
When Fair Classification Meets Noisy Protected Attributes
Avijit Ghosh

Northeastern University
Boston, USA

ghosh.a@northeastern.edu

Pablo Kvitca
Northeastern University

Boston, USA
kvitca.p@northeastern.edu

Christo Wilson
Northeastern University

Boston, USA
cbw@ccs.neu.edu

ABSTRACT
The operationalization of algorithmic fairness comes with several
practical challenges, not the least of which is the availability or
reliability of protected attributes in datasets. In real-world contexts,
practical and legal impediments may prevent the collection and
use of demographic data, making it difficult to ensure algorithmic
fairness. While initial fairness algorithms did not consider these
limitations, recent proposals aim to achieve algorithmic fairness in
classification by incorporating noisiness in protected attributes or
not using protected attributes at all.

To the best of our knowledge, this is the first head-to-head study
of fair classification algorithms to compare attribute-reliant, noise-
tolerant and attribute-unaware algorithms along the dual axes of
predictivity and fairness. We evaluated these algorithms via case
studies on four real-world datasets and synthetic perturbations.
Our study reveals that attribute-unaware and noise-tolerant fair
classifiers can potentially achieve similar level of performance as
attribute-reliant algorithms, even when protected attributes are
noisy. However, implementing them in practice requires careful
nuance. Our study provides insights into the practical implications
of using fair classification algorithms in scenarios where protected
attributes are noisy or partially available.

CCS CONCEPTS
• Social and professional topics → User characteristics;
• General and reference → Surveys and overviews; •
Computing methodologies → Machine learning algorithms.
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1 INTRODUCTION
In October 2022, the White House released the Blueprint for an
AI Bill of Rights [56]. This document, like other statements of AI
principles [21, 30, 47, 49, 57], calls for protections against unfair
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discrimination (colloquially, fairness) to be deeply integrated into
all AI systems. Researchers and journalists have led the way in
this area, both in terms of identifying unfairness in real world
systems [6, 11, 14, 44], and in the development of machine learning
(ML) classifiers that jointly optimize for predictive performance
and fairness [18, 26, 34, 37] (for a variety of different definitions of
fairness [4, 27, 58, 63]).

Despite the widespread acknowledgment that fairness is a key
component of trustworthy AI, formidable challenges remain to the
adoption of fair classifiers in real world scenarios—chief among
them being questions about demographic data itself. Many classical
fair classifiers assume that protected attributes are available at
training time and/or testing time [18] and that this data is accurate.
However, demographic data may be noisy for a variety of reasons,
including imprecision in human-generated labels [15], reliance on
imperfect demographic-inference algorithms to generate protected
attributes [23], or the presence of an adversary that is intentionally
poisoning demographic data [24]. To attempt to deal with these
issues, researchers have proposed noise-tolerant fair classifiers that
aim to achieve distributional fairness by incorporating the error
rate of demographic attributes in the fair classifier optimization
process itself [13, 48, 60].

In other instances demographic data may not be available at
all, which violates the assumptions of both classical and noise-
tolerant fair classifiers. This may occur when demographic data is
unobtainable (e.g., laws or social norms impede collection [5, 10]),
prohibitively expensive to generate (e.g., when large datasets
are scraped from the web [16, 35, 41]), or when laws disallow
the use of protected attributes to train classifiers (e.g., direct
discrimination [62]). For cases such as these, researchers have
proposed demographic-unaware fair classifiers that use the latent
representations in the feature space of the training data to reduce
gaps in classification errors between protected groups, either via
assigning higher weights to groups of training examples that are
misclassified [28], or by training an auxiliary adversarial model to
computationally identify regions of misclassification [39].

Motivated by this explosion of fundamentally different fair
classifiers, we present an empirical, head-to-head evaluation of
the performance of 14 classifiers in this study, spread across four
classes: two unconstrained classifiers, seven classical fair classifiers,
three noise-tolerant fair classifiers, and two demographic-unaware
classifiers. Drawing on the methodological approach used by
Friedler et al. [22] in their comparative study of classical fair
classifiers, we evaluate the accuracy, stability, and fairness
guarantees (defined as the equal odds difference) of these 14
classifiers across four datasets as we vary noise in the protected
attribute (sex). To help explain the performance differences that we
observe, we calculate and compare the feature importance vectors
for our various trained classifiers. This methodological approach
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enables us to compare the performance of these 14 algorithms
under controlled, naturalistic circumstances in an apples-to-apples
manner.

Based on our head-to-head evaluation we make the following
key observations:

• Two classical fair classifiers, one noise-tolerant fair classifier,
and one demographic-unaware fair classifier performed
consistently well across all metrics on our experiments.

• The best classifier for each case study showed some
variability, confirming that the choice of dataset is an
important factor when selecting a model.

• One demographic-unaware fair classifier was able to achieve
equal odds for males and females under a variety of
ecological conditions, confirming that demographics are
not always necessary at training or testing time to achieve
fairness.

We release our source code and data1 so that others can replicate
and expand upon our results.

We argue that large-scale, head-to-head evaluations such as
the one we conduct in this study are critical for researchers
and ML practitioners. Our results act as a checkpoint, informing
the community about the relative performance characteristics
of classifiers within and between classes. For researchers, this
can highlight gaps where novel algorithms are still needed (e.g.,
noise-tolerant and demographic-unaware classifiers, based on our
findings) and provide a framework for rigorously evaluating them.
For practitioners, our results highlight the importance of thoroughly
evaluating many classifiers from many classes before adopting
one in practice, and we provide a roadmap for choosing the
best classifiers for a given real-world scenario, depending on the
availability and quality of demographic data.

Our study proceeds as follows: in § 2 we present a brief overview
of the history of fair models and head-to-head performance
evaluation. Next, in § 3, we introduce the 14 classifiers and the
metrics we use to evaluate them for predictive performance and
fairness. In § 4 we present our experimental approach, including
the datasets we use for our four case studies. In § 5 we present the
results of our experiments and we discuss our findings in § 6.

2 RELATED WORK
We discuss different classes of fair classifiers, their known
shortcomings, and how they have been evaluated in the past.

2.1 Fair Classifiers
Dwork et al. [18] were one of the first to operationalize the
idea of fairness in machine learning classifiers, through their key
observation that awareness of demographics is crucial for building
models that rectify unfair discrimination and historical inequity.
Their work takes the idea of awareness literally, by incorporating
protected attributes directly into the model and jointly optimizing
for accuracy and fairness. Many subsequent works have built on
this foundation by developing versions of classical ML classifiers
that incorporate fairness constraints (e.g., decision trees, random
forests, SVMs, boosting, etc. [46]).
1The code and data for replicating this paper can be found at https://github.com/evijit/
Awareness_vs_Unawareness

Collectively, we refer to this class of algorithms as classical fair
classifiers. They are now widely available to practitioners [9, 42, 52]
and have been adopted into real-world systems [19].

While classical fair classifiers are an important advance over
their unconstrained predecessors, they rely on a strong assumption
that data about protected attributes is accurate. Unfortunately, this
may not be true in practice. For example, in contexts like finance
and employment candidate screening, demographic data may not
be available due to legal constraints or social norms [10, 62], yet
the need to fairly classify people remains paramount. To bridge
this gap, practitioners may infer peoples’ protected attributes using
human labelers [8] or algorithms that take names, locations, photos,
etc. as input [1]. However, work by Ghosh et al. [23] demonstrates
that these inference approaches produce noisy demographic data,
and that this noise obviates the fairness guarantees provided by
fair models.

With these limitations in mind, researchers have begun
developing what we refer to as noise-tolerant fair classifiers that, as
the name suggests, jointly optimize for accuracy and fairness in the
presence of uncertainty in the protected attribute data. Approaches
include robust optimization that adjusts for the presence of noise
in the fairness constraint [60], adjusting the “fairness tolerance”
value for binary protected groups [40], using noisy attributes to
post-process the outputs for fairness instead of the true attributes
under certain conditional independence assumptions [7], estimating
de-noised constraints that allow for near optimal fairness [13], or a
combination of approaches [48].

Noise-tolerant fair classifiers, like classical fair classifiers, still
rely on the assumption that protected attributes are available
at training time. As we discuss in § 1, however, there are many
real-world contexts when this assumption may be violated. The
strongest such impediment is legal, i.e., any inclusion of protected
attributes in the classifier would be considered illegal direct
discrimination.

A different approach for achieving fairness through awareness
that is amenable to these strong constraints is embodied by what we
refer to as demographic-unaware fair classifiers. These algorithms
do not take protected attributes as input, but they attempt to
achieve demographic fairness anyway by relying on the latent
representations of the training data [28, 39]. Thus, this approach
to classification still incorporates a general awareness of unfair
discrimination and historical inequity without being directly aware
of demographics.

While demographic-unaware fair classifiers are an attractive
solution in contexts where protected attributes are unavailable,
practical questions about the efficacy of these algorithms remain.
First, because these techniques are unsupervised, it is unclear
what groups are identified for fairness optimization. Under what
circumstances are demographic-unaware fair classifiers able to
achieve fairness for social groups that have been historically
marginalized or are legally protected? Conversely, are the groups
constructed by demographic-unaware fair classifiers arbitrary and
thus divorced from salient real-world sociohistorical context?
Second, assuming that demographic-unaware fair classifiers do
identify and act on meaningful groups of individuals, how does
their performance (in terms of predictions and fairness) compare to
classical and noise-tolerant fair classifiers? In this study, our goal
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is to begin answering these questions about relative performance
across all four classes of fair classifiers.

2.2 Head-to-Head Evaluation
It is standard practice for ML researchers to compare the
performance of their novel algorithms against competitors.
However, these comparisons are rarely comprehensive, i.e., they
focus on comparisons with a narrow set of comparable algorithms
to demonstrate advances over the state-of-the-art. While these
evaluations are crucial for assessing the benefits of new algorithms,
they do not paint a complete picture of performance across a
variety of different algorithms, spanning both time and fundamental
approaches.

Benchmark studies address this gap by focusing on the
evaluation of a large set of models under expansive and carefully
controlled conditions [22, 29]. These studies provide important
context for the ML field, e.g., by identifying models that do not
work well in practice, models that have equivalent performance
characteristics under a wide range of circumstances, and areas
where new models may be needed. To the best of our knowledge,
existing benchmark studies focus solely on classical fair classifiers,
which motivates us to update their results. Thus, in this study
we adopt the methodological approach for evaluation developed
by Friedler et al. [22] and build upon their work by evaluating
four different classes of classifiers (both fairness constrained and
unconstrained).

3 ALGORITHMS AND METRICS
In this section, we introduce the 14 classifiers that we evaluated in
this study and the metrics we used to evaluate them.

3.1 Classifiers
We group the classifiers that we evaluated in this study into
four classes: (1) unconstrained classifiers that solely optimize for
accuracy; (2) classical fair classifiers that require access to protected
attributes at training (and sometimes testing) time, and assume that
this data are accurate; (3) noise-tolerant fair classifiers that also
require access to protected attributes but account for uncertainty
in the data; and (4) demographic-unaware fair classifiers that
jointly optimize for accuracy and fairness but without access to any
protected attribute data. The set of classifiers we have selected is
not exhaustive. Instead, we aim to include representative classifiers
from the various types of approaches that exist within each class.
We discuss the classifiers from each class that we selected for our
study below, with further details on related approaches in each
subsection.

3.1.1 Unconstrained Classifiers. We chose two classifiers that do
not have any fairness constraints, i.e., they only aim to maximize
predictive accuracy.

• Logistic Regression (LR) is the simplest classifier we
evaluate. While LR is demographic-aware because it takes
all features (including protected attributes) as model inputs
at both train and test time, it is not designed to achieve any
fairness criteria.

• Random Forest (RF) is an ensemble method for
classification built out of decision trees. Like LR, we train RF
classifiers on all input features including protected attributes.

3.1.2 Classical Fair Classifiers. We chose seven classifiers from
the literature that take protected attributes as input and attempt to
achieve demographic fairness. These classifiers vary with respect to
how they implement fairness, i.e., by pre-processing data, in-process
during model training, or by post-processing the trained model. In
particular, there exist many techniques for fairness optimization in
this class, such as: reweighting of samples via group sizes [12, 20, 32]
or via mutual independence of protected and unprotected features
in the latent representations [64, 65], adding fairness constraints
during the learning process [2, 3, 34, 63], or by changing the output
labels to match some fairness criterion [33, 50]. The seven classifiers
we choose below are representative of these different approaches.

• Sample Reweighting (SREW) is a pre-processing
technique that takes each (group, label) combination in
the training data and assigns rebalanced weights to them.
The goal of this procedure is to remove imbalances in the
training data, with the ultimate aim of ensuring fairness
before the classifier is trained [32].

• Learned Fair Representation (LFR) is a pre-processing
technique that converts the input features into a latent
encoding that is designed to represent the training data well
while simultaneously hiding protected attribute information
from the classifier [64].

• Adversarial Debiasing (ADDEB) is an in-process
technique that trains a classifier to maximize accuracy while
simultaneously reducing an adversarial network’s ability to
determine the protected attributes from the predictions [65].

• Exponentiated Gradient Reduction (EGR) is an in-
process technique that reduces fair classification to a set of
cost-sensitive classification problems, essentially treating
the main classifier itself as a black box and forcing the
predictions to be the most accurate under a given fairness
constraint [2]. In this case, the constraint is solved as a saddle
point problem using the exponentiated gradient algorithm.

• Grid Search Reduction (GSR) uses the same set of cost-
sensitive classification problems approach as EGR, except
in this case the constraints are solved using the grid search
algorithm [2, 3].

• Calibrated Equalized Odds (CALEQ) is a post-processing
technique that optimizes the calibrated classifier score output
to find the probabilities that it uses to change the output
labels, with an equalized odds objective [50].

• Reject Option Classifier (ROC) is a post-processing
technique that swaps favorable and unfavorable outcomes
for privileged and unprivileged groups around the decision
boundaries with the highest uncertainty [33].

Note that the CALEQ and ROC algorithms have access to protected
attributes at both train and test time, while the other classifiers
only have access to protected attributes at training time.

3.1.3 Noise-tolerant Fair Classifiers. We chose three classifiers
from the literature that take protected attributes as input and
attempt to achieve demographic fairness even in the presence of
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noise. Other than the three classifiers that we chose, we are aware
of only one other approach: by Celis et al. [13], who suggests using
de-noised constraints to achieve near-optimal fairness.2

• Modified Distributionally Robust Optimization
(MDRO) by Wang et al. [60] is an extension of the
Distributionally Robust Optimization (DRO) algorithm
[28] that adds a maximum total variation distance in the
DRO procedure. By assuming a noise model for the protected
attributes, it aims to provide tighter bounds for DRO.

• Soft Group Assignments (SOFT), also by Wang et al. [60],
is a theoretically robust approach that first performs “soft”
group assignments and then performs classification, with
the idea being that if an algorithm is fair in terms of those
robust criteria for noisy groups, then they must also be fair
for true protected groups [31].

• Private Learning (PRIV) is an approach by Mozannar et al.
[48] that uses differential privacy techniques to learn a fair
classifier while having partial access to protected attributes.
The approach requires two steps. The first step is to obtain
locally private versions of the protected attributes (like Lamy
et al. [40]). Second, following Awasthi et al. [7], PRIV tries
to create a fair classifier based on the private attributes. For
this study, we select the privacy level hyperparameter to be
a medium value (zero).

3.1.4 Demographic-unaware Fair Classifiers. We chose two
classifiers from the literature that attempt to achieve fairness
without taking protected attributes as input.

• Adversarially Reweighted Learning (ARL) harnesses
non-protected attributes and labels by utilizing the
computational separability of these training instances to
divide them into subgroups, and then uses an adversarial
reweighting approach on the subgroups to improve
classification fairness [39].

• Distributionally Robust Optimization (DRO) is an
algorithm that attempts to minimize the worst case risk of
all groups that are close to the empirical distribution [28]. In
the spirit of Rawlsian distributive justice, the algorithm tries
to control the risk to minority groups while being oblivious
to their identities.

These two classifiers operate under similar principles: they
both try to reduce the gap in errors between protected groups
by reducing the classification errors between latent groups in the
training set. They do however have one difference: while DRO just
increases the weights of the training examples that have higher
errors, ARL trains an auxillary adversarial network to identify the
regions in the latent input space that lead to higher errors and tries
to equalize them, a phenomenon Lahoti et al. [39] call computational
identifiability.

3.2 Evaluation Metrics
To compare the above 14 classifiers head-to-head, we studied their
predictive power and their ability to achieve a fairness condition.

2Celis et al. [13]’s source code only supported Statistical Parity and False Discovery
constraints, not EOD, which is why we omitted their classifier from our analysis.

We also measured the stability of these quantities when noise in the
protected attributes was and was not present (described in § 4.2).

To assess predictive performance we computed accuracy, defined
as:

Accuracy= number of correct classifications
test dataset size . (1)

Accuracy is continuous between zero and one with the ideal value
being one, which indicates a perfectly predictive classifier.

Many measures of fairness exist in the literature [46]. For the
purposes of this study, however, we needed to choose a metric
that is supported by all the 14 classifiers so that our comparison
is apples-to-apples. The classical and noise-tolerant fair classifiers
have support for achieving any user-specified fairness constraint,
while the demographic-unaware fair classifiers try to minimize
the gap in utility between the protected groups. Based on this
limitation, and for the sake of brevity, we choose the Average Odds
Difference between two demographic groups as our fairness metric,
and subsequently choose Equal Odds Difference (EOD) over both
groups as our regularization constraint for the classical and noise-
tolerant fair classifiers. EOD is defined as:

EOD=
(FPRunpriv−FPRpriv )+(TPRunpriv−TPRpriv )

2 (2)

where TPR is the true positive rate and FPR is the false positive
rate. Priv and Unpriv denote the privileged and unprivileged groups,
respectively. The ideal value of EOD is zero, which indicates that
both groups have equal odds of correct and incorrect classification
by the trained classifier.

In this study, when we evaluate fairness, we do so for binary
sex attributes. We adopted this approach because the datasets we
use in our evaluation all include this attribute (see § 4) and four
classifiers in our evaluation (e.g., CALEQ, ROC, EGR, GSR) only
support fairness constraints over two groups. Whenever necessary,
we consider males to be the privileged group and females to be the
unprivileged group. Note that optimizing for fairness between two
groups is the simplest scenario that fair classifiers will encounter in
practice—if they perform poorly on this task, then they are unlikely
to succeed in more complex scenarios with multiple, possibly
intersectional, groups.

4 METHODOLOGY
In this section, we describe the approach we used to empirically
evaluate the 14 classifiers that we chose for our study.

4.1 Case Studies
To observe how the classifiers perform on real-world data we chose
four different datasets. The classification tasks are described below.
Each dataset had binary sex as part of the input features.

(1) Public Coverage [17]. The task is to predict whether an
individual (who is low income and not eligible for Medicare)
was covered under public health insurance. We used census
data from California for the year 2018.

(2) Employment [17]. The task is to predict whether an
individual (between the ages of 16 and 90), is employed.
For this task too, we looked at census data from California
for the year 2018.

(3) Law School Admissions [61]. The task is to predict
whether a student was admitted to law school.
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Figure 1: Fraction of females in our datasets after adding synthetic noise. The dashed line indicates the true fraction of females.

(4) Diabetes [54]. The task is to predict whether a diabetes
patient was readmitted to the hospital for treatment after 30
days.

For each of these case studies, we split the dataset into train
and test sets in an 80:20 ratio, trained every classifier on the
same training set, and then used the trained classifiers to generate
predictions on the same testing set. We verified via two-tailed
Kolmogorov–Smirnov tests [36, 53] and Mann–Whitney 𝑈 tests
[45] that the test set distribution for every feature was the same
as the training set distribution. Finally, we calculated the metrics
in § 3.2 on these predictions and compared the results from each
classifier head-to-head. We repeated this procedure ten times to
assess the stability of accuracy and EOD for each classifier.

4.2 Synthetic Noise
While studying the performance of these classifiers on a variety of
real-world datasets is important, in order to get a more thorough
understanding of the theoretical fairness and predictivity limits of
the classifiers we subjected them to robust synthetic stress tests.
As discussed in § 2.1, in the real world, practitioners may not have
access to the protected attribute information of people in their
dataset. As a result, practitioners may use inference tools to find
proxies for protected attributes, which can lead to unexpected,
unfair outcomes [23]. To characterize what might happen in such a
scenario, we perform the following synthetic experiments:

(1) For each dataset, with a given probability (ranging from 0.1
to 0.9), we randomly flip the protected attribute labels (binary
sex in this case) in the dataset. We refer to this probability
value as noise.

(2) With the synthetically generated dataset from Step 1, we then
proceed to split the dataset 80:20, train all 14 algorithms on
the same training set, and then calculate predictions on the
same test set. The noisy (flipped) labels are passed as inputs
to the classifiers at this step.

(3) Next, with the predicted outcomes from Step 2, we calculate
accuracy and EOD. Note that we calculate EOD with the
true protected attributes, i.e., we measure the output bias in
terms of the original sex labels from the given dataset.

(4) We repeat Steps 1–3 ten times for each value of noise, to
ensure statistical fairness and assess the stability of our
metrics per classifier.
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Figure 2: KernelShap feature explanations calculated for the
Logistic Regression (LR) classifier when trained on the Public
Coverage dataset with no added noise. We used the same
approach to calculate feature importances for every classifier-
dataset pair at different noise levels.

Figure 1 shows the fraction of females in the noised datasets
at each level of noise. The fraction of females goes up or down
with noise depending on what the true fraction of females in the
different datasets were to begin with.

4.3 Calculating Feature Importance
To help explain the variations in performance that we observed in
our results, we calculated feature importance for each of our trained
models. Although there are several black-box model explanation
tools in the research literature—such as LIME [51], SHAP [43], and
Integrated Gradients [55]—we required an explanation method
that was model agnostic. The method that we settled on was
KernelShap.3 According to the documentation, KernelShap uses

3https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
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Figure 3: Accuracy and EOD for our 14 classifiers, calculated over four datasets with ten runs each. No noise was added to the
protected attribute in these tests. Violins are color coded by class: blue for unconstrained classifiers, purple for classical fair
classifiers, green for noise-tolerant fair classifiers, and red for demographic-unaware fair classifiers. LR, SREW, and GSR are
deterministic algorithms and therefore appear as fixed points.

a special weighted linear regression model to calculate local
coefficients, to estimate the Shapley value (a game theoretic concept
that estimates the individual contribution of each player towards
the final outcome). As opposed to retraining the model with every
combination of features as in vanilla SHAP, KernelShap uses the
full model and integrates out different features one by one. It also
supports any type of model, not just linear models, and was thus a
good candidate for our study.

Figure 2 shows an example distribution of feature importances
calculated for the LR algorithm when trained on the Public
Coverage dataset at noise level zero (i.e., no noise). In a similar
fashion, we used KernelShap to calculate feature importance values
for trained classifier outputs at noise levels 0, 0.2, 0.4, 0.6 and 0.8
for all 14 models.

Research by Kumar et al. [38] has shown that different
explanation methods often do not agree with each other. We
do not claim that the feature importances we calculated using
KernelShap are guaranteed to agree with those produced by
other tools. Nonetheless, we are specifically interested in the
relative importance of the sex feature towards the final outcome
as compared to the other input features. Shapley value-based
explanations give us a reasonable sense of relative feature
importance, as has been empirically shown in previous work [25].

5 RESULTS
In this section, we present the results of our experiments. We
begin by examining the baseline performance of the 14 classifiers
when there is no noise, followed by their performance in
the presence of synthetic noise. Finally, we delve into feature
importance explanations to help explain the relative performance
characteristics of the classifiers.

5.1 Baseline Characteristics
Figure 3(a–d) shows the accuracy and fairness outcomes for all 14
classifiers when there was no noise in the datasets. We executed
each classifier ten times without fixing a random seed and present
the resulting distributions of metrics using violin plots. We observe
that most of the classifiers achieved comparable accuracy to each
other on each dataset, and that most classifiers exhibited stable
accuracy over the ten executions of the experiments. Learned
Fair Representation (LFR), Soft Group Assignment (SOFT), and
Distributed Robust Optimization (DRO) were the exceptions: the
former two exhibited unstable accuracy on all four datasets, the
latter on two datasets.

As shown in Figure 3(e–h), EOD was considerably more variable
over runs than accuracy. The unconstrained classifiers (LR and
RF) were relatively stable and, in some cases, achieved roughly
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equalized odds (e.g., on the Law School and Diabetes datasets).
The classical fair classifier group contained the two least fair
classifiers in these experiments (CALEQ and ROC), while the other
pre-processing and in-processing algorithms performed relatively
better. Adversarial Debiasing (ADDEB) was slightly unstable but
the distribution centered around zero. Among the noise-tolerant fair
classifiers, Soft Group Assignment (SOFT) was unstable on three out
of four datasets, while the other two classifiers (MDRO and PRIV)
were relatively more stable and more fair. The two demographic-
unaware fair classifiers (ARL and DRO) were unstable on the Public
Coverage dataset (Figure 3e) and did not achieve equalized odds on
the Employment dataset (Figure 3f). However, ARL and DRO were
stable and fair on the remaining two datasets.

In summary, we observe that the accuracy and fairness
performance of these classifiers was dependent on the dataset that
they are trained and tested on, i.e., there was no single best classifier.
Additionally, we can see that several classifiers are consistently
unstable, which explains some of the results that we will present in
the next section.

5.2 Characteristics Under Noise
Next, we present the results of experiments where we added
noise to the protected attribute of the datasets. We added noise in
increments of 0.1 starting from 0.1 and ranging up to 0.9. We added
a given amount of noise to each dataset ten times and repeated the
experiment, thus we plot the average values of accuracy and EOD
for each classifier at each noise level.

Figure 4(a–d) shows the accuracy of the 14 classifiers’ outputs
as we varied noise. We observe that the MDRO, SOFT, and LFR
classifiers had poor accuracy across all datasets and noise levels,
while the DRO classifier had poor accuracy in two out of the four
datasets. These observations mirror those from Figure 3, i.e., these
classifiers exhibited poor average accuracy in the noisy experiments
because they were unstable in general. The other classifiers tended
to be both accurate and stable, irrespective of noise.

As shown in Figure 4(e–h), the EOD results were much
more complex than the accuracy results. ROC generated unfair
outputs over all four datasets, at every noise level. Its companion
post processing algorithm, CALEQ, exhibited rising EOD with
noise for the Public Coverage dataset (Figure 4e) and falling
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Figure 5: Wasserstein distances between the average KernelShap feature importance distributions over different noise levels
for the four datasets. Each square compares the average feature importances of two classifiers. Redder squares denote pairs of
classifiers with more divergent feature importance distributions.

EOD for the Employment and Diabetes datasets (Figure 4f, h).4
The unconstrained classifiers (LR and RF) moved in the same
direction for every dataset, either rising (Figure 4e, f) or falling
(Figure 4h) with noise. The SOFT classifier also exhibited some
variable behavior: on the Employment dataset EOD rose with noise
(Figure 4f), and on the Public Coverage (Figure 4e) dataset it failed to
achieve equal odds at higher noise levels. The remaining classifiers
tended to achieve equal odds irrespective of the noise level.

Figure 4 only depicts average values for accuracy and EOD,which
is potentially problematic because it may hide instability in the
classifiers’ performance. To address this we present Figure 7 in the
Supplementary Material, which shows the distribution of accuracy
and EOD results for each classifier on each dataset at the 0.1, 0.5,
and 0.9 noise levels. We observe that, overall, no classifier became
consistently less stable as noise increased. Rather, the stability
patterns for each classifier mirrored the patterns that we already
observed in Figure 3.

In summary, the classifiers that had problematic performance in
the baseline experiments (see Figure 3) continued to have issues in
the presence of noise. Additionally, the unconstrained classifiers
exhibited inconsistent fairness as noise varied. Surprisingly, the
noise-tolerant classifiers did not uniformly outperform the other
fair classifiers.

5.3 Feature Importance
Finally, we delve into model explanations as a means to further
explore the root causes of the classifier performance characteristics
that we observed in the previous sections. First, we calculated
feature explanations using KernelShap for every classifier at
five noise levels—0, 0.2, 0.4, 0.6 and 0.8—using the method we
described in § 4.3. Next, we averaged the explanation distributions
for each classifier to form a feature importance vector per classifier.
Finally, we repeated this process for each dataset. For each dataset,
we calculated Wasserstein distances [59] between the feature
explanation distributions for each algorithm pair and present the
results in Figure 5. Additionally, we plot the rank of the sex feature

4Note that a higher value of EOD (Equation 3.2) signifies that females received more
positive predictions than males.
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Figure 6: Rank of Sex in the average absolute KernelShap
feature importances for the different algorithms in our case
studies.

in terms of mean absolute feature importance for each classifier
and present the results in Figure 6 (we also show the range of ranks
if they vary over noise).

Figure 5 reveals that, with few exceptions (EGR in Public
Coverage, EGR and GSR in Employment, EGR and ROC in Law
school, and CALEQ, PRIV and ARL in Diabetes), most classifiers had
similar feature explanation distributions. We do not observe any
clear patterns among the exceptional classifiers, i.e., no classifier
consistently diverged from the others across all datasets. Further,
we do not observe clear correlations between accuracy, EOD, and
feature distribution similarity, suggesting that different classifiers
took different paths to reach the same levels of performance.
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Figure 6 is more informative than Figure 5. Four of the classifiers
that exhibited consistently poor performance—LFR, MDRO, and
SOFT (Figure 3a–d), and ROC (Figure 3e–h)—learned to weight
the sex feature higher than other features, which may point to
the root cause of their accuracy and fairness issues. Similarly, the
unconstrained classifiers (LR and RF) exhibited changing EOD with
noise levels in three out of four datasets (Figure 4e, f, h), but not
for Law School Admissions (Figure 4g), and we observe that they
learned a relatively low weight for sex among the available features
for the Law School dataset. CALEQ also learned a relatively low
weight for sex on the Law School dataset and was subsequently
unaffected by noise (Figure 4g), but showed variable trends in EOD
for the other three datasets (Figure 4e, f, h) on which it learned a
relatively higher weight for sex.

Sex was the lowest ranked feature for the two demographic-
unaware fair classifiers (DRO and ARL), which makes sense because
they were not given these features as input. EGR and GSR also did
not have access to sex while classifying the test dataset, so they
also had sex as the lowest ranked feature.

5.4 Fairness-Accuracy Tradeoff
Three algorithms in our list - EGR, GSR, and PRIV, provide
a mechanism to control the fairness-accuracy tradeoff via a
hyperparameter – namely fairness violation 𝑒𝑝𝑠 in the case of
EGR and GSR [2], and the privacy level 𝜖 in the case of PRIV
[48]. Based on the experiments the authors of these algorithms
did in their papers, we used different 𝑒𝑝𝑠 values between 0.01 and
0.20 and 𝜖 values between -2 and 2 and reran our experiments. We
found that tweaking the tradeoff hyperparameter did not contribute
meaningfully to the stability and noise resistance capabilities of
these algorithms. Consequently we omit these results from the
paper.

6 CONCLUSION
In this study, we present benchmark results—in terms of accuracy,
fairness, and stability—for 14 ML classifiers divided into four classes.
We evaluated these classifiers across four datasets and varying levels
of random noise in the protected attribute. Overall, we found that
two classical fair classifiers (SREW and EGR), one noise-tolerant fair
classifier (PRIV), and one demographic-unaware fair classifier (ARL)
performed consistently well across metrics on our experiments. In
the future we recommend that ML researchers benchmark their
own fair classifiers against these classifiers and that practitioners
consider adopting them.

One surprising finding of our studywas howwell SREWand EGR
performed in the face of noise in the protected attribute. Contrast
this to noise-tolerant classifiers like MDRO—whose performance
did not vary with noise but was inaccurate on some datasets—
and SOFT—which was consistently inaccurate and had variable
fairness in the face of noise. These results suggest that some classical
fair classifiers may actually fare well in the face of noise, and
that adopting more complex noise-tolerant fair classifiers may not
always be necessary.

Another surprising finding of our study was how well ARL
performed. As a demographic-unaware fair classifier it did not have
access to the sex feature at training or testing time, yet it achieved

fairness performance that was comparable to demographic-aware
fair classifiers on three of our datasets, and its fairness performance
was noise invariant on three datasets as well.We fit linear regression
models on each dataset with sex as the independent variable, but
these models did not uncover any obvious proxy features for ARL
to use in place of the sex feature. This speaks to the strength of the
ARL algorithm’s adversarial approach to learning.

On one hand, our results confirm that demographic-unaware fair
classifiers can achieve fairness for real-world disadvantaged groups
under ecological conditions. This is positive news for practitioners
who would like to adopt a fair classifier but lack (high-quality)
demographic data. On the other hand, we still urge caution with
respect to the adoption of demographic-unaware fair classifiers for
practical reasons. First, determining whether a classifier like ARL
will achieve acceptable performance in a given context requires
thorough evaluation on a dataset that includes demographic data,
as we have done here. Second, even if a demographic-unaware fair
classifier performs well in testing, its performance may degrade
after deployment if the context changes or there is distribution
drift [25]. Monitoring the health of a classifier like ARL in the
field requires demographic data. In short, adopting a demographic-
unaware classifier does not completely obviate the need for at least
some high-quality demographic data.

In general, the results of our study point to the need for further
development in the areas of noise-tolerant and demographic-
unaware fair classifiers. By releasing our source code and data,
we hope to provide a solid foundation for evaluating these novel
classifiers in the future.

Our study has several limitations. First, we only evaluate
classifiers using binary protected attributes. It is unclear how
their performance and consistency would change under more
complex conditions. That said, we are confident that the classifiers
that performed poorly will continue to do so in the presence of
more complex fairness objectives. Second, our case studies and
synthetic experiments, while thorough, are by no means completely
representative of all real world datasets and contexts. We caution
that our results should not be generalized indefinitely. Third, we
did not evaluate all of the classical fair classifiers from the literature
(see Friedler et al. [22] and Mehrabi et al. [46] for more). Our
primary focus was on adding to the literature by benchmarking
noise-tolerant and demographic-unaware fair classifiers. Finally, in
this study we only evaluated one fairness metric—EOD—because
it was the common denominator among all of the classifiers we
selected. Future work could explore fairness performance further
by choosing other fairness metrics along with subsets of amenable
classifiers.
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Figure 7: Plots showing the stability of our 14 classifiers over three different levels of noise in protected attributes (0.1, 0.5 and
0.9). For each dataset we present the stability of each classifiers’ accuracy and EOD.
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