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Abstract. Electron microscopy images of carbon nanotube (CNT) forests
are difficult to segment due to the long and thin nature of the CNTs; den-
sity of the CNT forests resulting in CNTs touching, crossing, and occlud-
ing each other; and low signal-to-noise ratio electron microscopy imagery.
In addition, due to image complexity, it is not feasible to prepare train-
ing segmentation masks. In this paper, we propose CNTSegNet, a dual
loss, orientation-guided, self-supervised, deep learning network for CNT
forest segmentation in scanning electron microscopy (SEM) images. Our
training labels consist of weak segmentation labels produced by intensity
thresholding of the raw SEM images and self labels produced by estimat-
ing orientation distribution of CNTs in these raw images. The proposed
network extends a U-net-like encoder-decoder architecture with a novel
two-component loss function. The first component is dice loss computed
between the predicted segmentation maps and the weak segmentation
labels. The second component is mean squared error (MSE) loss mea-
suring the difference between the orientation histogram of the predicted
segmentation map and the original raw image. Weighted sum of these
two loss functions is used to train the proposed CNTSegNet network. The
dice loss forces the network to perform background-foreground segmen-
tation using local intensity features. The MSE loss guides the network
with global orientation features and leads to refined segmentation results.
The proposed system needs only a few-shot dataset for training. Thanks
to it’s self-supervised nature, it can easily be adapted to new datasets.

Keywords: - semantic segmentation, self-supervised learning, carbon
nanotubes (CNT), electron microscopy

1 Introduction

Carbon nanotubes (CNTs), discovered in 1991, [20] have an intriguing combi-
nation of mechanical, thermal, electrical, and chemical properties [13, 21]. The
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unique physical properties of CNTs are a result of the hexagonal sp2-bonded
graphene sheets that comprise their walls. Single-walled CNTs (SWNTs) may ex-
hibit metallic or semiconducting properties depending on their chirality. SWNT
transistor devices fabricated with sub-10 nm channel lengths have exhibited high
current density of 2.4 mA/micron and low operating voltage of 0.5 V. Multi-
walled CNTs (MWNTs) are metallic in nature, with diameters ranging from
approximately 2-40 nm. MWNTs have been spun together to form yarns [43]
that are electrically conductive and strong, yet capable of being tied into a knot.

Fig. 1. Carbon nanotube (CNT) pillar imaged using scanning electron microscope
(SEM). (A-left) Full pillar view. (B-right) Zoomed side view of the CNT pillar.

Isolated, individual CNTs are difficult to synthesize and are often impracti-
cal for device-level integration. CNTs are more frequently grown as CNT forests
– high density CNT populations synthesized on a support substrate. Crowd-
ing within a growing CNT population forces CNTs to orient vertically within a
forest, normal to the growth substrate. Interactions between contacting CNTs
generate persistent attractive van der Waals bonds which resist mechanical loads
generated within the forest during synthesis. Individual CNTs within a forest in
response to mechanical loading, leading to a CNT forest morphology that resem-
bles an open-cell foam. The properties of the CNT forests are vastly diminished
when compared to that of an individual CNT. For example the elastic modu-
lus of an individual CNT is in the order of 1TPa, while the compressive elastic
modulus of a CNT forest may be as low as 10 MPa [32] – similar to that of natu-
ral rubber. The deformation mechanisms of compressed CNT forests are highly
variable [7,8,18,31–33,39,42] and are thought to result from variations in CNT
forest morphology generated during cooperative synthesis [3,28,37]. CNT forests
are candidates for the dry spinning of conductive, high-strength fibers [23, 43],
piezoresistive sensing [29,30,36], electrochemical energy storage [9,12], and ther-
mal interface materials [10, 11]. Testing for physical properties of CNT forests
often requires destruction of the forest which prevents further data collection. A
method to determine physical properties of CNT forests indirectly using images
of the said forest would help overcome the problem (Figure 1). Thus a thor-
ough analysis of CNT images is a critical step in determining the CNT forests’
physical characteristics. The data obtained could then be used to determine
how growth parameters can be modified to obtain a CNT forest with favorable
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properties. CNT image analytics aims to quantify CNT attributes such as ori-
entation, linearity, density, diameter etc. The first step towards CNT feature
characterization is segmentation. Earlier works on CNT image analytics relied
on classical image processing approaches. In [14] thresholding was used to pro-
duce partial CNT masks to determining CNT diameters. In [41] class-entropy
maximization was used to segment CNT images with modest magnification lev-
els (800X-4000X). [40] thresholded image pixels into three classes: background,
CNT, and uncertain areas. Feature vectors of class background and CNT ex-
tracted from small image patches were used to train a multi layer perceptron
neural network. The network then classified pixels of uncertain area as either
background or CNTs. However, this strategy was only effective with extremely
sparse, non-overlapping CNTs in small patches. In [15, 16] synthetic CNT for-
est images obtained from physics-based simulation have been analyzed using
machine learning approaches to predict mechanical properties. While not devel-
oped for CNT image segmentation, recent works on detection and segmentation
of other curvilinear structures such as fibers may be of interest for CNT image
analytics. In [27] a 3D deep neural network pipeline was proposed for segmenta-
tion of short and thick glass fibers with acceptable density levels. The network
was trained with a combination of synthetic data and real CT scan data with
associated ground truths. In [4] an improved pipeline with deep center regression
and geometric clustering was proposed for this type of glass fiber data.

As shown in Figure 1B, our dataset contains long, thin, and dense CNT fibers.
Clustering or thresholding-based, unsupervised segmentation methods lead to
limited success. Because of data complexity and ambiguity, manual labeling is
not feasible. Thus, there is a shortage of high-quality datasets with associated la-
bels that can enable use of supervised learning based approaches. Self-supervising
learning [22] has emerged as an approach to learn good representations from un-
labeled data and to perform fine-tuning with labeled features at the down-stream
tasks.

In this paper, we present a self-supervised deep learning network for seg-
mentation of CNT forests in scanning electron microscopy (SEM) images. The
imaged CNT forests were grown using an in-situ SEM synthesis process based on
chemical vapor deposition (CVD) [26]. The proposed deep segmentation network
relies on two complementary training labels. The first label, intensity thresh-
olded raw input image, serves as a weak label that leads the network to perform
binary CNT segmentation. The second label, CNT orientation histogram calcu-
lated directly from the raw input image, constraints the segmentation process
by enforcing the network to preserve orientation characteristics of the original
image. Experimental results demonstrate refined segmentation results without
supervision and need for manual image annotation.

2 Methods

In order to enable characterization of CNT properties within dense CNT forests,
we have developed a self-supervised segmentation method. According to [22],
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self-supervised learning trains a model by using pseudo labels that are gener-
ated automatically without the requirement for human annotations. The training
procedure consists of two steps: a pretext task and a downstream task. Feature
representation is learned in the pretext task first, whereas model adaptation
is completed in the downstream task. The downstream task also evaluates the
quality of features learned by the pretext task. Our proposed system consists
of a novel deep neural network with two complementary loss functions which
correspond to the pretext task and the downstream task. The following subsec-
tions describe the network architecture, loss functions, and generation of training
labels.

2.1 Network architecture

We have built a self-supervised deep neural network with two complementary loss
functions named CNTSegNet. The architecture of this network is similar to the
classical U-Net [38] architecture with the encoder and decoder branches. Input
to the CNTSegNet consists of a single channel 2D grayscale image. Output of
the CNTSegNet consists of a binary, single channel, 2D image. During training
and testing, SEM images of CNT forests are fed to the network to generate
binary segmentation masks of CNTs. The network’s encoder uses the ResNet-
34 model [17] as the backbone. It’s a fully convolutional deep neural network
with shortcut connections to learn residual features. The encoder includes three
main layers with 16, 32, and 64 filters respectively. Figure 2 depicts the network
architecture and the network training process. The network generates a pixel-
wise class likelihood map which is binarized at the level of 0.7 to produce a
binary segmentation mask. Orientation histogram for the prediction is computed
from the generated class likelihood map. The proposed network is trained with
weighted sum of two complementary loss functions described below.

Fig. 2. Network architecture and training pipeline for the proposed dual loss and self-
supervised network CNTSegNet. The network is based on an encoder-decoder archi-
tecture similar to U-Net segmentation network [17, 19, 38], but includes a second loss
function and involves a self-supervised training scheme.
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a) CNT segmentation loss: The first loss component aims to drive the net-
work to perform segmentation prediction to match a given binary segmentation
mask. Given a prediction mask Maskpred and a training mask Masktrain, dice
loss is computed using the following equation

LossDice(Maskpred,Masktrain) = 1− 2× |Maskpred ∩Masktrain |
|Maskpred |+ |Masktrain |

(1)

Dice loss is a pixel-wise function that matches local image features in spatial
domain. In this case, the dice loss by itself is not sufficient to generate reliable
segmentation masks since the network is trained with automatically generated
coarse weak labels rather than precise ground truth segmentation masks. This
weakly supervised learning step plays the role of a pretext task.

b) CNT orientation loss: To compensate for weak labels, we introduced a
second loss component. This second loss aims to drive the network to refine the
predicted segmentation masks by enforcing the output to preserve the orien-
tation patterns of the input. CNT forest orientation patterns is encoded using
orientation histograms calculated without human annotation using the frequency
domain methods proposed in [6, 24] and briefly described in Section 2.2. Given
the input and output orientation histograms hin and hpred, orientation loss is
computed as the following equation

LossMSE(hpred, hin) =

n∑
b=1

(hpred(b)− hin(b))
2 (2)

where n and b refer to number of bins in the histogram and index for an histogram
bin. Optimizing this orientation loss will push the arrangement of foreground
pixels in the segmentation mask towards the orientation of corresponding pixels
in the raw images. This operation plays the role of a downstream task in self-
supervised learning approach.

c) Total loss: The proposed network is trained with a total loss computed as
the weighted sum of the dice segmentation and MSE orientation losses

LossTotal = k1 × LossDice +k2 × LossMSE (3)

where k1 and k2 refer to scalar weights. This total loss combines local and global
image features extracted using spatial and frequency domain operations to pre-
serve CNT morphology, particularly orientation patterns, during segmentation.

2.2 Generation of training labels

The two sets of training labels, the weak CNT segmentation masks and the CNT
orientation histograms are generated as follows to enable self-supervised network
training.
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a) Weak CNT segmentation masks: To produce weak segmentation labels
we explored two thresholding-based unsupervised methods. The first method,
Otsu [35], is a global thresholding strategy that calculates an ”ideal” thresh-
old by maximizing the inter-class variance between background and foreground
classes. The results of the Otsu approach are shown in the second columns of Fig-
ure 3. Because of the increasing illumination, CNTs in the lower image regions
are prominent while in the upper regions fade into the background. The second
method, adaptive thresholding, generates improved segmentation results if the
background intensity varies widely. Adaptive thresholding determines threshold
values in local regions by computing the weighted mean of the local neighbor-
hood minus an offset value [2]. The third column of Figure 3 illustrates the
outcomes of adaptive thresholding. These segmentation masks provide a greater
level of detail. For training of the proposed deep neural network, we used weak
segmentation masks generated using adaptive thresholding.

Fig. 3. Thresholding of CNT forest SEM images. Raw SEM image (first column), Otsu
thresholding [35] (second column), adaptive thresholding [2] (last column).

b) CNT forest orientation histograms: CNT forests’ physical properties
are strongly affected by orientation and alignment of the CNTs forming them.
Alignment of the CNTs can enhance the mechanical, thermal, and electrical
characteristics. Birefringence and linear dichroism, fluorescence polarization, and
polarized Raman spectroscopy are some of the most commonly used methods to
evaluate CNT alignment. [6, 24].

In this study, we employed an image-based CNT forest orientation distribu-
tion estimation approach using radial sum method described in [6, 24]. As the
orientation feature is extracted by summing operation, it is possible to incorpo-
rate this feature to the computational pipeline and perform back-propagation
to train our deep neural network. This approach can estimate the orientation
of CNTs in either raw images or their binary masks. Figure 4 illustrates the
processes required to estimate the orientation distribution of CNTs. Initially,
the input image (raw image or binary mask) (Figure 4A-B) is transformed into
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Fourier space (Figure 4D). The output is masked by a circle (Figure 4E) divided
into a number of bins (e.g. 360 bins, corresponding to 360 degrees). The total
intensity in each bin indicates count of image pixels of that associated angle
(Figure 4C). This histogram represents the practical orientation distribution of
CNTs in the input image. It’s possible to fit this practical distribution as a
mixture of several theoretical distributions as shown in Figure 4F.

Fig. 4. CNT forest orientation distribution estimation using robust frequency-domain
orientation estimation method described in [6, 24].

3 Experimental results

3.1 Datasets

The CNT forests used in this study were grown using chemical vapor deposition
(CVD) [26] and were imaged using a FEI Quanta environmental SEM. The
collected images had a resolution of 1536 × 1094 pixels and were acquired with
a pixel dwell time of 10 µs. A CNT forest can grow up to a height of several
millimeters and often has different morphology at different locations of the forest
pillar [5], thus it is important to collect images from different locations to obtain
data encapsulating all the morphologies in the CNT forest. SEM images in this
study were collected at a magnification of 50,000X. Care was taken to prevent a
large overlap between images. 110 image patches of size of 768× 768 were used,
with 34 of them going into the training set and the rest 76 patches going into
the test set.

3.2 Training process

We trained the proposed deep neural network with the dice and MSE loss func-
tions separately and with the combined (dice + MSE) loss function to explore
the effects of each loss component. During training, we maintained the same
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(a) Raw image (b) Thresholded image [2]

(c) Class likelihood (Dice) (d) Mask (Dice)

(e) Class likelihood (MSE) (f) Mask (MSE)

(g) Class likelihood (Dice +
MSE)

(h) Mask (Dice + MSE)

Fig. 5. Segmentation results for CNTSegNet with different loss functions. Raw SEM
image of a sample CNT forest (a). Thresholded image [2] used as a weak segmentation
label (b). Class likelihood maps and binary masks predicted using only the dice loss
(c-d), only the MSE loss applied to orientation histogram (e-f), the combined dice and
MSE loss functions (g-h).
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learning rate and the same type of optimizer but varied the number of iterations
for each loss function due to their distinct convergence processes.

Fig. 6. Inspection of intensity profiles. (a) Raw SEM image; (b) mask predicted using
CNTSegNet; (c) weak-label used to train the network; (d) associated intensity profiles
at a sample image row.

a) Training with dice segmentation loss. The network was first trained
with just the dice segmentation loss component for 10 epochs. We used Adam
optimizer with a learning rate of 5e-4. The final average dice score compared to
the weak labels was 0.86.

Figure 5C & D show this network’s prediction as class likelihood map and
as binary mask. The binary mask produced by the network is smoother and
has fewer tiny debris compared to the thresholded image due to the effects of
convolution filters and upsampling layers of the network. However, since the
network was trained with thresholded images rather than ground truth masks,
prediction was coarse resulting in merging of many neighboring CNTs.

b) Training with MSE orientation loss. In an other task, the network was
trained using just the MSE loss between the orientation vectors of the raw input
image and the network prediction. For 8 epochs, we ran the Adam optimizer
with a learning rate of 5e-4. In the absence of segmentation loss, the final aver-
age dice score for the network predictions was only 0.53 compared to the weak
segmentation labels. This is due to the fact that the orientation vector includes
just the summed global features. The loss function lacked the necessary local
(pixel-wise) information needed to drive the segmentation mask.
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Figure 5E & F show this network’s prediction as class likelihood map and as
binary mask. As expected, this approach dropped the dice scores significantly
from 0.86 to 0.53.

c) Training with two-component loss function. In the final task, we trained
the proposed network with a combined loss function consisting of dice segmenta-
tion and MSE orientation losses. We utilized an Adam optimizer with a learning
rate of 5e-4. In the first 6 epochs, we initialized the segmentation output by
training only with the dice loss. To regularize this output mask, for the follow-
ing 3 epochs, we continued to train the network with a weighted sum of the dice
segmentation and MSE orientation losses. As the maximum value of the dice loss
is 1 but the magnitude of the orientation loss reaches much larger values at the
levels of 1e+7 (as seen in Figure 4C & F), we set the weight of the dice loss to
0.6, and the weight of the MSE loss to 1e-7 for a more balanced influence. This
scheme resulted in an average dice score of 0.84 compared to the weak labels.

Figure 5G & H show the prediction class likelihood map and associated binary
mask obtained using this dual loss network. In this scheme, dice loss guides the
network to match the segmentation mask of the weak labels, while the MSE
loss regularizes the segmentation process and guides the network to preserve the
orientation properties of its input resulting in finer segmentation details.

Figure 6 aims to provide further visual insight. We plotted single-row inten-
sity profiles (row=300) for a sample raw SEM image, the corresponding weak
segmentation label used for network training, and the binary mask predicted
using the proposed CNTSegNet network. The intensity peaks in the original sig-
nal correspond to individual CNTs. These plots show that the weak label tends
to merge the neighboring peaks in the original signal resulting in wider/thicker
foreground blocks. We can observe that the CNTSegNet prediction can better
detect these intensity peaks resulting in narrower/thinner foreground blocks and
more refined segmentation masks.

3.3 Segmentation evaluation

We conducted inference on the test set after training the proposed CNTSegNet
network with the combined loss function. We compared the performance of the
CNTSegNet to three other segmentation methods, adaptive intensity threshold-
ing [2], k-means clustering [1], and a recent unsupervised deep learning-based
segmentation method [25]. K-means [1] is an unsupervised clustering method
that partitions a dataset into K clusters where each data item belongs to the
cluster with the closest centroid. We used k-means clustering to cluster the in-
tensity levels into two clusters corresponding to CNTs and background. [25] is
a novel unsupervised convolutional neural network using differentiable feature
clustering to enable unsupervised image segmentation. The network includes a
normalizing function to generate a response map from the network output, and
an argument max function to select a cluster for each pixel. For a single test im-
age, this method first trains the network to minimize the difference of network
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(a) Raw SEM images of CNT forest

(b) Proposed CNTSegNet segmentation results

(c) Adaptive thresholding results [2]

(d) K-means clustering results [1]

(e) Unsupervised deep segmentation results [25]

Fig. 7. Segmentation results for four sample images (columns 1-4). (a) Raw SEM im-
ages. (b) Segmentation masks obtained using the proposed CNTSegNet network. (c)
Adaptive thresholding results [2]. (d) K-means clustering results [1]. (e) Unsupervised
deep segmentation results using [25].
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(a) CNTSegNet

(b) Adaptive threshold

(c) K-means

(d) Unsupervised DL

Fig. 8. Segmentation masks (left) and associated edge maps (middle), associated signed
distance transform maps (right) for the proposed CNTSegNet network, adaptive thresh-
olding [2], k-means clustering [1], and unsupervised deep segmentation [25] results.
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output and the argument-max output, then it uses the argument-max output as
the segmentation mask.

Figure 7 depicts the segmentation results of four aforementioned methods
for four sample images. It can be observed that CNTSegNet results in more
refined segmentation masks with better recall of the individual CNTs compared
to all three methods. Compared to k-means clustering [1] and unsupervised deep
segmentation [25], CNTSegNet is also more robust to illumination variations.

To measure and compare segmentation quality we computed five unsuper-
vised measures: orientation loss, edge coverage, average thickness, average sepa-
ration, and distance entropy. In order to compute these measures two interme-
diate representations, edge maps E(x, y) and signed distance transforms D(x, y)
were generated as shown in Figure 8. An edge map is a binary image identify-
ing foreground-background transitions. Signed distance transform [34] assigns to
each pixel of the foreground its distance to the closest background point, and
to each pixel of the background the opposite of its distance to the closest fore-
ground point. Signed distance transform can be used to measure thickness and
spatial separations of foreground structures in an image.

a) Orientation loss is computed between the original raw image and the
corresponding segmentation mask as in Eq 2. Lower values indicate more similar
orientation patterns.

b) Edge coverage is measured as the ratio of edge pixels to total image area.
nFG, nBG indicate number of foreground and background pixels respectively.
Higher edge coverage is an indication of more details in the segmentation mask.

Edge coverage =
100

nFG + nBG

∑
x,y

E(x, y) (4)

c) Average thickness is measured as average distance on foreground pixels
where D(x, y) takes positive values.

Average thickness =
1

nFG

∑
D(x,y)>0

D(x, y) (5)

d) Average separation is measured as average distance on background pixels.
For CNT forest images containing dense clusters of thin CNTs, lower average
thickness and lower average separation indicate finer segmentation and higher
recall of CNTs in a segmentation mask.

Average separation = − 1

nBG

∑
D(x,y)<0

D(x, y) (6)

e) Distance entropy is the last statistic we utilized to assess our segmentation
outcomes. Entropy, which derives from thermal dynamics, is a measure of the
disorder and uncertainty of a piece of information in information theory. It is
computed by multiplying an event likelihood by its log probability

Distance entropy = −
∑
x

pD(x)log pD(x) (7)
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for our case pD refers to probability distribution of signed distance transform.
Lower distance entropy indicates lower variations in CNT thickness and CNT
separation which is an indication of good segmentation for CNT forest images
consisting of dense layouts of CNTs with similar diameters. Table 1 presents
results of these unsupervised segmentation quality measures for the proposed
CNTSegNet method and compared adaptive intensity thresholding [2], k-means
clustering [1], and unsupervised deep learning-based segmentation [25] methods.
The table indicates that the proposed CNTSegNet outperforms the compared
methods in terms of all measures.

Measurement CNTSegNet Adaptive Threshold [2] K-Means [1] Unsup. DL [25]

Orientation Loss ↓ 9922 9977 10009 10038

Edge Coverage ↑ 15.64% 10.85% 9.37% 8.46%

Average Thickness ↓ 1.9965 2.8043 3.8478 7.9640

Average Separation ↓ 2.4233 3.2337 5.4858 11.2432

Distance Entropy ↓ 4.1677 4.9932 5.6466 5.7731
Table 1. Unsupervised evaluation of segmentation quality for the proposed CNTSeg-
Net method and compared adaptive intensity thresholding [2], k-means clustering [1],
and unsupervised deep learning-based segmentation [25] methods. The values indicate
average for 76 test images. Underlined number in each row indicates the best result.

4 Conclusions

In this paper, we proposed a self-supervised deep neural network, CNTSegNet,
with two complementary loss functions for segmentation of CNT forests in SEM
imagery. Despite lack of supervision, the proposed network was able to generate
more detailed segmentation masks indicated by various unsupervised segmenta-
tion quality measures. The network was also able to better preserve orientation
characteristics as indicated by lower orientation losses. This was an important
feature since CNT forest physical properties are strongly affected by orientation
and alignment of CNTs forming them. Thanks to it’s self-supervised nature, the
proposed network is highly suitable for complex segmentation tasks where man-
ual annotation is not practical or even feasible. The proposed network can easily
be retrained using new datasets to improve performance or to adapt to new im-
age characteristics. This study is our first step towards effective quantification
of CNT forest characteristics from SEM imagery. Imaging and automated image
analysis will be critical steps towards our ultimate goal of human out of the loop
material discovery.
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