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Interactive proofs of theorems often require auxiliary helper lemmas to prove the desired theorem. Existing
approaches for automatically synthesizing helper lemmas fall into two broad categories. Some approaches
are goal-directed, producing lemmas specifically to help a user make progress from a given proof state, but
they have limited expressiveness in terms of the lemmas that can be produced. Other approaches are highly
expressive, able to generate arbitrary lemmas from a given grammar, but they are completely undirected and
hence not amenable to interactive usage.

In this paper, we develop an approach to lemma synthesis that is both goal-directed and expressive.
The key novelty is a technique for reducing lemma synthesis to a data-driven program synthesis problem,
whereby examples for synthesis are generated from the current proof state. We also describe a technique to
systematically introduce new variables for lemma synthesis, as well as techniques for filtering and ranking
candidate lemmas for presentation to the user. We implement these ideas in a tool called 1find, which can be
run as a Coq tactic. In an evaluation on four benchmark suites, 1find produces useful lemmas in 68% of the
cases where a human prover used a lemma to make progress. In these cases 1find synthesizes a lemma that
either enables a fully automated proof of the original goal or that matches the human-provided lemma.
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1 INTRODUCTION

Interactive proof assistants [de Moura et al. 2015; Fillidtre et al. 1997; Paulson 1993] are powerful
frameworks for writing code with strong guarantees. While various tools exist to perform automated
proof search [Bansal et al. 2019; First et al. 2020; Gauthier et al. 2017; Paliwal et al. 2020; Sanchez-
Stern et al. 2020; Sekiyama et al. 2017; Whalen 2016; Yang and Deng 2019] and to integrate external
automated solvers [Blanchette et al. 2011; Czajka and Kaliszyk 2018; Kaliszyk and Urban 2015a,b], the
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manual proof burden remains high. One particular challenge is the need to identify auxiliary lemmas
that are required to prove a desired theorem. For example, the theorem’s induction hypothesis may
be too weak, thereby necessitating a stronger lemma that is amenable to an inductive proof. As
another example, a lemma may be required to rewrite a subgoal at a particular point in the proof
into a form that allows the induction hypothesis to be applied.

Existing approaches to address this problem through a form of lemma synthesis fall into two
categories [Johansson 2019]. In the first category, heuristic rewrites are performed on the proof
state at the point where the user is stuck to identify potentially useful lemmas [Aubin 1976;
Bundy et al. 1993; Castaing 1985; Dixon and Fleuriot 2003; Hesketh 1992; Hummel 1990; Johansson
et al. 2010; Kapur and Subramaniam 1996; Kaufmann and Moore 1997; Sonnex et al. 2012]. For
example, the generalization technique [Boyer and Moore 1979; Kaufmann and Moore 1997] from
ACL2 heuristically replaces one or more terms in the current subgoal with fresh variables. In
the second category of approaches, candidate lemmas are generated from a grammar through a
form of enumeration-based synthesis [Claessen et al. 2013, 2010; Heras et al. 2013; Johansson et al.
2011, 2014; Montaifio-Rivas et al. 2012; Reynolds and Kuncak 2015; Yang et al. 2019]. For example,
HipSpec [Claessen et al. 2013] uses QuickSpec [Claessen et al. 2010] to generate many candidate
equational lemmas and then proves as many as possible using an automated prover.

The strength of the heuristic rewriting approach is that it is goal-directed, producing candidate
lemmas that are directly related to the current proof state. However, the approach has limited
expressiveness, as the space of possible candidates is dependent on a particular set of rewrite rules.
The enumeration approach has the opposite strengths and weaknesses. Because candidate lemmas
are enumerated from a grammar, they can be highly expressive. However, candidate lemmas are
generated in an undirected fashion, independent of the particular state where the user is stuck.
Hence this approach will generate many irrelevant lemmas and so is ill-suited for an interactive
setting. Indeed none of the enumeration-based tools cited above support interactive usage.

In this paper, we propose a new approach to lemma synthesis that combines the strengths
of the existing approaches. We show how to reduce lemma synthesis to a data-driven program
synthesis problem, which aims to synthesize an expression that meets a given set of input-output
examples. The examples for synthesis are generated directly from the current proof state, ensuring
that lemma candidates are targeted at the goal. At the same time, the approach enables the usage
of off-the-shelf data-driven program synthesizers that generate expressions in a user-provided
grammar [Albarghouthi et al. 2013; Feser et al. 2015; Frankle et al. 2016; Lubin et al. 2020; Miltner
et al. 2022; Osera and Zdancewic 2015]. This new approach allows us to successfully synthesize
helper lemmas for more stuck proofs than ever before.

Reducing lemma synthesis to data-driven program synthesis requires us to solve several technical
challenges. While data-driven synthesis is a common approach to generating other kinds of program
invariants [Ezudheen et al. 2018; Garg et al. 2014, 2016; Miltner et al. 2020; Padhi et al. 2016; Zhu
et al. 2018], for instance, loop invariants, these prior settings have several advantages that our
setting lacks. In prior settings, the desired invariant is a predicate over a fixed set of variables, for
example, the variables that are in scope at a loop. In contrast, it’s common for auxiliary lemmas
to require new variables that do not appear in the current proof state. Further, prior approaches
employ counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama 2009], because there
exists a clear behavioral specification for the desired invariant: each candidate invariant is verified
against the specification, and counterexamples become new input-output examples for synthesis. In
our setting, we lack such a specification since a proof state can require an auxiliary lemma for many
different reasons. Further, a counterexample to validity applies to the current lemma candidate, but
that same valuation of variables is not necessarily a counterexample to the validity of a different
candidate lemma. Hence we cannot generate input-output examples using CEGIS. Finally, the lack
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of a specification also makes it difficult to determine whether any particular candidate lemma is
useful.

To address the problem of lemmas that require variables not appearing in the proof state, we
observe that the generalization technique [Boyer and Moore 1979; Kaufmann and Moore 1997]
described above can be used not only to produce candidate lemmas but also as a systematic way to
“lift” the current proof state to new variables for lemma synthesis. Hence our approach starts by
producing all generalizations of the proof state, each formed by replacing one or more terms with
fresh variables.

To generate examples for synthesis without counterexamples, we leverage the implicit obser-
vation underlying the heuristic rewriting approaches described earlier, that the necessary lemma
often has a similar structure to the goal in the current proof state. We produce a set of lemma
sketches for each generalized goal, each sketch consisting of a version of that goal but with one
expression replaced by a hole to be synthesized. We sample valuations of the variables in the current
goal to generate input examples, and the expected output value for each example is determined by
the value of the hole’s original expression. In this way, we require that the synthesized expression’s
behavior be consistent with that of the expression that it is replacing.

Finally, to address the lack of clear criteria for candidate lemmas to satisfy, we have developed
techniques to filter candidate lemmas that are not useful and to rank the remaining candidates based
on their likely utility to the user. Filtering removes lemmas that are determined to be either trivial,
redundant, or invalid, the latter using existing tools for automated counterexample search [Claessen
and Hughes 2000; Paraskevopoulou et al. 2015]. Since the ultimate utility of a lemma is based on
whether it is provable and allows the user to complete the current proof, our ranking approach
employs existing tools for automated proof search to categorize lemmas for user inspection.

Our example-based approach to lemma synthesis is targeted for use in proving properties of
programs. In that setting we can leverage existing randomized testing tools to generate the necessary
examples. Generating examples for arbitrary Coq propositions and types is difficult in general and
an active area of research [Paraskevopoulou et al. 2022]. Therefore our approach is less applicable
to other uses of Coq, for example to prove mathematical theorems.

We have implemented our approach as a tactic for Coq and call the resulting tool 1find!.
Coq users can invoke 1find as a tactic at any point in their proof, and it will produce a set of
ranked lemma candidates. Our approach is parameterized by a data-driven program synthesizer
(for candidate lemma generation), counterexample searcher (for candidate filtering), and proof
searcher (for candidate ranking). Our implementation uses the MyTH [Osera and Zdancewic 2015]
data-driven program synthesizer for OCaml, the QuickcHIck [Paraskevopoulou et al. 2015] tool
for counterexample search, and the state-of-the-art PROVERBOT9001[Sanchez-Stern et al. 2020]
tool for proof script search. Note that our approach is agnostic to the specific toolset we use for
implementation; in fact, future improvements in data-driven program synthesis, counterexample
search, and proof search can be directly leveraged to improve lemma synthesis.

We evaluate our approach on two benchmark suites from prior work on lemma synthesis,
cLaM [Ireland and Bundy 1996] and r1A [Yang et al. 2019], as well as two new benchmarks from
diverse domains, FULL ADDER [cir 1995] and compiler correctness [Chlipala 2013]. Together, there
are 222 evaluation locations from these benchmarks, where a human prover used an auxiliary
lemma to progress. 1find synthesizes a useful lemma for 150/222 of these locations, with a median
runtime of 3.3 minutes (see §5.3). At 117 of these locations 1find provides a full automated proof
of the synthesized lemma and the goal; at the other 33 locations 1find produces a ranked list
of lemma candidates where the human-written lemma is in the top 10. We also show that our

10ur code and full experimental results are available at https://github.com/AishwaryaSivaraman/lemmafinder.
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1 Inductive lst : Type :=

2 | Nil : 1st

3 | Cons : nat -> 1st -> lst.

5 Fixpoint app (11 : 1lst) (12 : 1st) : 1lst :=
6 match 11 with

7 | Nil => 12

8 | Cons n 11" => Cons n (app 11' 12)

9 end.

11 Fixpoint rev (1 : 1st) : 1lst :=
12 match 1 with

13 | Nil => Nil
14 | Cons n 11" => app (rev 11') (Cons n Nil)
15 end.

17 Lemma rev_rev : forall 1, rev (rev 1) = 1.

18 Proof.
19 induction 1.
20 - reflexivity.
21 - simpl. (= I'm stuck! «)
Fig. 1. A partial proof of a theorem in Coq that requires an auxiliary lemma.
1 n: nat
2 1 : 1st

3 IHl : rev (rev 1) =1

5 rev (app (rev 1) (Cons n Nil)) = Cons n 1

Fig. 2. The proof state when the user gets stuck.

approach significantly outperforms the prior technique of generalization as well as a version of L1A
that employs enumerative synthesis without examples (§5.4). Finally, in §5.5 we evaluate 1find’s
sensitivity to different hyperparameters and timeouts.

In summary, this paper makes the following contributions:

(1) We present the first approach that reduces the general lemma synthesis problem to a data-driven
program synthesis problem. The approach derives both lemma sketches as well as examples for
synthesis from a given stuck proof state, and it uses the existing generalization technique to lift
the proof state to new variables for synthesis.

(2) We describe a suite of filtering and ranking strategies for candidate lemmas, which is necessary
for an interactive verification setting.

(3) We have instantiated our approach in a tactic called 1find for Coq.

(4) Our experimental evaluation demonstrates the practical utility of our approach and tool, quan-
tifies the benefits over multiple alternative approaches to lemma synthesis, and investigates the
sensitivity of 1find to different parameter values.

2 OVERVIEW
2.1 Motivating Example

To illustrate how 1find works, we will start with an example. Figure 1 shows Coq code that tries
to prove a simple theorem: that reversing a list twice returns the same list. It starts by defining lists
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1 Lemma leml: forall 1 n,
2 rev (app 1 (Cons n Nil)) = Cons n (rev 1).
3 Proof.

4 intros.

5 induction 1.

6 simpl.

7 eauto.

8 simpl.

9 rewrite IHI1.

[ eauto.

1 Qed.

13 Lemma rev_rev : forall 1, rev (rev 1) = 1.

14 Proof.

15 induction 1.

16 - reflexivity.

17 - simpl. rewrite <- IHL. unfold app.

18 rewrite IH1. rewrite leml. rewrite IHl. easy.
19 Qed.

Fig. 3. A full proof provided by 1find.

of nats along with definitions for appending and reversing lists. Following that is an attempt to
prove the theorem, named rev_rev.

The proof proceeds by induction on the list 1. The Nil case is easily proven, but the Cons case is
trickier. After simplification, the user is stuck because the goal is not in a form that enables direct
use of the induction hypothesis. Figure 2 shows the proof state at that point, including the current
assumptions and goal.

To get unstuck, the user can invoke our tool 1find as a tactic at this point. In this example, the
top three lemmas that 1find produces are as follows:

1 (A1) Lemma leml: forall 11 n,

2 rev (app 11 (Cons n Nil)) = Cons n (rev 11).
3(Az) Lemma lem2: forall 11 12,

4 rev (app 11 12) = app (rev 11) (rev 12).
5(Az) Lemma lem3: forall 11 12,

6 rev (app (rev 11) 12) = app (rev 12) 11.

Each lemma is bucketed into one of three categories (A, Az, or A3), and the categories are
presented to the user in that order. A; lemmas are those in which 1find can automatically find a
complete proof of the original goal using the generated lemma and PROVERBOT9001, a state-of-the-
art automated prover. In other words, 1find has successfully generated an appropriate auxiliary
lemma, proven that lemma, and used the lemma to complete the original proof. The lemma lem1 is
such an A; lemma; the full proof of the theorem rev_rev using lem1 is shown in Figure 3.

A, lemmas are those that are not disprovable by QuickcHIck and are sufficient to automatically
prove the original goal, but PROVERBOT9001 cannot automatically prove the auxiliary lemma. 1find
indicates that the second and third lemmas in the above listing are A; lemmas; indeed, each of
them in turn depends on its own auxiliary lemmas, for example, the associativity of app. However,
both lemmas are also still good options for the user: the lemma lem2 is a more general version of
lem1, while lemma lem3 reduces to the original rev_rev lemma when 12 is Nil. A3 lemmas are
ones that are not disprovable by a tester like QuickcHICK but automation using PROVERBOT9001
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can’t be used to prove either the goal or the auxiliary lemma; since they are similar to the goal and
not disprovable, they might still be useful to the user.
In the rest of this section we explain how 1find produces these results.

2.2 Approach

As mentioned in Section 1, the generality of our setting induces several technical challenges. Lemma
synthesis in 1find has four steps that are targeted at these challenges, as shown in Figure 4. We
start by generalizing the goal state, in order to systematically introduce new variables that can
be used in candidate lemmas. From each generalization, we create sketches and sample variable
valuations from the current goal in order to reduce lemma synthesis to data-driven program
synthesis. Finally, we filter the resulting lemma candidates to remove those that cannot be useful
and rank and categorize the remaining candidates for user inspection.

Generalization. In Coq, helper lemmas are generally used as arguments to the apply and rewrite
tactics. To use the apply tactic, the consequent of the lemma must structurally match the goal
state to which it is applied. Similarly, to use the rewrite tactic, the lemma needs to be an equality
or similar relation, one of whose operands structurally matches a portion of the goal state. It
is for these reasons that prior techniques for lemma synthesis in the interactive setting [Bundy
et al. 1993; Kaufmann and Moore 1997] work by making heuristic rewrites to the goal state. The
most common such technique is generalization, which replaces terms in the goal state with fresh
variables [Kaufmann and Moore 1997].

Our approach starts from the same intuition but aims to use data-driven synthesis instead of
heuristic rewrites in order to transform the goal state. However, we observe that generalization
provides a systematic way to introduce new variables for the synthesis process. Since we are
not sure in advance how many and which variables a useful lemma might need, we exhaustively
generate generalizations, one per subset of terms within the goal state. In our example, there are six
non-variable terms in the goal (Figure 2). While in principle there are 2° possible generalizations
using these terms, there are only 16 unique ones, since some terms are only present as subterms of
other ones.

For example, replacing rev 1 with a fresh variable 11 of type 1st produces the following
generalization:
forall 1 n 11, rev (app 11 (Cons n Nil)) = Cons n 1.

Alone, this generalization does not produce a valid lemma, as it does not hold when 11 is not the
reverse of 1. Typically generalization is only applied on terms that appear more than once in a
goal [Kaufmann and Moore 1997], to avoid these cases. In our example, there are no such terms,
and in fact, all lemmas generated by generalization alone are easily disprovable.

Nonetheless, these generalizations play a crucial role in our approach. In addition to being treated
as candidate lemmas themselves, we use each generalization as a starting point from which to
produce many more candidate lemmas via data-driven program synthesis. Each generalization
introduces new variables that can be leveraged as part of that synthesis process.

Synthesis. From each generalization, we create a set of sketches, where each sketch is a version
of that generalization with one term replaced by a hole. For example, if we replace the term Cons n
1 in the generalization above with a hole, then we end up with the following sketch (note that we
remove variable 1 from the quantifier since it is no longer used):
forall 11 n, rev (app 11 (Cons n Nil)) = O.

Intuitively, we would like the expression that fills the hole to behave consistently with the
expression that it is replacing. To that end, we generate concrete examples of the original goal
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Fig. 4. Overview of 1find.

in the stuck state and then map them to input-output examples for data-driven synthesis. In our
running example, the original goal has two variables, 1 and n, so suppose we randomly generate
the following (1, n) pairs (using regular list notation for clarity):

{01, 9, (le; 11, 2),([2; 11, D}

Next, we map these examples to our sketch. We do so by leveraging the fact that the new variable
11 replaced rev 1 from the original goal. Hence we evaluate rev 1 for each of our three examples
to produce the following 11 values: {[1,[1; ©1,[1; 2]}. Similarly, we produce the expected value
of the hole for each example, by leveraging the fact that the hole replaced Cons n 1. This yields the
values {[41,[2; @; 11,[1; 2; 11}.

As a result of this mapping, we can now produce a set of input-output examples that act as a
specification for synthesis, each mapping (11, n) pairs to the expected output value of the term to
be synthesized:

(1, 4 — [4]
([1; @1, 2) = [2; 0; 1]
(L1521, 1) = [1; 2; 1]

Finally, we pass these input-output examples to a data-driven synthesizer. In addition to the
examples, we provide the type of the function to be synthesized (which in this case is 1st *
nat — lst)and a grammar to use for term generation. 1find automatically creates a grammar
consisting of the definitions that appear in the stuck proof state along with definitions that they
recursively depend upon. In our example the grammar includes the constructors Nil and Cons and
the functions app and rev. One term that the synthesizer generates from these inputs is Cons n
(rev 11). Substituting this expression into the hole in our sketch yields exactly the lemma lem1
shown earlier, which enables a fully automated proof of the original lemma.

Note that synthesis is much more expensive than the generalization process described above,
which simply replaces some terms with variables. Furthermore, the need for lemmas to structurally
match the goal state limits how many parts of that state can be usefully rewritten. For these reasons,
we consider only one hole per lemma sketch, but 1find’s algorithm conceptually does not limit the
number of holes per sketch. Our technique can be extended to synthesize terms for each hole one
at a time and then induce candidate lemmas from their combinations.

In summary, we have shown how to generate candidate lemmas in a targeted way, based on the
current proof state, using a novel combination of generalization and data-driven program synthesis.
While the expressions that are generated by synthesis can make use of a general grammar, the form
of the lemmas that we generate are still limited to the structure of the sketches that we produce.
As we demonstrate in §5, our approach can generate useful lemmas for a variety of interesting
benchmarks.
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Filtering. As described above, our approach induces many generalizations of each goal, multiple
sketches for each generalization, and multiple synthesis results for filling each sketch’s hole. Hence,
the set of candidate lemmas that are generated is quite large. In our running example, with default
settings for the number of sketches to produce for each generalization and the number of synthesis
results to produce for each sketch (see Section 5.2), 1find generates 276 candidate lemmas. While
the ability to explore a large space of candidates is a strength of the approach, we must organize
these candidates in a manner that is understandable and beneficial to users.

To that end, we filter out extraneous candidates in multiple ways. First, we filter out candidates for
which we can find a counterexample; we search for counterexamples using QUICKCHICK, an existing
counterexample-generating tool [Paraskevopoulou et al. 2015]. Second, we filter out candidates
representing trivial facts, for example forall 1, rev 1 = rev 1. We identify such cases using
Coq’s trivial tactic.

Finally, we filter out candidates that "follow directly" from the user’s original lemma, a notion
we explore in more detail in 3.4. For instance, in our running example, one candidate lemma is
forall n 1, rev (rev (Cons n 1)) = Cons n 1, which is a special case of the original rev_rev
lemma and hence is discarded in this step.

Ranking. After filtering, there are 21 candidate lemmas remaining in our running example. While
that constitutes a 92.4% reduction, it is still too many candidates to require the user to examine.
Hence, we rank candidates based on their likely utility to the user and present them in ranked
order. Since ultimately the utility of a lemma is based on whether it allows the user to prove the
original goal, our ranking leverages a state-of-the-art automatic prover for Coq, PROVERBOT9001,
which searches the space of Coq tactics to try to prove a given goal [Sanchez-Stern et al. 2020].

Specifically, we use the automatic prover to partition the candidate lemmas into the three groups
introduced in Section 2.1: A; lemmas that are automatically provable and enable automatic proof
of the user’s stuck proof state; A; lemmas that are not automatically provable but enable automatic
proof of the user’s stuck proof state; and the remaining As lemmas. Next, we sort each group
in order of size from least to greatest, since we expect smaller lemmas to be easier for users to
understand and evaluate. Finally, we concatenate these sorted groups to form the final ranked list.

In our running example, there are 2, 2, and 17 lemmas respectively in each of these three
categories. The first lemma in category A;, which yields a fully automated proof, is 1em1 shown
earlier, so it is ranked first. Lemmas lem2 and lem3 are the smallest lemmas in category A; and
hence are ranked next in our results.

3 ALGORITHMS

In this section we formally describe the core algorithms that make up our approach.

3.1 Preliminaries

Our approach synthesizes lemmas for a given proof state ¥, which is a tuple (H, g, T, D), where
H is a set of logical formulas that are the current hypotheses, g is a logical formula that is the
current goal, T is a type environment for all free variables in H and g, and D is a set of type
and term definitions that are recursively referred to in H and g. We require that the goal g be
unquantified, which in practice typically means that the original lemma/theorem should have all
variables universally quantified at the front.

We use ¢ to denote logical formulas, x for variables, v for values, ¢ for terms of sort Type, and 7 for
the types of terms. A sample for a proof state ¥ = (H, g, (x1 : 71,..., X : Tp), D) is an environment
e=(x;:01,...,%p : Uy) such that e is a model of H — g, denoted e Fpp H — g. We also use the
notation ¢ |}, v to denote the evaluation of term ¢ to value v under environment e.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 143. Publication date: October 2022.



Data-Driven Lemma Synthesis for Interactive Proofs 143:9

Finally, we assume the existence of several black-box functions that have been created by others
in prior work. We assume the availability of a black-box synthesizer that takes as input a grammar ¢,
consisting of typed constants and functions; a type signature 7; — 73; and input-output examples of
the form (vy, v2), where v; has type 7; and v, has type 7. This synthesizer returns a list of functions
f of type 11 — 7, in the grammar ¢ such that f(v;) = v, for all examples; or it fails after some time
limit. We also assume the existence of a function SAMPLE (W) that produces a set of samples. Last,
we assume the existence of both automated theorem provers and disprovers. A prover R(¢, $, D)
attempts to prove a given formula in the context of a set of auxiliary lemmas ¢ as well as a set
of definitions, returning either VALID or DoNT Know. A disprover C (¢, D) searches for concrete
counterexamples to ¢ and returns either INVALID or DoN’T KNOW.

3.2 Lemma Synthesis

First, we describe how we reduce lemma synthesis to data-driven program synthesis. As described
in the previous section, the first step is to produce generalizations of the current goal g, by replacing
some set of terms in g with fresh variables. The following definition formalizes this notion of
generalization.

Definition 3.1. (Generalization: G) Given a goal g, a type environment I', and a set T = {#1,...,¢,}
whereby no term in T is a subterm of any other term in the set, we define the generalization of g
with respect to I' and T, denoted G (g, T, T), as the tuple (¢’, %), where X = (x1 > f1, ... x, > )
records the mapping from each new variable to the term that it replaces, variables x, ..., x, are
not in the domain of T, and ¢’ = g[§; — x].

Asin 1find, the definition of generalization above replaces all occurrences of a particular subterm
with the same variable, though it is possible to relax this requirement. The restriction that no term
in T can be a subterm of any other term in the set ensures that their simultaneous substitution
is well defined. In 1find any term that is a subterm of another term to be generalized is simply
ignored.

For example, the goal state:

1 (atan2(x, y) - z) + atan2(x, y) = 2 * (atan2(x, y) - z)
can generalize to the tuple:
1T {((a-2z)+a=2%*(a-2z), {(amr> atan2(x, y) )

Here,g’is (a - z) + a = 2 * (a - z), and X is the mapping from a to the term it replaced in the
original expression.

1find uses the generalizations that it constructs as candidate lemmas. In addition, generalizations
are used as the basis for creating sketches for data-driven synthesis. Each sketch is simply a version
of a generalized goal that has one term replaced by a hole, denoted O.

Definition 3.2. (Sketch: S) A sketch of goal g with respect to term ¢, denoted S(g, t), is g[t +— O].
For example, a sketch of the generalized goal
1 (a-z)y+a=2=*(a-2)
with respectto 2 * (a - z) would be
1 (a-z)y+a=0

Technically the definition above replaces all occurrences of the term ¢ with a hole, but in 1find each
sketch has a single hole. In particular, 1find creates one sketch per occurrence of a non-variable
term in the generalized goal state.
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In order to produce a data-driven program synthesis problem, we must generate input-output
examples. The following definition shows how we extend an environment to an input-output
example, given a set of terms (which are used for generalization), and a term (used for creating a
sketch). Intuitively, the new variables created by generalization become additional input variables,
and the term used to create a sketch defines the expected output.

Definition 3.3. (Input-output example: I0) The input-output example corresponding to a given
environment e = {x; > 0y,...,Xp > 0,), term mapping ¥ = (x| > ty,..., X, = ty), and term t;,
denoted I0(e, 3, t;), is defined as

’ ’ ’ !
({x1 > 01,...,Xp 2 U X] 03, oy Xy 2 0;,), 0s)
where t; || 0] for each t;in t,.. ., tp, and t; |J¢ ;.

For example, given (1) the environment e = (x — 2,y > 3,z +— 4), which are values for the
variables in our original example goal state, (2) the term mapping ¥ = (a — atan2(x,y)) from
our example generalization, and (3) the term 2 * (a - z) that was replaced with a hole in our
example sketch, we produce an input-output example whose input tuple extends the environment
e with a mapping from a to the value of atan2(2, 3) and whose expected output is the value of
2 * (atan2(2,3) - 4).

Finally, we can put all of this together to specify how to reduce lemma synthesis to data-driven
program synthesis.

Definition 3.4. (Lemma synthesis as data-driven program synthesis) Given a proof state ¥ =
(H,g,T, D), aset of terms T = {t,..., t,} for generalization, and a sketch term ¢, we produce
a data-driven program synthesis problem as follows. Let G(g,T,T) = (g’, %), where % = (x]
e Xy > 1) Let S(g, £5) = gs.

o The grammar ¢ for synthesis is defined by the type and term definitions in D.

o Let I§ be I restricted to the variables that appear free in g;. The input variables and associated
types for the function to be synthesized are I@(x] : 7y, ...,x}, : 7,), Where I' + t; : 7; for each
s b

o The output type for the function to be synthesized is 75, where I + ¢ : 7;.

e The input-output examples for synthesis are produced as follows. First we generate a set
of samples SAMPLE(¥) = ey, ...,e,) for the given proof state. Then the set of input-output
examples is (I0(ey, %, &), . . ., 10(ep, Z, 15)).

We invoke the synthesizer with these inputs and ask for the k smallest functions (§ 5 reports
sensitivity analysis for k) that meet this specification. For each such function f, with body expression
tr, the induced candidate lemma is created by universally quantifying all free variables in the term

gs[O - tr].

Above we have formalized the process of lemma candidate generation from a single set of terms to
be generalized and a single term to be used for creating a sketch. 1find performs this process many
times, for many different generalizations and many different sketch terms. Various approaches to
exploring this space are possible. 1find exhaustively explores the generalization space, producing
one generalization for each subset of terms in the goal g. For each such generalization, 1find
employs terms that have sort Type for creating sketches. There are several ways to pick a synthesis
term for a sketch, and in §5 we carry out sensitivity analysis for two natural approaches to choosing
such terms.
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3.3 Filtering

The approach described so far generates a lot of candidate lemmas. If there are ¢ subterms in a
given goal to use for generalization, m sketches per generalization, and we ask the synthesizer for k
results, then without any filtering 1find would produce a maximum of 2°*!mk candidates, including
all generalizations and the lemmas derived from them using data-driven synthesis. Exploring a
large space of candidates is advantageous, but clearly we require techniques to filter out candidates
that are not going to help the user.

We employ four different filtering techniques. First, duplicates among candidate lemmas are
common. For example, it’s possible for synthesis from two different sketches to produce the same
result. It’s also possible for synthesis from a single sketch to produce syntactically distinct results
that are behaviorally equivalent. We identify and filter duplicates by applying Coq’s simpl tactic
and then comparing the results for syntactic equivalence. Second, we use the disprover C to search
for counterexamples, filtering out any candidate ¢ such that C(¢, D) = INvaLID. Third, we remove
lemmas that can be solved using Coq’s trivial tactic, since they are self-evident and hence never
needed as explicit auxiliary lemmas.

Finally, we filter lemmas that “follow directly” from the original lemma, as they will not help in
proving that lemma. This is a subtle notion. For example, it is not a form of logical implication,
since if the candidate lemma is valid then any other lemma implies it. Instead, we formalize this
filter via a binary relation <, which says that one lemma is an instantiation of (or equivalent to)
another, defined as follows:

Definition 3.5. (<-operator) Given lemmas /1 and [2, we say [1 < [2 if we can prove /1 using
either of the following proof scripts:

1 intros. apply 12. Qed.
2 intros. rewrite <- 12. reflexivity. Qed.
3 intros. rewrite -> 12. reflexivity. Qed.

We then filter out any candidate lemma that is < than the original lemma.

3.4 Ranking

We rank the remaining candidate lemmas using the automated prover R we introduced earlier.
For each candidate ¢ we use the prover to determine if the candidate can be used to automatically
prove the goal g — R(g, {H, ¢}, D) — and whether the candidate itself is automatically provable —
R(¢, 0, D). Based on the results we partition the lemmas into three groups, A1, Az, and As. The A4
group contains the lemmas for which both calls to R return VALID, meaning that we have obtained
a fully automated proof of the user’s original goal. The A, group contains the lemmas for which the
first call to R return VALID, meaning that the lemma enables the goal to be automatically proven
but the lemma is not itself automatically provable. The remaining lemmas go in the Az group. We
sort the lemmas in each group in order of size from smallest to largest, since we expect smaller
lemmas to be easier for users to understand and evaluate. Finally, we concatenate these sorted
groups to form the ranked list.

3.5 Discussion

We note that 1find’s approach to candidate lemma generation imposes some important restrictions
on its usage. We have already mentioned that the goal in the proof state must be unquantified.
Further, the approach relies on the ability to generate examples for the stuck state, which limits
it to the capabilities of current test generation techniques. Because we reduce lemma synthesis
to program synthesis we require the ability to extract necessary definitions as code and translate
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code back to Coq. Finally, because sketches for synthesis are derived from a generalization of the
original goal, the generated lemmas will always have the same top-level structure as the goal. For
example, if the original goal has the form A = B then the candidate lemmas will also have this
form. §5.3 shows that despite these limitations, 1find can successfully identify non-trivial helper
lemmas for a variety of examples. In addition, all of these limitations represent useful avenues of
investigation in future work.

4 IMPLEMENTATION
Figure 5 illustrates the overall architecture of 1find, which leverages three black-box components:
a data-driven synthesizer for candidate lemma generation; an automatic disprover for candidate

filtering; and an automatic prover for candidate ranking. Our implementation of 1find is 3.2 KLOC
of OCaml code.

_______ - Candidates
7 \
........................... | P —— 3
: Y A T
: Generalizations i Sketches ' ... QuickChick
: N il SerAPI
(@ e isssssssssssssssssssasaans s | “erereereresenneennean ol | : Filtered
() 1Cogof ML MLof Cog! . :
stuck Goal JR— QUGKCHICk |1 wi || S
: : |: . v
: :  Synthesized :
. Bxamples i1 oY LY ProverBot9001
i oo Terms il :
.......................... \ e 1 E Ranked
N e e e e 4 H .
i Candidates

Fig. 5. Given a stuck goal, 1find implements generalization, synthesis, filtering, and ranking in conjunction
with existing tools to generate candidate lemmas.

4.1 Example Generation

To synthesize candidate lemmas, our approach relies on a SAMPLE function that can produce samples
for the variables in the stuck state g. We leverage QuickcHICK [Paraskevopoulou et al. 2015], a
state-of-the-art property-based randomized tester for Coq, for this purpose. While QUICKCHICK is
intended as a testing tool, we log all of the test inputs that it generates and use them as the samples
from which to produce examples for synthesis.

Specifically, for each user-defined type T in the stuck goal, 1find first generates the following
Coq code, which enables the usage of QuickcHick for that type:

1 Derive Show for T.

2 Derive Arbitrary for T.

3 Instance Dec_Eq_T : Dec_Eq T.
4 Proof. dec_eq. Qed.

The Show typeclass is required for printing test cases and the Arbitrary typeclass is required to
combine test-case generation with an operation for shrinking test inputs. QUICKCHICK supports
automatic derivation of instances of these type classes for simple types. QUICKCHICK also requires
that types have decidable equality, so we derive an instance of the Dec_Eq typeclass for T.

Next, to produce examples for the stuck proof state g, we create a Coq lemma for that state,
defined as Lemma stuckState: H — g. We also create a function collect_data whose input type
V is the tuple of the types of all free variables in H — g. The function logs the input values to a file
and returns the valuation of H — g on those input values:
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1 Definition collect_data (n:V) :=
2 in let _ := print_to_file (show n)
3 in stuckState n.

4 QuickChick collect_data.

Finally, we run QuickcHICK on this function, thereby logging samples to use for data-driven
synthesis and also searching for counterexamples to the stuck proof state. If QUICKCHICK returns
any such counterexamples, then there is no way to complete the proof so we report this to the user
and halt 1find. Otherwise, we proceed with synthesis.

4.2 Synthesis

To our knowledge, there are no data-driven synthesizers that work directly for Coq. We chose
MyTH [Osera and Zdancewic 2015] as our synthesizer because it accepts and generates OCaml
code, for which tools exist to convert to/from Coq’s language Gallina; it has a simple interface that
is easy to use, and it has worked well for us in the past. MYTH requires an input grammar in OCaml,
so we use Coq’s Extraction feature to recursively extract reachable definitions and types from
the stuck goal to OCaml. Additionally, we adapt MYTH slightly in two ways. First, MYTH supports
only a subset of OCaml and does not support common syntactic sugars. For example, MyTH does
not support the function keyword. To get around these limitations, we wrote a translator that
desugars the definitions extracted from Coq into a form acceptable by MyTH. Second, we modified
MyYTH to return a set of candidate functions sorted by size, instead of just one. This enables the
generation of multiple candidate lemmas as described earlier. Finally, to substitute the synthesized
OCaml function body back into our lemma sketch, we use an open-source tool, cog-of-ocaml [coq
2003].

4.3 Filtering and Ranking

In §3.3, we described multiple filters to remove extraneous candidate lemmas. To implement these
filters, we declare each candidate as a Coq lemma and use QUICKCHICK to remove lemmas that
have counterexamples. The remaining filters are implemented by running proof tactics using
SerAPI [Gallego Arias et al. 2020], a library for machine-to-machine interaction with Coq. To rank
the filtered lemmas, we use PROVERBOT9001 [Sanchez-Stern et al. 2020], a state-of-the-art proof-
synthesis tool that uses machine learning to produce proofs of Coq theorems. PROVERBOT9001 takes
as input definitions, a theorem that needs to be proven, and a set of axioms that can be assumed,
and returns a proof script or DoN’T KNow.

4.4 Discussion

In our implementation, we try to disprove each generalization eagerly, and we only carry out
synthesis from generalizations for which the disprover finds a counterexample. Intuitively, if a
generalization is not disprovable then it is itself a candidate lemma, and so we would rather spend
our synthesis resources elsewhere. Candidate lemmas are produced incrementally, as generalization
and synthesis proceed. Hence the algorithm is any-time: we can stop at any point, collect up the
current set of candidates, and filter and rank them. Furthermore, we stop synthesis as soon as we
get a category A; lemma since we will have a fully automated proof of the user’s original goal.
Our implementation inherits the limitations of the black-box tools we rely on. Notably, MyTH only
supports a small subset of OCaml. As described above, we mitigate this limitation by implementing
a translator, but this is not a solution that works for the full OCaml language, and so in some cases
1find can fail to produce code that MyTH accepts. MYTH also does not support polymorphic types.
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5 EXPERIMENTAL RESULTS
In this section we perform experiments to answer the following research questions:

RQ1. (§5.3) How effective is 1find in synthesizing useful helper lemmas? How fast can the tool
synthesize these helper lemmas? What is the impact of its filtering and ranking techniques?
RQ2. (§5.4) How does 1find’s data-driven approach compare in effectiveness to prior approaches
to lemma synthesis?

RQ3. (§5.5) How sensitive is 1find to hyperparameters and timeouts?

5.1 Benchmark Suite

Our approach generates candidate helper lemmas from a given proof context, and our tool is
implemented as a tactic. Hence, to evaluate 1find we need to invoke 1find at each point in
the proofs where a user-provided helper lemma was used. These are called evaluation locations.
Concretely, a proof state is an evaluation location if a human prover has used either the apply
or rewrite tactics with a helper lemma that they created. We evaluate 1find on a total of 222
evaluation locations. These benchmark locations are drawn from the following sources.

o CLAM (140): This benchmark suite consists of 86 theorems about natural numbers as well as
various data structures, including lists, queues, and trees, and it has been used to evaluate prior
forms of lemma synthesis [Ireland and Bundy 1996; Yang et al. 2019]. These benchmarks lack
associated proofs, so we converted them to Coq and manually proved each theorem (more
details on this process below). Out of the 86 cLam theorems, 67 require at least one helper
lemma, with many requiring multiple lemmas. In total, the cLAM suite contains 184 unique
evaluation locations that employ a helper lemma. Implementation limitations mentioned in
§4.4 preclude 44 locations from cLam from being used for evaluation, leaving 140 remaining
evaluation locations.

e FuLL AppER (62): This project [cir 1995] from the cog-contribs collection formalizes a full adder
and proves it correct [cir 1995]. The program first builds a half-adder circuit (which takes two
binary digits, and outputs two binary digits) and proves properties about it. Then the half-adder
circuit is used to build a full-adder circuit ( which takes two binary digits, plus a “carry” digit,
and outputs two binary digits). Finally, the program chains together a sequence of full adders to
create an adder circuit, which is proven correct. All of the 40 theorems in this project require at
least one helper lemma, and the project contains 62 evaluation locations in total.

o CompILER (1): This benchmark is the compiler example from Chapter 2 of Chlipala’s CPDT
textbook [Chlipala 2013], which is a certified compiler from a source language of expressions
to a target language of a stack machine. The final theorem formalizes the correctness of the
compiler. This benchmark contains one theorem, which uses one helper lemma, which is the
evaluation location. Though it contains only a single evaluation location, we chose this example
as a benchmark because it showcases a different application and the required helper lemma is
relatively large and complex.

o LIA (19): This benchmark suite consists of 9 theorems about data structures that require linear
integer arithmetic, from a prior work on lemma synthesis for fully automated proofs about data
structures (see Table 1 in [Yang et al. 2019]). As with the CLAM benchmarks, we converted
them to Coq and manually proved each theorem. Each proof requires at least one helper lemma,
and there are a total of 19 evaluation locations.

The FuLL Apper and CompILER benchmark suites already contain full Coq proofs written by
others, which in turn determine our evaluation locations. The theorems in the CLAM and LIA
benchmark suites lack proofs, so each theorem was manually proven by one of three of us, with
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Table 1. Results

CLAM | FuLL ADDER | COMPILER | LIA
Setup
# Theorems 86 40 1 9
# Evaluation Locations 140 62 1 19
Results

# fully proven lemma and goal 73 35 0 9
# else human match in top 1 17 0 1 1
# else human match in top 5 6 2 0 1
# else human match in top 10 4 0 0 0
# else more general than human lemma in top 1 1 0 0 0
Summary 101/140 37/62 1/1 11/19

varying experience from novice to expert in interactive theorem proving. Specifically, one person
had only done a small class project with Coq previously, one has been using Coq for the past few
years on a research project, and one has used it on and off for a decade. The proofs were completed
independently of 1find’s evaluation, and helper lemmas were used wherever the human prover
deemed necessary. In §5.4, we show that the vast majority of these helper lemmas are indeed
necessary, in the sense that a state-of-the-art automated prover cannot complete the proof of the
theorem without a helper lemma. We have provided all the benchmarks as part of the anonymous
supplementary material.

5.2 Experimental Setup

For each evaluation location, 1find generates 50 input-output examples from the current proof
state and is allowed to generate candidate lemmas with a maximum timeout of 120 minutes. Despite
the large search space, in §5.3 we show that the tool is performant with a median runtime of 3.3 min.
The tool has a 12s timeout for each call to MyTH and a 30s timeout for each call to PROVERBOT9001.
In addition to the timeout parameters, two key hyperparameters to our algorithm are the choice of
subterms to use for generating sketches and the number of synthesis results k to obtain per sketch.
In our experiments, we generate sketches from all subterms of sort Type, and we ask for 5 synthesis
terms per sketch. Empirically we have found these choices to provide good results, but we also
present a sensitivity analysis of other choices for timeout and hyperparameters in §5.5.

All evaluations were performed on a machine that runs MacOS (10.15.6) in a 2.3 GHz-Quad-Core
Intel Core i7, with 32GB memory.

5.3 Synthesized Helper Lemmas

Table 1 summarizes the results for all our benchmarks. We consider the use of 1find at an evaluation
location to be successful in three scenarios. First, we say that 1find is successful if it can produce a
candidate helper lemma that is automatically proven by PROVERBOT9001 and this helper lemma
enables PROVERBOT9001 to automatically prove the user’s goal. This is the best-case scenario, as
1find has produced a complete proof for the user. Second, we say that 1find is successful if a
lemma that matches the human-provided lemma is ranked highly (top-10) by the tool. Third, we say
that 1find is successful if a lemma that is more general than the human-provided lemma is ranked
highly by the tool. We use the < operator defined in §3.3 to automatically identify if a candidate
lemma [ matches or is more general than the human-provided lemma h. Specifically we say that I
matches hif both [ < hand h < [, and we say that [ is more general than hif h < [ but not vice versa.
These are reasonable success metrics for our tool, as we expect versions of the human-provided
lemma to be "natural" for people to understand, and also we know that the human-provided lemma
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does indeed lead to a full proof of the goal. Note however that the metrics are conservative, as there
could be other lemmas produced by 1find that are natural and appropriate but do not fall into one
of the above three categories.

In total, based on our evaluation metrics we see that 1find succeeds in 150 (67.5%) of the 222
evaluation locations across all benchmarks. Further, as shown in the third row of the table, in
117 (78%) of these successful 150 locations, 1find was able to synthesize a lemma that led to a
fully automated proof of the user’s goal. Rows 4-7 of Table 1 show a breakdown of the remaining
33 successful locations. Notably, for 19 of these evaluation locations, the top-ranked candidate
lemma produced by 1find matches the helper lemma provided by the human prover. These results
demonstrate the effectiveness of our filtering and ranking strategies in surfacing relevant lemmas
toward the top, and often as the top result. Further, 83.3% of the successful locations employed
data-driven synthesis, rather than solely using generalization. In those cases, we found that on
average 43.4% of the candidate lemma comes from the synthesized term, and the rest comes from
the lemma sketch.

Examples. Table 2 shows examples of lemmas synthesized by 1find along with their rank and
category (see §3.4 for category notations). We describe the first four of them in detail.

The first example from the Compiler benchmark formalizes the correctness of a compiler from
a source language of expressions to a target language of a stack machine. In this case, type exp
defines the source language of arithmetic expressions. evalExp function evaluates the programs in
this language. The target language’s instructions are of type instr, which are executed on a stack
machine. The function execI takes an instruction and a stack (represented as a list of nats) and
returns an updated stack, and execIs uses this function to execute a list of instructions. Finally,
the compiler function translates source programs to a list of instructions. The theorem itself is
not inductive, necessitating an inductive helper lemma that implies the theorem [Chlipala 2013].
1find was not able to identify a helper lemma that leads to a fully automated proof of the theorem.
However, it produces candidate lemmas in categories A; and As, and the top-ranked candidate
in category A;, shown in the table, exactly matches the human-provided lemma. The lemma is
non-trivial as it involves multiple calls to execIs, an arbitrary list of stack instructions 1, and an
arbitrary stack s.

The second example is from the FuLL ADDER benchmark. The theorem says that if we convert to
a natural number the result of adding a binary number, we get the same natural number we would
if we converted that input to a natural number. We present a synthesized helper lemma in table 2,
which belongs to category A; and hence led to a full proof of the theorem.

The third example in the table is from the cLam benchmark suite and proves the equivalence of
two functions for converting a binary tree into a list. For this example, 1find produced candidate
helper lemmas in both categories A, and As. The tenth-ranked candidate, shown in the table,
matches the human-provided lemma.

The fourth example in the table is from the r1a benchmark suite and reasons about how pushing
onto a queue affect its length. This is a case in which our evaluation does not deem 1find to have
succeeded, since it does not produce a fully automated proof and does not produce a match for
the human-provided lemma in the top ten results. However, the top-ranked result, shown in the
figure, is very close to the human-provided lemma, which simply replaces the term (rev 11) with
11. Further, this lemma is itself equally useful in completing the proof, despite being slightly more
complex.

Runtime Performance. Figure 6 plots the runtime distribution of 1find across all 222 evaluation
locations. The tool ran to completion on each of these benchmarks with a median runtime of 3.3 min
(shown in the plot where the curve labeled ToTaL TIME reaches a CDF of 0.50). Recall that 1find
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Table 2. A sample of 1find synthesized lemmas and their associated rank and category.

# Original Theorem & Proof State 1find Synthesized Lemma A

Theorem correct_compilation:V (e
:exp), execls (compile e) Nil =

) Lemma leml:V (e: exp) (l: list
(evalExp e) :: Nil. . .
instr) (s: list nat), execls
1. . As
) (compile e ++ 1) s = execIs 1
Proof State: execls (compile e2) ++
X ] . (evalExp e :: s).
(compile el) ++ (Add :: Nil) Nil =
(evalExp el) + (evalExp e2)::Nil
Theorem BV_full_adder_nil_ok :V
(v:BoolList) (cin:bool), BV_to_nat
(BV_full_adder v Nil cin) =
BV_to_nat v + Bool_to_nat cin. Lemma leml:V (l:BoolList), BV_to_nat
5. (BV_full_adder_sum 1 Nil false A
Proof State: BV_to_nat ++ BV_full_adder_carry 1 Nil
(BV_full_adder_sum (b :: b0) Nil false::Nil) = BV_to_nat 1.
false ++ BV_full_adder_carry (b
b0) Nil false :: Nil) BV_to_nat (b
b0) + bool_to_nat false
Theorem app_revflat:V (x:tree)
(y:list nat), (revflat x) ++ y =
. qrevaflat x y. Lemma leml0:V (1 11 12:list mat), (1,
++ 11) ++ 12 = 1 ++ (11 ++ 12).
Proof State: (revflat x1 ++ n
revflat x2) ++ y = grevaflat x1 n
grevaflat x2 y
Theorem queue_push:V (g:queue)
(n:nat), glen (gpush g n) =1 +
4. (glen q) . Lemma leml:V (1 1l:1list nat), len 1 A,
+ len 11 = len (1 ++ rev 11).
Proof State: len 1 + len (rev 10 ++
n :: Nil) = S (len 1 + len 10)
Theorem greva_greva:V (x:list nat),
(greva (greva x Nil) Nil) = x. Lemma lem9:V (n:nat) (l:1list nat),
5. greva (1 ++ n :: Nil) Nil = n :: Ay
Proof State: greva (greva x Nil) ++ (greva 1 Nil).
(n :: Nil) Nil = n :: x
Theorem rotate_len:V (x:1list nat),
rotate (len x) x = X. Lemma lem2:V (1 1l:1ist nat), rotate
6. (len 1) 1 ++ 11 = 11 ++ 1. A
Proof State: rotate (len x) (x ++ n
Nil) = n ++ x
Theorem drop_elem:V (v w x y:nat)
(z:1list nat), drop (S v) (drop w
Eiigi i Z;;?)) = drop v (drop w Lemma leml:VY (n x:nat) (l:list nat),
7. drop (S x) (drop n 1) = drop x (drop A;
(S n) 1)).
Proof State: drop (S v) (drop w
(drop x y :: z)) = drop v (drop w
(drop x z))
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Fig. 6. 1find has a median total runtime of 3.3 min. Further, the tool has a median runtime of 1.2 min for the
117 cases (see table 1) where it was able to find a full automated proof (A1).

produces a full automated proof (category A;) in 78% (see Table 1) of the successful evaluation
locations. As shown by the curve labeled TIME To CATEGORY 1 in Figure 6, the median and 75th
percentile runtime of the tool were only 1.2 min and 3.0 min respectively. These runtimes indicate
the viability of our approach and its instantiation in 1find to support interactive usage.

Impact of Filtering and Ranking. Figure 7 provides a detailed view of how many candidate
lemmas were generated and filtered, for the results presented in Table 1. As explained in §3.3, our
approach indeed generates a lot of candidate lemmas. For example, 1find generates a median of 150
candidate lemmas for each evaluation location from the benchmarks (shown where the solid curve
reaches a CDF of 0.50). However, our filtering techniques are very effective in removing useless
lemmas. As mentioned in §4, we filter INVvALID candidates (labeled Filter 1 in the figure) as we
generate candidate lemmas. We then filter lemmas (labeled Filter 2) that are either syntactically
similar to each other, or trivial, or restatements or special versions of the theorem statement. After
Filter 1, the median number of lemmas is reduced to 100. Further, after Filter 2 there is a median
of 16 candidate lemmas. Hence on average, Filter 1 reduced the candidate lemmas by 33%, and
Filter 2 reduced the remaining candidates by 84%.

Finally, as mentioned above even after filtering we are left with a median of 16 lemmas for each
benchmark suite. This highlights the importance of our ranking strategy, which was already shown
to be effective in the results of Table 1.
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0 500 1000 1500 2000 2500 3000

#Lemmas

Fig. 7. 1find reduces the number of lemmas by 89.3% on average after application of both filters.

Failure Analysis. Table 3 summarizes the failure reasons for the 72 locations where 1find did
not identify a successful candidate lemma. Broadly there are two classes of failures. First, there
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Table 3. Failure Analysis

CLAM FuLL Abper  CompPILER LIA

Not ranked in top-10 6 0 0 2
Not in k smallest Myth results 4 9 0 2
Requires generalization of variables 4 0 0 0
Incomplete grammar 4 0 0 0
Lemma rewrites a subterm of the goal 22 15 0 4
Total 40 24 0 8

are 23 cases where 1find failed to identify a candidate lemma due to the specific choice of tool
hyperparameters (rows 1-2). Recall that 1find is successful if it can produce a category A; lemma
or if a lemma ranked in the top 10 matches the human-provided lemma. As shown in the first row
of Table 3, in 8 cases 1find identifies a candidate lemma that matches a human lemma, but it is not
ranked in the top 10. The second row contains 15 cases where MYTH synthesizes a term that leads
to the required candidate lemma, but that term is not among the k (5 in our case) smallest terms
that MyTH produces and so we do not use it (see §5.2).

Second, there are 49 cases where 1find failed due to algorithmic limitations (rows 3-5 of Table 3),
which represent useful avenues of investigation in future work. 1find produces generalizations by
replacing non-variable terms in the goal state with fresh variables (see §3.2). However, in four cases
(row 3), the generation of a successful candidate lemma requires a generalization that is formed by
replacing repeated variables in the goal state with fresh variables. Next, in four cases (row 4), the
human-provided helper lemma contains functions that are not part of the goal state, and therefore
the grammar generated by 1find for synthesis does not contain those functions. Finally, recall that
1find produces lemma sketches from a generalization of the original goal, so candidate lemmas
will always have the same top-level structure as the entire goal. However, 41 cases (row 5) require
a helper lemma that is used to rewrite a particular subterm of the goal, and 1find is unable to
generate such lemmas.

5.4 Comparison with Other Approaches

In this section, we compare 1find against the three most relevant approaches. First, we compare
against a state-of-the-art automated prover to try to complete the proof from the evaluation location
(proof context). Second, we compare against generalization [Boyer and Moore 1979; Kaufmann
and Moore 1997], which is the most common lemma synthesis technique in interactive theorem
provers. Finally, we compare against ADTInd [Yang et al. 2019] which is a state-of-the-art lemma
synthesis technique in a non-interactive setting.

No Synthesis. In this study, we ran PROVERBOT9001 on each evaluation location across all bench-
marks, without providing any synthesized lemma from 1find. PROVERBOT9001 can automatically
prove only 27.5% of the evaluation locations. In contrast, with a lemma synthesized by 1find,
PROVERBOT9001 can automatically prove 52.7% of the evaluation locations (117 out of 222), and
as shown earlier overall 1find provides a useful lemma in 67.5% of the cases. This experiment
highlights the need for lemma synthesis and shows how our work complements existing work
on automated proofs. These results also serve as a measure of the quality of the human proofs, as
the human-provided lemmas are required in the vast majority of cases. Situations where a lemma
is used but not needed could arise due to the inexperience of the human prover or simply for
readability purposes.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 143. Publication date: October 2022.



143:20 A. Sivaraman, A. Sanchez-Stern, B. Chen, S. Lerner, and T. Millstein

Generalization. To our knowledge, there is no existing implementation of generalization for
Cogq. As part of 1find, however, we have implemented generalization in Coq, and furthermore,
we have implemented an exhaustive version of it: each subset of terms in the current goal state
induces a candidate lemma through generalization. This implementation allows us to perform an
apples-to-apples comparison between generalization and our approach. Hence, for this comparison,
we disable 1find’s synthesis process, so MYTH is not used at all, but all other parts of 1find work
as described earlier. This version of 1find can be seen as a best-case version of the generalization
technique [Boyer and Moore 1979; Kaufmann and Moore 1997], since we exhaustively consider all
possible generalizations, while in prior tools typically only one or a small number of generalizations
are heuristically chosen [Chamarthi et al. 2011; Yang et al. 2019]. According to our success metrics
defined in §5.3, a generalization is deemed useful in only 11.3% of all evaluation locations, as
compared with 67.5% of locations for 1find.

Enumerative Synthesis. We compare against ADTInd [Yang et al. 2019], a state-of-the-art lemma
synthesis technique for fully automated theorem proving. Like 1find, ADTInd employs generaliza-
tion as well as lemma sketches, but ADTInd fills these sketches via grammar-based term enumeration.
Unfortunately, a direct tool comparison against ADTInd would not be informative due to several
important differences between the tools: (1) Unlike 1find, which automatically generates lemma
sketches from the current proof state, ADTInd requires user-provided lemma sketches. The choice of
sketches has a large impact on which theorems are able to be successfully proven. (2) Since 1find is
intended for an interactive setting, the user indicates the proof state from which to carry out lemma
synthesis, whereas ADTInd automatically decides where to invoke lemma synthesis. (3) ADTInd is a
fully automated prover, so in addition to lemma synthesis, it also has its own proof search algorithm.
Hence whether ADTInd can prove a theorem or not depends in large part on the power of that proof
search algorithm. Further, that algorithm is very different from the neural-based prover that 1find
uses for filtering and ranking. To avoid these confounding differences and enable a fair comparison
of ADTInd’s and 1find’s lemma synthesis techniques, we substitute ADTInd’s enumeration-based
synthesis approach for our data-driven approach but keep everything else the same in 1find: the
same automatically generated lemma sketches, filtering and ranking, and success metrics.

To perform this comparison, we have created a version of 1find that does not provide any
examples to MYTH whenever it is invoked, but is otherwise identical to 1find. Without examples,
all terms of the desired type will be considered by MyTH to meet the given specification, so the
effect is that MyTH will perform a type-guided enumeration through the given grammar. This
ADTInd-like version of 1find synthesizes a successful helper lemma according to our success metric
in 79 evaluation locations, whereas the unmodified 1find does so in 125 evaluation locations. Note
that these results exclude cases where generalization produces the useful lemma for an evaluation
location since the two versions of 1find are identical in those cases. These results demonstrate the
benefits of data-driven synthesis: the examples act as a specification that allows for early filtering
of candidate lemmas, which in turn enables the synthesizer to provide higher-quality candidates.

5.5 Sensitivity

As described in §3, 1find has two hyperparameters: (1) number of synthesis results per sketch,
and (2) which terms to select for generating sketches. Further, as described in §4, 1find uses
PROVERBOT9001 to rank candidate lemmas and the MyTH synthesis engine for term generation. We
limit the time spent on each of these tools to efficiently search over the large space of candidate
lemmas using available resources. We carry out four separate experiments on the largest benchmark
suite (cLAM, with 140 evaluation locations) to understand 1find’s sensitivity to each of these
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parameters. To quantify the sensitivity of a parameter, in each experiment we vary one parameter

while fixing all others.
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a
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0.25
0.00
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Runtime (minutes)
Fig. 8. Total runtime of 1find increases when increas-
ing the number of synthesis terms per sketch. Runtime
almost doubles when k increases from 5 to 15, while it

Number of Synthesis Terms. In the first
experiment, we vary the number of synthesis
results (k) that we ask of MyTH per sketch. We
generate sketches from maximal subterms, and
use 10s and 12s timeout for PROVERBOT9001
and MYTH respectively. We study the sensitiv-
ity to this parameter by varying k to be 5, 15,
and 25. Respectively for these settings, 1find
is successful in 85, 89, and 80 cLAM evaluation
locations. There is a modest 4.7% increase in
effectiveness from k = 5 to k = 15, since there
is a large search space of candidate lemmas as k

is 1.3x more when it is increases from 15 to 25. increases. However, there is a significant drop

in effectiveness from k = 15 to k = 25 — as the search space increases, the useful candidates can
more easily fail to be highly ranked. Figure 8 plots the total runtime for different k values, and as
expected, the median total time increases with increasing k. Median total time of k = 5 is 4.4 min
(labeled Top 5), while it is 8.0 min and 10.9 min for k = 15 and k = 25 respectively (labeled Top 15,
Top 25). We pick k = 5 as the optimal number of synthesis terms for the remaining experiments,
since the increase to k = 15 has a large time cost and only a modest effectiveness benefit.

Proverbot Timeout. In the second experi-

1.00 T ment, we vary PROVERBOT9001 timeout to be 5s,
075l # e 10 seconds 10s, 15s, 30s, and 60s setting k = 5 and keeping
v & other parameters similar to the previous exper-
§50.5017 ;(5) z:zz:jz iment. Respectively for these settings, 1find is
0.25 | 60 seconds successful in 50, 85, 94, 97, and 102 cLAM evalu-
ation locations. The tool performs poorly with

0.00 20 40 60 80 100  a 5stimeout, since PROVERBOT9001 spends the

Runtime (minutes) first few seconds in setup, leaving too little time

Fig. 9. Median runtime of 1find decreases with an
increase in PROVERBOT9001 timeout. While this is unin-
tuitive, this is because the prover is allocated more time

for the actual proof search. Figure 9 plots the
runtimes for the 10s, 15s, 30s, and 60s timeout
cases. Median total runtime for 10s (labeled 10

per call, enabling it to prove a candidate lemma ear-
lier, which was otherwise not provable using a smaller
timeout.

SECONDS) is 4.4 min, while it is only 3.4 min for
15 seconds (labeled 15 SECONDS), 2.6 min for 30
seconds (labeled 30 seconDs), and 3.2 min for
60 seconds (labeled 60 sEconDs). It is perhaps unintuitive that allowing PROVERBOT9001 more time
leads to lower time overall, but the additional time for PROVERBOT9001 can allow it to complete a
proof that would otherwise not be possible, thereby finding a category A; lemma sooner. Therefore,
we pick 30s as the optimal timeout parameter for PROVERBOT9001 for experiments in §5.3.

Myth Timeout. The third experiment varies the MyTH timeout to be 8s, 12s, and 16s, updating
PrROVERBOT9001 timeout to 15s and keeping other parameters similar to the second experiment.
Respectively for these settings, 1find is successful in 87, 94 and 94 cLaM evaluation locations.
Figure 10 plots the total runtime for these timeout values. Despite increasing timeouts, the total
runtime is very similar among the three settings, with a median timeout of 3.1 min, 3.4 min, and
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3.5 min for 8s, 12s, and 16s respectively. Therefore, we pick 12s as the optimal timeout parameter
for MYTH.

1.00;
0.75
8050 8 seconds
© -- 12 seconds
0.25 - 16 seconds

0.00

20 40 60 80 100
Runtime (minutes)

Fig. 10. Median runtime of 1find is unaffected when increasing MyTH timeout.

Sketch Generation. In this final experiment, we explore two choices for sketch generation,
using k = 5, 15s timeout for PROVERBOT9001 and 12s timeout for MYTH. We generate synthesis
sketches from (1) all subterms of sort Type or (2) only from maximal subterms of sort Type. To
make the use of maximal terms more feasible, for that setting we also use a heuristic that requires
the synthesized expression to refer to all generalized variables from the sketch. The use of all terms
is successful in 98 evaluation locations while the use of maximal terms is successful in 94 locations.
Figure 11 plots the total runtime for these settings, and as expected, the total runtime is more
when generating sketches from all subterms compared to only maximal subterms. However, the
difference in the median runtime is only one minute. Therefore, we pick all subterms as the optimal
parameter for sketch generation.

100
0.75 L d

L i

0 0.504 /%

N f Maximal terms
0-25) -- All possible terms
0.00

20 40 60 80 100
Runtime (minutes)

Fig. 11. There is a modest increase in median runtime of 1find from 3.4 min to 4.5 min when generating
synthesis sketches from maximal terms compared to all terms.

6 RELATED WORK
6.1 Lemma Synthesis

As described in §1, there are a variety of existing approaches to lemma synthesis [Johansson 2019],
and they broadly fall into two categories. Many techniques perform rewrites on the target theorem or
the current proof state, in order to identify stronger induction hypotheses and helper lemmas. Most
common among these is the generalization technique [Aubin 1976; Boyer and Moore 1979; Castaing
1985; Dixon and Fleuriot 2003; Hesketh 1992; Hummel 1990; Kaufmann and Moore 1997], whereby
selected terms are replaced by fresh variables. Other works go beyond generalizing variables to a
broader set of rewrites [Bundy et al. 1993; Johansson et al. 2010; Kapur and Subramaniam 1996;
Sonnex et al. 2012]. For example, the rippling technique [Bundy et al. 1993] employs a set of rewrite
rules in order to make the current goal match the induction hypothesis.

The other category synthesizes candidate lemmas from a grammar using bottom-up enumera-
tion [Claessen et al. 2013, 2010; Heras et al. 2013; Johansson et al. 2011, 2014; Montafio-Rivas et al.
2012; Reynolds and Kuncak 2015; Yang et al. 2019]. Candidate lemmas are typically filtered by
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searching for counterexamples [Claessen and Hughes 2000], and in many systems an automated
prover is used to try to prove the remaining candidates. Closest to our work is ADTIND [Yang
et al. 2019], which employs bottom-up enumeration in order to search for candidate lemmas in
the context of an automated prover for abstract datatypes. Like 1find, ADTIND leverages both
generalization and sketches (which they call templates) for synthesis, but it is unclear how gener-
alizations are chosen and the sketches are user-provided. Heras et al. also combine enumeration
with lemma sketches [Heras et al. 2013], but the sketches are automatically learned from a set of
existing theorems.

1find’s key innovation over these prior works is showing how to reduce the problem of lemma
synthesis to a form of data-driven program synthesis. Versus the first category of approaches,
1find explores a wider space of potential lemmas via grammar-based synthesis and can leverage
off-the-shelf program synthesizers. Versus the second category of approaches, 1find generates
candidates that are directly targeted toward the current goal, which is critical in an interactive
setting. However, our approach borrows several techniques from these prior works. First, 1find
also employs generalization, but it is used not only to directly produce candidate lemmas but also
as the basis for producing sketches for program synthesis. Second, 1find employs counterexample
search to filter candidates, which has been previously used for filtering in both of the earlier
approaches [Chamarthi et al. 2011; Claessen et al. 2010]. Third, 1find also employs automated
provers, though due to the interactive setting we use them to rank rather than verify candidates.

6.2 Data-Driven Invariant Inference

Data-driven invariant inference has been widely used for various software engineering tasks, at
least since Ernst’s dissertation on inferring likely program invariants from data [Ernst 2000]. In
this approach, data about concrete program executions is used to generate positive and/or negative
examples, and the goal is to synthesize a predicate that separates these two sets of examples.
Recently these techniques have become state of the art for automated program specification and
verification [Astorga et al. 2019; Ezudheen et al. 2018; Garg et al. 2014, 2016; Padhi et al. 2016; Zhu
et al. 2018]. For example, prior work has shown how to generate examples for data-driven synthesis
of loop invariants that are sufficient to prove that a function meets its specification [Garg et al. 2014,
2016; Padhi et al. 2016]. Closest to our work is the HANoOI tool [Miltner et al. 2020], which infers
likely representation invariants to aid users of interactive theorem provers in proving that a data
structure implementation meets its specification.

As described in Section 1, the existing data-driven verification techniques fundamentally exploit
the specific kind of invariant being targeted, which has a clear logical specification over a fixed
set of variables. This enables a natural approach based on CEGIS [Solar-Lezama 2009] for both
generating examples and verifying candidate invariants. Our setting of lemma synthesis is more
general and poses a challenge for data-driven inference, as we lack both a fixed set of variables for
the lemma and clear criteria upon which to classify examples as positive or negative. Hence, we
have devised a new reduction to data-driven program synthesis: 1find produces sketches from
generalizations of the goal state and generates examples for synthesis using the heuristic that a
synthesized term should behave consistently to the term that it replaces. We have also developed
new approaches to filtering and ranking lemma candidates, to address the lack of clear success
criteria in our setting.

6.3 Automated Proofs for Interactive Theorem Provers

A variety of tools exist for automatically generating proofs in interactive settings, both in Coq
and other languages. Recent techniques use a form of machine learning, for example a neural
network, to guide a heuristic proof search, given a set of proof tactics as well as a set of existing
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lemmas/theorems [Bansal et al. 2019; First et al. 2020; Gauthier et al. 2017; Huang et al. 2019; Paliwal
et al. 2020; Sanchez-Stern et al. 2020; Yang and Deng 2019]. Another class of techniques serialize
the proof context into a format for input to an external automated solver and then serialize the
resulting proof back into the interactive theorem prover [Blanchette et al. 2011; Czajka and Kaliszyk
2018; Kaliszyk and Urban 2015a,b].

Our contribution is orthogonal to these works, which do not perform lemma synthesis. For
example, while the machine-learning-based approaches leverage existing lemmas as part of the
proof search, they will fail if the existing lemmas are not sufficient. As we showed in §5.3, 1find can
improve the capabilities of PROVERBOT9001 [Sanchez-Stern et al. 2020], a state-of-the-art automated
prover for Coq based on neural networks, synthesizing lemmas that allow it to prove goals that it
otherwise could not. 1find uses PROVERBOT9001 to rank candidate lemmas and produce proofs for
ones that are fully automatable. However, our approach is independent of the particular prover
used and so for example could instead employ a solver-based prover like CoqHammer [Czajka and
Kaliszyk 2018] or even employ multiple provers to leverage their relative strengths.

7 CONCLUSION

In this paper, we developed a new approach to lemma synthesis for interactive proofs that is both
goal-directed and expressive. The key technical contribution is a new reduction from the general
lemma synthesis problem to a data-driven program synthesis problem. The approach leverages the
information available in a given stuck proof state in multiple ways: sampling variable valuations for
example generation, generalizing the state to systematically introduce new variables for synthesis,
and deriving synthesis sketches from the current goal. We also describe several techniques for
filtering and ranking candidate lemmas, which are critical in an interactive setting. While the
problem of lemma synthesis is hard in general, the experimental evaluation of our resulting tool
1find demonstrates the promise of the approach and quantifies the benefits over other approaches.
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