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Abstract

Large multivariate spatial data sets are common in environmental
and climate sciences. This article proposes a flexible multivariate
spatial statistical model for such data. Built upon Ma and Kang (2020),
we model multivariate spatial processes with an additive form having
two components that induce spatial dependence and a relationship
between variables: One component is low-rank, and the other is
multivariate spatial conditional autoregressive (CAR) structure. The
resulting model not only allows for efficient computation of parameter
estimates and spatial predictions, but is also flexible enough to
describe potentially nonstationary and asymmetric spatial covariance
and cross-covariance structures. We call the proposed model the
multivariate fused Gaussian process (MFGP) model, and we investigate
its performance through an extensive simulation study and a real-
data example. The results show that, by borrowing information from
complementary data, MFGP provides substantially improved spatial
predictions compared to univariate models. We also demonstrate
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that MFGP outperforms a multivariate model with only a low-rank
component, or a multivariate CAR model with a separable covariance
matrix. Supplementary Materials for this article, including the source
code and results from additional numerical studies are also available.

Key Words : Basis functions; cross-covariance function; Gaussian Markov

random fields; Gaussian process; multivariate geostatistics; spatial prediction

1 Introduction

Multivariate spatial data are ubiquitous in environmental and climate

sciences. For example, remote sensing instruments provide observations of

multiple geophysical processes interacting with each other [30]. Monitoring

stations provide in-situ observations of many variables related to the

environment and air quality [16]. It is now common to obtain massive spatial

data sets that cover very large geographical regions or even the globe, often

at very high spatial resolutions. The prevalence and societal importance

of these large multivariate spatial data sets demands development of

computationally efficient statistical models to analyze them.

Modeling spatial dependence structure for multivariate spatial processes

is challenging, as it requires models that flexibly capture not only the spatial

dependence within each variable, but also complicated relationships between

variables, as defined through cross-covariance functions. Cross-covariance

functions are usually difficult to specify as they must be nonnegative definite.

[16, 14] present various ways to construct valid cross-covariances, including

formulating a cross-covariance function from valid univariate covariance

functions, and the linear model of coregionalization (LMC). [23] introduce

the notion of spectral coherence for multivariate spatial processes, and

discuss how some commonly used parametric cross-covariance functions can

result in very different properties using this method. Alternatively, [9]

suggest a conditional approach to build a multivariate spatial model that

guarantees the validity of the resulting cross-covariance and is not necessarily
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stationary or symmetric.

Although the aforementioned methods have been used in many studies,

adapting them for large multivariate spatial data sets is complicated and

nontrivial. Many developments in spatial statistics in the past decade have

focused on models for univariate spatial processes to tackle the “big n”

problem with large or massive data, including low-rank methods such as

fixed rank kriging (FRK, [8]) and the predictive process [3], approximation

methods that result in sparse matrices and thus efficient computation such

as Lattice krig [32], the nearest neighbor Gaussian process (NNGP; [11]),

the Vecchia approximation [22] and the meshed Gaussian process [33], and

variations based on them including the full-scale approximation (FSA; [35]),

the multi-resolution approximation (MRA; [20]), and the fused Gaussian

process (FGP; [27]). Some of these methods have been extended to model

multivariate Gaussian processes. [36] combine FSA and the LMC approach

to model multivariate spatial data. [42] build upon the NNGP to formulate

a Bayesian hierarchical model for large multivariate spatial data. [24] adopt

the basis function representation in Lattice Krig for multivariate spatial

processes. [30, 31] build low-rank statistical models based on the FRK

approach to fuse large multivariate spatial and spatio-temporal data, which

we refer to as multivariate FRK (MFRK) in this paper. [17] propose

nonparametric spectral methods combined with LMC to efficiently estimate

stationary multivariate spatial spectra from gridded data. Many of these

computationally efficient models for multivariate spatial processes rely on the

assumption of a specific parametric cross-covariance function, which is often

stationary and symmetric, such as the multivariate Matérn cross-covariance

models [16, 2].

Motivated by the FGP approach for univariate spatial processes [27], we

propose a model for large multivariate spatial data. This model consists of

two additive components: one component is in the low-rank basis-function

representation, as in FRK, and doesn’t require the assumption of a specific
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parametric cross-covariance function. The other component is defined

through the conditional approach suggested in [9], and uses multivariate

spatial conditional autoregressive (CAR) models as building blocks to induce

sparse matrices. For univariate spatial processes, [27] have shown that

by adding the CAR-model component to the low-rank one, the resulting

univariate FGP model substantially improves the predictive performance

compared to one that uses the low-rank component alone, as in FRK.

Unlike many methods assuming a specific parametric form of a stationary

covariance function known up to a few parameters, FGP is flexible enough

to provide good predictions even when the data present a nonstationary

dependence structure. In this paper, we extend FGP to the context of

multivariate modeling and call the resulting model the multivariate fused

Gaussian process (MFGP). We will demonstrate that the MFGP model

inherits the modelling flexibility and inferential benefits of FGP, and provides

superior prediction performance without assuming stationarity or symmetry

of the cross-covariance function.

The remainder of this article is organized as follows. Section 2 presents

the MFGP model and discusses relevant model specifications and related

methods in the literature. In Section 3, we give the derivation of likelihood-

based inference, including parameter estimation and spatial prediction. An

extensive simulation study is described in Section 4 to demonstrate the

robustness of MFGP’s predictive performance. In Section 5, we apply

MFGP to large multivariate environmental data sets from an uncertainty

quantification study in remote sensing. We conclude in Section 6 with a brief

summary and discussion of possible future work, and proof of a proposition

related to MFGP in Section 7. Additional numerical results and source code

are available in the Supplementary Materials.
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2 The Multivariate Fused Gaussian Process
(MFGP) Model

In this section, we describe the MFGP model for q-variate spatial processes.

We begin with the bivariate spatial process with q = 2, and then explain

how it can be extended for q > 2.

2.1 Model Specification

Let Y(s) = (Y1(s), . . . , Yq(s))
′ and {Y(s), s ∈ D} denote a hidden q-

variate spatial process over spatial domain D, where D ⊂ Rd. We are

interested in making inferences on this hidden process from observations

{Zi(s) : i = 1, . . . , q, s ∈ D}, which include measurement errors:

Zi(s) = Yi(s) + ϵi(s); i = 1, . . . , q; s ∈ D, (2.1)

where {ϵi(·) : i = 1, . . . , q} represent independent Gaussian white noise

with mean zero and variance σ2
ϵ,i, and for which we allow heterogeneous

measurement-error variances across variables. As pointed out in [8, 30, 31],

the variance parameters σ2
ϵ,i can be inferred from validation data or

instrument specification in remote sensing. If they are unknown, we can

estimate σ2
ϵ,i by fitting empirical semivariograms near the origin [19].

To model the hidden q-variate spatial process Y(s), we adopt the setup

in [30] and assume:

Yi(s) = µi(s) + νi(s), s ∈ D, (2.2)

where µi(·) denotes the spatial trend for the ith variable. In this paper,

we model it as µi(s) = Xi(s)
′βi, where βi is a pi-dimensional vector of

unknown coefficients for pi known covariates, Xi(s) ≡ (X1
i (s), . . . , X

pi
i (s))′,

for i = 1, . . . , q. For the second term on the right-hand-side of (2.2), we

follow the fused Gaussian process (FGP; [27]) structure and assume:

νi(s) = Si(s)
′ηi +A(s)′ξi, (2.3)
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where Si(s) ≡ (Si1(s), . . . , Siri(s))
′ is defined through a set of ri known

spatial basis functions {Sij(·) : j = 1, . . . , ri}, and ηi is the corresponding

ri-dimensional zero-mean Gaussian random vector with var(ηi) = Ki, for

i = 1, . . . , q. The term Si(s)
′ηi is called the low-rank component in [27],

as it follows the low-rank basis-function representation in FRK [8]. Multi-

resolution local bisquare functions are suggested for these basis functions

[8, 41], but other types of functions such as wavelets and cubic B-splines can

also be used [39, 4, 7, 40].

The second term in (2.3) is called the Gaussian-graphical-model (GGM)

component in FGP [27]. Similar to [30, 31, 27], we first assume that the

spatial domain D is made up of a set of N pre-specified and non-overlapping

basic areal units (BAUs), D ≡ B1
⋃

B2
⋃
· · ·

⋃
BN and Bi

⋂
Bj = ∅ for

1 ≤ i < j ≤ N . Let si denote the centroid of the ith BAU Bi, for

i = 1, . . . , N . In practice, these BAUs can be specified based on the

finest spatial resolution of scientific interest. Then, ξi is an N -dimensional

Gaussian random vector corresponding to these N BAUs for the ith variable,

i = 1, . . . , q. The N -dimensional vector A(s) ≡ (A1(s), . . . , AN (s))′ maps

a spatial location s to the corresponding BAU with Aj(s) = 1s∈Bj
for

j = 1, . . . , N and i = 1, . . . , q, where 1s∈Bj
is the indicator function equal to

1 if s is in the jth BAU Bj and 0 otherwise. If we need to interpolate between

the BAUs, we can specify A(·) to be piecewise linear basis functions relating

s to the centroids {si : i = 1, . . . , N} as suggested in [26]. [27] assume that

the N -dimensional random vector ξi can be represented as an undirected

Gaussian graphical model, and treat the spatial conditional autoregressive

(CAR) model as a special case in numerical examples.

To generalize the FGP model for multivariate spatial processes, we

maintain the assumption in [27] that the two components {ηi} and {ξi} are

independent but will introduce dependence across different variables, i =

1, . . . , q. Specifically, for the low-rank component, we assume Cov(ηi,ηj) =

Kij , for i, j = 1, . . . , q, and i ̸= j. As in [30], we don’t assume a
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specific parametric form for the ri × rj cross covariance matrix Kij , but

choose to estimate it directly using the expectation-maximization (EM)

algorithm described in Section 3. We expect this semiparametric form

to inherit the flexibility shown in [27] for describing nonstationary spatial

dependence within and between distinct variables. For the GGM component,

we need to generalize the CAR model to the multivariate context. [18]

proposed a class of multivariate spatial conditional autoregressive models

by generalizing the model in [29], and specifying simpler conditional and

marginal subsidiary spatial models. Alternatively, [9] suggest a conditional

approach for multivariate modeling. In this paper, we combine these two

methods to model {ξ1, . . . , ξq}.

We first describe this model for the bivariate case with q = 2 and explain

in Section 2.2 further the specification of the model when q > 2. With q = 2,

we assume:

ξ1 ∼ MVN(0,Σ1) (2.4)

ξ2|ξ1 ∼ MVN(P2,1ξ1,Σ2), (2.5)

where MVN(µ,B) denotes the multivariate normal distribution with mean

vector µ and covariance matrix B. Both distributions in (2.4) and (2.5) are

assumed to be spatial conditional autoregressive (CAR) models where the

precision matrices are Qi ≡ Σ−1
i = τ−2

i (I − γiH); i = 1, 2. Here, τ2i > 0 is

a scale parameter, representing the conditional variance; γi is interpreted as

the strength of spatial dependence; and H ≡ (hij) is a known N ×N sparse

proximity matrix with zero diagonal elements. In the numerical examples in

this paper, H is constructed based on the first-order neighborhood structure.

In (2.5), P2,1 is an N × N matrix representing how the conditional mean

E(ξ2|ξ1) is related to the elements in ξ1. Following [18], we assume a

parsimonious parametric form P2,1 = α2,1,0I + α2,1,1H, where α2,1,0 and

α2,1,1 are two parameters describing how the conditional mean is related

to the element in ξ1 in the same BAU, and those at neighboring BAUs,
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respectively.

Define ξ ≡ (ξ′1, ξ
′
2)

′. It is straightforward to show that ξ ∼ MVN(0,Σξ),

with

Σ−1
ξ =

(
Q1 +P′

2,1Q2P2,1 −P′
2,1Q2

−Q2P2,1 Q2

)
:= M.

Further, we can rewrite the precision matrix M as follows:

M =

(
Q1 P′

2,1Q2

0 −Q2

)(
I 0

P2,1 −I

)
.

The determinant ofM can be easily obtained by calculating the determinants

of two N ×N sparse matrices instead of dealing with a (2N)× (2N) matrix,

i.e., |M| = |Q1| × |Q2|.

Let Yi = (Yi(s1), . . . , Yi(sN ))′ for i = 1, 2, and Y = (Y′
1,Y

′
2)

′,

representing the bivariate process at all the N BAUs. Based on the models

in (2.2), (2.3), (2.4), and (2.5), we have the following model for the bivariate

process:

(
Y1

Y2

)
=

(
X1 0
0 X2

)(
β1

β2

)
+

(
S1 0
0 S2

)(
η1

η2

)
+

(
ξ1
ξ2

)
. (2.6)

For simplicity, we rewrite equation (2.6) as follows:

Y
(2N)×1

= X
(2N)×(p1+p2)

β
(p1+p2)×1

+ S
(2N)×(r1+r2)

η
(r1+r2)×1

+ ξ
(2N)×1

, (2.7)

where β = (β′
1,β

′
2)

′; S = blockdiag(S1,S2); η = (η′
1,η

′
2)

′ ∼ MVN(0,K)

with

K =

(
K1 K12

K′
12 K2

)
.

We call this model the multivariate fused Gaussian process (MFGP). The

spatial covariance and cross-covariances within and between Y1(·) and Y2(·)
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can be derived analogously:

Cov{Y1(si), Y1(sj)} = S1(si)K1S1(sj)
′ + [τ21 (I− γ1H)−1]ij ; (2.8)

Cov{Y2(si), Y2(sj)} = S2(si)K2S2(sj)
′ + [τ21 (α2,1,0I+ α2,1,1H)(I− γ1H)−1

(α2,1,0I+ α2,1,1H) + τ22 (I− γ2H)−1]ij ; (2.9)

Cov{Y1(si), Y2(sj)} = S1(si)K12S2(sj)
′ + [τ21 (I− γ1H)−1(α2,1,0I+ α2,1,1H)]ij ,

(2.10)

where [B]ij represents the (i, j)th element in the matrix B. From (2.8),

(2.9), and (2.10) above, we can see that the resulting cross-covariance is

not necessarily stationary or symmetric. Furthermore, we can obtain the

covariance matrix of Y:

ΣY = Cov(Y) = SKS′ +Σξ

=

(
S1K1S

′
1 +Σ1 S1K12S

′
2 +Σ1P

′
2,1

S2K
′
12S

′
1 +P2,1Σ1 S2K2S

′
2 +P2,1Σ1P

′
2,1 +Σ2

)
. (2.11)

In practice, we may not observe data at all N BAUs; we may only

have observations at some of them. Suppose we have observations from the

bivariate process Z ≡ (Z′
1,Z

′
2)

′ with Zi = (Z(sio,1), . . . , Z(sio,ni
))′, where sjo,i

denotes the ith observation location for the jth variable, for i = 1, . . . , nj

and j = 1, 2. Let A denote the (n1 + n2) × (2N) incident matrix to relate

the these (n1 + n2) observation locations to the N BAUs:

A =




A1
n1×N

0

0 A2
n2×N


 ,

where the jth row of Ai is the vector A(sio,j)
′. Recall that the lth element

in the N -dimensional vector A(s) is equal to 1 if s is in the lth BAU and

0 otherwise. Note that A1 and A2 do not need to be the same, thus the

observations from the two variables are not necessarily aligned. Combining

this with the model for Y in (2.7), we then have the model for the data

vector Z:

Z = AY+ ϵ = AXβ +ASη +Aξ + ϵ, (2.12)
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where ϵ ≡ (ϵ′1, ϵ
′
2)

′ represents the measurement errors distributed

as MVN(0,Vϵ) with Vϵ ≡ blockdiag(σ2
ϵ,1I, σ

2
ϵ,2I). Therefore, we

have Z ∼ MVN(AXβ,ΣZ), where ΣZ = AΣY A
′ + Vϵ. This

completes the model of the data vector. The unknown parameters

are {β,K, γ1, τ
2
1 , α2,1,0, α2,1,1, γ2, τ

2
2 }. We discuss how to estimate these

parameters and infer the hidden process Y(s) in Section 3.

2.2 MFGP with q > 2

We explain how the MFGP model is formulated when q > 2. For the trend

term, we assume µi(·) = Xi(·)
′βi for the ith variable, for i = 1, . . . , q. The

matrix X in (2.7) will become a (qN) × (
∑q

i=1 pi) block diagonal matrix

X = blockdiag(X1, . . . ,Xq), and β = (β′
1, . . . ,β

′
q)

′. For the low-rank

component, extension to more than two variables is straightforward: We

have S = blockdiag(S1, . . . ,Sq), η = (η′
1, . . . ,η

′
q)

′, and the matrix K =

var(η) is formulated with the blocks, Kij = cov(ηi,ηj) and Ki = var(ηi)

for i, j = 1, . . . , q and i ̸= j. For the GGM component, we use the conditional

approach to build the model for ξ = (ξ′1, . . . , ξ
′
q)

′. For example, when q = 3,

we have:

ξ1 ∼ MVN(0,Σ1) (2.13)

ξ2|ξ1 ∼ MVN(P2,1ξ1,Σ2), (2.14)

ξ3|ξ1, ξ2 ∼ MVN(P3,1ξ1 +P3,2ξ2,Σ3), (2.15)

where we assume Pi,j = αi,j,0I + αi,j,1H for i = 2, 3 and j = 1, . . . , i − 1;

the precision matrices Qi ≡ Σ−1
i = τ−2

i (I − γiH), for i = 1, 2, 3. It can be

shown that the precision matrix of ξ can be written as,

M =



Q1 +P′

2,1Q2P2,1 +P′
3,1Q3P3,1 P′

3,1Q3P3,2 −P′
2,1Q2 −P′

3,1Q3

(P′
3,1Q3P3,2 −P′

2,1Q2)
′ Q2 +P′

3,2Q3P3,2 −P′
3,2Q3

−(P′
3,1Q3)

′ −(P′
3,2Q3)

′ Q3




=



Q1 −P′

2,1 P′
3,1

0 I P′
3,2

0 0 −I







I 0 0
−Q′

2P2,1 Q2 0
Q′

3P3,1 Q′
3P3,2 −Q3


 ,
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and so |M| = |Q1| · |Q2| · |Q3|.

When q > 3, we model ξ in a manner similar to (2.13), (2.14), and (2.15).

We also derive the following proposition whose proof is given in Section 7.

Proposition 2.1 Consider a q-variate spatial processes. Recall that M

denotes the (qN) × (qN) precision matrix of ξ = (ξ′1, . . . , ξ
′
q)

′. Under the

model specification of MFGP described above, we have:

|M| = |Q1| · |Q2| · · · · · |Qq|.

When we use the MFGP model for a q-variate spatial process, the

unknown parameters are β, K, {γi : i = 1, . . . , q}, {τ2i : i = 1, . . . , q},

{αi,j,k : i = 2, . . . , q; j = 1, . . . , i − 1; k = 0, 1}. Therefore, as q increases,

the number of parameters increase as O(q2). When q is large, the q-variate

spatial processes is called a highly-multivariate spatial processes [12, 25].

The original parameterization of MFGP can result in a large number of

parameters for such highly-multivariate spatial processes, and this may pose

computational difficulties for parameter estimation. In Section 6 we discuss

possible ways to extend the MFGP model for highly-multivariate spatial

processes in view of this.

2.3 Alternative Model Specifications and Related Existing
Methods

In specifying the distribution of ξ = (ξ′1, . . . , ξ
′
q)

′ in the MFGP model, it is

also possible to use the multivariate CAR model suggested in [13] and [5],

as an alternative to the specification above. When q = 2 this model is,

ξ =

(
ξ1
ξ2

)
∼ MVN(0,Σξ) with Σξ = Γ⊗Q−1, (2.16)

where

Γ =

(
1 ρ
ρ 1

)
and Q = τ−2(I− γH).

Here, the (2N) × (2N) covariance matrix Σξ takes a separable form as the

Kronecker product of a 2 × 2 correlation matrix, with ρ representing the
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correlation across different variables, and an N×N spatial covariance matrix

from a univariate CAR model. The quantity γ is the spatial dependence

parameter, and τ2 is the conditional variance. Compared to the model in

(2.4) and (2.5), (2.16) contains fewer parameters, but assumes the same

correlation across variables at all spatial locations (i.e., the same ρ at all

locations), and the same spatial dependence structure for all variables (i.e.,

Q−1 as the same covariance matrix for all ξi’s, i = 1, . . . , q). This may not

be realistic in practice. In this paper, we call the resulting model of Y based

on this multivariate CAR model for ξ the separable fused Gaussian process

(SFGP).

The MFGP model is closely related to the data fusion model in [30, 31],

which is built upon the framework of the fixed rank kriging [8]. However,

there the model assumes that elements in ξi are Gaussian white noise.

MFGP allows them to have spatial dependence both within and between

ξi, i = 1, . . . , q. In numerical examples presented in Section 4 and Section 5,

we include results based on the original, FRK-based data fusion model in

our comparisons, and call it MFRK for short, in this paper.

Our MFGP model is an extension of the univariate FGP model presented

in [27]. One may reasonably ask whether MFGP performs better than simple

application of univariate FGP to all variables independently. Call the latter

independent FGP (IFGP). In the numerical examples in Section 4 we show

that MFGP does in fact provide improved predictions compared to IFGP by

borrowing strength across variables.

3 Inference

We adapt the Expectation-Maximization (EM) algorithm used in [21, 27]

to estimate parameters in MFGP. Without loss of generality, we describe

this EM algorithm and how to make spatial prediction with q = 2, but the

extension to q > 2 is straightforward.
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For the bivariate MFGP with q = 2, the unknown parameters are θ =

{β,K, γ1, γ2, τ
2
1 , τ

2
2 , α2,1,0, α2,1,1}. We treat η as latent variables and devise

the EM algorithm to minimize the twice-negative-marginal-log-likelihood

function of the data, Z:

−2 lnL(θ,Z) = ln |ΣZ |+ (Z−AXβ)′Σ−1
Z (Z−AXβ) + constant. (3.1)

The conditional distribution of η given data Z can be shown to be a

multivariate normal distribution with conditional mean given in (3.2) and

conditional variance-covariance matrix given in (3.3):

µη|Z,θ ≡ E(η|Z,θ) = (ASK)′Σ−1
Z (Z−AXβ), (3.2)

Ση|Z,θ ≡ Var(η|Z,θ) = K− (ASK)′Σ−1
Z (ASK). (3.3)

Furthermore, based on the assumptions in the MFGP model, it is

straightforward to show that Z|η ∼ MVN(A(Xβ+Sη),A(M−1 +Vϵ)A
′).

The corresponding twice-negative-complete-log-likelihood function is,

−2 lnLc(η,Z) = ln |D−1|+ (Z−AXβ −ASη)′D(Z−AXβ −ASη)

+ ln |K|+ η′K−1η, (3.4)

where D = (AM−1A′ +Vϵ)
−1.

In the expectation step (E-step), we derive the expected value of

−2 lnLc(η,Z) with respect to the conditional distribution of latent variables

η given data and all other of parameters. It is denoted by −2Q(θ;θl)

and given in (3.5), where θl denotes the parameter estimates in the lth

iteration of the EM algorithm. In the maximization step (M-step), we

update θ by maximizing Q(θ;θl), or, equivalently, minimizing −2Q(θ;θl)

with respect to θ. Specifically, it is straightforward to show that β̂l and K̂l

can be updated in closed form, as shown in (3.6) and (3.7), respectively. To

update the other parameters, {τ2i }
2
i=1, {γi}

2
i=1, and {α2,1,0, α2,1,1}, we need

to minimize −2Q(θ;θl), or equivalently, minimize the function f(·) given in
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(3.8), numerically. We use the function fmincon in Matlab to perform this

minimization in the numerical examples shown later in this paper.

−2Q(θ;θl) = Eη|Z,θl
[−2 lnLc(η,Z)]

= ln |D−1|+ ln |K|+ (Z−AXβ)′D(Z−AXβ)

− 2(Z−AXβ)′DASµη|Z,θl
+ tr

{[
(AS)′D(AS) +K−1

]
Ση|Z,θl

}

+ µ′
η|Z,θl

[
(AS)′D(AS) +K−1

]
µη|Z,θl

(3.5)

β̂l+1 =
[
(AX)′D(AX)

]−1
(AX)′D

[
Z− (AS)µη|θl,Z

]
(3.6)

K̂l+1 = Ση|Z,θl
+ µη|Z,θl

µ′
η|Z,θl

(3.7)

f(τ21 , τ
2
2 , γ1, γ2, α2,1,0, α2,1,1)

= ln |D−1|+
[
Z− (AX)β̂l+1

]′
D

[
Z− (AX)β̂l+1

]

− 2
[
Z− (AX)β̂l+1

]′
DASµη|Z,θl

+ tr
{
(AS)′D(AS)Ση|Z,θl

}

+ µ′
η|Z,θl

[
(AS)′D(AS)

]
µη|Z,θl

. (3.8)

Recall that the (n1+n2)× (n1+n2) matrix D = (AM−1A′+Vϵ)
−1. In the

EM algorithm we need to evaluate |D−1| and calculate D. When n1 + n2 is

large, this cannot be done directly. Instead, we apply Sylvester’s determinant

identity [1] and the Sherman-Morrison-Woodbury formula [8]:

|D−1| = |M+A′V−1
ϵ A| · |M−1| · |Vϵ|, (3.9)

D = V−1
ϵ −V−1

ϵ A[M+A′V−1
ϵ A]−1A′V−1

ϵ . (3.10)

Hence, evaluation of (3.8), (3.9), and (3.10) involves solving systems of linear

equation or calculating x1 = [M + A′V−1
ϵ A]−1a1 and calculating |M +

A′V−1
ϵ A|, where a1 denotes a 2N -dimensional vector, and M + A′V−1

ϵ A

is a sparse (2N) × (2N) matrix. Therefore, both (3.9) and (3.10) can be

calculated efficiently. Furthermore, note that to evaluate |M−1| in (3.9),

we use the result from Proposition 2.1 and thus have |M−1| = 1/|M| =

1/(|Q1| · |Q2|).
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Also, note that the matrix Σ−1
Z is needed in (3.2) and (3.3). To calculate

it efficiently, we use the Sherman-Morrison-Woodbury formula again:

Σ−1
Z = [D−1 + (AS)K(AS)′]−1

= D−D(AS)[K−1 + (AS)′D(AS)]−1(AS)′D. (3.11)

Notice that (3.11) only involves solving systems of linear equation x2 =

[K−1 + (AS)′D(AS)]−1a2, where K−1 + (AS)′D(AS) has dimension (r1 +

r2)×(r1+r2), and a2 denotes an (r1+r2)-dimensional vector. Recall that r1

and r2 are the numbers of basis functions in the low-rank component, which

are small or only moderate at worst.

Suppose that we would like to predict Yi(·) at mi prediction locations

{sPi1, . . . , s
P
imi

} for i = 1, 2. Define YP
i = (Yi(s

P
i1), . . . , Yi(s

P
imi

))′ for i = 1, 2,

and YP = (YP
1
′
,YP

2
′
)′. We use AP

i to denote the mi × N matrix relating

the mi prediction locations to BAUs, for i = 1, 2, and further define

AP = blockdiag(AP
1 ,A

P
2 ). It is straightforward to show that conditioning

on the data Z and parameters θ, YP |Z is given by:

YP |Z ∼ MVN(APXβ +APSµη|Z +APµξ|Z , Σ
Y

P |Z),

where µη|Z is given in (3.2),

µξ|Z = E(ξ|Z) = (AΣξ)
′Σ−1

Z (Z−AXβ),

and

Σ
Y

P |Z = (APS)Ση|Z(A
PS)′

+APΣξ|Z(A
P )′ + (APS)Ση,ξ|Z(A

P )′ +
[
(APS)Ση,ξ|Z(A

P )′
]′
.

Here, Ση|Z is given in (3.3),

Σξ|Z = Var(ξ|Z) = Σξ − (AΣξ)
′Σ−1

Z (AΣξ),

and

Ση,ξ|Z = Cov(η, ξ|Z) = −(ASK)′Σ−1
Z (AΣξ).
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We end this section with remarks on the computational complexity of

parameter estimation and prediction with MFGP. In the EM algorithm

described above, we need to calculate the log-determinant of sparse matrices

Q1, Q2, and M + AVϵA
′, which has computational complexity O(N1.5),

O(N1.5) and O((2N)1.5), respectively, as discussed by [34]. When we

calculate Σ−1
Z , we need to solve systems of linear equations involving

sparse matrices, with computational complexity no more than O(2N).

The calculation of [K−1 + (AS)′D(AS)]−1a1 has computational complexity

O((r1+r2)
3), but the number of basis functions, r1 and r2, are much smaller

than N . The EM algorithm also involves sparse matrix multiplication such

asAS andP′
2,1Q2, whose computational complexity is at mostO(2N(r1+r2)

and O(nnz(P2,1) nnz(Q2)/N), respectively, where nnz(B) denotes the

number of non-zero elements in the matrix B. Note that P2,1 and Q2

are both sparse matrices. Therefore, the overall computational cost for

these calculations is O(nnz(P2,1) nnz(Q2)/N + N(r1 + r2) + (r1 + r2)
3).

Note also that we need to perform numerical optimization in the M-step,

whose computational cost is hard to quantify. As for memory cost, we

need to store sparse matrices A, S, AS and H, which is O(N(r1 + r2))

at most. M should also be stored and occupies O(N) of memory. The EM

algorithm requires storage of the Cholesky factors of N ×N sparse matrices,

which will be O(N ln(N)), at most, after suitable sparse matrix reordering.

Therefore, the overall memory cost is O(N(r1 + r2) + N ln(N)). Although

the EM algorithm for parameter estimation can not be implemented in

parallel computational environments directly, it is possible to carry out some

components in parallel. For example, we can calculate spatial predictions

and associated prediction standard errors in parallel. Choosing appropriate

initial values in the EM algorithm can also accelerate convergence [27]. For

parameters {α2,1,0, α2,1,1}, one way to set their initial values is to first use

detail residuals which is calculated as the original data minus the trend

fitted via least squares as approximations of {ξ1, ξ2} and then fit a simple



J
IS
A
-D
R
A
F
T

Multivariate Fused Gaussian Process 17

regression model using these approximations. The fitted intercept and slope

can then be used as the initial values of {α2,1,0, α2,1,1}. This is how we set

the initial values of the EM algorithm in all numerical examples in Sections 4

and 5.

4 Simulation Examples

We present an extensive simulation study to demonstrate the performance

of MFGP. Specifically, we consider two scenarios where stationary and

nonstationary bivariate spatial data are simulated. In all numerical

examples, the MFGP model is implemented in Matlab and the Matlab

function fmincon is used for numerical optimization in the EM algorithm.

We also implement IFGP, MFRK, and SFGP described in Section 2.3 and

compare their performance with that of MFGP. Code for simulating and

analyzing data in the simulation examples is available at https://github.

com/li2mq/MFGP-Bcode.

4.1 Scenario 1: Performance under a Stationary Cross-
Covariance Function

We present analyses with simulated data from a bivariate Matérn cross-

covariance function [16, 37]. We consider a spatial domain D = [0, 20] ×

[0, 20] ⊂ R
2, from which BAUs are defined by regularly discretizing D to a

50 × 50 grid, resulting a total of N = 50 × 50 = 2, 500 BAUs. We simulate

a bivariate spatial process Y(·) = (Y1(·), Y2(·))
′ over D. Specifically, we

assume zero mean for both variables, and the cross-covariance follows the

form,

Cov{Yi(s), Yj(u)} = σ2
ijM(s,u|νij , a) for i, j = 1, 2, (4.1)

where M(·, ·) is the Matérn correlation function [16]:

M(s,u | ν, a) =
21−ν

Γ(ν)
(a∥s− u∥)ν Kν (a∥s− u∥) . (4.2)



J
IS
A
-D
R
A
F
T

18 Journal of the Indian Statistical Association

Here, Kν(·) is the Bessel function of the second kind of order ν; a > 0 is

a spatial scale parameter that sets the speed of decay in correlation of two

points with distance; ν > 0 is the smoothness parameter, with a larger ν

resulting a smoother process.

In our simulation study, we set σ2
11 = 1, σ2

22 = 4, σ2
12 = σ2

21 = 1.252,

a = 1, ν11 = 1.5, ν22 = 1, and ν12 = ν21 = 1.25 to simulate the bivariate

spatial processY(·). Then we add noise to generate data: Zi(·) = Yi(·)+ϵi(·)

as in (2.1). We set σ2
ϵ,i = 0.05σ2

ii. That is, the variance of the measurement

error on variable i is 5% of the variance of the ith variable, Yi(·). Therefore,

we have σ2
ϵ,1 = 0.05 and σ2

ϵ,2 = 0.2. We randomly sample 200 grid cells and

refer them as missing-at-random locations. We hold out data for both Z1(·)

and Z2(·) at these 200 locations. In addition, we define two block regions

within D. We then assume data are missing for Z1(·) in one of these two

blocks while data are missing for Z2(·) in both blocks, as shown in the second

row of Figure 1. The block where data are missing for both Z1(·) and Z2(·) is

called “Block 1” while the other block is called “Block 2” in this simulation

scenario.

We implement MFGP, IFGP, SFGP, and MFRK. They all share the

same low-rank components, i.e., the same basis functions. Among these

four methods, MFRK is different from the other three as it is based on

FRK and doesn’t include the GGM component. IFGP fits the two variables

with the FGP model, independently. Although SFGP jointly fits bivariate

data, as does MFGP, it assumes a separable covariance matrix for the GGM

component, and thus we expect it to be less flexible than MFGP. To compare

these four methods’ predictive performance, we calculate the mean squared

prediction error (MSPE) for the ith variable, i = 1, 2, for each of the four

methods, IFGP, SFGP, MFRK or MFGP:

MSPEi
SP =

1

|SP |

∑

sP∈SP

[
Yi(s

P )− Ŷi(s
P )

]2
. (4.3)

Here, SP represent the set of locations where predictions are made for Yi(·).
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Later, we present MSPE in situations where SP varies. For instance, SP may

be Block 1 (denoted by b1), Block 2 (denoted by b2), the set of missing-at-

random locations (denoted by points), or all missing data locations (denoted

by all). We also report the continuous-rank-probability score (CRPS; [15]),

CRPSiSP , for i = 1, 2 for all the four methods. Note that for both MSPE

and CRPS, smaller values indicate better predictive performance.

Our simulation consists of 100 runs. Simulated data and prediction

results from MFGP for a randomly selected run are plotted in Figure 1.

Table 1 summarizes the mean and standard error of MSPE and CRPS from

the 100 runs for predicting Y1(·) over Block 1, missing-at-random locations,

and all missing locations. Table 2 presents corresponding results for Y2(·).

Among the four methods, MFRK doesn’t perform as well as the others for

either Y1(·) or Y2(·). The three FGP-based methods, IFGP, SFGP, and

MFGP, perform similarly in predicting Y1(·). However, with Y2(·), we see

more substantial differences among them: MFGP performs better than the

other two when predicting Y2(·) at the locations with data missing in both

Z1(·) and Z2(·), and gives much smaller MSPE over Block 2, the region

where data are missing only in Z2(·). MFRK and IFGP have the largest

and second largest means of MSPEall for Y2(·), which are around two or

three times those of SFGP and MFGP. The standard errors of MSPEall

from MFRK and IFGP are two-to-three times as large as those from SFGP

and MFGP. The difference is mainly due to MSPEb2. Similar conclusions

can be drawn with CRPS as well.

We use boxplots to display the performance of these four methods by

recording MSPE for each of 100 replications, and computing the ratio of

MSPEs obtained from IFGP, SFGP and MFRK that of MFGP. If MFGP

performs better than the other three methods, we would expect MFGP to

have smaller MSPE, and its ratio would be one. Figure 2 presents boxplots

of these ratios over all 100 runs. The fact that the majority of ratios are

above one indicates that MFGP outperforms the other three methods. The
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Figure 1: A simulated data set and prediction results fromMFGP in Scenario
1. The first row shows the underlying true spatial fields Y1(·) (left) and Y2(·)
(right). The second row plots the data in which locations with data missing
are colored white. The third and fourth rows show the maps of predictions
and associated standard errors from MFGP for Y1(·) (left) and Y2(·) (right),
respectively.
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Supplementary Materials presents additional numerical results and similar

findings including simulation results from a tri-variate spatial process with

the stationary Matérn cross-covariance function in (4.1).

Table 1: Summaries of MSPE and CRPS for predicting Y1(·) in Scenario 1.
The means and standard errors (se) of MSPESP and CRPSSP are calculated
from all 100 runs with SP set to Block 1 (b1), missing-at-random locations
(points), and all missing-data locations (all). The lowest mean values are
highlighted in bold.

MSPEall MSPEb1 MSPEpoints

Method mean se mean se mean se

IFGP 0.1426 (0.0314) 0.2835 (0.1105) 0.0919 (0.0101)
SFGP 0.1388 (0.0308) 0.2787 (0.1091) 0.0884 (0.0097)
MFGP 0.1399 (0.0307) 0.2782 (0.1096) 0.0901 (0.0104)
MFRK 0.2537 (0.0520) 0.4103 (0.1719) 0.1973 (0.0254)

CRPSall CRPSb1 CRPSpoints
mean se mean se mean se

IFGP 0.2596 (0.0378) 0.3605 (0.1215) 0.2269 (0.0186)
SFGP 0.2557 (0.0377) 0.3559 (0.1226) 0.2227 (0.0181)
MFGP 0.2580 (0.0382) 0.3565 (0.1274) 0.2250 (0.0184)
MFRK 0.3505 (0.0500) 0.4008 (0.1482) 0.3265 (0.0322)

4.2 Scenario 2: Performance under a Nonstationary and
Asymmetric Cross-Covariance Model

In Scenario 2, We simulate a bivariate spatial process from a

nonstationary and asymmetric cross-covariance model Cov(Y1(s), Y2(u)) ̸=

Cov(Y1(u), Y2(s)). We follow the conditional approach in [9] to simulate

Y1(·) and Y2(·)|Y1(·) sequentially. Specifically, we first simulate Y1(·) from a

Gaussian process with the Matérn covariance function with a = σ2
11 = 1 and

ν = 1. To simulate {Y2(s)|Y1(·) : s ∈ D}, we assume:

E{Y2(s) | Y1(·)} =

∫

D
b(s,v)Y1(v)dv, (4.4)

Cov{Y2(s), Y2(u) | Y1(·)} = σ2
2|1M(s,u | ν2|1, a2|1), (4.5)
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Table 2: Summaries of MSPE and CRPS for predicting Y2(·) in Scenario 1.
The means and standard errors (se) of MSPESP and CRPSSP are calculated
from all 100 runs over SP set to Block 1 (b1), Block 2 (b2), missing-at-
random locations (points), and all missing-data locations (all). The lowest
mean values are highlighted in bold.

MSPEall MSPEb1 MSPEb2 MSPEpoints

mean se mean se mean se mean se

IFGP 4.8224 (2.6171) 1.8549 (0.7157) 9.1649 (5.5688) 0.6797 (0.0645)
SFGP 2.7172 (1.4022) 1.8690 (0.7115) 4.6555 (2.9466) 0.6965 (0.0665)
MFGP 2.1857 (1.1275) 1.6608 (0.6329) 3.6616 (2.3669) 0.6035 (0.0547)
MFRK 6.6324 (3.5282) 2.5461 (0.9867) 12.3105 (7.5024) 1.2897 (0.1517)

CRPSall CRPSb1 CRPSb2 CRPSpoints
mean se mean se mean se mean se

IFGP 1.0598 (0.3992) 0.8878 (0.2470) 1.5029 (0.7291) 0.6059 (0.0519)
SFGP 0.9057 (0.2406) 0.8896 (0.2413) 1.1635 (0.4385) 0.6129 (0.0523)
MFGP 0.8383 (0.1912) 0.8371 (0.2279) 1.0824 (0.3670) 0.5706 (0.0497)
MFRK 1.3022 (0.5199) 0.9777 (0.3385) 1.7946 (0.9667) 0.8036 (0.0718)
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Figure 2: Ratios of MSPEs for predicting Y1(·) (left) and Y2(·) (right) in
Scenario 1.
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where for u, s,v ∈ D, b(·, ·) is called the interaction function. We specify it

as: b(s,v) = A
{
1− [ (∥s∥ − ∥v− s∥)/γ ]2

}2
1∥v−s∥≤γ/8, where ∥ · ∥ denotes

Euclidean distance and 1∥v−s∥≤γ/8 is the indicator function whose value is

1 if ∥v − s∥ ≤ γ/8, and 0 otherwise. To simulate Y2(·), we set γ = 50,

A = 0.1, σ2
2|1 = 0.5, a2|1 = 3, and ν2|1 = 0.5. Lastly, we simulate Zi(·) with

Zi(·) = Yi(·)+ ϵi(·), where ϵi(·)
iid
∼ N(0, σ2

ϵ,i) for i = 1, 2 with σ2
ϵ,1 = 0.05 and

σ2
ϵ,2 = 0.04.

We carry out 100 runs and implement the four methods as described for

Scenario 1. Tables 3 and 4 summarize the mean and standard error of MSPE

and CRPS from the 100 runs for predicting Y1(·) and Y2(·) over different

regions. These results again show that MFGP outperforms the other three

methods, giving smaller MSPE and smaller or comparable CRPS overall. In

particular, the predictions of Y2(·) from MFGP are substantially better than

those from the other methods over Block 2 where data are missing from Z2(·)

but available for Z1(·). This demonstrates that MFGP is able to better fit

the spatial dependence across the two variables, and thus produce improved

predictions compared to the other three methods.

5 Applications with Multivariate Remote Sensing
Data

In this section, we illustrate MFGP for inference with large multivariate

spatial data obtained from remote sensing. [6] present an uncertainty

quantification study for the ECOsystem Spaceborne Thermal Radiometer

Experiment (ECOSTRESS) which is installed on the International Space

Station. In their study, simulation experiments are carried out to quantify

the sensitivity of the remote sensing estimation algorithm for deriving

evapotranspiration (ET; a quantitative measure of plant water use) from

observed radiance spectra. To quantify uncertainties [6] simulate an

ensemble of multivariate input spatial fields using SFGP fit to a multivariate
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Table 3: Summaries of MSPE and CRPS for predicting Y1(·) in Scenario 2.
The means and standard errors (se) of MSPESP and CRPSSP are calculated
from all 100 runs over SP set to Block 1 (b1), missing-at-random locations
(points), and all missing-data locations (all). The lowest mean values are
highlighted in bold.

MSPEall MSPEb1 MSPEpoints

mean se mean se mean se

IFGP 0.0496 (0.0048) 0.0593 (0.0141) 0.0461 (0.0041)
SFGP 0.0493 (0.0048) 0.0556 (0.0133) 0.0471 (0.0045)
MFGP 0.0478 (0.0044) 0.0569 (0.0135) 0.0445 (0.0037)
MFRK 0.0502 (0.0059) 0.0609 (0.0156) 0.0463 (0.0051)

CRPSall CRPSb1 CRPSpoints
mean se mean se mean se

IFGP 0.1682 (0.0135) 0.1855 (0.0425) 0.1629 (0.0117)
SFGP 0.1682 (0.0137) 0.1780 (0.0385) 0.1638 (0.0139)
MFGP 0.1680 (0.0138) 0.1802 (0.0434) 0.1630 (0.0134)
MFRK 0.1672 (0.0178) 0.1867 (0.0457) 0.1612 (0.0156)

Table 4: Summaries of MSPE and CRPS for predicting Y2(·) in Scenario 2.
The means and standard errors (se) of MSPESP and CRPSSP are calculated
from all 100 runs over SP set to Block 1 (b1), Block 2 (b2), missing-at-
random locations (points), and all missing-data locations (all). The lowest
mean values are highlighted in bold.

MSPEall MSPEb1 MSPEb2 MSPEpoints

mean se mean se mean se mean se

IFGP 0.6524 (0.3711) 0.2580 (0.1027) 1.2376 (0.7895) 0.0922 (0.0090)
SFGP 0.6703 (0.3601) 0.2774 (0.1106) 1.2657 (0.7673) 0.0973 (0.0119)
MFGP 0.5035 (0.2655) 0.2457 (0.1030) 0.9246 (0.5668) 0.0909 (0.0099)
MFRK 0.8581 (0.4754) 0.3887 (0.1516) 1.5569 (1.0122) 0.1885 (0.0235)

CRPSall CRPSb1 CRPSb2 CRPSpoints
mean se mean se mean se mean se

IFGP 0.3840 (0.1347) 0.3261 (0.1165) 0.5352 (0.2469) 0.2286 (0.0186)
SFGP 0.3930 (0.1373) 0.3333 (0.1178) 0.5428 (0.2494) 0.2346 (0.0192)
MFGP 0.3576 (0.1157) 0.3116 (0.0995) 0.4765 (0.2132) 0.2279 (0.0176)
MFRK 0.4693 (0.1474) 0.3855 (0.1349) 0.6086 (0.2778) 0.3193 (0.0301)
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“truth” data set. Then, the remote sensing estimation algorithm is applied

to all locations in each ensemble member. Distributions of estimated ET

at locations in the scene, and their relationships to corresponding “truth”

data, provide the desired characterization of uncertainty.

[6] use SFGP to fit and then jointly simulate leaf area index (LAI),

land surface temperature (LST), and normalized difference vegetation index

(NDVI). Here, we use data for these three variables over a 400 × 400 grid

from two of their scenes, called Scene 1 and Scene 2 in this paper. The

data are shown in the top rows of Figure 3 and Figure 4, respectively. More

detailed descriptions of these two data sets and background behind them

are given in the Supplementary Materials. Note that the sizes of these two

tri-variate spatial data sets are about 3× 4002 = 480, 000, which is too large

for classical geostatistical methods such as cokriging.

We implement all four methods, MFGP, SFGP, IFGP, and MFRK.

Tables 5, 6 and 7 display the summaries of MSPE and CRPS based

on predictions of the three variables, NDVI, LAI, and LST. Results are

consistent with those from simulation examples: We find that MFGP gives

the best predictive performance among all the four methods, in particular

in blocks where data are available from some but not all variables.

Improved predictive performance of MFGP comes with a more

complicated model specification and thus more computing time: MFRK

can be executed in less than 2 minutes; IFGP takes about 1.5 hours; it

takes SFGP more than 11 hours; MFGP takes the most time: around

50 hours. However, MFGP reduces MSPE for Y2(·) by more than 25%

compared to IFGP in Scene 1 and about 30% in Scene 2; the reduction

of MSPE is even more when we compare MFGP with SFGP and MRFK.

The most computationally intensive step in implementing MFGP is the EM

algorithm, in which we need to perform numerical optimization with more

than 9 parameters, at each iteration. Discussion on possible ways to simplify

the parameterization in MFGP, and thus speed up the computation further
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Figure 3: Plots of Data and predictions from MFGP for Scene 1. Data
for NDVI (left column), LAI (middle column), and LST (right column) are
shown in the top row. MFGP predictions are shown in the middle row, and
associate prediction standard errors are shown in the bottom row.
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Figure 4: Plots of Data and predictions from MFGP for Scene 2. Data
of NDVI (left column), LAI (middle column), and LST (right column) are
shown in the top row. MFGP predictions are shown in the middle row, and
associated prediction standard errors are shown in the bottom row.
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can be found in Section 6.

Finally, note that in order to use the conditional approach we need

to specify the order of conditioning. We thus investigate how MFGP

performs under all the six possible orders of conditioning, and find that

the predictive performance of MFGP is not sensitive to this choice. Details

of this sensitivity study are given in the Supplementary Materials.

Table 5: MSPE and CRPS for predicting NDVI (Y1(·)) calculated over
missing-data locations from data in both Scene 1 and Scene 2. The lowest
value in each column is highlighted in bold.

Scene 1 Scene 2
MSPEpoints CRPSpoints MSPEpoints CRPSpoints

IFGP 0.0090 0.0518 0.0035 0.0453
SFGP 0.0097 0.0539 0.0045 0.0524
MFGP 0.0096 0.0526 0.0042 0.0497
MFRK 0.0211 0.0878 0.0163 0.1042

Table 6: Summaries of MSPE and CRPS for predicting LAI (Y2(·)) from
both Scene 1 and Scene 2. The means and standard errors of MSPESP

and CRPSSP are calculated from locations in SP set to be Block 1 (b1),
missing-at-random locations (points), and all missing-data locations (all).
The lowest value in each column is highlighted in bold.

MSPEall MSPEb1 MSPEpoints CRPSall CRPSb1 CRPSpoints

Scene 1

IFGP 0.0097 0.0109 0.0082 0.0550 0.0537 0.0561
SFGP 0.0113 0.0145 0.0074 0.0502 0.0470 0.0529
MFGP 0.0072 0.0047 0.0102 0.0567 0.0487 0.0641
MFRK 0.0269 0.0157 0.0410 0.1047 0.0644 0.1373

Scene 2

IFGP 0.1289 0.2146 0.0223 0.2313 0.3377 0.0991
SFGP 0.1710 0.2963 0.0153 0.2565 0.3977 0.0810
MFGP 0.0872 0.1379 0.0243 0.1991 0.2757 0.1039
MFRK 0.2618 0.3073 0.2053 0.3765 0.4119 0.3326
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Table 7: Summaries of MSPE and CRPS for predicting LST (Y3(·)) from
both Scene 1 and Scene 2. The means and standard errors of MSPESP and
CRPSSP are calculated from locations in SP set to be Block 1 (b1), Block
2 (b2), missing-at-random locations (points), and all missing-data locations
(all). The lowest value is highlighted in bold in each column.

Scene 1

MSPEall MSPEb1 MSPEb2 MSPEpoints

IFGP 8.2930 4.6564 16.7823 2.2593
SFGP 6.5379 3.9618 12.6498 2.1416
MFGP 5.4560 2.8397 10.7216 2.1619
MFRK 11.2948 6.4759 17.2347 9.9011

CRPSall CRPSb1 CRPSb2 CRPSpoints
IFGP 1.8255 1.5153 2.7878 1.0145
SFGP 1.6717 1.4313 2.4608 0.9896
MFGP 1.5788 1.2915 2.3333 0.9978
MFRK 2.3474 1.8191 2.9819 2.2154

Scene 2

MSPEall MSPEb1 MSPEb2 MSPEpoints

IFGP 11.4903 13.2583 17.2495 2.1350
SFGP 7.2649 9.3429 9.1974 2.2804
MFGP 4.1336 4.8233 5.3685 1.7417
MFRK 17.0773 16.5009 20.0083 14.1509

CRPSall CRPSb1 CRPSb2 CRPSpoints
IFGP 2.4940 2.6885 3.4115 1.1121
SFGP 1.9798 2.2382 2.3882 1.1511
MFGP 1.5124 1.6929 1.7346 1.0120
MFRK 3.2648 3.0131 3.7749 2.9437
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6 Conclusions and Discussion

In this paper we propose the multivariate fused Gaussian process (MFGP)

model which can be used to flexibly model multivariate spatial processes

with large data. We demonstrate that MFGP gives superior predictive

performance in various simulation scenarios, and in an application to remote

sensing data analysis. One advantage MFGP possesses is its flexibility to

handle data at different spatial resolutions. MFGP inherits the additive,

multiresolution structure of FRK and FGP; the basis functions in the model

are completely prespecified and known. This makes it possible to handle

data sets with different spatial resolutions, since change-of-support is easily

accomplished by aggregating off-line when data are at coarser resolutions

than the BAUs.

When then number of variables q is large, the number of MFGP

parameters increases substantially. This can make MFGP less than desirable

for highly-multivariate spatial processes. The dimension of the matrix K

becomes
∑q

i=1 ri. For {ξi}
q
i=1, we need to estimate parameters {τi}

q
i=1,

{γi}
q
i=1, and {αi,j,0, αi,j,1}1≤j<i≤q. One way to alleviate this difficulty is to

introduce additional assumptions such as the Markov property of order one

for the GGM component: ξq ⊥ ξ1, ..., ξq−2, given ξq−1. The directed acyclic

graph (DAG) structure used in the meshed GP [33] can also be considered

for the GGM component. “Stitching” [12] may also be used to form a sparse

graphical model for {ξi}
q
i=1. This can potentially reduce the number of

parameters for {ξi}
q
i=1. And additional difficulty is that when q is large, K

may no longer be “low-rank” as
∑q

i=1 ri increases. [25] recently propose to

incorporate regularization terms in model fitting to enforce sparsity in K

and to achieve efficient computation.

One natural extension of MFGP is to relax the assumption of Gaussian

distributions and to generalize it for multivariate non-Gaussian spatial data.

This can be achieved by embedding the MFGP model in the framework of
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the spatial generalized linear models [38]. By assuming a state-space model

structure for the low-rank and the multivariate CAR components [10, 28],

we may also extend the MFGP model to the space-time setting. These

directions may be pursued in future research.

7 Appendix

Proof of Proposition 2.1: For ξ(k) ≡ (ξ′1, . . . , ξ
′
k)

′ and k = 1, . . . , q, let Mk

denote the precision matrix of ξ(k). Thus, M = Mq. We will prove that

M = |Q1| · · · · · |Qq| using induction as follows.

When q = 1, M = M1 = Q1. Thus, |M| = |Q1|. Therefore, Proposition

2.1 holds when q = 1.

When q = 2, it is straightforward to show that M =(
Q1 P′

1Q2

0 −Q2

)(
I 0
P1 −I

)
:= B2,1B

′
2,2, where B2,1 and B2,2 are two upper

triangular block matrices. Hence, |M| = |Q1|·|Q2|. The result in Proposition

2.1 holds when q = 2.

Assume that for q = k ≥ 2, we have |Mk| = |Q1| · · · · · |Qk|, and Mk =

Bk,1B
′
k,2, where Bk,1 and Bk,2 are two upper triangular block matrices.

Then, for q = k + 1, in the MFGP model we have p(ξ1, ξ2, . . . , ξk, ξk+1) =

p(ξ1, ξ2, . . . , ξk) × p(ξk+1|ξ1, ξ2, . . . , ξk), where p(·) denotes the probability

density function (pdf).

It is straightforward to show that:

p(ξ1, ξ2, . . . , ξk, ξk+1) ∝ exp
{
−1/2ξ(k)

′
Mkξ

(k)
}

×exp

{
−1/2

[
ξk+1 −

∑k
j=1Pk+1,jξj

]′
Qk+1

[
ξk+1 −

∑k
j=1Pk+1,jξj

]}

= exp
{
−1/2ξ(k+1)′Mk+1ξ

(k+1)
}
.

Thus, we have:

Mk+1 =

(
Bk,1 R̄

′
kQk+1

0 −Qk+1

)(
B′

k,2 0

R̄k −I

)
:= Bk+1,1B

′
k+1,2,
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where R̄k is an N × (kN) matrix given by

R̄k = (Pk+1,1 Pk+1,2 · · · Pk+1,k) .

We thus have

|Mk+1| = |Bk,1|×|Bk,2|×|Qk+1| = |Mk|×|Qk+1| = |Q1|×|Q2|×· · ·×|Qk|×|Qk+1|,

which means that the result in Proposition 2.1 holds when q = k + 1. This

completes the proof of this proposition.
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