. 7: Comparing SLO violations between two user anno-
tation types: (1) separating Lambdas for each microservice
and (2) grouping microservices into one Lambda for three
workloads.
involvement of database microservices. In this case, offloading
the microservices to Lambda results in a significant reduction
of the CPU burden. Although assigning microservices to
Lambda on the other two workloads reduces the CPU burden,
running microservices on Lambda still invokes MongoDB
microservices, which consumes resources in VMs. The higher
number of MongoDB microservices and microservices that
interact with MongoDB in the Movie Reservation workload,
when compared to the Social Network workload, may cause a
more burden on the CPU, even when some microservices are
offloaded to FaaS. Consequently, there is a lower decrease in
the violation of the service level objective (SLO) by 1.7% for
the Movie Reservation workload, as opposed to a reduction of
3.24% for the Social Network workload. These findings sug-
gest that the effectiveness of MicroBlend may vary depending
on the workflow of microservice-based applications, as well
as the involvement of database microservices.
Service Optimization: In order to exhibit the benefits
of utilizing user annotation with MicroBlend for complex
microservice-based applications, we conducted an experiment
aimed at exploring the effect of grouping microservices that
form cascading workflows through user annotation. We iden-
tified particular combinations of microservices for FaaS via
service selection and added user annotations to microservices
exhibiting cascading patterns. Specifically, two types of user
annotations were employed in this experiment for the identi-
fied microservices combinations: one to assign microservices
as separate Lambda functions, and the other to group them into
a single Lambda. For instance, in the Social Network shown in
Fig. 1, we grouped microservices 8 and 8A. Similarly, we an-
notated two microservices, MovieId and Rating, for grouping
microservices in the Media Reservation. Lastly, we grouped
all microservices in the Online Boutique by annotating them
since they all form sequential invocations. MicroBlend then
offloads the chosen microservice combinations and assigns
them to Lambda during autoscaling.

Fig. 7 provides a comparison of SLO violation and nor-
malized cost for the microservice combinations we chose,
based on WITS and WIKI, with two types of user annotations
– one for having separate Lambdas for microservices and
the other for grouping microservices into a single Lambda.
The x-axis represents the different workloads used, while

(a) Relationship between microser-
vice code size and MicroBlend’s
blending overhead in seconds.

(b) Cost model breakup of MicroB-
lend and optimal solution normal-
ized to VM-overprovisioning.

Fig. 8: Benefit breakdown of MicroBlend.

Workload WITS WIKI
Social Network 72% 69%

Media Reservation 68% 67%
Online Boutique 81% 76%

TABLE III: Percentage of response time below SLO during
autoscaling.
the y-axis shows the SLO violations. The graph illustrates
that, using user annotation yields better results, with SLO
reductions of up to 4% for the three workloads, respectively.
This improvement is due to MicroBlend’s ability to detect
user annotations in microservice candidates that have inter-
service communication latency and group them into one in
an automated fashion, resulting in more reduction of SLO
violations and cost. MicroBlend will provide a more effective
automated blended resource plan by utilizing user annotation,
particularly in scenarios with more complex microservices.

C. Breakdown of Benefits
Overheads of MicroBlend: The use of MicroBlend incurs
overhead in both compilation and data transfer because it
involves compiling and generating Lambda functions when
blending resources are utilized. This is achieved by uploading
the deployment zip file to an S3 storage service and trans-
ferring it to the Lambda computing service. It is critical to
minimize the overhead of blending because the allocation of
blending resources must be done promptly during autoscaling,
which usually takes between 60 to 100 seconds [24], to reduce
SLO violations. Otherwise, SLO violations can occur even
before the new VMs are launched and become operational,
similar to the issue with VM-scaling policies. To evaluate the
overhead of MicroBlend’s blending resources during autoscal-
ing, we conducted experiments that gradually increased the
code size (up to 128 MB) and the number of microservices
(up to 8), to determine the overhead of compilation and data
transfer for each combination of microservices. Note that
Lambda functions deployed from S3 have a package size limit
of around 250MB.

Fig. 8a illustrates how the blending overhead is related
to the code size of each microservice, with the number of
microservices set to 8. In this plot, the x-axis represents
the microservice code size, ranging from 1MB to 128MB
(exponentially), while the y-axis represents the overhead of
compilation and data transfer in seconds. As expected, the



blending overhead increases as the code size increases since
a larger code requires more processing time for blending.
The minimum time was approximately 5 seconds, while the
maximum time was around 32 seconds, corresponding to the
largest code size of 230 MB. The graph indicates that the
overhead of compilation and data transfer increases with code
size and the number of microservices, which may limit the use
of blending in larger-scale microservice-based applications.
Nevertheless, given the small size of microservices (all the
microservices’ code sizes were less than 1MB), blending
resources can be used effectively to reduce the overall cost
and SLO violations during autoscaling.
Cost Model Breakdown: Fig. 8b plots the cost model
breakdown for MicroBlend and the optimal solution, with
the total cost normalized to the cost of executing the VM-
overprovisioning policy. It can be observed from this figure
that, compared to the VM-overprovision policy, MicroBlend
reduces the cost of VMs by 17% and 11% for WITS and
WIKI, respectively. However, when compared to the optimal
solution, MicroBlend incurs higher costs for both VM and
Lambda. This is because MicroBlend incurs an overhead due
to mispredicting suitable microservice candidates for FaaS to
reach the SLO target, which results in additional unnecessary
scaling-out decisions and increased cost models for VM and
Lambda. In contrast, the optimal solution can immediately use
Lambda to reduce the queuing of queries to existing VMs,
leading to an earlier scale-in of the unused VMs spawned
during the scale-out period, resulting in higher cost reductions.
Overhead of Learning Framework: To gain a deeper un-
derstanding of the difference between MicroBlend’s service
assignment algorithm and the optimal solution regarding cost
and SLO violation reduction, we performed an evaluation of
the learning framework prediction model. We calculated the
entire request count handled by our blended resources for each
workload and computed the fraction of requests that met the
SLO target of 1000ms (i.e., a response time that is less than
or equal to 1000ms). The purpose of this evaluation is to
determine whether the service assignment algorithm was able
to effectively recommend suitable microservices for Lambda,
based on the predicted runq latency metric from our learning
framework, in order to meet the SLO target.

Table III shows the percentage of requests that were able to
meet the SLO target of 1000ms during autoscaling for each
workload under WITS and WIKI. We observed that the service
assignment algorithm was able to reduce SLO violations by
up to 81% and 76% for WITS and WIKI, respectively. As pre-
viously stated, the Google Online Boutique workload utilizes
a sequential workflow that excludes database microservices.
Deploying microservices to Lambda leads to a considerable
decrease in CPU load, reducing response times and exhibiting
superior predictive capabilities compared to other workloads.
It is worth noting that the service assignment algorithm was
not able to significantly reduce the SLO violations in all
scenarios compared to the optimal solution. This suggests there
may be potential for further improvement in the algorithm or
other system aspects to further decrease the number of SLO

violations during autoscaling, which we discuss in Sec. VII.
Nonetheless, the blending process decreases the queuing of
queries into current VMs, resulting in fewer SLO violations
during autoscaling than the traditional VM policies.

VI. RELATED WORK
The challenges of microservices’ resource management also

have recently begun to be studied [23], [36], [51]. Sage [23]
utilizes a machine learning-driven, scalable root cause anal-
ysis for interactive cloud microservices. Inagaki et al. [28]
proposed detecting the bottleneck of microservice-based ap-
plications by profiling the number and status of working
threads as well as the dependency between microservices
through network connections. Bajaj et al. [11] converts mono-
lithic applications to microservices and serverless services.
SHOWAR [10] offers an effective resource allocation strategy
for microservice clusters based on past resource utilization and
kernel-level metrics. In comparison to previous cloud schedul-
ing studies, MicroBlend focuses on the resource challenges of
microservice cluster-autoscaling.

Recent proposals aim to improve the cost- and
latency-efficiency of serverless operations [17], [33]–[35].
WiseFuse [35] pinpoints the main serverless performance
bottlenecks and suggests merging functions to lessen
communication and computation skew. However, combining
functions involves manual effort, identifying function names
and calls, and adding remote storage and execution packages.
MicroBlend provides a compiler-based automated creation of
blending services, including grouping Lambdas as one.

VII. CONCLUDING REMARKS AND FUTURE WORK
We propose MicroBlend, a platform that integrates IaaS

and FaaS for microservice-based applications in the cloud.
MicroBlend combines the two service offerings via a perfor-
mance model and produces a service allocation plan that meets
the user-specified latency service-level objectives (SLO) while
keeping the cost at minimum. Our comprehensive experimen-
tal evaluation of three microservice-based applications reveals
that MicroBlend reduces SLO violations by up to 9% while
saving up to 11% on financial costs, compared to traditional
cluster resource procurement approaches.

We plan to explore the potential benefits of other machine
learning algorithms for service selection in microservices-
based architecture. Specifically, we plan to employ a “black-
box” approach, such as a single deep (large) neural network
(DNN), in identifying the suitable microservices for FaaS;
DNNs [32] are particularly useful in scenarios where the
number of input features is large and complex, such as in
microservices architectures with numerous dependencies. We
believe they can extract and model high-level features and non-
linear correlations between inputs, making them well-suited
for microservice assignments.
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