Using Latent Profile Analysis to Assess Teaching Change

Timothy J.Weston Sandra L. Laursen Charles N. Hayward
University of Colorado University of Colorado University of Colorado

Teaching observations can be used in multiple ways to describe and assess instruction. We
addressed the challenge of measuring instructional change with observational protocols, data
that often do not lend themselves easily to statistical comparisons. We first grouped 790
mathematics classes using Latent Profile Analysis and found four reliable categories of classes.
Based on the grouping we proposed a proportional measure called Proportion Non-Didactic
Lecture (PND). The measure is the proportion of interactive to lecture classes for each
instructor. The PND worked in simple hypothesis tests but lacked some statistical power due to
possible scaler ceiling effects. The measure correlated highly with a dependent measure derived
from the Reformed Teaching Observation Protocol (RTOP), a holistic observational measure.
The PND also provided effective descriptions and visualizations of instructional approaches and
how these changed from pre to post.
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Numerous studies show that active, engaging, and collaborative classrooms help students
learn and persist in college, but adoption of new teaching practices has been slow (American
Association for the Advancement of Science, 2013; Laursen et al., 2019; Matz et al., 2018). In a
recent study, observations of 2008 STEM classes at 24 institutions found that most courses were
primarily lecture-based, with only a small proportion of classes incorporating significant
amounts of student-centered learning (Stains et al., 2018). Professional development programs
are one tool intended to help instructors implement new teaching methods and change the status
quo in STEM undergraduate teaching (Laursen et al., 2019; Manduca et al., 2017). But learning
whether or not these programs change teaching practices is challenging because typical means of
measurement, such as surveys, student testing, and classroom observations, all have
methodological shortcomings and may be difficult to implement (AAAS, 2013; Ebert-May et al.,
2011; Weston et al., 2021).

While observation data are often perceived as more objective than self-report data from
surveys or interviews (AAAS, 2013), data derived from observational studies pose particular
challenges when used in statistical tests, thus complicating the ability to make claims about the
efficacy of professional development and other interventions (Bell et al., 2012). Some
observational systems also may lack clarity in their descriptions of teacher and student activities,
making it difficult to learn how instruction has changed over time and what exactly changed in
the teaching practices of participants (Lund et al., 2015). Because observation is resource-
intensive, investigators often observe only a small number of sessions, which may not provide a
representative sample of teaching practices across an entire course (Weston et al., 2021).

Shortcomings of Segmented Observational Protocols as Dependent Measures

Segmented observational protocols such as the COPUS and TDOP are employed in
comparative research designs but pose measurement challenges. Typically, these instruments
code each 2-minute segment of class time for instructor and student behaviors such as lecture or



group work. Difficulties arise in using segmented observational protocols in research studies for
several reasons. First, the use of single observation codes (such as the proportion of class time
devoted to lecture) can result in poor and incomplete representation of the complex underlying
instructional styles occurring in the classroom (Bell et al., 2012). In effect, this can oversimplify
what is occurring the classroom. Data drawn from a segmented protocol may also have unwieldy
distributional characteristics. The distributions of many relatively low-frequency codes are
dramatically skewed, with high numbers of zero observations for any given classroom, and
skewed distributions are also common when aggregated over multiple classrooms and instructors
(Tomkin et al., 2019). The distributional properties of segmented observational data may
necessitate the use of non-parametric tests, which in turn cause possible loss of statistical power
(Dwivedi et al., 2017). Another concern is the high number of codes generated by segmented
protocols compared to a holistic protocol’s single aggregate score or few sub-scale scores. When
multiple hypothesis tests (e.g., multiple t-tests) are made in the same study, the true probability
of making Type-I errors (saying there is a difference when one doesn’t exist) increases
substantially (Abdi, 2007), which can lead to false claims about the efficacy of an intervention.

Shortcomings of Holistic Observational Protocols as Dependent Measures

Many studies that employ observational data to assess change use the Research Teaching
Observation Protocol (RTOP), a holistic observational measure (Sawada et al., 2002). Holistic
instruments ask observers to rate elements of a class such as “The lesson promoted strongly
coherent conceptual understanding.” These types of instruments often ask for more expert
judgments of teaching quality versus observations of behaviors (Hora& Ferrare, 2013). While the
measures derived from the RTOP have high internal reliability and some criterion validity, the
measure seemed to lack structural score validity in that its proposed sub-scales did not form
separate factors in the original validity study (Piburn et al., 2000). Those using the measure also
seem limited in their ability to extrapolate from scores to more concrete descriptions of teaching.
This is partly caused by the somewhat vague wording of some score range categories that are
presented in early RTOP validity documents (Sawada et al., 2003) and studies using the RTOP
for outcome comparisons (Ebert-May et al., 2011). An example would be the score range
category “46-60 Significant student engagement with some minds-on as well as hands-on
involvement,” which provides little guidance on what instructors and students are doing in the
classroom. This lack of descriptive utility for the RTOP was discussed by Lund et al. (2015),
who noted that the same score ranges can describe classes with very different instructional
practices, and teaching descriptions varied even more widely from study to study.

Rationale for Study & Research Questions

In the current study, we consider two protocols, TAMI-OP and RTOP, evaluating their
characteristics as measures on their own merits while also recognizing them as typical examples
of segmented and holistic protocols. These protocols are also distinguished by their descriptive
and evaluative approaches. In our current study, we worked from a large dataset that included
observations scored with both the TAMI-OP and the RTOP. We asked if a simplified measure
formed from a segmented observational protocol, TAMI-OP, could be used with common
statistical tests and avoid multiple comparisons while maintaining score validity. Research
questions include:

1) What are the characteristics of profile groups for classes that can be derived from our

TAMI-OP observational dataset of mathematics instructors?



2) What dependent measures can be derived from the TAMI-OP?

3) How do the RTOP aggregate dependent measure and the segmented TAMI-OP dependent
measure function with statistical tests?

4) How can the segmented TAMI-OP dependent measure be extrapolated to provide
descriptions of teaching and teaching change?

Methods
Instruments

We developed segmented observational protocol called the Toolkit for Assessing
Mathematics Instruction-Observation Protocol (TAMI-OP) (Hayward et al., 2018). At two-
minute intervals during the class, observers coded for the presence (yes/no) of 11 student
behaviors and 9 instructor behaviors. We called these categories activity codes or more
generally, observation items, including codes for Lecture, Student Questions, Group Work and
Student Presentation among other activities. We also completed the RTOP for a subset of 484 of
the same classes observed with the TAMI-OP. Both the TAMI-OP and RTOP had adequate
interrater reliability, generalizability and internal reliability.

Sample

Our full dataset contained 790 observations of full classes by 74 teachers, gathered from
three different research studies related to professional development in mathematics teaching. The
observation sample from this study includes 15 instructors who taught 278 classes, some pre-
and some post-intervention. The results for these instructors are used as an example of how these
measures characterize teaching change but are not meant to offer a formal assessment of that
program. All data were collected with human subjects approval.

The instructors in the combined data set taught a range of mathematics courses at different
undergraduate levels. Classes included Calculus 1 and 2, Geometry, general education
mathematics, statistics, and upper division courses for math majors (see Table 3 for full
description). Class sizes ranged from 30 or less (65%), 31 to 75 (25%) to over 100 (10%). The
instructors included women and men, experienced and early-career instructors; they taught at a
variety of types of institutions distributed across the US and used a variety of teaching practices.
Latent Profile Analysis

Latent Profile Analysis (LPA) is a statistical classification technique that identifies
subpopulations or groups within a population based on a set of continuous variables (Spurk et al.,
2020). LPA is similar but preferable to traditional cluster analysis because it offers the ability to
assess the ideal number of groups in a solution and generate probabilities of group membership,
which provide estimates of how close any given case is to a profile exemplar (Ferguson et al.,
2020).

The software R-Studio 3.5.0 was used to conduct a Latent Profile Analysis of the 790 classes
in our database. The component variables for analysis all used class-level proportions of activity
codes. While these variables are continuous, most did not form normal univariate distributions.
We used a Maximum Likelihood (ME) estimation, and tested models with different constraints
on variance and covariance. Best fitting models used estimation with equal variances and
covariance equal to zero. No outliers were found or removed from the data, and there were no
missing data.



Results
We found four reliable profiles that characterized the 790 mathematics classes in our sample.
We determined the ideal number of profiles through a balance of quantitative fit indexes and the
logical coherence of the resulting groupings. We named profiles for the variables that best
differentiated between groups, resulting in profiles named Didactic Lecture, Student
Presentation and Review, Interactive Lecture, and Group Work. Figure 1 presents the individual
averages for each observation code for each profile.
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Figure 1. Individual averages for each observation code for each profile.

We first attempted to derive outcome measures based on the TAMI-OP with factor analysis
but found resulting dependent measures were not reliable enough to use in analyses. A viable
outcome measure derived from the LPA was the simple proportion of non-didactic lecture
classes used by each teacher: Proportion Non-Didactic Lecture (PND). This is a teacher level
measure that is the number of Non-Didactic classes divided by total class observed for the each
instructor. For example, the observation data set for a particular teacher may have six out of eight
classes that fit the profile for the Didactic Lecture profile and two that do not, resulting in a
proportion of non-didactic classes of PND = 0.25.

We also examined some of the psychometric qualities of the RTOP-Sum, the dependent
measure derived from a total of 25 RTOP numerical ratings. The resulting measure showed high



internal reliability (o0 = 0.97), and the RTOP-Sum and the PND had a very high correlation at
r=0.81. Attempted Exploratory and Confirmatory Factor Analyses did not find that proposed
RTOP subscales presented as item blocks in the instrument formed separate factors.

The relationship between the four latent profiles found with LPA and RTOP-Sum scores can be
seen in figure 2.
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Note: Numbers in parentheses correspond to RTOP categories: (1) straight lecture, (2) lecture with some
demonstration and minor student participation, (3) significant student engagement with some minds-on as well as
hands-on involvement, (4) active student participation in the critique as well as carrying out of experiments, (5)
active student involvement in open-ended inquiry, resulting in alternative hypotheses and critical reflection.
Boxplot lines mark the mean RTOP score for each profile.

Figure 2. individual averages for each observation code for each profile.

We applied these measures to a sample data set of 15 teachers and 278 classes that included
both pre and post observations for the same group of teachers, each of whom provided data from
the same or similar courses taught before and after a professional development intervention. To
learn how the PND functioned with basic statistical tests, we conducted a parametric Paired
Sample t-test and a non-parametric Marginal Homogeneity test comparing pre and post values
for the PND and RTOP-Sum. We also calculated effect sizes for pre/post gains. The results
presented in Table 1 show statistically significant results for change in both the RTOP and PND
measures. While both measures detect significant differences in a pre/post comparison study, the
RTOP-Sum has a bigger effect size and lower p-value than the PND, indicating that the RTOP-
Sum has greater statistical power in this study.



Table 1: Test statistics for the RTOP-Sum and PND measures for pre/post comparison

Test RTOP-Sum PND
(Scale 0 —100) (Scale 0 —1)
Paired t-test (one- Mean difference = 17 Mean difference = 0.22
sided) SD =14.5 SD =0.27
Correlation pre/post = 0.63 Correlation pre/post = 0.58
Standard error = 3.76 Standard error = 0.07
t=4.56, df = 14, t=3.1,df=14,
p <0.0071*** p <0.004***
Related samples Test statistic =119 Test statistic = 82
Wilcoxon Signed N=15 N=15
Rank Test (two-sided) Standard error = 17.6 Standard error = 14.3
t-statistic = 3.35 t-statistic = 2.5
Asymptotic Sig < 0.001*** Asymptotic Sig = 0.01*
Effect size Cohen’s d=1.17 Cohen’s d = 0.81

Note: significance levels are indicated by p< 0.05*, p<0.01 **, p<0.001***

The descriptive utility of the PND is linked to its derivation from component Latent Profile
Analysis groups. The separate activity codes and global variables used to form groups were also
graphed to learn which activities changed from pre to post (not shown here due to space
considerations). Most codes changed in ways consistent with the goals of the professional
development in which they participated, with lecture and teacher writing decreasing, and group
work and student presentation increasing. The average number of activities and balance among
activities also increased.

Discussion

Profiles of classes created from Latent Profile Analysis provided four groups, which we
labeled Didactic Lecture, Interactive Lecture and Review, Student Presentation and Group Work.
The grouping method was reliable, and we believe these groups represent different underlying
styles of teaching and learning present in our observations of 790 mathematics classrooms. In the
Didactic Lecture group, instructors averaged 80% of their time lecturing, usually with little
question and answer. This contrasted with the three non-lecture groups where students
participated in more interactive activities such as group work (usually working though problem
sets), presenting problems on the board, or participating in more back-and-forth dialogue with
the instructor during lecture and review. Instructors for classes in the three non-didactic lecture
groups also engaged in more activities in their classrooms and tended to have more balance in
time devoted to each activity.

From the LPA results we created a measure called the Proportion of Non-Didactic Lecture
(PND) that represented the proportion of more interactive classes, contrasted to didactic lecture
classes, for each instructor. The value of a measure lies in its ability to summarize data from
multiple activity codes and other variables into one measure while avoiding the pitfalls of poor
construct representation, strict reliance on non-parametric tests, and multiple comparisons found
in many studies that use segmented data (Tomkin et al., 2019). We found that the PND measure
had some shortcomings caused by its reliance on proportional frequency data. In our wider



dataset the PND had a significant number of “1” values, which created the possibility of ceiling
effects and lacked distributional normality. While most statistical tests are robust to non-
normality (Glass and Hopkins, 1996), comparisons made with small numbers like ours (i.e., the
pre/post subset of 15 instructors) have less statistical power. In fact, the pre/post statistical
comparison conducted with the measure showed less statistical power than did comparison with
the RTOP-Sum, but in our case provided similar statistical inferences as the RTOP about pre-
post change.

There are several other critical caveats to the use of a measure based on LPA or any other
clustering technique. The final categorization of classes is dependent on both the sample used
and the variables included in the model. The ultimate category where classes end up can vary
given the characteristics of the initial pool of classes and the specification of the model
(Williams and Kibowski, 2016). Any project also needs a relatively large pool of classes to make
cluster or profile methods viable. In their overview of LPA studies, Spurk and coauthors (2020)
found a median sample size near 500; in our study we were fortunate to have a collection of
nearly 800 classes. It is possible to leverage the earlier work of others; those using the COPUS
can take advantage of the COPUS Analyzer (Harshman and Stains, 2020) an online method for
profiling observational data. We also can categorize new classes based on the original clustering
algorithm. While it may seem obvious, pre and post or participant/comparison groupings (for any
clustering technique) must be made at the same time and from the same model. Also, the creation
of an LPA model should be done independently from, and before any type of statistical
comparison is made. Shopping for the model that creates the largest effect for a comparison
would constitute a breach of research ethics.

Deriving a proportional measure from segmented observational data is also limited by several
important assumptions. First, there must be enough classes observed for each teacher to form a
reliable measure, a number that is usually higher than is found in most research studies (Weston
et al., 2021), and observing enough classes for a reliable measure is resource intensive. Related
to this are possible interactions between the number of classes sampled for each instructor and
the probability that rarer classes will show up in the classes sampled. If greater or fewer classes
for each teacher are sampled from pre to post this can create bias in estimates of teaching change.
Unequal sampling occurred in our small study because of logistical concerns, ideally pre and
post samples should be balanced. Second, profiling or clustering solutions must conform to a
continuum from didactic to interactive instruction. This seems to be a common finding for
profile studies where a large proportion of classes are didactic lecture (Denaro et al., 2021; Lund
et al., 2015; Stains et al., 2018). The main limiting factor for some studies may be the small
number of truly interactive classes observed; in Stains et al. (2018) approximately 25% of classes
were student-centered, although mathematics classes had the highest percentage of these courses
(~35%).
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