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Abstract

We present an analytical policy update rule that
is independent of parametric function approxima-
tors. The policy update rule is suitable for opti-
mizing general stochastic policies and has a mono-
tonic improvement guarantee. It is derived from
a closed-form solution to trust-region optimiza-
tion using calculus of variation, following a new
theoretical result that tightens existing bounds for
policy improvement using trust-region methods.
The update rule builds a connection between pol-
icy search methods and value function methods.
Moreover, off-policy reinforcement learning algo-
rithms can be derived from the update rule since
it does not need to compute integration over on-
policy states. In addition, the update rule extends
immediately to cooperative multi-agent systems
when policy updates are performed by one agent
at a time.

1. Introduction
Policy search methods have gained great popularity in rein-
forcement learning (RL) for the last decade. As opposed to
value function methods, in which the policy is represented
implicitly by a greedy action-selection strategy with respect
to an estimated value function, policy search methods search
directly in the space of policy representations for a good pol-
icy. The advantages of policy search methods include being
able to learn stochastic policies (Singh et al., 1994), better
convergence, and effectiveness in high-dimensional or con-
tinuous action spaces. Generally, policy search approaches
use function approximators, such as neural networks, to
construct a parametric policy. The parametric policy is then
optimized using policy gradient (Williams, 1992; Sutton
et al., 1999) or derivative-free algorithms (Szita & Lörincz,
2006) by searching in the parameter space.
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In this paper, we present an analytical policy update rule
that is independent of parametric function approximators.
We prove that the update rule has a monotonic improvement
guarantee and is suitable for optimizing general stochastic
policies with continuous or discrete actions. The update rule
provides a new theoretical foundation for policy-based RL,
which traditionally restricts the policy search to a family of
parametric functions, such as policy gradient (Sutton et al.,
1999), deterministic policy gradient (Silver et al., 2014;
Lillicrap et al., 2016), actor critic (Konda & Tsitsiklis, 1999;
Degris et al., 2012), soft actor-critic (SAC) (Haarnoja et al.,
2018a;b), and so on.

Our update rule is derived from a closed-form solution to a
trust region method using calculus of variation. Trust-region
method is one of the most important tools in RL. The basic
idea is to search for an improved policy iteratively in a local
area around the current policy, in which the objective func-
tion is well-approximated by a manageable surrogate model.
A representative trust-region method for RL is trust region
policy optimization (TRPO) (Schulman et al., 2015). TRPO
introduces a simple and functional surrogate model that can
be evaluated using the current best policy and provides an
upper bound of the approximation error of the surrogate
model. This is particularly useful because by subtracting
the bound from the surrogate model we obtain the worst-
case performance degradation, or a lower bound, of the true
objective. It follows that maximizing the lower bound leads
to an improved policy with non-decreasing performance
(Schulman et al., 2015).

The theory of TRPO is of significance to policy-based RL
for it provides an approach that guarantees to improve the
policy monotonically. However, the bound derived in TRPO
depends on the maximum KL-Divergence of the current
policy π and a proposed policy π′ on the entire state space,
i.e., maxs DKL[π

′∥π](s), which can be extremely large or
infinity even if π′ and π are close at most states. To address
this issue, TRPO heuristically imposes a strict constraint to
bound the KL-Divergence at every state, but it is intractable
to implement this constraint when the state space is large
or continuous. To derive a practical algorithm, an empiri-
cal approximation using an expected KL-Divergence, e.g.
Es∼dπ [DKL[π

′∥π](s)], is usually adopted (Schulman et al.,
2015; Achiam et al., 2017). Nevertheless, the monotonic
improvement property is no longer guaranteed.
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In this paper, we prove a new theoretical result on the bound
of the surrogate approximation error by relating it to the
expected KL-Divergence. This result leads to a more practi-
cal lower bound of the objective, which improves previous
analysis on this topic in terms of KL-Divergence, such as
Schulman et al. (2015); Achiam et al. (2017); Akrour et al.
(2018). It also closes the gap between theory and practice in
TRPO and the related approaches. Furthermore, this result
enables us to derive a closed-form solution for policy opti-
mization. The closed-form solution introduces a very simple
policy update rule that guarantees to produce monotonically
improving policies.

From an algorithmic viewpoint, the policy update rule en-
ables the development of off-policy algorithms that do not
rely on policy gradient (Sutton et al., 1999), which is known
to have high variance and low sample efficiency. This is
because the policy update rule does not require integrating
on-policy distributions over the state space. Thus, we can
reuse the past experience obtained from a behavioral policy
and circumvent the high variance and sample efficiency is-
sues. In addition, since the policy update rule is analytical,
it applies to both parametric and non-parametric policies.
However, policy gradient-based approaches are subject to
parametric policies.

Furthermore, we prove that the update rule extends immedi-
ately to partially observable Markov games with cooperative
agents and the monotonic improvement guarantee still holds
when updates are performed by one agent at a time.

The contributions of this paper include: (1) a new theoretical
result that tightens existing bounds for local policy search
using trust-region methods; (2) a closed-form update rule
for general stochastic policies with monotonic improvement
guarantee; (3) a proof that shows that the policy update rule
is extendable to partially observable multi-agent RL prob-
lems without compromising the monotonic improvement
guarantee.

2. Related Work
The idea of restricting policy search to a local area of the
current policy is common in model-free RL. For instance,
instead of imposing a hard boundary on the searching area,
Kakade & Langford (2002) proposed a conservative update
scheme mixing the current policy and a greedy update via a
weighted sum. A lower bound on the performance improve-
ment as a function of the weighting coefficient was proven.
Following this line of work, Pirotta et al. (2013) proposed
two more general lower bounds connecting to the difference
between two policies. Then, two conservative update algo-
rithms were developed by maximizing the proposed bounds,
respectively. Zhu & Matsubara (2020) proposed a similar
bound and a practical algorithm for entropy-regularized RL.

While monotonic improvement guarantee is derived in the
previous studies, the update scheme cannot apply to non-
mixture policies. Schulman et al. (2015) extended this line
of work to general stochastic policies and proposed a new
bound that connected it to the maximum KL-Divergence
between two successive policies on the state space. How-
ever, this bound is intractable when the state space is large.
Although a tighter bound relating it to an average total vari-
ation distance is proposed in Achiam et al. (2017), deriving
a closed-form policy update rule from the lower bound is
still challenging.

In practice, many approaches use a hard constraint to bound
the searching area but they generally lose the monotonic im-
provement guarantee. Peters et al. (2010) proposed relative
entropy policy search (REPS) to restrict the relative entropy
between observed data distribution of the state-action pairs
and the distribution generated by the new policy. A closed-
form update rule in a softmax form was derived using the
method of Lagrange multipliers. However, this approach is
not straightforwardly extendable to general non-linear poli-
cies. To apply nonlinear policies, TRPO (Schulman et al.,
2015) and constrained policy optimization (Achiam et al.,
2017) approximately constrained the on-policy expected
KL-Divergence by using second-order Taylor expansion,
which was closely related to natural policy gradient (Kakade,
2001). Extending the work in TRPO, Akrour et al. (2018)
provided a monotonic improvement guarantee for bound-
ing the expected KL-divergence, but the result only held
for linear-Gaussian policies. Nachum et al. (2017; 2018)
presented multi-step softmax consistencies under entropy
regularization and adopted a discounted relative entropy
trust-region constraint to improve exploration and stability.
By relating policy search to probabilistic inference (Levine,
2018), Abdolmaleki et al. (2018) proposed the maximum
a posterior policy optimization (MPO) algorithm based on
Expectation-Maximization, where the policy update was
decomposed into E-step and M-step. A closed-form E-step
combined with a maximum-a-posteriori-estimation M-step
for Gaussian policies was provided. Although a monotonic
improvement guarantee is claimed, the guarantee is for the
KL-Divergence regularized objective rather than the true
expected return. Besides, suffering from the same issue
as in (Peters et al., 2010), the policy update rule needs to
determine the optimal Lagrangian multipliers of the dual
problem, which requires a costly nonlinear optimization
in the inner loop. Different from previous works, Otto
et al. (2021) proposed projection-based solutions to impose
trust-region constraints on the individual state, which en-
abled exact guarantees of monotonic improvement. Three
closed-form projection layers based on Wasserstein L2 dis-
tance, Frobenius norm, and KL-Divergence were proposed
to project the updated policy onto trust regions. However,
the proposed approach only applies to Gaussian policies.
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3. Preliminaries
3.1. Markov Decision Process

A Markov decision process (MDP) is defined by a tuple
(S,A, p, r, ρ0, γ), where S is the state space, A is the action
space, p : S × A × S → R≥0 is the transition probability
density, r : S × A → [rmin, rmax] is the reward function,
ρ0 : S → R≥0 is the probability density of the initial state
s0, γ ∈ [0, 1) is the discount factor.

Denote a stochastic policy π : S ×A → R≥0 (→ [0, 1] for
discrete actions) by π(a|s), which represents the probabil-
ity density (or probability mass function) of the action a
given the state s. The goal is to find an optimal policy that
maximizes the expected discounted return

J(π) = Eτ∼π

[ ∞∑
t=0

γtrt

]
(1)

where τ denotes the trajectory τ := (s0, a0, s1, . . . ), and
τ ∼ π indicates that the distribution over the trajectory
depends on π : s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ p(·|st, at).
Letting R(τ) =

∑∞
t=0 γ

trt denote the discounted return
of the trajectory τ , we can compactly express the value
function as Vπ(s) = Eτ∼π [R(τ)|s0 = s], the state-action
value function as Qπ(s, a) = Eτ∼π [R(τ)|s0 = s, a0 = a],
and the advantage function as Aπ(s, a) = Qπ(s, a)−Vπ(s).
We define the discounted state visitation distribution as

dπ(s) = (1− γ)
∞∑
t=0

γtρπt (s), (2)

where ρπt : S → R≥0 is probability density function (PDF)
of the state at timestep t given the policy π.

3.2. Partially Observable Markov Game

A Markov game (Littman, 1994) is a game defined on a state
space, S, and a collection of action spaces, A1, . . . ,AN ,
one for each agent in the environment. The state transition
s 7→ s

′
(s, s

′ ∈ S) happens following the probability density
P : S × A1 × · · · × AN × S 7→ R≥0 when the actions
a = [a1, . . . , aN ], ai ∈ Ai, i ∈ {1, . . . , N}, are exerted on
the environment at state s. Each agent is rewarded based
on a local reward function ri : S × A1 × · · · × AN 7→
[rimin, r

i
max], which depends on the current state s and the

joint action a.

In a partially observable Markov game (POMG), each agent
has a local observation of the environment, oi, which con-
tains incomplete information of the state s. At state s, oi

is observed with a likelihood, P i
o : S ×Oi 7→ R≥0, where

Oi is the observation space of the agent. Each agent acts
according to a policy πi : Oi × Ai 7→ R≥0 (or 7→ [0, 1]),
which is a probability distribution (or a probability mass
function) over the action space Ai given the observation

oi. We will use the following definitions of the joint policy
π(a|s) and the joint policy π−i(a−i|s) except i:

π(a|s) =
∏
i∈N

∫
oi
πi(ai|oi)P i

o(o
i|s)doi (3)

π−i(a−i|s) =
∏

j∈N\{i}

∫
oj
πj(aj |oj)P j

o (o
j |s)doj (4)

where N = {1, 2, . . . , N} is a set of agent’s IDs. The
goal of the agents is to learn a set of distributed policies
{πi(ai|oi)|i ∈ N} to maximize the expected return

J(π) = Eτ∼π

[ ∞∑
t=0

γt(r1t + · · ·+ rNt )

]
(5)

where τ ∼ π indicates that s0 ∼ ρ0, o
i
t ∼ P i

o(·|st), ait ∼
πi(·|oit), st+1 ∼ P (·|st, a1t , ..., aNt ).

3.3. Trust Region Method

Trust region method is one of the most important techniques
for solving policy optimization in a Markov decision pro-
cess. It works by restricting policy search to a local region
around the current best solution, where the objective func-
tion is well-approximated by a surrogate model. Specifically,
it solves the following optimization:

πk+1 = argmax
π′∈Π

J̃(π′), s.t. D(π′, πk) ≤ δ (6)

where J̃(π′) is some surrogate model, D is a distance mea-
sure, and δ > 0 is the radius of a spherical region, in which
we search for an improved policy. A simple and effective
choice for the surrogate model is

Lπk
(π′) = J(πk) +

1

1− γ
Es∼dπk ,a∼π′ [Aπk

(s, a)]. (7)

Schulman et al. (2015) prove that the difference between
the surrogate model and the true objective is bounded by:∣∣J(π′)− Lπk

(π′)
∣∣ ≤ Cmax

s
DKL[π

′∥πk](s),

where C =
4γϵ

(1− γ)2
, ϵ = max

s,a
|Aπk

(s, a)|,
(8)

which connects it to the maximum KL-Divergence over the
state space, maxs DKL[π

′∥πk](s). By using this bound, we
can get the worst-case performance degradation of the true
objective:

J(π′) ≥ Lπk
(π′)− Cmax

s
DKL[π

′∥πk](s), (9)

It follows that maximizing the right-hand side of the inequal-
ity, which is a lower bound of the true objective function,
can lead to guaranteed improvement in the performance.
This result has fostered a branch of practical trust-region
algorithms (i.e. Schulman et al. (2015; 2017); Achiam et al.
(2017); Nachum et al. (2018); Wu et al. (2017)) that approx-
imately optimize the lower bound to improve policies.
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4. Analytical Policy Update Rule with
Monotonic Improvement Guarantee

Our principle result is an analytical solution for policy op-
timization based on trust-region methods, following a new
bound on the difference between the surrogate model and the
true objective. The analytical solution introduces a policy
update rule that guarantees monotonic policy improvement
and is suitable for general stochastic policies with discrete
or continuous actions. Moreover, the update rule extends im-
mediately to cooperative multi-agent systems when updates
are performed by one agent at a time.

We first present the new bound on the difference between the
surrogate model and the objective in the following theorem.

Theorem 4.1. For any stochastic policies π′, π and discount
factor γ ∈ [0.5, 1), the following bound holds:

∣∣J(π′)− Lπ(π
′)
∣∣ ≤ 1

1− γ
CπEs∼dπ [DKL[π

′∥π](s)] ,

where Cπ =
γ2ϵ

(1− γ)3
, ϵ = max

s,a
|Aπ(s, a)|.

(10)

Proof. We provide the proof in Appendix A. The proof
extends Schulman et al. (2015)’s result using the concept
of α-coupling (Levin et al., 2006) and its relationship with
total variation distance. However, different from the proof
in (Schulman et al., 2015) that uses the maximum α over
the state space, we instead use a state-dependent α(s) to
represent the coupling between two arbitrary policies given
s, which enables us to connect the bound to the expected
KL-Divergence.

The new bound is tighter in terms of KL-Divergence com-
pared with (8) derived from (Schulman et al., 2015). While
the improvement in tightness is at a cost of γ/(4(1− γ)2),
this result directly relates the bound to the expected KL-
Divergence Es∼dπ [DKL[π

′∥π](s)], which closes the gap
between theory and practice in TRPO and related algorithms.
In addition, the new bound improves prior analysis in the
literature, such as (Akrour et al., 2018; Achiam et al., 2017),
in terms of either KL-Divergence or total variation distance
(from DTV[π

′∥π] to D2
TV[π

′∥π], see Appendix A). Further-
more, using this result, we can derive a new lower bound of
the true objective:

J(π′) ≥ Lπk
(π′)− 1

1− γ
CπEs∼dπ [DKL[π

′∥π](s)] .
(11)

Then, we can improve the policy by maximizing the lower
bound. Next, we present a closed-form solution to the max-
imization of the lower bound, which introduces a simple
policy update rule with monotonic improvement guarantee.

Theorem 4.2. For any stochastic policies πnew, πold that
are continuously differentiable on the state space S, the
inequality, J(πnew) ≥ J(πold), holds when

πnew = πold · eαπold

Ea∼πold
[eαπold ]

, (12)

where απold
= Aπold

/Cπold
.

Proof. We provide the proof in Appendix B. The proof
introduces calculus of variation (Calder, 2020; Kot, 2014) to
the policy optimization problem. Based on the assumption
of continuously differentiable policies on the state space
S, we derive a closed-form solution for general stochastic
policies with continuous or discrete actions. In the proof,
we show that the closed-form solution is a necessary and
sufficient condition for the policy optimization.

Another interesting result of Theorem 4.2 is that the update
rule immediately extends to cooperative multi-agent RL
problems while the monotonic improvement guarantee still
holds if the agents perform local policy updates in turn. We
present this result in the following corollary.

Corollary 4.3. For any stochastic policies πi
new, π

i
old of

agent i that are continuously differentiable on the local
observation space Oi, and the corresponding joint policies
πnew, πold, the inequality, J(πnew) ≥ J(πold), holds when

πi
new = πi

old · eαπold

Ea∼πold
[eαπold ]

,

π−i
new = π−i

old.

(13)

where π−i
new, π

−i
old are joint policies of all agents except i.

Proof. Based on Theorem 4.2, we have

πnew(a|s) = πold(a|s)
eαπold

Ea∼πold
[eαπold ]

(14)

Note that the joint policy can be decomposed as follows:

π(a|s) = πi(ai|s)π−i(a−i|s), (15)

where πi(ai|s) =
∫
oi
πi(ai|oi)P i

o(o
i|s)doi. Thus, we can

rewrite Eq. (14) as follows:

π−i
new

∫
Oi

πi
new(a

i|oi)P i
o(o

i|s)doi

= π−i
old

∫
Oi

πi
old(a

i|oi)P i
o(o

i|s)doi · eαπold

Ea∼πold
[eαπold ]

,

(16)

when π−i
new = π−i

old, they cancel each other on both sides.
Then, simplifying the above equation, the result follows.
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5. Connections with Prior Work
In this section, we connect the proposed policy update rule
with some state-of-the-art algorithms and discuss how the
update rule can help explain these algorithms from a differ-
ent perspective.

5.1. TRPO and Proximal Policy Optimization

Note that the exponential factor in (12) can be written as

απold
=

Aπold
(s, a)

maxs,a |Aπold
(s, a)|

· (1− γ)3

γ2
, (17)

where γ ∈ [0.5, 1). The first term on the right-hand side is
a normalized advantage and the second term is a positive
constant smaller than 1. Letting [αmin, αmax] denote the
range of απold

, then we have αmin ≤ 0 ≤ αmax, as shown
in Figure 1. In addition, since απold

is a random variable
given s, we have eαmin ≤ Ea∼πold

[eαπold ] ≤ eαmax . Then,
based on the update rule (12), the ratio of the new policy to
the old policy is bounded by

πnew

πold
∈
[
eαmin

Z
,
eαmax

Z

]
= [1− ϵ1, 1 + ϵ2], (18)

where Z = Ea∼πold
[eαπold ] and ϵ1, ϵ2 are positive numbers

(ϵ1 < 1). Equation (18) indicates that bounding the policy
ratio is an effective way to confine the searching area. This
help explain the success of the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017), which clips the
policy ratio by [1− ϵ, 1 + ϵ], 0 < ϵ < 1.

It is also noted that the policy ratio πnew/πold will be greater
than 1 if eαπold > Ea∼πold

[eαπold ], and vice versa (shown
in Figure 1). Note that the exponential term eαπold is mono-
tonically increasing with respect to Aπold

(s, a), and so is the
policy ratio πnew/πold. Less rigorously, consider the term
Ea∼πold

[eαπold ] as an “average” advantage of the policy
πold. Then, selecting the action a at state s is encouraged,
i.e. πnew(a|s) > πold(a|s), if it leads to an advantage that
is above average. On the contrary, selecting the action a
at state s is discouraged, i.e. πnew(a|s) < πold(a|s), if it
leads to an advantage that is below average. To what extent
the action a is encouraged or discouraged is determined
by the value of Aπold

(s, a). This result matches the TRPO
algorithm (Schulman et al., 2015), which maximizes

max
π

Es∼dπold ,a∼πold

[
π(a|s)

πold(a|s)
Aπold

(s, a)

]
, (19)

where π(a|s) is increased to gain weights for large advan-
tages and decreased to lose weights for small advantages.
Although our update rule suggests that the policy ratio is
proportional to an exponential advantage, rather than a lin-
ear advantage as suggested in TRPO and PPO, it is easy
to verify that eAold/Cold ≈ Aold/Cold + 1 when the policy
ratio is bounded around 1.

𝑓 𝑥 = 𝑒!distribution of 𝑒!

0𝛼!"# 𝛼!$%

𝑒& > 𝔼 𝑒& ⟹ 𝜋(𝑎|𝑠) ↑

𝑒& < 𝔼 𝑒& ⟹ 𝜋(𝑎|𝑠) ↓

𝑒&!"#

𝑒&!$%

𝔼 𝑒&

Figure 1. From the policy update rule, we can derive πnew/πold ∈
[eαmin/Z, eαmax/Z], where Z = Ea∼πold [eαπold ] and αmin and
αmax are the minimum and maximum values of απold , respec-
tively. Since eαmin ≤ Ea∼πold [eαπold ] ≤ eαmax , the upper and
lower bounds of the policy ratio πnew/πold can be expressed as
[1− ϵ1, 1 + ϵ2], where ϵ1, ϵ2 ≥ 0 and ϵ1 < 1. This indicates that
we can bound the policy ratio to restrict the search area, which
has been adopted in PPO and proven effective in practice. In ad-
dition, if eαπold > Ea∼πold [eαπold ], the policy ratio πnew/πold

will be greater than 1, and vice versa. Note that eαπold is mono-
tonically increasing with respect to Aπold(s, a), and so is the ratio
πnew/πold. Less rigorously, consider the term Ea∼πold [eαπold ]
as the “average” advantage of the policy πold. Then, selecting the
action a at state s is encouraged, i.e. πnew(a|s) > πold(a|s), if it
leads to an “above average” advantage. On the contrary, selecting
the action a at state s is discouraged, i.e. πnew(a|s) < πold(a|s),
if it leads to a “below average” advantage. To what extent the
action a is encouraged or discouraged is determined by the value
of Aπold(s, a).

5.2. Value-Based Methods and Dynamic Programming

In this section, we provide a different explanation of the
policy update rule by considering discrete actions and then
connect it to value function methods. By multiplying the
numerator and denominator both by eVπold

(s)/Cπold , we can
rewrite the update rule as

πnew(a
i|s) = πold(a

i|s)ωi
old∑

j πold(aj |s)ωj
old

,

ωi
old = exp{Qπold

(s, ai)/Cπold
}

(20)

As shown in (20), the new policy is a weighted probability
mass function of the old policy in a softmax form. The
weights are the exponential terms, exp{Qπold

(s, ai)/Cπold
}.

That indicates actions with larger Q values will get better
chance to be selected in the future. In fact, the policy update



An Analytical Update Rule for General Policy Optimization

rule can be deemed as a stochastic analogy of the ϵ-greedy
policy used in value function methods, such as SARSA
(Sutton & Barto, 2018).

In addition, we can verify the monotonic improvement guar-
antee of the policy update rule via dynamic programming.
To see this, we will show Vπold

(s) ≤ Vπnew(s) for all s ∈ S .
Note that

Vπold
(s) =

∑
i

πold(a
i|s)Qπold

(s, ai)

≤
∑
i

πold(a
i|s)ωi

old∑
j πold(aj |s)ωj

old

Qπold
(s, ai)

=
∑
i

πnew(a
i|s)Qπold

(s, ai).

(21)

For brevity, we will use P s′

sa := P (s′|s, a). Then, we have

Vπold
(s) ≤ Eπnew

[Qπold
(s, a)]

= Eπnew

[
r(s, a) + γEP s′

sa
[Vπold

(s′)]
]

≤ Eπnew

[
r(s, a) + γEP s′

sa

[
Eπnew

[Qπold
(s′, a′)]

]]
...

≤ Eπnew

[
r(s, a) + γEP s′

sa
[r(s′, a′)] + · · ·

]
= Vπnew

(s).
(22)

Therefore, by applying the update rule (20), we can obtain
a sequence of monotonically improving policies and value
functions:

π0 → Vπ0
→ π1 → Vπ1

→ · · · → π∗ → Vπ∗ ,

where Vπ0
(s) ≤ Vπ1

(s) ≤ · · · ≤ Vπ∗(s) for all s ∈ S .

5.3. Relative Entropy Policy Search and Maximum a
Posterior Policy Optimization

The REPS (Relative Entropy Policy Search) algorithm (Pe-
ters et al., 2010) can be obtained as a special case of the
update rule by replacing πold with the observed data distribu-
tion and the coefficient Cπold

with the Lagrange multiplier
η. However, the REPS algorithm is based on finite MDPs
with discrete actions and not extendable to general contin-
uous policies. A similar closed-form update rule has also
been derived in the MPO (Maximum a posterior Policy Opti-
mization) algorithm (Abdolmaleki et al., 2018) in its E-step
for evaluating a variational policy, which is then used to
optimize policy parameters.

Our policy update rule is different from the previous work
because it directly expresses the new policy as a closed-form
function of the current policy. That means the policy update
can be accurately calculated using the current policy without

involving policy gradient or policy optimization. Especially,
the proposed update rule provides an explicit formula for
determining the coefficient Cπold

and guarantees monotonic
improvement on performance. However, the update rules
in (Peters et al., 2010; Abdolmaleki et al., 2018) need to
numerically determine the optimal Lagrangian multiplier η,
which requires a costly nonlinear optimization in the inner
loop and no monotonic improvement is guaranteed.

5.4. Soft Actor-Critic

The SAC (Soft Actor-Critic) algorithm (Haarnoja et al.,
2018a;b) can also be derived as a special case of the policy
update rule. Note that the update rule (12) can be expressed
as a Gibbs measure (Boltzmann distribution in case of dis-
crete actions):

πnew(a|s) = πold(a|s)
eAπold

(s,a)/Cπold

Ea∼πold

[
eAπold

(s,a)/Cπold

]
= πold(a|s)

eQπold
(s,a)/Cπold

Ea∼πold

[
eQπold

(s,a)/Cπold

]
=

1

Z
exp

{Qπold
(s, a)

Cπold

+ log πold(a|s)
}
,

(23)

where Z = Ea∼πold

[
eQπold

(s,a)/Cπold

]
is the partition func-

tion.

To optimize a policy π, we can minimize the KL-Divergence
between π and πnew:

min
π

DKL

(
π(·|s)

∥∥∥∥∥exp
(

1
Cπold

Q̃πold
(s, ·)

)
Z

)
, (24)

where Q̃πold
is the soft Q-function:

Q̃πold
(s, a) = Qπold

(s, a) + Cπold
log πold(a|s). (25)

Replacing Cπold
with a temperature parameter α, we imme-

diately get the SAC algorithm (Haarnoja et al., 2018b).

A slight difference of the algorithm (24) than SAC is that it
minimizes the policy entropy instead of maximizing it. Note
that the soft state value function derived from our update
rule is given by

Ṽπ(s) = Ea∼π[Q̃π(s, a)] = Vπ(s)− CπH(π(·|s)), (26)

where H(π(·|s)) is the policy entropy. Since Cπ is always
positive, the policy entropy is penalized in the soft state
value function. Thus, applying (24) will minimize the policy
entropy. This is reasonable because the policy distribution
should be concentrating more and more on the optimal ac-
tion as the policy improves monotonically.

The derivation of SAC also verifies that the update rule is
essentially off-policy.
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6. Limitations and Discussions
6.1. Tightness of the Bound in Terms of γ

The bound in Theorem 4.1 improves prior analysis in terms
of KL-Divergence, but not in terms of γ, which could be a
limitation of the policy update rule. Compared to the bound
in TRPO, the improvement is at a cost of γ/(4(1 − γ)2).
When γ is close to 1, the penalty coefficient Cπold

for the
KL-Divergence can be large, resulting in small step sizes
for policy updates. While Cπold

can be tuned to allow larger
step-sizes in practice, a proven bound that is tighter in terms
of γ will be an interesting direction for future work.

6.2. Monotonic Guarantee and Function Approximation

The policy update rule is a closed-form solution, so it as-
sumes an exact advantage function and an exact maximum
of its absolute value. In large MDPs, these quantities gener-
ally need to be estimated by function approximators. The
use of function approximatiors will inevitably introduce
errors and can undermine the monotonic improvement guar-
antee. While our goal is to provide the theory, we would like
to clarify this to encourage the development of efficient algo-
rithms using function approximation. We also look forward
to new RL theories building upon the update rule given its
simplicity and wide connections with prior RL approaches.

6.3. Simultaneous Update for Multi-Agent RL

The extension of the update rule to multi-agent RL requires
agents to take turns updating their policies. Thus, the learn-
ing process could be slow if there are many agents. From
Equation (16) we see that the main reason for this require-
ment is that we need to make sure π−i

new = π−i
old. We believe

that relaxing this requirement so as for the agents to update
policies simultaneously without jeopardizing the monotonic
improvement guarantee is worth studying in the future.

7. Conclusion
We have presented a closed-form update rule for general
stochastic policy optimization with monotonic improvement
guarantee. A new theoretical result has been provided by
relating the lower bound of the performance to an expected
KL-Divergence, which closes the gap between theory and
practice in the literature. Based on the theoretical result, cal-
culus of variation has been introduced to derive the policy
update rule. Furthermore, we have proved that the policy up-
date rule is extendable to cooperative multi-agent RL when
agents take turns performing policy updates. Since the pro-
posed update rule is analytical, we hope that it serves as a
stepping stone for future work on novel RL theories and prin-
cipled RL algorithms using parametric or non-parametric
policies.
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A. Proof of Policy Performance Bound
This proof uses techniques from the proof of Lemma 3. in (Schulman et al., 2015), exploiting them to derive a new bound
that relates to an average divergence between policies, π′, π. An informal overview is as follows. First, using Lemma 1. in
(Schulman et al., 2015), the gap between the surrogate and the objective is decomposed into the difference of two expected
advantages over the policies π′, π. Then, we use the coupling technique to measure the coincidence of two trajectories
resulted from π′, π before an arbitrary timestep t. Finally, we constrain the gap to an average KL-Divergence using Pinsker’s
inequality.

Definition A.1 (Notations). We consider a Markov decision process with a continuous state space. The following definitions
and notations will be used.

1. Probability density function (PDF) of the state at timestep t given the policy π:

ρπt (s) = PDF (st = s|π).

Note that ρπ0 (s) = ρ0(s) is the PDF of the initial state s0, which is independent of π.

2. Discounted state visitation PDF:

dπ(s) = (1− γ)
[
ρπ0 (s) + γρπ1 (s) + γ2ρπ2 (s) + · · ·

]
= (1− γ)

∞∑
t=0

γtρπt (s).
(27)

3. One-step state transition density given the policy π:

νπ(s
′|s) =

∫
A
p(s′|s, a)π(a|s)da. (28)

4. t-step state transition density given the policy π (the Chapman Kolmogorov equation):

νtπ(s
′|s) =

∫
S
νmπ (s′|s̃)νt−m

π (s̃|s)ds̃, (29)

where 0 ≤ m ≤ t, and ν0π(s
′|s) is a Dirac delta distribution:

ν0π(s
′|s) =

{
∞, if s′ = s,

0, otherwise.
(30)

Note that ν0π(s
′|s) is independent of the policy π, and thus ν0π(s

′|s) = ν0π′(s′|s).

5. Discounted state transition PDF given the policy π:

µπ(s
′|s) =(1− γ)

[
ν0π(s

′|s) + γν1π(s
′|s) + γ2ν2π(s

′|s) + · · ·
]

=(1− γ)
∞∑
t=0

γtνtπ(s
′|s).

(31)

Then, the discounted visitation PDF can be written as

dπ(s′) =

∫
S
ρ0(s)µπ(s

′|s)ds. (32)

6. Surrogate model:

Lπ(π
′) = J(π) +

1

1− γ
Es∼dπ,a∼π′ [Aπ(s, a)]

7. Function spaces: For an open set U ⊂ Rd, we define

Ck(U) := {Functions u : U → R that are k-times continuously differentiable function on U}. (33)



An Analytical Update Rule for General Policy Optimization

We start by introducing the definition of α-coupled policies from the Definition 1 in (Schulman et al., 2015) with some
changes.

Definition A.2 (α-coupled policies). A coupling of two probability distributions µ and ν is a pair of random variables
(X,Y ) defined on a single probability space such that the marginal distribution of X is µ and the marginal distribution of Y
is ν (Levin et al., 2006).

The policies π′(a′|s) and π(a|s) are called α-coupled if they define a coupling of (π′, π) such that

P (a′ ̸= a|s) ≤ α(s). (34)

Numerically, α-coupling means that the actions a′ and a given state s match with probability of at least 1− α(s) when their
samples are drawn using the same seed.

The technique of coupling is useful because it relates two policies to their total variation distance. According to the lemma
4.7 in (Levin et al., 2006), for policies π′ and π, there exists a coupling that satisfies

DTV[π
′||π](s) = inf{P (a′ ̸= a|s), a′ and a is a coupling of π′ and π}. (35)

where DTV[π
′||π](s) represents the total variation distance between policies π′ and π given the state s. This means that

DTV[π
′||π](s) is the infimum of the probability P (a′ ̸= a|s), and therefore we can select α(s) to be DTV[π

′||π](s).

Note that our definition of α(s), depending on the state s, is different from the definition in (Schulman et al., 2015), which
is the maximum over the state space, i.e. maxs∈S α(s).

Next, we present a lemma from (Kakade & Langford, 2002) and (Schulman et al., 2015) that shows that the performance
difference between two arbitrary policies can be expressed as an expected advantage of one policy over a trajectory resulted
from the other.

Lemma A.3. Given two policies π′, π, we have

J(π′) = J(π) +
1

1− γ
Es∼dπ′ ,a∼π′ [Aπ(s, a)] . (36)

Proof. Note that Aπ(s, a) = Es′∼P (·|s,a) [r(s, a) + γVπ(s
′)− Vπ(s)]. Therefore,

Es∼dπ′ ,a∼π′ [Aπ(s, a)]

= Es∼dπ′ ,a∼π′,s′∼P [r(s, a) + γVπ(s
′)− Vπ(s)]

= (1− γ)Est∼ρπ′
t ,at∼π′,st+1∼P

[ ∞∑
t=0

γt
(
r(st, at) + γVπ(st+1)− Vπ(st)

)]

= (1− γ)Est∼ρπ′
t ,at∼π′

[
−Vπ(s0) +

∞∑
t=0

γtr(st, at)

]

= (1− γ)

(
−Es0∼ρ0 [Vπ(s0)] + Est∼ρπ′

t ,at∼π′

[ ∞∑
t=0

γtr(st, at)

])
= (1− γ) [−J(π) + J(π′)]

(37)

Rearranging it, the result follows.

Lemma A.4. Given two stochastic policies π′, π and their discounted state transition PDFs, µπ′(s′|s), µπ(s
′|s), the

following inequality holds:∫
S

∣∣µπ′(s′|s)− µπ(s
′|s)
∣∣ds′ ≤ 2γ2

1− γ

∫
S
µπ(s

′|s)DTV[π
′||π](s′)ds′. (38)



An Analytical Update Rule for General Policy Optimization

Proof. First note that

γ

∫
S
νπ(s

′|s̄)µπ(s̄|s)ds̄

= γ

∫
S
νπ(s

′|s̄)(1− γ)
[
ν0π(s̄|s) + γν1π(s̄|s) + γ2ν2π(s̄|s) + · · ·

]
ds̄

= (1− γ)
[
γν1π(s

′|s) + γ2ν2π(s
′|s) + γ3ν3π(s

′|s) + · · ·
]

= µπ(s
′|s)− (1− γ)ν0π(s

′|s).

(39)

Then, we have

γ

∫∫
S×S

µπ′(s′|s̃) [νπ′(s̃|s̄)− νπ(s̃|s̄)]µπ(s̄|s)ds̃ds̄

=

∫
S

(
γ

∫
S
µπ′(s′|s̃)νπ′(s̃|s̄)ds̃

)
µπ(s̄|s)ds̄−

∫
S
µπ′(s′|s̃)

(
γ

∫
S
νπ(s̃|s̄)µπ(s̄|s)ds̄

)
ds̃

=

∫
S

[
µπ′(s′|s̄)− (1− γ)ν0π′(s′|s̄)

]
µπ(s̄|s)ds̄−

∫
S
µπ′(s′|s̃)

[
µπ(s̃|s)− (1− γ)ν0π(s̃|s)

]
ds̃

=
✘✘✘✘✘✘✘✘✘✘∫
S
µπ′(s′|s̄)µπ(s̄|s)ds̄− (1− γ)

∫
S
ν0π′(s′|s̄)µπ(s̄|s)ds̄

✘✘✘✘✘✘✘✘✘✘✘

−
∫
S
µπ′(s′|s̃)µπ(s̃|s)ds̃+ (1− γ)

∫
S
µπ′(s′|s̃)ν0π(s̃|s)ds̃

= (1− γ)

[∫
S
µπ′(s′|s̃)ν0π(s̃|s)ds̃−

∫
S
ν0π′(s′|s̄)µπ(s̄|s)ds̄

]
(Note that ν0π(s̃|s) = ν0π′(s̃|s))

=
1− γ

γ

[(
µπ′(s′|s)− (1− γ)ν0π′(s′|s)

)
−
(
µπ(s

′|s)− (1− γ)ν0π(s
′|s)
)]

=
1− γ

γ
[µπ′(s′|s)− µπ(s

′|s)] .
(40)

Rearranging the equation, we have

µπ′(s′|s)− µπ(s
′|s) = γ2

1− γ

∫∫
S×S

µπ′(s′|s̃) [νπ′(s̃|s̄)− νπ(s̃|s̄)]µπ(s̄|s)ds̃ds̄. (41)

Recalling the definition of one-step state transition density in Equation (28), we have

νπ′(s̃|s̄)− νπ(s̃|s̄) =
∫
A
p(s̃|s̄, ā) [π′(ā|s̄)− π(ā|s̄)] dā. (42)

Then, we have ∫
S
|µπ′(s′|s)− µπ(s

′|s)|ds′

≤ γ2

1− γ

∫∫∫∫
S×S×S×A

µπ′(s′|s̃)p(s̃|s̄, ā)|π′(ā|s̄)− π(ā|s̄)|µπ(s̄|s)ds′ds̃ds̄dā

=
γ2

1− γ

∫
S
µπ′(s′|s̃)ds′

∫∫∫
S×S×A

p(s̃|s̄, ā)|π′(ā|s̄)− π(ā|s̄)|µπ(s̄|s)ds̃ds̄dā

=
γ2

1− γ

∫
S
p(s̃|s̄, ā)ds̃

∫∫
S×A

|π′(ā|s̄)− π(ā|s̄)|µπ(s̄|s)ds̄dā

=
γ2

1− γ

∫
S
µπ(s̄|s)

∫
A
|π′(ā|s̄)− π(ā|s̄)|dāds̄

=
2γ2

1− γ

∫
S
µπ(s̄|s)DTV[π

′||π](s̄)ds̄.

(43)

Replacing all s̄ with s′, the result follows.
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Lemma A.5. Let αt and γ be any real numbers within αt ∈ [0, 1], ∀t ∈ N and γ ∈ [0.5, 1) , the following inequality holds:

(1− γ)2
∞∑
t=0

γtαtα0t ≤
∞∑
t=0

γtα2
t . (44)

where α0t = 1−
∏t

i=0(1− αi).

Proof. First note that α0t can be expressed as

α0t = αt + (1− αt)αt−1 + (1− αt)(1− αt−1)αt−2 + · · ·+
t∏

i=1

(1− αi)α0, (45)

or in a recursive form:

α0t = αt + (1− αt)α0t−1, (46)

where α00 = α0. Then, we have

(1− γ)2
∞∑
t=0

γtαtα0t

= (1− γ)2
∞∑
t=0

γtα2
t + (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

=
∞∑
t=0

γtα2
t − (2γ − γ2)

∞∑
t=0

γtα2
t + (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

=

∞∑
t=0

γtα2
t −

[
(2γ − γ2)

∞∑
t=0

γtα2
t − (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

]
(47)

For the inequality (44) to hold, we only need to prove that the subtrahend on the rightest-hand side of (47) is greater than 0.
Note that

(2γ − γ2)
∞∑
t=0

γtα2
t − (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

=
∞∑
t=0

γt
[
γ + γ(1− γ)

]
α2
t − (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

=
∞∑
t=0

γt

[
(1− γ)

∞∑
i=1

γi + (1− γ)2
∞∑
i=1

γi

]
α2
t − (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

= (1− γ)2
∞∑
t=0

γt
∞∑
i=1

γi

[
1

1− γ
+ 1

]
α2
t − (1− γ)2

∞∑
t=1

γtαt(1− αt)α0t−1

( 1

1− γ
= 1 + γ + γ2 + · · ·

)
= γ(1− γ)α2

0 + (1− γ)2
∞∑
t=1

γt

[
t−1∑
n=0

(t− n)α2
n +

γ

1− γ
α2
t − αt(1− αt)α0t−1

]

≥ γ(1− γ)2α2
0 + (1− γ)2

∞∑
t=1

γt

[
t−1∑
n=0

(t− n)α2
n + α2

t − αtα0t−1

]
. (since γ > 1− γ when γ ≥ 0.5)

(48)
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In the expanded form, the rightest-hand side of (48) can be expressed as

γ(1− γ)2α2
0 + (1− γ)2

∞∑
t=1

γt

[
t−1∑
n=0

(t− n)α2
n + α2

t − αtα0t−1

]
= γ(1− γ)2

[
α2
0 + α2

0 + α2
1 − α1α0

]
+

γ2(1− γ)2
[
2α2

0 + α2
1 + α2

2 − α2α01

]
+

γ3(1− γ)2
[
3α2

0 + 2α2
1 + α2

2 + α2
3 − α3α02

]
+

γ4(1− γ)2
[
4α2

0 + 3α2
1 + 2α2

2 + α2
3 + α2

4 − α4α03

]
+

· · ·

(49)

Since
γt(1− γ)2 = γt(1− γ)2(1− γ + γ) = γt(1− γ)3 + γt+1(1− γ)2, (50)

Equation (49) can be rewritten as

γ(1− γ)3
[
2α2

0 + α2
1 − α1α0

]
+

γ2(1− γ)3
[
4α2

0 + 2α2
1 + α2

2 − α1α0 − α2α01

]
+

γ3(1− γ)3
[
7α2

0 + 4α2
1 + 2α2

2 + α2
3 − α1α0 − α2α01 − α3α02

]
+

γ4(1− γ)3
[
11α2

0 + 7α2
1 + 4α2

2 + 2α2
3 + α2

4 − α1α0 − α2α01 − α3α02 − α4α03

]
+

· · ·

= (1− γ)3
∞∑
t=1

γt

[
atα

2
0 +

t∑
i=1

(
at−iα

2
i − αiα0i−1

)]

= (1− γ)3
∞∑
t=1

γtHt

(51)

where

at = 1 +

t∑
j=0

j, (52)

and

Ht = atα
2
0 +

t∑
i=1

(
at−iα

2
i − αiα0i−1

)
, (53)

Next, we prove Ht ≥ 0 for all t ∈ N+ by using convex optimization. Decompose Ht into:

Ht = atα
2
0 +

t−1∑
i=1

(
at−iα

2
i − αiα0i−1

)
+ a0αt

2 − αtα0t−1

= ht−1 + a0αt
2 − αtα0t−1

(54)

Taking the partial derivative of Ht with respect to αt and setting it to be zero, Ht attains its minimum value, i.e.,

Ht ≥ ht−1 −
1

4a0
α2
0t−1. (55)

Denoting b1 = 1/4a0 and decomposing ht−1, we get

Ht ≥ ht−2 + a1α
2
t−1 − αt−1α0t−2 − b1α

2
0t−1

≥ ht−2 + a1α
2
t−1 − αt−1α0t−2 − b1[αt−1 + α0t−2]

2

= ht−2 + (a1 − b1)α
2
t−1 − (2b1 + 1)αt−1α0t−2 − b1α

2
0t−2

(56)
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Again, taking the partial derivative with respect to αt−1 and setting it to be zero, we get

Ht ≥ ht−2 −
b1 + a1b1 + 1/4

a1 − b1
α2
0t−2. (57)

Recursively, as long as bi ≥ 0 and ai − bi ≥ 0 hold for all i ≤ t ∈ N+, we can repeatedly apply the previous procedure and
get

Ht ≥ ht−1 − b1α
2
0t−1 ≥ ht−2 − b2α

2
0t−2 ≥ · · · ≥ atα

2
0 − btα

2
0 ≥ 0, (58)

where

bi+1 =
bi + aibi + 1/4

ai − bi
, i = 0, . . . , t− 1, (59)

b0 = 0 and ai is defined in Equation (52). Next, we prove bi ≥ 0 and ai − bi ≥ 0 for all i ≤ t ∈ N+.

First, it is easy to manually verify that bi ≥ 0 and ai − bi ≥ 0 when i < 15. In addition, for i = 15, we can verify that the
following inequalities holds

ai − bi ≥ 4(bi +
1

2
)2, bi ≤

1

4
i, (60)

since a15 = 121 and b15 ≈ 3.6945.

Next, we prove the inequalities in (60) holds for i > 15. Note that

bi+1 − bi =
bi + aibi + 1/4

ai − bi
− bi =

(bi +
1
2 )

2

ai − bi
,

ai+1 − ai = i+ 1.

(61)

Therefore, we have

bi+1 = bi +
(bi +

1
2 )

2

ai − bi
≤ bi +

1

4
≤ 1

4
(i+ 1), (62)

and

ai+1 − bi+1 = i+ 1 + ai − bi −
(bi +

1
2 )

2

ai − bi

≥ i+ 1 + 4(bi +
1

2
)2 − 1

4

≥ i+ 1 + 4
(
bi+1 +

1

2
− 1

4

)2
− 1

4

= 4(bi+1 +
1

2
)2 − 2bi+1 + i

≥ 4(bi+1 +
1

2
)2 − 1

2
(i+ 1) + i (i > 15)

≥ 4(bi+1 +
1

2
)2.

(63)

Based on Equations (60), (62) and (63), we can prove that bi ≥ 0 and ai − bi ≥ 0 hold for i ≥ 15 using mathematical
induction. Combining the fact that they also hold for i < 15, we have bi ≥ 0 and ai − bi ≥ 0 for all i ≤ t ∈ N+. As a
result, the inequality (58) holds, i.e., Ht ≥ 0, which concludes the proof.

Theorem A.6. For any stochastic policies π′, π and discount factor γ ∈ [0.5, 1), the following bound holds:

|J(π′)− Lπ(π
′)| ≤ 1

1− γ
CπEs∼dπ [DKL[π

′∥π](s)] ,

where Cπ =
γ2ϵ

(1− γ)3
, ϵ = max

s,a
|Aπ(s, a)|.

(64)
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Proof. Define A(s) to be the expected advantage of π′ over π at state s:

A(s) = Ea∼π′(·|s) [Aπ(s, a)] (65)

Then, Lemma A.3 can be rewritten as follows:

J(π′) = J(π) +
1

1− γ
Es∼dπ′

[
A(s)

]
= J(π) +

∞∑
t=0

γtEst∼ρπ′
t

[
A(st)

]
. (66)

Note that the surrogate model can be written as

Lπ(π
′) = J(π) +

1

1− γ
Es∼dπ

[
A(s)

]
= J(π) +

∞∑
t=0

γtEst∼ρπ
t

[
A(st)

]
. (67)

Then, the difference between the surrogate Lπ(π
′) and the true objective J(π′) can be written as

J(π′)− Lπ(π
′) =

∞∑
t=0

γt
[
Est∼ρπ′

t

[
A(st)

]
− Est∼ρπ

t

[
A(st)

] ]
=

∞∑
t=1

γt
[
Est∼ρπ′

t

[
A(st)

]
− Est∼ρπ

t

[
A(st)

] ]
. (since pπ

′

0 = pπ0 = ρ0)

(68)

Next, we split the proof into three parts. (1) By using the coupling technique, we decompose the difference terms in (68), i.e.
Est∼pπ′

t

[
A(st)

]
− Est∼pπ

t

[
A(st)

]
, to derive an equivalent expression. (2) Based on the result from the first part, we use

Lemma A.4 to derive an upper bound of |J(π′)− Lπ(π
′)|, which depends on a bunch of state-dependent total variation

distances of π′, π. (3) We relate the bound derived from the second part to the expected KL-Divergence between π′, π.

i) The first part of the proof is given as follows.

We will use techniques from the proof of Lemma 3. in (Schulman et al., 2015) to measure the coincidence of two trajectories
resulted from π′, π before an arbitrary timestep t. Let nt denote the number of times that a′i ̸= ai|si at state si for i < t. For
instance, nt = 0 means the trajectories τ, τ ′ completely match before timestep t, i.e., a′i = ai|si for all i < t.

The expected advantage at state st on the trajectory τ ′ ∼ π′ decomposes as follows:

Est∼ρπ′
t

[
A(st)

]
= P (nt = 0)Est∼ρπ′

t |nt=0

[
A(st)

]
+ P (nt > 0)Est∼ρπ′

t |nt>0

[
A(st)

]
. (69)

The expected advantage on the trajectory τ ∼ π decomposes similarly:

Est∼ρπ
t

[
A(st)

]
= P (nt = 0)Est∼ρπ

t |nt=0

[
A(st)

]
+ P (nt > 0)Est∼ρπ

t |nt>0

[
A(st)

]
. (70)

Subtracting Equation (70) from (69), we get

Est∼ρπ′
t

[
A(st)

]
− Est∼ρπ

t

[
A(st)

]
= P (nt > 0)

(
Est∼ρπ′

t |nt>0

[
A(st)

]
− Est∼ρπ

t |nt>0

[
A(st)

] )
, (71)

because Est∼ρπ′
t |nt=0

[
A(st)

]
= Est∼ρπ

t |nt=0

[
A(st)

]
when nt = 0.

Note that

nt > 0 ⇒

{
nt−1 = 0 and a′t−1 ̸= at−1|st−1 for every st−1, or
nt−1 > 0,

(72)

so we have

P (nt > 0) = P (nt−1 = 0) · Est−1∼ρπ
t−1

[
P (a′t−1 ̸= at−1|st−1)

]
+ P (nt−1 > 0). (73)

In a recursive form, it can be expressed as:

P (nt > 0) =
t−1∑
i=0

P (ni = 0)Esi∼ρπ
i
[P (a′i ̸= ai|si)] (74)
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Substituting (74) into (71), we get

Est∼ρπ′
t

[
A(st)

]
− Est∼ρπ

t

[
A(st)

]
=

t−1∑
i=0

P (ni = 0)Esi∼ρπ
i
[P (a′i ̸= ai|si)]

(
Est∼ρπ′

t |ni=0

[
A(st)

]
− Est∼ρπ

t |ni=0

[
A(st)

] )
.

(75)

Note that

Est∼ρπ′
t |ni=0

[
A(st)

]
− Est∼ρπ

t |ni=0

[
A(st)

]
=

∫
S

[
ρπ

′

t (st)− ρπt (st)
]
ni=0

A(st)dst

=

∫
S

(∫
S

[
ρπ

′

i (si)ν
t−i
π′ (st|si)− ρπi (si)ν

t−i
π (st|si)

]
ni=0

dsi

)
A(st)dst

=

∫∫
S×S

ρπi (si)
[
νt−i
π′ (st|si)− νt−i

π (st|si)
]
A(st)dsidst. (since ρπ

′

i = ρπi when ni = 0)

=

∫∫
S×S

ρπi (si)δ
t−i(st|si)A(st)dsidst (denote δt−i(st|si) = νt−i

π′ (st|si)− νt−i
π (st|si))

=

∫∫
S×S

ρπi (s)δ
t−i(s′|s)A(s′)dsds′

(76)

Substituting (76) into (75), we get

Est∼ρπ′
t

[
A(st)

]
− Est∼ρπ

t

[
A(st)

]
=

t−1∑
i=0

P (ni = 0)Esi∼ρπ
i
[P (a′i ̸= ai|si)]

∫∫
S×S

ρπi (s)δ
t−i(s′|s)A(s′)dsds′. (77)

For notational simplicity, we denote

Pni=0P a′
i ̸=ai

:= P (ni = 0)Esi∼ρπ
i
[P (a′i ̸= ai|si)]. (78)

Then, Equation (77) can be expressed as

Est∼ρπ′
t

[
A(st)

]
− Est∼ρπ

t

[
A(st)

]
=

t−1∑
i=0

Pni=0P a′
i ̸=ai

∫∫
S×S

ρπi (s)δ
t−i(s′|s)A(s′)dsds′. (79)

ii) The second part of the proof is given as follows.
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Substituting (79) into (68), we get

J(π′)− Lπ(π
′)

=
∞∑
t=1

γt
t−1∑
i=0

Pni=0P a′
i ̸=ai

∫∫
S×S

ρπi (s)δ
t−i(s′|s)A(s′)dsds′

=

(
Pn0=0P a′

0 ̸=a0

∫∫
S×S

γρπ0 (s)δ
1(s′|s)A(s′)dsds′

)
+(

Pn0=0P a′
0 ̸=a0

∫∫
S×S

γ2ρπ0 (s)δ
2(s′|s)A(s′)dsds′ + Pn1=0P a′

1 ̸=a1

∫∫
S×S

γ2ρπ1 (s)δ
1(s′|s)A(s′)dsds′

)
+

...

= Pn0=0P a′
0 ̸=a0

∫∫
S×S

ρπ0 (s)
[
γδ1(s′|s) + γ2δ2(s′|s) + · · ·

]
A(s′)dsds′ +

Pn1=0P a′
1 ̸=a1

∫∫
S×S

γρπ1 (s)
[
γδ1(s′|s) + γ2δ2(s′|s) + · · ·

]
A(s′)dsds′ +

· · ·

=
1

1− γ

∞∑
t=0

Pnt=0P a′
t ̸=at

∫∫
S×S

γtρπt (s)
[
µπ′(s′|s)− µπ(s

′|s)
]
A(s′)dsds′. (See the definition of µπ in (31).)

(80)

Taking absolute values on both sides and applying Hölder’s inequality, we get

|J(π′)− Lπ(π
′)| ≤ 1

1− γ

∞∑
t=0

Pnt=0P a′
t ̸=at

∫∫
S×S

γtρπt (s)
∣∣[µπ′(s′|s)− µπ(s

′|s)
]
A(s′)

∣∣ds′ds
≤ 1

1− γ

∞∑
t=0

Pnt=0P a′
t ̸=at

∫
S
γtρπt (s)

∫
S

∣∣µπ′(s′|s)− µπ(s
′|s)
∣∣ds′ds ·max

s′,a′
|Aπ(s

′, a′)|
(81)

Applying Lemma A.4, we have

|J(π′)− Lπ(π
′)| ≤ 2γ2ϵ

(1− γ)2

∞∑
t=0

Pnt=0P a′
t ̸=at

∫∫
S×S

γtρπt (s)µπ(s
′|s)DTV[π

′||π](s′)dsds′. (82)

Note that the integral part in the above inequality can be expressed as∫∫
S×S

γtρπt (s)µπ(s
′|s)DTV[π

′||π](s′)dsds′

=

∫
S

(∫
S
γtρπt (s)µπ(s

′|s)ds
)
DTV[π

′||π](s′)ds′ (See the definition of µπ in (31).)

=

∫
S

(
dπ(s′)− (1− γ)

t−1∑
i=0

γiρπi (s
′)
)
DTV[π

′||π](s′)ds′ (for all t > 0)

= Es′∼dπ [DTV[π
′||π](s′)]− (1− γ)

t−1∑
i=0

γiEs′∼ρπ
i
[DTV[π

′||π](s′)] (for all t > 0)

= Es∼dπ [DTV[π
′||π](s)]− (1− γ)

t−1∑
i=0

γiEs∼ρπ
i
[DTV[π

′||π](s)] (for all t > 0)

(83)

In the following, we will replace all total variations DTV[π
′||π](s) with α(s) (see Definition A.2) and use the following

notations for simplicity:
α := Es∼dπ [α(s)], αi := Es∼ρπ

i
[α(s)]. (84)
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Plugging (83) into (82), we have

|J(π′)− Lπ(π
′)| ≤ 2γ2ϵ

(1− γ)2

[ ∞∑
t=0

Pnt=0P a′
t ̸=at

· α− (1− γ)
∞∑
t=1

t−1∑
i=0

Pnt=0P a′
t ̸=at

· γiαi

]
(85)

Using Equations (74) and (78), we have

k−1∑
t=1

Pnt=0P a′
t ̸=at

= P [nk > 0] → 1 when k → ∞. (86)

Therefore, the first term in the parentheses on the rightest-hand side of (85) is just

∞∑
t=1

Pnt=0P a′
t ̸=at

· α = α. (87)

The second term in the parentheses on the rightest-hand side of (85) can be expressed as

(1− γ)
∞∑
t=1

t−1∑
i=0

Pnt=0P a′
t ̸=at

· γiαi

= (1− γ)
(
Pn1=0P a′

1 ̸=a1
· α0

)
+

(1− γ)
(
Pn2=0P a′

2 ̸=a2
· α0 + Pn2=0P a′

2 ̸=a2
· γα1

)
+

(1− γ)
(
Pn3=0P a′

3 ̸=a3
· α0 + Pn3=0P a′

3 ̸=a3
· γα1

)
+ Pn3=0P a′

3 ̸=a3
· γ2α2

)
+

...

= (1− γ)
(
α0

∞∑
t=1

Pnt=0P a′
t ̸=at

+ γα1

∞∑
t=2

Pnt=0P a′
t ̸=at

+ γ2α2

∞∑
t=3

Pnt=0P a′
t ̸=at

+ · · ·
)

= (1− γ)
(
α0[1− P (n1 > 0)] + γα1[1− P (n2 > 0)] + γ2α2[1− P (n3 > 0)] + · · ·

)
= (1− γ)

( ∞∑
t=0

γtαt −
∞∑
t=0

γtαtP (nt+1 > 0)
)

= α− (1− γ)
∞∑
t=0

γtαtP (nt+1 > 0)

(88)

Substituting (87) and (88) into (85), we get

|J(π′)− Lπ(π
′)| ≤ 2γ2ϵ

1− γ

∞∑
t=0

γtαtP (nt+1 > 0). (89)

iii) The third part of the proof is given as follows.

Recall that nt denote the number of times that a′i ̸= ai|si at state si for i < t, and nt = 0 means that a′i = ai|si for all i < t.
Based on Definition A.2 (α-coupled policy), we have P (a′i = ai|si) ≥ 1− α(si) for every si. Thus,

P (nt+1 > 0) = 1− P (nt+1 = 0)

= 1−
t∏

i=0

Esi∼ρπ
i
[P (a′i = ai|si)]

≤ 1−
t∏

i=0

(1− αi)

(90)



An Analytical Update Rule for General Policy Optimization

Substituting (90) and (84) into (89), we have

|J(π′)− Lπ(π
′)| ≤ 2γ2ϵ

1− γ

∞∑
t=0

γtαt

(
1−

t∏
i=0

(1− αi)
)
. (91)

Using Lemma A.5, the inequality (91) can be further simplified as

|J(π′)− Lπ(π
′)| ≤ 2γ2ϵ

(1− γ)3

∞∑
t=0

γtα2
t . (92)

Replacing αt with Es∼ρπ
t
[DTV[π

′||π](s)] and applying E2[X] ≤ E[X2], we get

|J(π′)− Lπ(π
′)| ≤ 2γ2ϵ

(1− γ)3

∞∑
t=0

γtEs∼ρπ
t
[D2

TV[π
′||π](s)]. (93)

Last, applying Pinsker’s inequality, 2D2
TV[π

′||π](s) ≤ DKL[π
′||π](s), the result follows.

B. Proof of Analytical Policy Update Rule with Monotonic Improvement Guarantee
This proof uses calculus of variations to derive an analytical solution for trust region policy update.

Theorem B.1. For any stochastic policies πnew, πold that are continuously differentiable on the state space S , the inequality,
J(πnew) ≥ J(πold), holds when

πnew = πold · eαπold

Ea∼πold
[eαπold ]

, where απold
=

Aπold

Cπold

. (94)

Proof. With Theorem 4.1, we can get a lower bound of the objective function J(π′) when approximating around πold:

J(π′) ≥ Lπold
(π′)− 1

1− γ
Cπold

Es∼dπold [DKL[π
′∥πold](s)] . (95)

It follows that maximizing the lower bound will give us a new policy that is not worse than πold. To see this, let I(π′) denote
the lower bound and πnew denote its maximum solution:

I(π′) = Lπold
(π′)− 1

1− γ
Cπold

Es∼dπold [DKL[π
′∥πold](s)] (96)

πnew = argmax
π′

I(π′) (97)

where Lπold
(π′) is the surrogate model. Then, we have

J(πnew) ≥ I(πnew) ≥ I(πold) = J(πold).

Next, we prove that the expression of πnew in (94) is a necessary and sufficient condition for the optimal solution of the
problem in (97).

B.1. Continuous action space

We will use calculus of variation to derive the analytical expression for πnew. Let π′ ∈ C1(U) be functions defined on
U

.
= S ×A. Note that the lower bound I(π′) can be rewritten as follows:

I(π′) = J(πold) +
1

1− γ

∫∫
S×A

dπold(s)

[
π′(a|s)Aπold

(s, a)− Cπold
π′(a|s) log π′(a|s)

πold(a|s)

]
dsda. (98)

Note that the policy π′ should be a probability distribution, which means that it integrates to 1. To ensure that, we add the
following constraint:

H(π′) =
1

1− γ

∫
S
dπold(s)

[ ∫
A
π′(a|s)da− 1

]
ds = 0. (99)
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Now, consider all functions in Equations (98) and (99) as variables in function spaces, and define

F (s, a, π′) = dπold (π′Aπold
− Cπold

π′ log π′ + Cπold
π′ log πold) . (100)

G(s, a, π′) = dπoldπ′ − dπoldπold. (101)

Based on Euler-Lagrange equation (Calder, 2020), there must exist a real number λ such that the optimal policy π∗ satisfies

∇π′F (s, a, π′)− λ∇π′G(s, a, π′) = 0, (102)

where λ is the Lagrange multiplier. Solving Equation (102), we have

dπold (Aπold
− Cπold

log π∗ − Cπold
+ Cπold

log πold − λ) = 0, (103)

and
πnew = πold · exp

{Aπold

Cπold

− 1− λ

Cπold

}
. (104)

Since π′ integrates to 1, we have∫
A
πnew(a|s)da =

∫
A
πold(a|s) exp

{Aπold
(s, a)

Cπold

− 1− λ

Cπold

}
da

= e−1−λ/Cπold

∫
A
πold(a|s) exp

{Aπold
(s, a)

Cπold

}
da

= 1

(105)

Rearranging it, we get ∫
A
πold(a|s) exp

{Aπold
(s, a)

Cπold

}
da = e1+λ/Cπold . (106)

Taking logarithm on both sides and rearranging it, we get

λ = Cπold
log

∫
A
πold(a|s) exp

{Aπold
(s, a)

Cπold

}
da− Cπold

. (107)

Substituting (107) into (104), we get

πnew(a|s) = πold · exp
{Aπold

(s, a)

Cπold

− log

∫
A
πold(a|s) exp

{Aπold
(s, a)

Cπold

}
da
}
. (108)

Denote απold
=

Aπold
(s,a)

Cπold
. Then, the optimal policy can be simplified as

πnew = πold · eαπold

Ea∼πold
[eαπold ]

. (109)

Until now, we have proved the sufficient condition. Next, we prove that the policy πnew in Eq. (109) is also the necessary
condition for the optimal solution to the maximization of I(π′).

Consider weak variations ϵη such that π′ = πnew + ϵη, where η ∈ C1(U) and ϵ is a real number. The second variation can
be expressed as,

δ2I =
ϵ2

1− γ

∫∫
S×A

∇2
π′π′F (s, a, π′)η2dsda

=
ϵ2

1− γ

∫∫
S×A

−dπoldCπold

π′ η2dsda

≤ 0 (for all weak variations η)

(110)

because Cπold
≥ 0, and dπold , π′ are probability distributions and thus always greater or equal to 0. Based on second-variation

condition (Kot, 2014), the functional I(π′) reaches a maximum at πnew.
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B.2. Discrete action space

For discrete actions, the functionals I(π′) and H(π′) can be rewritten as follows:

I(π′) = J(πold) +
1

1− γ

∫
S
dπold(s)

k∑
i=1

[
π′(ai|s)Aπold

(s, ai)− Cπold
π′(ai|s) log

π′(ai|s)
πold(ai|s)

]
ds, (111)

H(π′) =
1

1− γ

∫
S
dπold(s)

[ k∑
i=1

π′(ai|s)− 1
]
ds. (112)

Now, consider the policy as a vector of functions, π′ = [π′
1, π

′
2, . . . , π

′
k], where π′

i = π′(ai|s) ∈ C1(S) is a function defined
on S given the action ai. Then, we can define the Lagrange functions by

F (s, a, π′) = dπold

k∑
i=1

(
π′
iAπold

− Cπold
π′
i log π

′
i + Cπold

π′
i log πi,old

)
. (113)

G(s, a, π′) =
k∑

i=1

π′
i − 1. (114)

The Euler-Lagrange Equation (102) becomes

∇π′
i
F (s, a, π′)− λ∇π′

i
G(s, a, π′) = 0, ∀i ∈ {1, . . . , k}. (115)

Solving the Euler-Lagrange Equations (115), we get

π∗
i = πi,old · exp

{Aπold

Cπold

− 1− λ

Cπold

}
, ∀i ∈ {1, . . . , k}. (116)

Note that π∗
i should satisfy

k∑
i=1

π∗
i = 1. (117)

Then, we can calculate the Lagrange multiplier λ:

λ = Cπold
log

k∑
i=1

πi,old(ai|s) exp
{Aπold

(s, ai)

Cπold

}
− Cπold

. (118)

Substituting (118) into (116) and use the vector form, we get

π∗ = πnew = πold · eαπold

Ea∼πold
[eαπold ]

. (119)

Use the same method as in Equation (110), we can prove that the second-variation condition is satisfied.


