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Abstract

Large multivariate spatial data sets are common in environmental
and climate sciences. This article proposes a flexible multivariate
spatial statistical model for such data. Built upon Ma and Kang (2020),
we model multivariate spatial processes with an additive form having
two components that induce spatial dependence and a relationship
between variables: One component is low-rank, and the other is
multivariate spatial conditional autoregressive (CAR) structure. The
resulting model not only allows for efficient computation of parameter
estimates and spatial predictions, but is also flexible enough to
describe potentially nonstationary and asymmetric spatial covariance
and cross-covariance structures. We call the proposed model the
multivariate fused Gaussian process (MFGP) model, and we investigate
its performance through an extensive simulation study and a real-
data example. The results show that, by borrowing information from
complementary data, MFGP provides substantially improved spatial
predictions compared to univariate models. We also demonstrate
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that MFGP outperforms a multivariate model with only a low-rank
component, or a multivariate CAR model with a separable covariance
matrix. Supplementary Materials for this article, including the source
code and results from additional numerical studies are also available.
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1 Introduction

Multivariate spatial data are ubiquitous in environmental and climate
sciences. For example, remote sensing instruments provide observations of
multiple geophysical processes interacting with each other [30]. Monitoring
stations provide in-situ observations of many variables related to the
environment and air quality [16]. It is now common to obtain massive spatial
data sets that cover very large geographical regions or even the globe, often
at very high spatial resolutions. The prevalence and societal importance
of these large multivariate spatial data sets demands development of
computationally efficient statistical models to analyze them.

Modeling spatial dependence structure for multivariate spatial processes
is challenging, as it requires models that flexibly capture not only the spatial
dependence within each variable, but also complicated relationships between
variables, as defined through cross-covariance functions. Cross-covariance
functions are usually difficult to specify as they must be nonnegative definite.
[16, 14] present various ways to construct valid cross-covariances, including
formulating a cross-covariance function from valid univariate covariance
functions, and the linear model of coregionalization (LMC). [23] introduce
the notion of spectral coherence for multivariate spatial processes, and
discuss how some commonly used parametric cross-covariance functions can
result in very different properties using this method. Alternatively, [9]
suggest a conditional approach to build a multivariate spatial model that

guarantees the validity of the resulting cross-covariance and is not necessarily
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stationary or symmetric.

Although the aforementioned methods have been used in many studies,
adapting them for large multivariate spatial data sets is complicated and
nontrivial. Many developments in spatial statistics in the past decade have
focused on models for univariate spatial processes to tackle the “big n”
problem with large or massive data, including low-rank methods such as
fixed rank kriging (FRK, [8]) and the predictive process [3], approximation
methods that result in sparse matrices and thus efficient computation such
as Lattice krig [32], the nearest neighbor Gaussian process (NNGP; [11]),
the Vecchia approximation [22] and the meshed Gaussian process [33], and
variations based on them including the full-scale approximation (FSA; [35]),
the multi-resolution approximation (MRA; [20]), and the fused Gaussian
process (FGP; [27]). Some of these methods have been extended to model
multivariate Gaussian processes. [36] combine FSA and the LMC approach
to model multivariate spatial data. [42] build upon the NNGP to formulate
a Bayesian hierarchical model for large multivariate spatial data. [24] adopt
the basis function representation in Lattice Krig for multivariate spatial
processes. [30, 31] build low-rank statistical models based on the FRK
approach to fuse large multivariate spatial and spatio-temporal data, which
we refer to as multivariate FRK (MFRK) in this paper. [17] propose
nonparametric spectral methods combined with LMC to efficiently estimate
stationary multivariate spatial spectra from gridded data. Many of these
computationally efficient models for multivariate spatial processes rely on the
assumption of a specific parametric cross-covariance function, which is often
stationary and symmetric, such as the multivariate Matérn cross-covariance

models [16, 2].

Motivated by the FGP approach for univariate spatial processes [27], we
propose a model for large multivariate spatial data. This model consists of
two additive components: one component is in the low-rank basis-function

representation, as in FRK, and doesn’t require the assumption of a specific
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parametric cross-covariance function. The other component is defined
through the conditional approach suggested in [9], and uses multivariate
spatial conditional autoregressive (CAR) models as building blocks to induce
sparse matrices. For univariate spatial processes, [27] have shown that
by adding the CAR-model component to the low-rank one, the resulting
univariate FGP model substantially improves the predictive performance
compared to one that uses the low-rank component alone, as in FRK.
Unlike many methods assuming a specific parametric form of a stationary
covariance function known up to a few parameters, FGP is flexible enough
to provide good predictions even when the data present a nonstationary
dependence structure. In this paper, we extend FGP to the context of
multivariate modeling and call the resulting model the multivariate fused
Gaussian process (MFGP). We will demonstrate that the MFGP model
inherits the modelling flexibility and inferential benefits of FGP, and provides
superior prediction performance without assuming stationarity or symmetry

of the cross-covariance function.

The remainder of this article is organized as follows. Section 2 presents
the MFGP model and discusses relevant model specifications and related
methods in the literature. In Section 3, we give the derivation of likelihood-
based inference, including parameter estimation and spatial prediction. An
extensive simulation study is described in Section 4 to demonstrate the
robustness of MFGP’s predictive performance. In Section 5, we apply
MFGP to large multivariate environmental data sets from an uncertainty
quantification study in remote sensing. We conclude in Section 6 with a brief
summary and discussion of possible future work, and proof of a proposition
related to MFGP in Section 7. Additional numerical results and source code

are available in the Supplementary Materials.
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2 The Multivariate Fused Gaussian Process
(MFGP) Model

In this section, we describe the MFGP model for g-variate spatial processes.
We begin with the bivariate spatial process with ¢ = 2, and then explain

how it can be extended for g > 2.

2.1 Model Specification

Let Y(s) = (Yi(s),...,Yy(s)) and {Y(s),s € D} denote a hidden ¢-
variate spatial process over spatial domain D, where D C R?. We are

interested in making inferences on this hidden process from observations

{Zi(s) :i=1,...,q,s € D}, which include measurement errors:
Zi(8) = i(s) + ei(s); i =1ye..,q5 8ED, (2.1)
where {€;(-) : i = 1,...,q} represent independent Gaussian white noise

2

with mean zero and variance oZ;, and for which we allow heterogeneous
’

measurement-error variances across variables. As pointed out in [8, 30, 31],
2

2, can be inferred from validation data or

the variance parameters o
instrument specification in remote sensing. If they are unknown, we can
estimate a?ﬂ- by fitting empirical semivariograms near the origin [19].

To model the hidden g-variate spatial process Y (s), we adopt the setup

in [30] and assume:
Yi(s) = us(s) + 1i(s), s €D, (2.2)

where pu;(-) denotes the spatial trend for the ith variable. In this paper,
we model it as p;(s) = X;(s)'8;, where 3, is a p;-dimensional vector of
unknown coefficients for p; known covariates, X;(s) = (X} (s),..., X (s)),
for i = 1,...,q. For the second term on the right-hand-side of (2.2), we

follow the fused Gaussian process (FGP; [27]) structure and assume:

vi(s) = Si(s)'m; + A(s)'§;, (2.3)
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where S;(s) = (Si1(s),...,Sir(s))" is defined through a set of r; known
spatial basis functions {S;;(-) : j = 1,...,7;}, and n; is the corresponding
ri-dimensional zero-mean Gaussian random vector with var(n;) = K;, for
i =1,...,q. The term S;(s)'n, is called the low-rank component in [27],
as it follows the low-rank basis-function representation in FRK [8]. Multi-
resolution local bisquare functions are suggested for these basis functions
[8, 41], but other types of functions such as wavelets and cubic B-splines can
also be used [39, 4, 7, 40].

The second term in (2.3) is called the Gaussian-graphical-model (GGM)
component in FGP [27]. Similar to [30, 31, 27], we first assume that the
spatial domain D is made up of a set of N pre-specified and non-overlapping
basic areal units (BAUs), D = BiJUB2J---UBn and B;(\B; = 0 for
1 < i< j < N. Let s; denote the centroid of the ith BAU B;, for
i = 1,...,N. In practice, these BAUs can be specified based on the
finest spatial resolution of scientific interest. Then, &, is an /N-dimensional
Gaussian random vector corresponding to these N BAUs for the ith variable,
i = 1,...,q. The N-dimensional vector A(s) = (Ai(s),..., An(s))’ maps
a spatial location s to the corresponding BAU with Aj(s) = lsep; for
Jj=1,...,Nandi=1,...,q, where Ls¢p; is the indicator function equal to
1ifsisin the jth BAU B; and 0 otherwise. If we need to interpolate between
the BAUs, we can specify A(-) to be piecewise linear basis functions relating
s to the centroids {s; : 4 = 1,..., N} as suggested in [26]. [27] assume that
the N-dimensional random vector §; can be represented as an undirected
Gaussian graphical model, and treat the spatial conditional autoregressive

(CAR) model as a special case in numerical examples.

To generalize the FGP model for multivariate spatial processes, we
maintain the assumption in [27] that the two components {n,} and {§;} are
independent but will introduce dependence across different variables, ¢ =
1,...,q. Specifically, for the low-rank component, we assume Cov(n;,n,) =

K;;, for i,j = 1,...,q, and @ # j. As in [30], we don’t assume a
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specific parametric form for the r; x r; cross covariance matrix Kj;;, but
choose to estimate it directly using the expectation-maximization (EM)
algorithm described in Section 3. We expect this semiparametric form
to inherit the flexibility shown in [27] for describing nonstationary spatial
dependence within and between distinct variables. For the GGM component,
we need to generalize the CAR model to the multivariate context. [18]
proposed a class of multivariate spatial conditional autoregressive models
by generalizing the model in [29], and specifying simpler conditional and
marginal subsidiary spatial models. Alternatively, [9] suggest a conditional
approach for multivariate modeling. In this paper, we combine these two
methods to model {§;,...,&,}.

We first describe this model for the bivariate case with ¢ = 2 and explain
in Section 2.2 further the specification of the model when ¢ > 2. With g = 2,

we assume:

& ~MVN(0,%) (2.4)
£:161 ~ MV N(P2.€,, o), (2.5)

where MV N (p,B) denotes the multivariate normal distribution with mean
vector p and covariance matrix B. Both distributions in (2.4) and (2.5) are
assumed to be spatial conditional autoregressive (CAR) models where the
precision matrices are Q; = X' = 77 *(I — v;H); i = 1,2. Here, 72 > 0 is
a scale parameter, representing the conditional variance; ~; is interpreted as
the strength of spatial dependence; and H = (h;;) is a known N x N sparse
proximity matrix with zero diagonal elements. In the numerical examples in
this paper, H is constructed based on the first-order neighborhood structure.
In (2.5), P25 is an N x N matrix representing how the conditional mean
E(&,]€,) is related to the elements in &;. Following [18], we assume a
parsimonious parametric form Po1 = 91,0l + ag11H, where as10 and
a1,1 are two parameters describing how the conditional mean is related

to the element in &; in the same BAU, and those at neighboring BAUs,
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respectively.
Define & = (£, &5)". It is straightforward to show that &€ ~ MV N(0, X¢),
with
_ +P5,QPy1 —P5,Q
n 1:<Q1 2,1Q22, 21 2) _
¢ —QoP21 Q,

Further, we can rewrite the precision matrix M as follows:

M — <Q1 '2,1Q2> ( I 0)_
0 -Q Pyy -1

The determinant of M can be easily obtained by calculating the determinants
of two N x N sparse matrices instead of dealing with a (2N) x (2N) matrix,
Le., M| =[Q;] x|Qqy|.

Let Y; = (Yi(s1),...,Yi(sy)) for « = 1, 2, and Y = (Y},Y%),
representing the bivariate process at all the N BAUs. Based on the models
n (2.2), (2.3), (2.4), and (2.5), we have the following model for the bivariate

process:

Y, X; 0 51) <Sl 0> <TI1> <£1>
= + + . 2.6
<Y2> < 0 XZ) (52 0 Sy) \m 3 (26)
For simplicity, we rewrite equation (2.6) as follows:

@N)x1  @2N)x(p1+p2)  (pr4pa)x1  CN)X(T1+72) (r14r9)x1  (2N)x1

where B = (B1,83)"; S = blockdiag(S1,82); n = (n1,m3)" ~ MVN(0,K)

with
Ky K12)
K= .
( 12 Ko
We call this model the multivariate fused Gaussian process (MFGP). The

spatial covariance and cross-covariances within and between Y;(-) and Ya(-)
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can be derived analogously:

Cov{Yi(si), Yi(sj)} = Si(s)KiSu(sj) + [rf(T—vH) iy (2.8)
Cov{Ya(si),Ya(s;)} = Sa(s;)K2Sa(s;) + [ri(ag10l + a1 H)(I - H)™

(a2,1,0I + 2,11 H) + 75 (I — 72 H) 55 (2.9)

Cov{Yi(si),Ya(sj)} = Si(si)Ki2Sa(sj) + [ri (L —yH) " (ag1,0l + a1 H)Jij,

(2.10)

where [B];; represents the (i, j)th element in the matrix B. From (2.8),
(2.9), and (2.10) above, we can see that the resulting cross-covariance is
not necessarily stationary or symmetric. Furthermore, we can obtain the

covariance matrix of Y:

Yy = Cov(Y)=SKS + =
S1K1S) + 3 S:1K 128, + 3, P
- <SgK’128’1 +P21S1 SoKoSh+ PSPy + 22> - (211)
In practice, we may not observe data at all N BAUs; we may only
have observations at some of them. Suppose we have observations from the

bivariate process Z = (2}, Z)" with Z; = (Z(s},,), ..., Z(s},,,)), where s ;
denotes the ith observation location for the jth variable, for i = 1,...,n;
and j = 1,2. Let A denote the (n; + n2) x (2N) incident matrix to relate

the these (n1 4+ n2) observation locations to the N BAUs:

Ay 0
_ ny XN
AY 0 Ay |7
n2><N

where the jth row of A; is the vector A(s;j)’. Recall that the /th element
in the N-dimensional vector A(s) is equal to 1 if s is in the {th BAU and
0 otherwise. Note that A; and As do not need to be the same, thus the
observations from the two variables are not necessarily aligned. Combining
this with the model for Y in (2.7), we then have the model for the data

vector Z:

Z=AY +e=AX3+ ASn+ A€ + ¢, (2.12)
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where € = (€),€,) represents the measurement errors distributed
as MVN(0,V.) with V. = blockdiag(c? 1,07,1).  Therefore, we
have Z ~ MVN(AXB,Xz), where £, = ASyA’ + V..  This

completes the model of the data vector. The unknown parameters
are {,@,K,’)/17T12,a2’170,a2,171,72,7'22}. We discuss how to estimate these

parameters and infer the hidden process Y (s) in Section 3.

2.2 MFGP with ¢ > 2

We explain how the MFGP model is formulated when ¢ > 2. For the trend
term, we assume p;(-) = X;(+)'3; for the ith variable, for i = 1,...,q. The
matrix X in (2.7) will become a (¢N) x (>°7_, p;) block diagonal matrix
X = blockdiag(Xy,...,Xy), and B = (By,...,8;). For the low-rank
component, extension to more than two variables is straightforward: We
have 8 = blockdiag(Sy,...,S,), n = (n,...,m,)’, and the matrix K =
var(n) is formulated with the blocks, K;; = cov(n;,n;) and K; = var(n;,)
fori,j=1,...,qand i # j. For the GGM component, we use the conditional
approach to build the model for £ = (£},...,&;)". For example, when ¢ = 3,

we have:
& ~MVN(0,%) (2.13)
£51&1 ~ MVN(P21€;, %), (2.14)
€31€1, € ~ MV N(P3.1&; + P3285,33), (2.15)
where we assume P; ; = a; 0l +o;j1H for i = 2,3 and j =1,...,i—1;

the precision matrices Q; = Ei_l = Ti_2(I —vH), for i = 1,2,3. It can be

shown that the precision matrix of £ can be written as,

Q; +P5;1QoP21 +P51Q3P31 P53 QsP32—P5,Qy —P3 Qs

M = (P§,1Q3P3}2—P/2,1Q2)/ Q2+P;°,,2Q3P3,2 —P3,Q;
—-(P5,Q3) —(P5,Q3)’ Qs
Q, Py, Py, I 0 0
= 0 I {‘3,2 _QI2P2,1 Q2 0 5

0 0 —I QsP31 QiP32 —Qq
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and so [M]| = |Q,] - |Q, - |Qs].
When ¢ > 3, we model £ in a manner similar to (2.13), (2.14), and (2.15).

We also derive the following proposition whose proof is given in Section 7.

Proposition 2.1 Consider a q-variate spatial processes. Recall that M
denotes the (qN) x (¢N) precision matriz of € = (£}, .. ,5;)’. Under the
model specification of MFGP described above, we have:

|M = \Ql"|Q2" '|Qq"

When we use the MFGP model for a g-variate spatial process, the
unknown parameters are B, K, {v; : i = 1,...,q¢}, {77 : i = 1,...,q},
{oijr :9=2,...,¢;5 =1,...,i—1;k = 0,1}. Therefore, as g increases,
the number of parameters increase as O(g?). When g is large, the g-variate
spatial processes is called a highly-multivariate spatial processes [12, 25].
The original parameterization of MFGP can result in a large number of
parameters for such highly-multivariate spatial processes, and this may pose
computational difficulties for parameter estimation. In Section 6 we discuss
possible ways to extend the MFGP model for highly-multivariate spatial

processes in view of this.

2.3 Alternative Model Specifications and Related Existing
Methods

In specifying the distribution of & = (£},...,&,)" in the MFGP model, it is
also possible to use the multivariate CAR model suggested in [13] and [5],
as an alternative to the specification above. When ¢ = 2 this model is,

€= (2) ~ MVN(0,%¢) with B¢ =T ®@ Q! (2.16)

where
L p —2/1 _
= b1 and Q =7 (I —~vH).

Here, the (2N) x (2N) covariance matrix X takes a separable form as the

Kronecker product of a 2 x 2 correlation matrix, with p representing the
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correlation across different variables, and an N x N spatial covariance matrix
from a univariate CAR model. The quantity ~ is the spatial dependence
parameter, and 72 is the conditional variance. Compared to the model in
(2.4) and (2.5), (2.16) contains fewer parameters, but assumes the same
correlation across variables at all spatial locations (i.e., the same p at all
locations), and the same spatial dependence structure for all variables (i.e.,
Q! as the same covariance matrix for all €,’s, i = 1,...,q). This may not
be realistic in practice. In this paper, we call the resulting model of Y based
on this multivariate CAR model for £ the separable fused Gaussian process
(SFGP).

The MFGP model is closely related to the data fusion model in [30, 31],
which is built upon the framework of the fixed rank kriging [8]. However,
there the model assumes that elements in &, are Gaussian white noise.
MFGP allows them to have spatial dependence both within and between
&,1=1,...,q. In numerical examples presented in Section 4 and Section 5,
we include results based on the original, FRK-based data fusion model in
our comparisons, and call it MFRK for short, in this paper.

Our MFGP model is an extension of the univariate FGP model presented
in [27]. One may reasonably ask whether MFGP performs better than simple
application of univariate FGP to all variables independently. Call the latter
independent FGP (IFGP). In the numerical examples in Section 4 we show
that MFGP does in fact provide improved predictions compared to IFGP by

borrowing strength across variables.

3 Inference

We adapt the Expectation-Maximization (EM) algorithm used in [21, 27]
to estimate parameters in MFGP. Without loss of generality, we describe
this EM algorithm and how to make spatial prediction with ¢ = 2, but the

extension to ¢ > 2 is straightforward.
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For the bivariate MFGP with ¢ = 2, the unknown parameters are 8 =
{B,K,v1,72, 7,74, 21,0, 2,11} We treat n as latent variables and devise
the EM algorithm to minimize the twice-negative-marginal-log-likelihood

function of the data, Z:
—2InL(0,Z) =In|Ez| + (Z — AXB)E,HZ — AXP) + constant. (3.1)

The conditional distribution of 1 given data Z can be shown to be a
multivariate normal distribution with conditional mean given in (3.2) and

conditional variance-covariance matrix given in (3.3):

tnze = E(n|Z,0)=(ASK)S, (Z - AXp), (3.2)
Snze = Var(n|Z,0) =K —(ASK)'S,'(ASK). (3.3)

Furthermore, based on the assumptions in the MFGP model, it is
straightforward to show that Z|n ~ MV N(A(XB+Sn), AM 1+ V)A").

The corresponding twice-negative-complete-log-likelihood function is,

—2InL.(n,Z) = In|D7!|+(Z—-AXB - ASn)'D(Z - AX3 — ASn)
+1In |K| +n'K ™', (3.4)

where D = (AM 1A' + V)7L

In the expectation step (E-step), we derive the expected value of
—21n L.(n, Z) with respect to the conditional distribution of latent variables
n given data and all other of parameters. It is denoted by —2Q(0;6;)
and given in (3.5), where 6; denotes the parameter estimates in the I[th
iteration of the EM algorithm. In the maximization step (M-step), we
update 8 by maximizing Q(0;6;), or, equivalently, minimizing —2Q(6; 6;)
with respect to 8. Specifically, it is straightforward to show that Bz and ﬁl
can be updated in closed form, as shown in (3.6) and (3.7), respectively. To
update the other parameters, {77}7_;, {7:}2_1, and {a21,0, 2211}, we need

to minimize —2Q(6; 0;), or equivalently, minimize the function f(-) given in
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(3.8), numerically. We use the function fmincon in Matlab to perform this

minimization in the numerical examples shown later in this paper.

—2Q(0;0,) = Eyze,[—2InLc(n,Z)]
= D7+ In|K|+ (Z - AXB)D(Z - AXP3)

—2(Z — AXB)DAS i,z 9, + tr { [(AS)D(AS) + K| 370, }

+ Hy 2.0, [(AS)D(AS) + K] pyiz.0,

B = [(AX)D(AX)] " (AX)D |Z - (AS)uyje,z|  (3.6)

K1 = Emz,el—f—ﬂn\z,elﬂiﬂz,el (3.7)

F(rt 73,71, 72, 4210, @2,1,1)
= WD+ [z~ (AX)B,, | D [Z - (AX)By..
~2(Z~ (AX)Bi11 | DASHy g0, + r {(AS)D(AS)S, 26, }
+ bz, [(AS)D(AS)] .6, (3.8)

Recall that the (n; +ng) x (n1 +n2) matrix D = (AM A’ + V)L In the
EM algorithm we need to evaluate |D~!| and calculate D. When n1 + ng is
large, this cannot be done directly. Instead, we apply Sylvester’s determinant

identity [1] and the Sherman-Morrison-Woodbury formula [8]:

D7 =M+ AVIIAL MY [V, (3.9)
D=V 'V IAM+ AV IATTAV L (3.10)

Hence, evaluation of (3.8), (3.9), and (3.10) involves solving systems of linear
equation or calculating x; = [M + A’V_!'A]7'a; and calculating |[M +
A’'V-1A|, where a; denotes a 2N-dimensional vector, and M + A’V 1A
is a sparse (2N) x (2N) matrix. Therefore, both (3.9) and (3.10) can be
calculated efficiently. Furthermore, note that to evaluate [M~!| in (3.9),

we use the result from Proposition 2.1 and thus have [M~!| = 1/|M| =
1/(1Qul - 1Q2l)-

(3.5)
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Also, note that the matrix 3" is needed in (3.2) and (3.3). To calculate

it efficiently, we use the Sherman-Morrison-Woodbury formula again:

;! = D'+ (AS)K(AS) !
= D-D(AS)[K '+ (AS)D(AS) (AS)D.  (3.11)

Notice that (3.11) only involves solving systems of linear equation xg =
[K~! + (AS)D(AS)] 'ay, where K~! + (AS)D(AS) has dimension (r +
r2) X (r1+72), and ag denotes an (r; +72)-dimensional vector. Recall that r;
and ro are the numbers of basis functions in the low-rank component, which
are small or only moderate at worst.

Suppose that we would like to predict Y;(-) at m; prediction locations
{sh,... 7S1]ljn¢} for i = 1,2. Define Y = (Vi(sh), ... ,Yi(sf:m))’ for i = 1,2,
and Y = (YF ,,Y12D ,)’ . We use A to denote the m; x N matrix relating
the m; prediction locations to BAUs, for ¢ = 1,2, and further define
AP = blockdiag(AY AL). Tt is straightforward to show that conditioning
on the data Z and parameters 0, Y?|Z is given by:

Y|Z ~ MVN(A"XB + A"Spyz + Al pgjz » Syriz),
where 7 is given in (3.2),
peiz = E(€|Z) = (ASe)'S, 1 (Z — AXp),

and
Syrz = (ATS)Z,z(A”S) ,
+ATSZ(AT) + (ATS)S,, ¢z(AT) + [(ATS)X,, ¢z(AT)] .

Here, 3,7 is given in (3.3),
Seiz = Var(€|Z) = B¢ — (AS)'S, (ASy),

and
3¢z = Cov(n, €|Z) = —(ASK)'S ' (AS).
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We end this section with remarks on the computational complexity of
parameter estimation and prediction with MFGP. In the EM algorithm
described above, we need to calculate the log-determinant of sparse matrices
Q;, Q,, and M + AV_.A’, which has computational complexity O(N!?),
O(N'®) and O((2N)'®), respectively, as discussed by [34].  When we
calculate 221, we need to solve systems of linear equations involving
sparse matrices, with computational complexity no more than O(2N).
The calculation of [K™! + (AS)'D(AS)] 'a; has computational complexity
O((r1+72)3), but the number of basis functions, r; and g, are much smaller
than N. The EM algorithm also involves sparse matrix multiplication such
as AS and P3 ; Q,, whose computational complexity is at most O(2N (r1+72)
and O(nnz(Pg 1) nnz(Qy)/N), respectively, where nnz(B) denotes the
number of non-zero elements in the matrix B. Note that Py; and Q,
are both sparse matrices. Therefore, the overall computational cost for
these calculations is O(nnz(Pa1) nnz(Qy)/N + N(r1 + r2) + (r1 + r2)3).
Note also that we need to perform numerical optimization in the M-step,
whose computational cost is hard to quantify. As for memory cost, we
need to store sparse matrices A, S, AS and H, which is O(N(r1 + r2))
at most. M should also be stored and occupies O(N) of memory. The EM
algorithm requires storage of the Cholesky factors of N x IV sparse matrices,
which will be O(N In(NV)), at most, after suitable sparse matrix reordering.
Therefore, the overall memory cost is O(N(r1 4+ r2) + N In(N)). Although
the EM algorithm for parameter estimation can not be implemented in
parallel computational environments directly, it is possible to carry out some
components in parallel. For example, we can calculate spatial predictions
and associated prediction standard errors in parallel. Choosing appropriate
initial values in the EM algorithm can also accelerate convergence [27]. For
parameters {a210,21,1}, one way to set their initial values is to first use
detail residuals which is calculated as the original data minus the trend

fitted via least squares as approximations of {£;,&,} and then fit a simple
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regression model using these approximations. The fitted intercept and slope
can then be used as the initial values of {a 10, 21,1}. This is how we set
the initial values of the EM algorithm in all numerical examples in Sections 4

and 5.

4 Simulation Examples

We present an extensive simulation study to demonstrate the performance
of MFGP. Specifically, we consider two scenarios where stationary and
nonstationary bivariate spatial data are simulated. In all numerical
examples, the MFGP model is implemented in Matlab and the Matlab
function fmincon is used for numerical optimization in the EM algorithm.
We also implement IFGP, MFRK, and SFGP described in Section 2.3 and
compare their performance with that of MFGP. Code for simulating and
analyzing data in the simulation examples is available at https://github.

com/1i2mq/MFGP-Bcode.

4.1 Scenario 1: Performance under a Stationary Cross-
Covariance Function

We present analyses with simulated data from a bivariate Matérn cross-
covariance function [16, 37]. We consider a spatial domain D = [0,20] x
[0,20] € R?, from which BAUs are defined by regularly discretizing D to a
50 x 50 grid, resulting a total of NV = 50 x 50 = 2,500 BAUs. We simulate
a bivariate spatial process Y(-) = (Yi(:),Ya2(:)) over D. Specifically, we
assume zero mean for both variables, and the cross-covariance follows the

form,
Cov{Yi(s),Y;(u)} = J%M(S,U’Vij,a) fori,j=1,2, (4.1)

where M(-,-) is the Matérn correlation function [16]:

1-v

M(s,u | v,a) = 2

iy (s = )" K, (alls — ul) (42)
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Here, KK, (-) is the Bessel function of the second kind of order v; a > 0 is
a spatial scale parameter that sets the speed of decay in correlation of two
points with distance; v > 0 is the smoothness parameter, with a larger v
resulting a smoother process.

In our simulation study, we set 0%, = 1, 03, = 4, 0}, = 03, = 1.25%,
a=1,v1 = 1.5, vy =1, and v = o1 = 1.25 to simulate the bivariate
spatial process Y (-). Then we add noise to generate data: Z;(-) = Yi(-)+e€i(-)
as in (2.1). We set Jii = 0.0502. That is, the variance of the measurement
error on variable i is 5% of the variance of the ith variable, Y;(:). Therefore,
we have 06271 = 0.05 and 06272 = 0.2. We randomly sample 200 grid cells and
refer them as missing-at-random locations. We hold out data for both Z;(-)
and Zs(-) at these 200 locations. In addition, we define two block regions
within D. We then assume data are missing for Z;(-) in one of these two
blocks while data are missing for Z5(-) in both blocks, as shown in the second
row of Figure 1. The block where data are missing for both Z;(-) and Zs(+) is
called “Block 1”7 while the other block is called “Block 2” in this simulation
scenario.

We implement MFGP, IFGP, SEFGP, and MFRK. They all share the
same low-rank components, i.e., the same basis functions. Among these
four methods, MFRK is different from the other three as it is based on
FRK and doesn’t include the GGM component. IFGP fits the two variables
with the FGP model, independently. Although SFGP jointly fits bivariate
data, as does MFGP, it assumes a separable covariance matrix for the GGM
component, and thus we expect it to be less flexible than MFGP. To compare
these four methods’ predictive performance, we calculate the mean squared
prediction error (MSPE) for the ith variable, i = 1,2, for each of the four
methods, IFGP, SFGP, MFRK or MFGP:

i 1 % 2
MSPESr = 5P| Z [Yi(SP) _ Y,-(SP)] . (4.3)
sPesP

Here, ST represent the set of locations where predictions are made for Y;(-).



Multivariate Fused Gaussian Process 19

Later, we present MSPE in situations where S varies. For instance, S¥ may
be Block 1 (denoted by b1), Block 2 (denoted by 62), the set of missing-at-
random locations (denoted by points), or all missing data locations (denoted
by all). We also report the continuous-rank-probability score (CRPS; [15]),
CRPSfSP, for ¢ = 1,2 for all the four methods. Note that for both MSPE

and CRPS, smaller values indicate better predictive performance.

Our simulation consists of 100 runs. Simulated data and prediction
results from MFGP for a randomly selected run are plotted in Figure 1.
Table 1 summarizes the mean and standard error of MSPE and CRPS from
the 100 runs for predicting Y7 (-) over Block 1, missing-at-random locations,
and all missing locations. Table 2 presents corresponding results for Ya(-).
Among the four methods, MFRK doesn’t perform as well as the others for
either Y1(-) or Ya(:). The three FGP-based methods, IFGP, SFGP, and
MFGP, perform similarly in predicting Yj(-). However, with Y2(-), we see
more substantial differences among them: MFGP performs better than the
other two when predicting Ya(-) at the locations with data missing in both
Z1(-) and Z3(-), and gives much smaller MSPE over Block 2, the region
where data are missing only in Z(-). MFRK and IFGP have the largest
and second largest means of MSPE,; for Ys(:), which are around two or
three times those of SFGP and MFGP. The standard errors of MSPE,;
from MFRK and IFGP are two-to-three times as large as those from SFGP
and MFGP. The difference is mainly due to MSPEy,. Similar conclusions
can be drawn with CRPS as well.

We use boxplots to display the performance of these four methods by
recording MSPE for each of 100 replications, and computing the ratio of
MSPEs obtained from IFGP, SFGP and MFRK that of MFGP. If MFGP
performs better than the other three methods, we would expect MFGP to
have smaller MSPE, and its ratio would be one. Figure 2 presents boxplots
of these ratios over all 100 runs. The fact that the majority of ratios are

above one indicates that MFGP outperforms the other three methods. The
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10 15 20

Figure 1: A simulated data set and prediction results from MFGP in Scenario
1. The first row shows the underlying true spatial fields Y7 (-) (left) and Ya(+)
(right). The second row plots the data in which locations with data missing
are colored white. The third and fourth rows show the maps of predictions
and associated standard errors from MFGP for Y7 (-) (left) and Ya(+) (right),
respectively.
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Supplementary Materials presents additional numerical results and similar
findings including simulation results from a tri-variate spatial process with

the stationary Matérn cross-covariance function in (4.1).

Table 1: Summaries of MSPE and CRPS for predicting Yi(-) in Scenario 1.
The means and standard errors (se) of MSPEgr and CRPSgp are calculated
from all 100 runs with S¥ set to Block 1 (b1), missing-at-random locations

(points), and all missing-data locations (all). The lowest mean values are
highlighted in bold.

MSPE, MSPEy; MSPEints

Method  mean se mean se mean se
IFGP 0.1426  (0.0314) 0.2835 (0.1105) 0.0919 = (0.0101)
SFGP 0.1388 (0.0308) 0.2787 (0.1091) 0.0884 (0.0097)
MFGP  0.1399 (0.0307) 0.2782 (0.1096) 0.0901 (0.0104)
MFRK  0.2537 (0.0520) 0.4103 ~(0.1719) 0.1973 (0.0254)

CRPS; CRPSy; CRPSpoints

mean se mean se mean se

IFGP  0.2596 (0.0378)
SFGP  0.2557 (0.0377) < 0.3559
MFGP  0.2580 (0.0382)
MFRK  0.3505 (0.0500)

) 0.2269 (0.0186)
0.1226) 0.2227 (0.0181)
) 0.2250 (0.0184)
) 0.3265 (0.0322)

4.2 Scenario 2: Performance under a Nonstationary and
Asymmetric Cross-Covariance Model

In Scenario 2, We simulate a bivariate spatial process from a
nonstationary and asymmetric cross-covariance model Cov(Yi(s),Ya(u)) #
Cov(Y1(u),Y2(s)). We follow the conditional approach in [9] to simulate
Y1(+) and Ya(+)|Y1(+) sequentially. Specifically, we first simulate Y3 (-) from a
Gaussian process with the Matérn covariance function with a = 0%, = 1 and

v = 1. To simulate {Y5(s)|Y1(:) : s € D}, we assume:

B{YV(s) [ Yi)} = [ b vVi(viav. (4.4)
Cov{¥a(s). a(u) | Yi()} = odMis,u|wopasn),  (45)
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Table 2: Summaries of MSPE and CRPS for predicting Y5(-) in Scenario 1.
The means and standard errors (se) of MSPEgr and CRPSgp are calculated
from all 100 runs over ST set to Block 1 (b1), Block 2 (h2), missing-at-
random locations (points), and all missing-data locations (all). The lowest

mean values are highlighted in bold.

MSPE,; MSPE; MSPE MSPEoints
mean Se mean Se mean se mean Se
IFGP  4.8224 (2.6171) 1.8549 (0.7157) 9.1649 (5.5688) 0.6797 (0.0645)
SFGP  2.7172  (1.4022) 1.8690 (0.7115) 4.6555  (2.9466) 0.6965 (0.0665)
MFGP 2.1857 (1.1275) 1.6608 (0.6329) 3.6616 (2.3669) 0.6035 (0.0547)
MFRK  6.6324 (3.5282) 2.5461 (0.9867) 12.3105 (7.5024) 1.2897 (0.1517)
CRPS.; CRPSp; CRPSp2 CRPSpoints
mean Se mean Se mean se mean Se
IFGP 1.0598  (0.3992) 0.8878 (0.2470) 1.5029 (0.7291) 0.6059 (0.0519)
SFGP 0.9057 (0.2406) 0.8896 (0.2413) 1.1635 (0.4385) 0.6129 (0.0523)
MFGP 0.8383 (0.1912) 0.8371 (0.2279) 1.0824 (0.3670) 0.5706 (0.0497)
MFRK 1.3022 (0.5199) 0.9777 (0.3385) 1.7946 (0.9667) 0.8036 (0.0718)
25- ° °
9- °
2.0- !
g g° g ‘
1.5-
T ‘ |
o == — = T L

IFGP/MFGP  MFRK/MFGP SFGP/MFGP

IFGP/MFGP

MFRK/MFGP  SFGP/MFGP

Figure 2: Ratios of MSPEs for predicting Yi(-) (left) and Y3(-) (right) in

Scenario

1.
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where for u,s,v € D, b(-,-) is called the interaction function. We specify it
as: b(s,v) = A {1 1 lsl = v = s/~ ]2}2 1y—sf|</s, Where | - || denotes
Euclidean distance and 1),_g|</g is the indicator function whose value is
1if ||v —s|| < +/8, and 0 otherwise. To simulate Y3(-), we set v = 50,
A=0.1, O'g‘l = 0.5, ag;; = 3, and vp; = 0.5. Lastly, we simulate Z;(-) with
Zi(-) = Yi() + (), where e;(-) % N(0,02,) for i = 1,2 with 02, = 0.05 and
02y = 0.04.

We carry out 100 runs and implement the four methods as described for
Scenario 1. Tables 3 and 4 summarize the mean and standard error of MSPE
and CRPS from the 100 runs for predicting Y7i(-) and Y3(-) over different
regions. These results again show that MFGP outperforms the other three
methods, giving smaller MSPE and smaller or comparable CRPS overall. In
particular, the predictions of Y5(+) from MFGP are substantially better than
those from the other methods over Block 2 where data are missing from Z(-)
but available for Z;(-). This demonstrates that MFGP is able to better fit
the spatial dependence across the two variables, and thus produce improved

predictions compared to the other three methods.

5 Applications with Multivariate Remote Sensing
Data

In this section, we illustrate MFGP for inference with large multivariate
spatial data obtained from remote sensing. [6] present an uncertainty
quantification study for the ECOsystem Spaceborne Thermal Radiometer
Experiment (ECOSTRESS) which is installed on the International Space
Station. In their study, simulation experiments are carried out to quantify
the sensitivity of the remote sensing estimation algorithm for deriving
evapotranspiration (ET; a quantitative measure of plant water use) from
observed radiance spectra. To quantify uncertainties [6] simulate an

ensemble of multivariate input spatial fields using SFGP fit to a multivariate
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Table 3: Summaries of MSPE and CRPS for predicting Yi(-) in Scenario 2.
The means and standard errors (se) of MSPEgr and CRPSgr are calculated
from all 100 runs over S* set to Block 1 (b1), missing-at-random locations

(points), and all missing-data locations (all). The lowest mean values are
highlighted in bold.

MSPE,; MSPEy; MSPE oints
mean sSe mean Se mean sSe
IFGP  0.0496 (0.0048) 0.0593 (0.0141) 0.0461 (0.0041)
SFGP  0.0493 (0.0048) 0.0556 (0.0133) 0.0471  (0.0045)
MFGP  0.0478 (0.0044) 0.0569 (0.0135) 0.0445 (0.0037)
MFRK  0.0502 (0.0059) 0.0609 (0.0156) 0.0463 (0.0051)
CRPSy CRPSy, CRPSpoints
mean se mean se mean se
IFGP  0.1682 (0.0135) 0.1855 (0.0425) 0.1629 (0.0117)
SFGP  0.1682 (0.0137) 0.1780 (0.0385) 0.1638 (0.0139)
MFGP  0.1680 (0.0138) 0.1802 (0.0434) 0.1630 (0.0134)
MFRK 0.1672 (0.0178) 0.1867  (0.0457) 0.1612 (0.0156)

Table 4: Summaries of MSPE and CRPS for predicting Y5(+) in Scenario 2.
The means and standard errors (se) of MSPEgr and CRPSgp are calculated
from all 100 runs over ST set to Block 1 (b1), Block 2 (b2), missing-at-
random locations (points), and all missing-data locations (all). The lowest
mean values are highlighted in bold.

MSPE, MSPE,, MSPE); MSPE points
mean se mean se mean se mean se

IFGP  0.6524 (0.3711) 0.2580 (0.1027) 1.2376 (0.7895) 0.0922 (0.0090)
SFGP  0.6703 (0.3601) 0.2774 (0.1106) 1.2657 (0.7673) 0.0973 (0.0119)
MFGP  0.5035 (0.2655) 0.2457 (0.1030) 0.9246 (0.5668) 0.0909 (0.0099)
MFRK 0.8581 (0.4754) 0.3887 (0.1516) 1.5569 (1.0122) 0.1885 (0.0235)
CRPSq CRPSy CRPS;;, CRPS,points

mean Se mean sSe mean se mean sSe

IFGP 0.3840 0.3261 (0.1165

( ) ( 0.2286
SFGP  0.3930 (0.1373) 0.3333  (0.1178

( ) (

( ) (

( )

0.5428  (0.2494)  0.2346
( )
( )

) 0.0186
)

0.0995) 0.4765
)

)
0.0192)
)
)

(
(

MFGP  0.3576 0.3116 0.2279  (0.0176
(

MFRK  0.4693 0.3855  (0.1349 0.3193  (0.0301
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“truth” data set. Then, the remote sensing estimation algorithm is applied
to all locations in each ensemble member. Distributions of estimated ET
at locations in the scene, and their relationships to corresponding “truth”

data, provide the desired characterization of uncertainty.

[6] use SFGP to fit and then jointly simulate leaf area index (LAI),
land surface temperature (LST), and normalized difference vegetation index
(NDVI). Here, we use data for these three variables over a 400 x 400 grid
from two of their scenes, called Scene 1 and Scene 2 in this paper. The
data are shown in the top rows of Figure 3 and Figure 4, respectively. More
detailed descriptions of these two data sets and background behind them
are given in the Supplementary Materials. Note that the sizes of these two
tri-variate spatial data sets are about 3 x 400% = 480, 000, which is too large

for classical geostatistical methods such as cokriging.

We implement all four methods, MFGP, SFGP, IFGP, and MFRK.
Tables 5, 6 and 7 display the summaries of MSPE and CRPS based
on predictions of the three variables, NDVI, LAI, and LST. Results are
consistent with those from simulation examples: We find that MFGP gives
the best predictive performance among all the four methods, in particular

in blocks where data are available from some but not all variables.

Improved predictive performance of MFGP comes with a more
complicated model specification and thus more computing time: MFRK
can be executed in less than 2 minutes; IFGP takes about 1.5 hours; it
takes SFGP more than 11 hours; MFGP takes the most time: around
50 hours. However, MFGP reduces MSPE for Y5(-) by more than 25%
compared to IFGP in Scene 1 and about 30% in Scene 2; the reduction
of MSPE is even more when we compare MFGP with SFGP and MRFK.
The most computationally intensive step in implementing MFGP is the EM
algorithm, in which we need to perform numerical optimization with more
than 9 parameters, at each iteration. Discussion on possible ways to simplify

the parameterization in MFGP, and thus speed up the computation further
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Figure 3: Plots of Data and predictions from MFGP for Scene 1. Data
for NDVI (left column), LAI (middle column), and LST (right column) are
shown in the top row. MFGP predictions are shown in the middle row, and
associate prediction standard errors are shown in the bottom row.
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Figure 4: Plots of Data and predictions from MFGP for Scene 2. Data
of NDVT (left column), LAI (middle column), and LST (right column) are
shown in the top row. MFGP predictions are shown in the middle row, and
associated prediction standard errors are shown in the bottom row.
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can be found in Section 6.

Finally, note that in order to use the conditional approach we need
to specify the order of conditioning. We thus investigate how MFGP
performs under all the six possible orders of conditioning, and find that
the predictive performance of MFGP is not sensitive to this choice. Details

of this sensitivity study are given in the Supplementary Materials.

Table 5: MSPE and CRPS for predicting NDVI (Yi(-)) calculated over
missing-data locations from data in both Scene 1 and Scene 2. The lowest
value in each column is highlighted in bold.

Scene 1 Scene 2
MSPEpoints CRPSpoints MSPEpoints CRPSpoints
IFGP 0.0090 0.0518 0.0035 0.0453
SFGP 0.0097 0.0539 0.0045 0.0524
MFGP 0.0096 0.0526 0.0042 0.0497
MFRK 0.0211 0.0878 0.0163 0.1042

Table 6: Summaries of MSPE and CRPS for predicting LAI (Ya(-)) from
both Scene 1 and Scene 2. The means and standard errors of MSPEgr
and CRPSgr are calculated from locations in S¥ set to be Block 1 (b1),
missing-at-random locations (points), and all missing-data locations (all).
The lowest value in each column is highlighted in bold.

MSPE,; MSPEy MSPEyints CRPS.; CRPSp  CRPSints

IFGP 0.0097  0.0109 0.0082 0.0550  0.0537 0.0561

SFGP  0.0113  0.0145 0.0074 0.0502 0.0470  0.0529

Scene 1 \rpgp 0.0072  0.0047 0.0102 0.0567  0.0487 0.0641
MFRK ~ 0.0269  0.0157 0.0410 0.1047  0.0644 0.1373

IFGP 0.1280  0.2146 0.0223 0.2313  0.3377 0.0991

SFGP  0.1710  0.2963 0.0153 0.2565  0.3977 0.0810

Scene 2 \ipGp  0.0872  0.1379 0.0243 0.1991 0.2757 0.1039
MFRK  0.2618  0.3073 0.2053 0.3765  0.4119 0.3326
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Table 7: Summaries of MSPE and CRPS for predicting LST (Y3(-)) from
both Scene 1 and Scene 2. The means and standard errors of MSPEgr and
CRPSgr are calculated from locations in S set to be Block 1 (b1), Block
2 (b2), missing-at-random locations (points), and all missing-data locations
(all). The lowest value is highlighted in bold in each column.

MSPE,; MSPE,;  MSPEy  MSPE,pints

IFGP 82930  4.6564 16.7823 5.2593
SFGP  6.5379  3.9618  12.6498 2.1416
MFGP  5.4560 2.8397 10.7216 2.1619
MFRK 112048 64759  17.2347 9.9011
Scene 1
CRPS.,; CRPSy CRPSp  CRPSoinis
IFGP 18255 _ 1.5153  2.7878 1.0145
SFGP 16717 14313  2.4608 0.9896
MFGP  1.5788  1.2915 2.3333 0.9978
MFRK 23474 18191  2.9819 2.2154
MSPE.; MSPE, MSPEy; MSPE i
IFGP 114903 13.2583  17.2495 5.1350
SFGP  7.2649  9.3429  9.1974 2.2804
MFGP  4.1336 4.8233  5.3685 1.7417
MFRK ~ 17.0773 16.5009 20.0083  14.1509
Scene 2 CRPS,; CRPSy  CRPSp  CRPSpoints
IFGP 24940 2.6885  3.4115 1.1121
SFGP 19798  2.2382  2.3882 1.1511
MFGP 1.5124 1.6929 1.7346 1.0120

MFRK 3.2648 3.0131 3.7749 2.9437
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6 Conclusions and Discussion

In this paper we propose the multivariate fused Gaussian process (MFGP)
model which can be used to flexibly model multivariate spatial processes
with large data. We demonstrate that MFGP gives superior predictive
performance in various simulation scenarios, and in an application to remote
sensing data analysis. One advantage MFGP possesses is its flexibility to
handle data at different spatial resolutions. MFGP inherits the additive,
multiresolution structure of FRK and FGP; the basis functions in the model
are completely prespecified and known. This makes it possible to handle
data sets with different spatial resolutions, since change-of-support is easily
accomplished by aggregating off-line when data are at coarser resolutions
than the BAUs.

When then number of variables ¢ is large, the number of MFGP
parameters increases substantially. This can make MFGP less than desirable
for highly-multivariate spatial processes. The dimension of the matrix K
becomes > 7 r;. For {&;}7 ,, we need to estimate parameters {r;}7_;,
{v} |, and {@i o, j1}t1<j<i<q- One way to alleviate this difficulty is to
introduce additional assumptions such as the Markov property of order one
for the GGM component: §, L &;,...,§, o, given §,_;. The directed acyclic
graph (DAG) structure used in the meshed GP [33] can also be considered
for the GGM component. “Stitching” [12] may also be used to form a sparse
graphical model for {§; ?:1. This can potentially reduce the number of
parameters for {¢;}7 ;. And additional difficulty is that when g is large, K
may no longer be “low-rank” as Y ¢, r; increases. [25] recently propose to
incorporate regularization terms in model fitting to enforce sparsity in K

and to achieve efficient computation.

One natural extension of MFGP is to relax the assumption of Gaussian
distributions and to generalize it for multivariate non-Gaussian spatial data.

This can be achieved by embedding the MFGP model in the framework of
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the spatial generalized linear models [38]. By assuming a state-space model
structure for the low-rank and the multivariate CAR components [10, 28],
we may also extend the MFGP model to the space-time setting. These

directions may be pursued in future research.

7 Appendix

Proof of Proposition 2.1: For £¢*) = (&),...,€,) and k = 1,...,q, let My,
denote the precision matrix of €*). Thus, M = M,. We will prove that
M= Q|- --- -|Q,| using induction as follows.

When ¢ =1, M = M; = Q. Thus, [M| =|Q,|. Therefore, Proposition
2.1 holds when ¢ = 1.

When ¢ = 2, it is straightforward to show that M =
<%1 f:ﬁg;) (;1 —OI) = B2’1B’2’2, where By and Bj s are two upper
triangular block matrices. Hence, M| = |Q;]:|Q5|. The result in Proposition

2.1 holds when ¢ = 2.

Assume that for ¢ = k > 2, we have [Mg| = |Q;|- -+ - |Qg|, and My =
Bk,IB;c,w where By 1 and By are two upper triangular block matrices.
Then, for ¢ = k + 1, in the MFGP model we have p(§,&,,...,&, &rp1) =

p(éla 527 s ’gk) X p(€k+1|£17 525 cee a&k)7 where p() denotes the probablhty
density function (pdf).

It is straightforward to show that:

P(&1: o & Eppn) o eap { —1/26M MW}
X erp {—1/2 [5k+1 - Z?:l Pk+1,j5j:|/Qk+l [EkJrl - Z§:1 Pk:+1,j€j] }
= eap {~1/26® My gD}

Thus, we have:

Br1 R,Quiy k2 O
MWZ(o “qun ) \re —1) T BBl
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where Ry is an N x (kN) matrix given by

Re=(Prt11 Pryiz -+ Pryip).
We thus have

My 41| = B

X|Br2| X[ Qpi1] = [Mi|x|Qpi1] = [Qq X[ Qg X+ - X |Qpl X [Qp11],

which means that the result in Proposition 2.1 holds when ¢ = k + 1. This

completes the proof of this proposition.

Acknowledgments

Part of the research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration. (€)2021 California
Institute of Technology. Government sponsorship acknowledged. K. Cawse-
Nicholson acknowledges support from ECOSTRESS and the NASA Earth
Venture Instruments Program. This work was supported in part by
an allocation of computing time from the Ohio Supercomputer Center
and by research cyberinfrastructure resources and services provided by
the Advanced Research Computing (ARC) center at the University of
Cincinnati. This research was part of Li’s Ph.D. dissertation supported
by the Taft Research Center at the University of Cincinnati. Kang was
partially supported by the National Science Foundation (NSF) under award
DMS—2053668, NASA-ROSES grant NNH18ZDAOOIN-SLSCVC, Simons
Foundation’s Collaboration Award (#317298 and #712755), and the Taft

Research Center at the University of Cincinnati.



Multivariate Fused Gaussian Process 33

References

1]

Akritas, A. G., Akritas, E. K. and Malaschonok, G. I. (1996).
Various proofs of Sylvester’s (determinant) identity, Mathematics and

Computers in Simulation, 42(4-6), 585-593.

Apanasovich, T. V., Genton, M. G. and Ying Sun, Y. (2012). A
valid matérn class of cross-covariance functions for multivariate random
fields with any number of components, Journal of the American

Statistical Association, 107(497), 180-193.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008).
Gaussian predictive process models for large spatial data sets, Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 70(4),
825-848.

Bradley, J. R., Cressie, N. and Shi, T. (2014). Rejoinder on:
Comparing and selecting spatial predictors using local criteria, TEST,
24(1), 54-60.

Banerjee, S., Carlin, B. P., Gelfand, A. E., Bernardo, J. M.,
Bayarri, M. J., Berger, J. O., Dawid, A. P., D. Heckerman, D.,
Smith, A. F. M. and West, M. (2003). Hierarchical multivariate
CAR models for spatio-temporally correlated survival data (with

discussion), Bayesian Statistics, 7, 45-63.

Cawse-Nicholson, K., Braverman, A., Kang, E. L., Li,
M., Johnson, M., Halverson, G., Anderson, M., Hain, C.,
Gunson, M. and Hook, S. (2020). Sensitivity and uncertainty
quantification for the ECOSTRESS evapotranspiration algorithm -
DisALEXI, International Journal of Applied Earth Observation and
Geoinformation, 89, 102088.



34

[7]

[12]

[14]

Journal of the Indian Statistical Association

Chu, T., Wang, H. and Zhu, J. (2014). On semiparametric inference
of geostatistical models via local Karhunen—Loéve expansion, Journal

of the Royal Statistical Society: Series B, 76(4), 817-832.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for
very large spatial data sets, Journal of the Royal Statistical Society:
Series B (Statistical Methodology), T0(1), 209-226.

Cressie, N. and Zammit-Mangion, A. (2016). Multivariate spatial
covariance models: a conditional approach, Biometrika, 103(4), 915-
935.

Cressie, N., Shi, T. and Kang, E. L. (2010). Fixed rank filtering
for spatio-temporal data, Journal of Computational and Graphical
Statistics, 19(3), 724-745.

Datta, A., Banerjee, S., Finley, A. O. and Gelfand, A. E.
(2016). Hierarchical nearest-neighbor Gaussian process models for large
geostatistical datasets, Journal of the American Statistical Association,

111(514), 800-812.

Dey, D., Datta, A. and Banerjee, S. (2021). Graphical Gaussian
process models for highly multivariate spatial data, Biometrika, https:

//doi.org/10.1093/biomet/asab061.

Gelfand, A. E. and Vounatsou, P. (2003). Proper
multivariate conditional autoregressive models for spatial data analysis,
Biostatistics, 4(1), 11-15.

Genton, M. G. and William Kleiber, W. (2015). Cross-covariance
functions for multivariate geostatistics, Statistical Science, 30(2), 147-
163.



Multivariate Fused Gaussian Process 35

[15]

[17]

[18]

[21]

[23]

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring
rules, prediction, and estimation, Journal of the American Statistical

Association, 102(477), 359-378.

Gneiting, T., Kleiber, W. and Schlather, M. (2010). Matérn
cross-covariance functions for multivariate random fields, Journal of

the American Statistical Association, 105(491), 1167-1177.

Guinness, J. (2022). Nonparametric spectral methods for multivariate
spatial and spatial-temporal data, Journal of Multivariate Analysis,

187, 104823.

Jin, X., Carlin, B. P. and Banerjee, S. (2005). Generalized
hierarchical multivariate CAR models for areal data, Biometrics, 61(4),

950-961.

Kang, E. L., Cressie, N. and Shi, T. (2010). Using temporal
variability to improve spatial mapping with application to satellite data,
Canadian Journal of Statistics, 38(2), 271-289.

Katzfuss, M. (2017). A multi-resolution approximation for massive
spatial datasets, Journal of the American Statistical Association,

112(517), 201-214.

Katzfuss, M. and Cressie, N. (2011). Spatio-temporal smoothing
and em estimation for massive remote-sensing data sets, Journal of

Time Series Analysis, 32(4), 430-446.

Katzfuss, M. and Guinness, J. (2021). A general framework for
Vecchia approximations of Gaussian processes, Statistical Science,
36(1), 124-141.

Kleiber, W. (2017). Coherence for multivariate random fields,
Statistica Sinica, 27(4), 1675-1697.



36

[24]

[25]

[27]

28]

[32]

Journal of the Indian Statistical Association

Kleiber, W., Nychka, D. and Bandyopadhyay, S. (2019). A
model for large multivariate spatial data sets, Statistica Sinica, 29(3),

1085-1104.

Krock, M., Kleiber, W., Hammerling, D. and Stephen Becker,
S. (2021). Modeling massive highly-multivariate nonstationary spatial

data with the basis graphical lasso, arXiv preprint arXiv:2101.02404.

Lindgren, F., Rue, H. and Lindstrém, J. (2011). An explicit
link between Gaussian fields and Gaussian Markov random fields: the
stochastic partial differential equation approach, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73(4),423-498.

Ma, P. and Kang, E. L. (2020). A fused Gaussian process model
for very large spatial data, Journal of Computational and Graphical
Statistics, 29(3), 479-489.

Ma, P. and Kang, E. L. (2020). Spatio-temporal data fusion
for massive sea surface temperature data from MODIS and AMSR-E

instruments, Environmetrics, 31(2): €2594.

Mardia., K. V. (1988). Multi-dimensional multivariate Gaussian
Markov random fields with application to image processing, Journal
of Multivariate Analysis, 24(2), 265-284.

Nguyen, H., Cressie, N. and Braverman, A. (2012). Spatial
statistical data fusion for remote sensing applications, Journal of the

American Statistical Association, 107(499), 1004-1018.

Nguyen, H., Katzfuss, M., Cressie, N. and Braverman, A.
(2014). Spatio-temporal data fusion for very large remote sensing

datasets, Technometrics, 56(2), 174-185.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren,

F. and Sain, S. (2015). A multiresolution gaussian process model for



Multivariate Fused Gaussian Process 37

[34]

[35]

[40]

the analysis of large spatial datasets, Journal of Computational and

Graphical Statistics, 24(2), 579-599.

Peruzzi, M., Banerjee, S. and Finley, A. O. (2020). Highly
scalable Bayesian geostatistical modeling via meshed Gaussian processes
on partitioned domains, Journal of the American Statistical

Association, D0I:10.1080/01621459.2020.1833889.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields:
Theory and Applications, Chapman and Hall/CRC.

Sang, H. and Huang, J. Z. (2012). A full scale approximation of
covariance functions for large spatial data sets, Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 74(1), 111-132.

Sang, H., Jun, M. and Huang, J.Z. (2011). Covariance
approximation for large multivariate spatial data sets with an

application to multiple climate model errors, The Annals of Applied
Statistics, 5(4), 2519-2548.

Schlather, M., Malinowski, A., Menck, P. J., Oesting,
M., Strokorb, K. (2015). Analysis, simulation and prediction of
multivariate random fields with package randomfields, Journal of

Statistical Software, 63(8), 1-25.

Shi, H. and Kang, E. L. (2017). Spatial data fusion for large non-
gaussian remote sensing datasets, Stat, 6(1), 390-404.

Shi, T. and Cressie, N. (2007). Global statistical analysis of MISR
aerosol data: a massive data product from NASA’s Terra satellite,

Environmetrics, 18(7), 665-680.

Tzeng, S. and Hsin-Cheng Huang, H. C. (2018). Resolution
adaptive fixed rank kriging, Technometrics, 60(2), 198-208.



38 Journal of the Indian Statistical Association

[41] Zammit-Mangion, A. and Cressie, N. (2021). FRK: An R package
for spatial and spatio-temporal prediction with large datasets, Journal

of Statistical Software, 98(1), 1-48.

[42] Zhang, L., Banerjee, S. and Andrew O. Finley. A. O. (2021).
High-dimensional multivariate geostatistics: A bayesian matrix-normal

approach, Environmetrics, 32(4): e2675.

Emily L. Kang
4199 French Hall, University of Cincinnati, 2815 Commons Way
Cincinnati, OH 45221-0025

E-mail: kangel@ucmail.uc.edu

Miaoqi Li
Wells Fargo

E-mail: miaoqili9986@Qgmail.com

Kerry Cawse-Nicholson
4800 Oak Grove Drive M/S 183-518
Pasadena, CA 91109

E-mail: kerry-anne.cawse-nicholson@jpl.nasa.gov

Amy Braverman
4800 Oak Grove Drive M/S 158-242
Pasadena, CA 91109

E-mail: amy.braverman@jpl.nasa.gov



	Introduction
	The Multivariate Fused Gaussian Process (MFGP) Model
	Model Specification
	MFGP with q>2
	Alternative Model Specifications and Related Existing Methods

	Inference
	Simulation Examples
	Scenario 1: Performance under a Stationary Cross-Covariance Function
	Scenario 2: Performance under a Nonstationary and Asymmetric Cross-Covariance Model

	Applications with Multivariate Remote Sensing Data
	Conclusions and Discussion
	Appendix

