
Distribution-Informed Neural Networks for Domain
Adaptation Regression

Jun Wu, Jingrui He, Sheng Wang, Kaiyu Guan, Elizabeth Ainsworth
University of Illinois Urbana-Champaign

{junwu3,jingrui,sheng12,kaiyug,ainswort}@illinois.edu

Abstract

In this paper, we study the problem of domain adaptation regression, which learns
a regressor for a target domain by leveraging the knowledge from a relevant source
domain. We start by proposing a distribution-informed neural network, which
aims to build distribution-aware relationship of inputs and outputs from different
domains. This allows us to develop a simple domain adaptation regression frame-
work, which subsumes popular domain adaptation approaches based on domain
invariant representation learning, reweighting, and adaptive Gaussian process. The
resulting findings not only explain the connections of existing domain adaptation
approaches, but also motivate the efficient training of domain adaptation approaches
with overparameterized neural networks. We also analyze the convergence and
generalization error bound of our framework based on the distribution-informed
neural network. Specifically, our generalization bound focuses explicitly on the
maximum mean discrepancy in the RKHS induced by the neural tangent kernel
of distribution-informed neural network. This is in sharp contrast to the existing
work which relies on domain discrepancy in the latent feature space heuristically
formed by one or several hidden neural layers. The efficacy of our framework is
also empirically verified on a variety of domain adaptation regression benchmarks.

1 Introduction

Domain adaptation tackles the knowledge transfer from a source domain with adequate label informa-
tion to a relevant target domain with little or no label information. It is shown [5, 39, 11, 13] that the
generalization performance on the target domain can be improved by leveraging the source domain
knowledge in both classification [59] and regression [12] settings.

In this paper, we focus on studying the domain adaptation regression problem, as classification can
be naturally formulated as regression [34]. In the past decades, most domain adaptation approaches
were developed using the following paradigms: learning domain invariant representation [42, 43],
reweighting the source examples [30, 11, 13], or deriving adaptive transfer kernel for Gaussian
process [7, 44]. More recently, modern practice for domain adaptation repeatedly demonstrates the
benefit of considering overparameterized neural networks as the backbones for feature extraction [37,
20, 47, 1]. In this case, a L-layer neural network would be manually divided into two parts: the
feature extraction function (e.g., the first l layers) and the prediction function (e.g., the left L − l
layers). Then, the core idea of domain adaptation with overparameterized neural networks is to
enhance the adaptation of source and target domains in the hidden feature space learned by the feature
extraction layers. Nevertheless, it is unclear how those overparameterized neural networks affect the
convergence and generalization of domain adaptation approaches during model training. Moreover,
the heuristic selection of feature extraction layers might lead to suboptimal performance of domain
adaptation approaches in practice, as the lower and higher layers of an overparameterized neural
network might encode different information [57].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Compared with standard supervised learning, the key challenge of domain adaptation lies in the
distribution shift between source and target domains. This indicates that the relationship between
inputs and outputs might be different across domains. As illustrated in Figure 1, due to the distribution
shift across domains, an input data point (e.g., x2 = x3) might have significantly different outputs
at source and target domains (i.e., y2 ̸= y3). This is also observed in recent work [51]. To solve
this problem, we propose a distribution-informed neural network to build the unified relationship of
inputs and outputs from different domains. This neural network can be explained as the integration
of standard feature representation learning and input-oriented distribution representation learning.
Then, a simple domain adaptation regression framework named DINO is proposed based on the
distribution-informed neural network, followed by the theoretical analysis on its convergence and
generalization performance.

𝑥" 𝑥# 𝑥$

Local
model evolution

𝑥

𝑦

𝑥&

Figure 1: Illustration of the domain adap-
tation regression, where x1, x3 denotes two
source data points and x2, x4 denotes two tar-
get data points. Here solid and dotted lines
denote two consecutive states of the neural
network around data points during training.
(1) Similar data points (e.g., x2 and x3 from
different domains) might have different out-
puts. (2) Source data point x3 is more likely
to be aligned with target data point x4, as they
have similar local model evolution.

In particular, we show that the distribution discrep-
ancy of source and target domains can be defined
by the evolution of distribution-informed neural net-
work during training. That is, we measure the distri-
bution shift using the maximum mean discrepancy
(MMD) [24] in the reproducing kernel Hilbert space
(RKHS) induced by the neural tangent kernel of
distribution-informed neural network. Compared to
previous works [37, 20, 1], our domain discrepancy
measure has the following benefits. First, it can be
estimated from the entire neural network, whereas
previous works usually estimate the domain discrep-
ancy in the pre-defined feature extraction layers. For
example, [37] extracts features of input source and
target examples and then estimates the discrepancy
using MMD with standard kernels (e.g., RBF ker-
nel). Intuitively, it is a two-fold composition kernel
of the neural kernel induced by the feature extractor
and the standard kernel. Second, our domain discrep-
ancy measure focuses on the training dynamics of
the neural network (e.g., fθ+∆θ(x)− fθ(x)). This is
in sharp contrast to the previous works which mea-
sure the distribution shift using the static state of the
neural network (e.g., fθ(x)). As shown in Figure 1,
a source data point x3 might have similar output with both x1 and x4 from target domain, when
simply considering the trained neural network fθ(x). But we see that the neural network has similar
evolution patterns at x3 and x4 but different patterns at x3 and x1. That is, x3 is more likely be
aligned with x4 after distribution minimization across domains, That explained why the training
dynamics of the neural network can better identify the distribution shift across domains.

In addition, we show that in special cases, the training dynamic of the distribution-informed neural
network can also explain the rationale of the existing domain adaptation techniques. To be more
specific, we have the following observations. (1) At random initialization, our distribution-informed
neural network is equivalent to the adaptive Gaussian process [7, 44]. (2) Under gradient descent
training, our domain adaptation framework based on the distribution-informed neural network can
recover the prediction function of the reweighting domain adaptation approaches [30, 11, 13]. (3)
When the distribution representation is shared by all the examples, our framework degenerates into
standard domain-invariant representation learning [37, 20, 1]. Compared to previous works, our
contributions can be summarized as follows.

• Unified Framework: We propose a simple domain adaptation regression framework DINO
based on the distribution-informed neural network, and then identify its connections to
previous techniques, including domain invariant representation learning, reweighting and
adaptive Gaussian process.

• Theoretical Results: It is shown that for the distribution-informed neural network with
sufficient width, the convergence and generalization of our framework can be theoretically
guaranteed. Different from previous deep domain adaptation theories, we propose to measure
the distribution shift across domains using the training dynamics of the neural network.

2

• Empirical Performance: We experimentally investigate the performance of our DINO frame-
work on a variety of domain adaptation regression benchmarks, and show its effectiveness
over state-of-the-art baselines.

The rest of this paper is organized as follows. We introduce the related work in Section 2, and
summarize the preliminaries of previous domain adaptation techniques in Section 3. Section 4 shows
the proposed domain adaptation regression framework, followed by its theoretical analysis. The
experimental results are presented in Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

2.1 Domain Adaptation

Domain adaptation [5, 51, 52, 61, 62] improves the generalization performance of a learning algorithm
on the target domain, by leveraging the knowledge from a relevant source domain with adequate
labeled data. There are three solutions to bridge the distribution gap between source and target
domains. (1) Domain invariant representation: It maps the source and target examples into a new
feature space such that the distribution discrepancy between source and target domains can be
explicitly minimized [42, 37, 43, 20, 60, 59, 10]. (2) Reweighting: The core idea is to correct the
difference between distributions by multiplying the prediction loss of each source example by a
non-negative weight [30, 14, 11, 13, 47]. (3) Gaussian process: It generalized the standard Gaussian
process regression to the domain adaptation setting by learning an adaptive transfer kernel [7, 44,
38, 50]. By using the neural networks as the backbones, modern domain adaptation techniques have
achieved state-of-the-art performance in a variety of real-world tasks [28, 8]. Nevertheless, little effort
has been devoted to theoretically analyzing the domain adaptation techniques with overparameterized
neural networks.

More recently, it has been revealed [10] that there is a gap between domain adaptation regression
and domain adaptation classification problems. That is, one common loss function of domain adapta-
tion regression approaches is mean square error (MSE), whereas domain adaptation classification
approaches [37, 20] often uses cross-entropy loss with softmax. Specifically, softmax changes the
feature scales (i.e., Frobenius norm of feature matrix ||H||F where H is the hidden feature learned
by the neural network), and the change of feature scales might lead to the performance degradation
of domain adaptation [10]. Therefore, in this paper, we focus on the neural network with MSE
loss for domain adaptation regression. Different from the existing domain adaptation regression
approaches, e.g., domain invariant representation learning [10], reweighting [16], and adaptive
Gaussian process [7], we develop the domain adaptation regression algorithms based on a novel
distribution-informed neural network and derive the theoretical analysis regarding the convergence
and generalization bound for our algorithms.

2.2 Overparameterized Neural Networks

It has been revealed from the perspective bias-variance decomposition [55] that the generalization
error of neural networks decreases with respect to the model complexity (e.g., number of neurons).
The benefit of increasing the number of neurons has also been empirically confirmed in modern
neural networks [32, 58]. Moreover, the convergence and generalization of overparameterized neural
networks have been studied in the neural tangent kernel (NTK) regime [31, 3, 4, 35, 17, 18, 2, 48,
9, 33]. However, those works focus on the standard supervised learning with the assumption that
training and testing examples follow the same distribution. In real scenarios, this assumption often
fails due to the distribution shift [38]. More recently, it is found that previous theoretical results can
be generalized to both federated learning [29] and multi-task learning [45]. Our work fundamentally
differs from them in that little label information is available in the target domain for our studied
domain adaptation problem. This motivates us to explicitly analyze the domain discrepancy when
using neural networks for domain adaptation.

3 Preliminaries

In this section, we introduce the notations and background of different domain adaptation techniques.

3

3.1 Notation and Neural Network Architecture

Let X and Y denote the input space and output space. Following [6], we assume that the joint proba-
bility distribution P of any domain is drawn from a probability distribution space P over X ×Y . For
domain adaptation regression, we have a source domain with labeled examples {xsrc

i , ysrc
i }nsrc

i=1 drawn

from joint probability distribution Psrc, and a target domain with both label examples {xtgt
j , ytgt

j }n
l
tgt

j=1

from Ptgt and unlabeled examples {xtgt
j }n

u
tgt

j=1 (nl
tgt ≪ nu

tgt) drawn from marginal probability distri-
bution Ptgt

X . The goal is to predict the outputs of unlabeled target examples by leveraging the label
information from the source domain. In this paper, we consider an L-layer fully-connected neural
network fθ(·), which maps the input x ∈ X ⊂ Rd into the output y ∈ Y ⊂ R. Here θ denotes
all the parameters of f(·) (e.g., θ0 denotes the initialized parameters at time stamp t = 0) and d
denotes the dimensionality of input data. In next section, we generalize the standard fully-connected
neural network fθ(·) to the distribution-informed neural network f̃(·) for domain adaptation. For
notation simplicity, we let Xsrc = {xsrc

i }nsrc
i=1 and Y src = {ysrc

i }nsrc
i=1 for source examples. We use

similar notations X tgt
l and Y tgt

l for target examples. Then we use X = Xsrc ∪ X tgt
l denote all the

labeled training inputs, and Y = Y src ∪ Y tgt
l be the corresponding outputs.

3.2 Domain Adaptation Techniques

We first review the existing domain adaptation techniques. In Subsection 4.4, we show that these
techniques can be explained in a unified framework.

3.2.1 Domain Invariant Representation
The key idea of domain invariant representation learning is to map the source and target examples into
a new feature space where the distribution discrepancy across domains is explicitly minimized [20, 59].
The objective function of this framework can be summarized as follows.

min
θ

E(x,y)∼Psrc [L(fθ(x), y)] + d
(
Psrc,Ptgt) (1)

where d (Psrc,Ptgt) denotes the domain discrepancy measure in the hidden feature space learned by
fθ(·), and L(·, ·) is the loss function.

3.2.2 Reweighting
Reweighting aims to correct the difference between source and target distributions by reweighting
the source examples, i.e., multiplying the prediction loss of every source example by a non-negative
weight [14, 11, 13].

min
θ

E(x,y)∼Psrc [wsrc(x, y) · L(fθ(x), y)] (2)

where wsrc(x, y) = Ptgt(x,y)
Psrc(x,y) ≥ 0 denotes the importance of every source example. The impor-

tance ratio wsrc(x, y) can be estimated using kernel mean matching (KMM) [30, 56] or adversarial
learning [47, 16].

3.2.3 Adaptive Gaussian Process
Following [7], the domain adaptation regression problem can also be formulated as the Gaussian
process with an adaptive transfer kernel. Specifically, the adaptive transfer kernel can be defined as

K ′ =

[
K(Xsrc, Xsrc) τ ·K(Xsrc, X tgt

l)
τ ·K(X tgt

l , Xsrc) K(X tgt
l , X tgt

l)

]
(3)

where τ ∈ [0, 1] is a trainable parameter explicitly indicating the relatedness of source and target
domains, and K(·, ·) is a base kernel, e.g., RBF kernel. Then following the standard Gaussian process
regression [49], the predictions of this adaptive Gaussian process over testing target data can be
analytically derived.

4 A Unified Framework

In this section, we propose the distribution-informed neural network, and then present a simple
domain adaptation regression framework.

4

4.1 Distribution-Informed Neural Network

An L-layer fully-connected neural network f(·) can be written as fθ(x) = ϕθ<L(x)Tw where θ<L is
the vector of parameters in the first L−1 layers and w is the parameter of the output layer (we assume
the output layer has no bias). For a single task, the neural network f(·) can model the relationship
between input data and output label. But it might suffer in the domain adaptation scenarios due to
the distribution shift. Thus, given a domain distribution P ∈ P and an input example x ∼ P, we
propose to explicitly learn the distribution-related output as gwg (P|x) = Φx(P)Twg where Φx(P)
is the input-oriented distribution feature representation, and wg is the parameter. Given finite basis
examples x̃1, · · · , x̃n ∼ P, Φx(P) can be formally defined as follows.

Φx(P) =
n∑

i=1

βx,x̃i⟨·, x̃i⟩KX (4)

where βx,x̃i
∈ R is the coefficient of Φx(P) in the space spanned by ⟨·, x̃i⟩KX and indicates the

similarity of input example x and basis example x̃i. Here ⟨·, x̃i⟩KX denotes the feature map of
x̃i in the NNGP kernel space induced by infinitely-wide f(·). Therefore, Φx(P) represents the
distribution representation of P when an example x is observed in the domain associated with
sampling distribution P.

One special case is when βx,x̃i = 1/n, it degenerates into the mean mapping of P in the kernel
space, which is commonly used for measuring the distribution discrepancy/similarity [24]. Compared
with this plain distribution representation 1

n

∑n
i=1⟨·, x̃i⟩KX , Φx(P) pays more attention to the region

around x with large βx,x̃i
for x̃i ∈ X . For example, for data points x1 and x4 in Figure 1, they would

share the same plain distribution representation, as they are sampled from the same target domain.
But it is feasible to differentiate them using the parametric distribution representation Φx(P).
Generally, by taking both example x and its associated probability P as random variables, Bayes’
theorem tells us that P (x,P) = P (x) · P (P|x) where P (·) denotes the probability of an observed
event. The event involving x can be described by observing its representation f(x); given x, the event
involving P is the input-oriented distribution representation Φx(P). This motivates us to develop a
distribution-informed neural network as follows.

f̃(x,P) := fθ(x) · gwg
(P|x) =

(
ϕθ<L(x)Tw

)
·
(
Φx(P)Twg

)
= wT

(
ϕθ<L(x)Φx(P)T

)
wg (5)

The intuition behind Eq. (5) can be explained as follows. For domain adaptation, the feature
representation of an input example x is domain-dependent, as two similar examples (xsrc ≈ xtgt)
from different domains might have distinctive outputs (ysrc ̸= ytgt). The input-oriented distribution
representation Φx(P) allows us to identify the source and target examples with similar inputs but
distinctive outputs. By analyzing the distribution-informed neural network at initialization and
under gradient descent training, we propose two domain adaptation algorithms: DINO-INIT (see
Subsection 4.2) and DINO-TRAIN (see Subsection 4.3), respectively.

4.2 Initialization

We start by studying the distribution-informed neural network at initialization, e.g., all the parameters
of distribution-informed neural network f̃(·) are initialized as standard normal variables. Inspired by
the connections between standard neural networks and Gaussian processes [15, 34, 22, 53], we show
that the distribution-informed neural network f̃(x,P) in Eq (5) is equivalent to a domain adaptive
Gaussian process, which explains the existing domain adaption regression algorithm [7].

Lemma 4.1. Assume that all the parameters of distribution-informed neural network f̃(·) are
initialized as standard normal variables, when the network width goes to infinity, the output function
of f̃(x) in Eq (5) at initialization is iid centered Gaussian process, i.e., f̃(·) ∼ N

(
0,KDA

)
with

KDA ((x,P), (x′,P′)) = KX (x, x′) · KP|X (P,P′|x, x′)

where KX (·, ·) is the NNGP kernel induced by the neural network f(·) over input space X , and
KP(·, ·) is a distribution kernel identifying the similarity of two input-oriented distributions P and
P′ over distribution space P:

KP|X (P,P′|x, x′) =
n∑

i=1

n′∑
j=1

βx,x̃i
βx′,x̃′

j
KX (x̃i, x̃

′
j) (6)

5

where n (n′) is the number of basis examples sampled from the distribution P (P′).

This lemma motivates us to propose an adaptive Gaussian process regression algorithm named DINO-
INIT (see Algorithm 1 in Appendix A.10) with adaptive transfer kernel defined as KDA. For notation
simplicity, we represent the distribution-informed kernel KDA((x,P), (x′,P′)) as KDA(x, x′) in the
following. In this case, we consider a noisy model yri = f̃(xr

i ,Pr) + ϵri (r ∈ {src, tgt}), where
the noise ϵri follows a zero-mean Gaussian N (0, σ2

r). Given labeled training examples (X,Y), we
assume a prior Gaussian process p(Y) = N (0,KDA) where KDA(X,X) is a block matrix. That

is, KDA(X,X) =

[
KDA

11 KDA
12

KDA
21 KDA

22

]
where KDA

11 := KDA(Xsrc, Xsrc) (KDA
22 := KDA(X tgt

l , X tgt
l))

denotes the kernel matrix of source (target) data, and KDA
12 = (KDA

21)T := KDA(Xsrc, X tgt
l) denotes

the kernel matrix across domains. Then for testing target examples X tgt
∗ , their output can be inferred

using the predictive distribution p(Y |X tgt
∗ , Xsrc, X tgt

l) = N (µ̄, Σ̄). Similar to standard Gaussian
process regression [49], the mean and variance of the predictive distribution can be exactly calculated
as follows.

µ̄ = KDA(X tgt
∗ , X)C−1Y Σ̄ = KDA(X tgt

∗ , X tgt
∗)−KDA(X tgt

∗ , X)C−1KDA(X tgt
∗ , X)T

where C = KDA(X,X) +

[
σ2

srcInsrc 0
0 σ2

tgtInl
tgt

]
. Here I denotes the identity matrix.

This adaptive Gaussian process involves the following parameters: coefficient βx,xi in the kernel
function KDA and noise variance σsrc, σtgt. Following [7], we optimize these parameters by maximiz-
ing the conditional likelihood p(Y tgt

l |X tgt
l , Xsrc, Y src). It can be seen that p(Y tgt

l |X tgt
l , Xsrc, Y src)

is also a Gaussian process, i.e., p(Y tgt
l |X tgt

l , Xsrc, Y src) = N
(
KDA

21

(
KDA

11 + σ2
srcInsrc

)−1
Y src,(

KDA
22 + σ2

tgtInl
tgt

)
−KDA

21

(
KDA

11 + σ2
srcInsrc

)−1 KDA
12

)
.

Instantition of the coefficient βx,x̃i
: It is notable that it can only optimize the coefficient βx,x̃i

of
Eq. (4) for training (source or target) examples. The coefficient of testing target examples X tgt

∗ is
unknown. To solve this problem, in this paper, we formulate the estimate of βxr,x̃r

i
(r ∈ {src, tgt})

as βx,x̃r
i
= [xr ◦ x̃r

i]
Twr, where wr is a domain-specific parameter vector and ◦ denotes vector

concatenation. Note that domain adaptation assumes that the domain labels of all input examples
are known. As shown in Eq. (4), the input-oriented distribution representation can be learned
from the domain-specific vector wr and the basis examples x̃r

1, · · · , x̃r
nr

from domain r. Here r is
determined by the domain label of the input example x. As illustrated in Algorithm 1, we use all the
training source (target) examples as the basis source (target) examples x̃r

1, · · · , x̃r
nr

. As a result, the
input-oriented distribution representation learning of testing target examples X tgt

∗ can be inferred by
wtgt and the pre-defined basis target examples.

4.3 Gradient Descent Training
Here we assume that the model parameters of the distribution-informed neural network can be updated
by gradient descent during training. Based on the distribution-informed neural network, we propose a
novel DINO-TRAIN algorithm. Its objective function using mean square error is formulated as follows.

L(θ) = α

2nsrc

nsrc∑
i=1

(
f̃(xsrc

i ,Psrc)− ysrc
i

)2

+
1− α

2nl
tgt

nl
tgt∑

j=1

(
f̃(xtgt

j ,Ptgt)− ytgt
j

)2

+
µ

2
ˆMMD

2
ΘDA

(
Psrc,Ptgt)

(7)

where α ∈ (0, 1) and µ ≥ 0 are hyperparameters to balance different terms. The first two terms
are standard supervised learning losses over labeled source and target examples, and the third one is
the empirical maximum mean discrepancy (MMD) [24] in the RKHS HDA induced by the neural
tangent kernel of our distribution-informed neural network, i.e.,

ˆMMD
2
ΘDA

(
Psrc,Ptgt) =

∣∣∣∣∣
∣∣∣∣∣ 1

nsrc

nsrc∑
i=1

∇θ f̃(x
src
i ,Psrc)− 1

ntgt

ntgt∑
j=1

∇θ f̃(x
tgt
j ,Ptgt)

∣∣∣∣∣
∣∣∣∣∣
2

HDA

(8)

where ntgt = nl
tgt + nu

tgt is the total number of target training examples. As shown in Theorem 4.5
below, our framework empirically minimizes the upper error bound of the expected prediction error
in the target domain (see Algorithm 2 in Appendix A.10).

6

Remark. In our framework of Eq. (7), we measure the distribution shift using the training dynamics
of the distribution-informed neural network over the source and target examples. This is funda-
mentally different from previous works [20, 59, 1] associated with a two-stage domain discrepancy
measurement. That is, those works would first learn the feature representation in hidden neural
layers and then measure the domain discrepancy in the learned feature space. In the second stage,
they usually require additional modules, e.g., auxiliary neural networks [10, 21, 19] or pre-defined
distribution distances [37]. Therefore, compared to previous works, our discrepancy measure Eq. (8)
can not only unify the domain adaptation regression framework with neural networks, but also enable
the theoretical convergence and generalization analysis in the following.

Before analyzing the dynamics of the distribution-informed neural network under Eq. (7), we first
introduce the following assumption.

Assumption 4.2. Given labeled data X = Xsrc ∪ X tgt
l , we assume λmin (Θ(X,X)) > 0 and

λmin
(
KP|X (X,X)

)
> 0, where Θ(X,X) = ∇θf(X)∇θf(X)T is standard neural tangent ker-

nel [31] induced by f(·) with infinite width, and KP|X (X,X) is the input-oriented distribution
kernel1 (see Eq. (6)). Here, λmin(·) denotes the smallest eigenvalue.
The assumption λmin (Θ(X,X)) > 0 has been studied in previous works [31, 18, 3]. It holds as long
as no two inputs xi and xj are parallel in real scenarios. The implication of this assumption is that
the input data (e.g., images) would not be linearly changed by a single factor, i.e., there is no two
inputs such that xi = ς · xj for some ς ∈ R.

Lemma 4.3. Given the labeled training data X = Xsrc ∪ X tgt
l and the basis examples {x̃r

i }
ñr
i=1

(r ∈ {src, tgt}), we let Υ ∈ R(nsrc+nl
tgt)×(ñsrc+ñtgt) denote the coefficient matrix of KP|X (X,X),

where for xk ∈ X (k = 1, · · · , nsrc + nl
tgt), its kth row [Υ]k,: = [βxk,x̃

src
1
, · · · , βxk,x̃

src
ñsrc

, 0, · · · , 0]
when xk ∈ Xsrc, [Υ]k,: = [0, · · · , 0, βxk,x̃

tgt
1
, · · · , βxk,x̃

tgt
ñtgt

] otherwise. Then, the assumption

λmin(KP|X (X,X)) > 0 holds when ΥTΥ is positive definite.

Lemma 4.3 shows that in real scenarios, the assumption λmin(KP|X (X,X)) > 0 can be guaranteed
by the positive definiteness of the coefficient matrix Υ. We also empirically evaluate the smallest
eigenvalue λmin

(
KP|X (X,X)

)
in Subsection 5.2.

Theorem 4.4. For any coefficient βx,x̃i
of the input-oriented distribution representation in Eq. (4),

there exists η∗ ∈ R+ such that for the infinitely-wide distribution-informed neural network f̃(·)
trained under gradient flow with learning rate η < η∗, the test prediction f̃θt(X

tgt
∗) of the domain

adaptation regression in Eq. (7) over test target data X tgt
∗ is

f̃θt(X
tgt
∗) = f̃θ0(X

tgt
∗)−ΘDA(X

tgt
∗ , X)ΘDA(X,X)−1

(
I− e−ηΘDAC̃t

)(
f̃θ0(X)− Y

)
where ΘDA(·, ·) is the distribution-informed NTK, i.e., ΘDA(x, x

′) = Θ(x, x′) · KP|X (P,P′|x, x′)

and C̃ = diag{α/nsrc, · · · , α/nsrc︸ ︷︷ ︸
nsrc

, (1− α)/nl
tgt, · · · , (1− α)/nl

tgt︸ ︷︷ ︸
nl

tgt

} is a diagonal matrix. Moreover,

under the assumption 4.2, when the network width goes to infinity, limt→∞ f̃θt(X
tgt
∗) converges to a

Gaussian process with mean µ(X tgt
∗) and variance Σ(X tgt

∗ , X tgt
∗) as follows.

µ(X tgt
∗) = ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1Y

Σ(X tgt
∗ , X tgt

∗) = KDA (
X tgt

∗ , X tgt
∗
)
+ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1KDAΘDA(X,X)−1ΘDA

(
X,X tgt

∗
)

−
(
ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1KDA (

X,X tgt
∗
)
+ h.c.

)
where “+h.c." means “plus the Hermitian conjugate".

In addition, our result on generalization bound is given in the following theorem.

Theorem 4.5. Assume for any training example (x, y) ∈ X × Y , we have (f̃(x,P)− y)2 ≤ M0 for
some constant M0 ≥ 0. Let F̃ be the hypothesis space induced by infinitely-wide neural networks
f̃ . Then, for any f̃ ∈ F̃ and δ > 0, with probability at least 1− δ, the expected error in the target

1Here we let KP|X (x, x′) = KP|X (P, P′|x, x′) for brevity.

7

domain can be bounded as follows.

EPtgt(f̃) ≤ α

nsrc

nsrc∑
i=1

(
f̃(xsrc

i ,Psrc)− ysrc
i

)2

+
1− α

nl
tgt

nl
tgt∑

j=1

(
f̃(xtgt

j ,Ptgt)− ytgt
j

)2

+ 8αM0 · MMDΘDA

(
Psrc,Ptgt)+Ω

where Ω = 2αℜnsrc(Hsrc) + 2(1 − α)ℜnl
tgt
(Htgt) + M

√
(nsrc+nl

tgt) log(1/δ)

2 , Hr = {(x, y) →
(f̃(xr,Pr) − yr)2 : f̃ ∈ F} is a set of functions (r ∈ {src, tgt}), ℜnr (Hr) is the Rademacher
complexity of Hr given nr examples, and M = max{αM0/nsrc, (1− α)M0/n

l
tgt}.

Though domain adaptation theories [5, 39] have been generalized to deep learning scenarios in
recent years, neural networks are simply considered as an expressive feature extractor in modern
generalization errors [59]. Nevertheless, recent works [60, 36] reveal that the feature space learned
by the neural networks might worsen the adaptation between source and target domains. As a
comparison, Theorem 4.5 provides a unified generalization error for neural network based domain
adaptation, as it directly measures the domain discrepancy over input source and target examples in
the RKHS induced by the distribution-informed NTK ΘDA.

4.4 Discussion

4.4.1 Gaussian Process at Initialization
One special case of distribution-informed neural network at initialization is that when the coef-
ficient βx,xi = 1/n||Φ̄x(P)||KX and Φ̄x(P) = 1

n

∑n
i=1⟨·, xi⟩KX , it can be seen that Φx(P) =

1
nΦ̄x(P)

∑n
i=1⟨·, xi⟩KX is the normalized mean mapping [24] of data distribution P in the NNGP

kernel space. Then, the distribution kernel KP|X (P,P′|x, x′) in Eq. (6) can be explained as the
inner product of the mean mappings of P and P′. Moreover, using the definition of maximum

mean discrepancy (MMD) [24], it can be shown that KP|X (P,P′|x, x′) =
c− ˆMMD2

KX
(P,P′)

2Φ̄x(P)Φ̄x(P′)
, where

ˆMMDKX (·) denotes the empirical MMD in the NNGP kernel space, and c = 1
n2

∑n
i,j=1 KX (xi, xj)+

1
n′2

∑n′

i,j=1 KX (x′
i, x

′
j). It implies that KP|X (P,P′|x, x′) is negatively correlated with the popular

MMD estimator. MMD measures the distribution distance using the difference of mean mappings of
distributions, whereas KP|X (P,P′|x, x′) measures the distribution similarity via the inner product
of the mean mappings of the distributions P and P′ in the NNGP kernel space.

The following corollary shows that the existing domain adaptive Gaussian process [7] can be explained
as implicitly learning the distribution-informed representation in the kernel space.

Corollary 4.6. With the assumptions in Lemma 4.1, when βx,x̃i
= 1/||

∑n
i=1⟨·, x̃i⟩KX ||, the Gaus-

sian process induced by f̃(x) at the initialization would be equivalent to the adaptive Gaussian
process in [7] over NNKP kernel.

4.4.2 Fully Trained Model
When there exist some labled target examples, the objective function of the reweighting domain
adaptation techniques (see Subsection 3.2.2) can be rewritten as follows.

min
θ

α

2nsrc

nsrc∑
i=1

wsrc
i (f(xsrc

i)− ysrc
i)

2
2 +

1− α

2ntgt

nl
tgt∑

j=1

(
f(xtgt

j)− ytgt
j

)2
2

(9)

The following corollary holds that our framework Eq. (7) can recover the reweighting approach Eq.
(9) in the function space.

Corollary 4.7. With the assumption in Theorem 4.4, our framework Eq. (7) with distribution-informed
neural network f̃(·) can recover the popular reweighting domain adaptation approach Eq. (9) in the
function space.

Besides, we show that when the distribution representation is shared by all the examples, our
framework can be naturally degenerated into the domain-invariant representation learning [37].

8

Methods C → N C → S N → C N → S S → C S → N Avg.

NNGP [34] 2.041±0.001 1.823±0.001 0.445±0.002 0.624±0.001 0.197±0.002 0.459±0.002 0.932
NTKGP [25] 1.345±0.002 1.227±0.000 0.323±0.002 0.529±0.004 0.248±0.001 0.425±0.002 0.683
AT-GP [7] 0.194±0.005 0.259±0.002 0.104±0.001 0.252±0.005 0.118±0.003 0.189±0.006 0.186
TL-NTK [38] 0.164±0.001 0.231±0.000 0.124±0.005 0.242±0.002 0.125±0.001 0.197±0.004 0.181
DINO-INIT (ours) 0.128±0.001 0.233±0.003 0.114±0.002 0.227±0.002 0.112±0.001 0.181±0.005 0.166
DINO-TRAIN (ours) 0.127±0.002 0.240±0.003 0.127±0.000 0.243±0.000 0.128±0.001 0.194±0.001 0.177

Table 1: Results of domain adaptation regression on dSprites

Methods RL → RC RL → T RC → RL RC → T T → RL T → RC Avg.

NNGP [34] 0.313±0.001 0.438±0.004 0.356±0.005 0.515±0.008 0.367±0.001 0.324±0.004 0.386
NTKGP [25] 0.396±0.001 0.365±0.001 0.200±0.007 0.390±0.003 0.390±0.000 0.354±0.003 0.349
AT-GP [7] 0.214±0.011 0.209±0.002 0.227±0.010 0.198±0.002 0.236±0.000 0.249±0.000 0.222
TL-NTK [38] 0.206±0.004 0.200±0.002 0.213±0.000 0.197±0.000 0.226±0.001 0.218±0.000 0.210
DINO-INIT (ours) 0.204±0.001 0.185±0.006 0.207±0.003 0.182±0.004 0.218±0.001 0.212±0.001 0.201
DINO-TRAIN (ours) 0.193±0.001 0.194±0.003 0.207±0.003 0.188±0.002 0.226±0.001 0.218±0.001 0.204

Table 2: Results of domain adaptation regression on MPI3D

C N N S
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
AE

DAN
WANN
RSD
DINO-INIT
DINO-TRAIN

(a) dSprites
RL RC RC T

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
AE

DAN
WANN
RSD

DINO-INIT
DINO-TRAIN

(b) MPI3D
Figure 2: Model comparison

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6
Number of Layers

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
AE

DINO-INIT
DINO-TRAIN

(a) Number of layers L

M MU MU M
Domain Adaptation Tasks

0.0

0.2

0.4

0.6

0.8

1.0

M
AE

MMD-RBF (layer 1)
MMD-RBF (layer 2)
MMD-RBF (layer 3)
MMD-NTK

(b) Discrepancy
Figure 3: Model Analysis

Corollary 4.8. Under mild conditions, our framework Eq. (7) with distribution-informed neural
network f̃(·) can recover the standard domain invariant representation learning in Eq. (1), where the
domain discrepancy measure d(·, ·) is instantiated with MMD in RKHS induced by standard NTK Θ.

5 Experiments

Data Sets: We use three domain adaptation regression benchmarks. Following [10], we use two
image data sets: dSprites [40] and MPI3D [23]. Specifically, dSprites has 737,280 images from three
domains: Color (C), Noisy (N) and Scream (S). For each image, it has three regression tasks, i.e.,
predicting three factors of variations (scale, position X and Y). MPI3D contains over 3M images
from three domains: Toy (T), Realistic (RC) and Real (RL). It is shown [10] that for each image,
it involves two regression tasks, i.e., predicting three factors of variations (position X and Y). In
addition, we also use a plant phenotyping data set. It predicts diverse traits (e.g., Nitrogen) of plants
related to the plants’ growth using leaf hyperspectral reflectance. Here we consider the following
two domains [46]: Maize (M) and Maize_UNL (MU). In our case, the task is to predict the Nitrogen
content of maize using the leaf hyperspectral reflectance (see Appendix A.11 for more details).

Baselines: In the experiments, we consider the following baseline methods. (1) Plain Gaussian
process: NNGP [34] and NTKGP [25]. (2) Domain adaptive Gaussian processes: AT-GP [7] and
TL-NTK [38]. (3) Deep domain adaptation methods: DAN [37], WANN [16] and RSD [10].

Implementations: In the experiments, our algorithms are implemented using a L-layer (L = 6)
fully-connected neural network with ReLU (see Appendix A.11 for more details). The induced
NNGP and neural tangent kernels induced can be estimated using the Neural Tangents package [41].
In addition, we set α = 0.5 and µ = 0.1 for DINO-TRAIN.

5.1 Results

Table 1, Table 2 and Table 3 provide the domain adaptation regression results on dSprites, MPI3D
and Plant Phenotyping data sets. Following [10], we report the Mean Absolute Error (MAE)
between the predicted outputs and the ground-truth outputs in the target test set (the best results
are indicated in bold). It is observed that our method DINO achieves competitive performance over

9

the Gaussian process baselines. The weakly-trained DINO-INIT slightly outperforms DINO-TRAIN
in some cases. This observation is consistent with previous work [33]. The relatively unstable

Methods M → MU MU → M

NNGP [34] 0.562±0.001 0.672±0.010
NTKGP [25] 0.562±0.004 0.702±0.010
AT-GP [7] 0.308±0.006 0.593±0.025
TL-NTK [38] 0.316±0.008 0.488±0.027
DINO-INIT (ours) 0.316±0.007 0.645±0.017
DINO-TRAIN (ours) 0.314±0.009 0.443±0.030

Table 3: Results on Plant Phenotyping

performance of DINO-TRAIN might be caused by the
large covariance of Gaussian process with NTK [25].
In addition, we also compare DINO with domain adap-
tation methods instantiated by overparameterized neu-
ral networks. WANN [16] reweights the source exam-
ples, and DAN [37] and RSD [10] learn the domain
invariant representation. The performance compar-
ison in Figure 2 confirms the effectiveness of our
DINO approach over those state-of-the-art baselines.

5.2 Analysis

Methods C → N

DINO-INIT w/o distribution feature 0.189±0.002
DINO-INIT w uniform distribution feature 0.171±0.001
DINO-INIT 0.128±0.001

DINO-TRIAN w/o distribution feature 0.161±0.002
DINO-TRIAN w uniform distribution feature 0.147±0.001
DINO-TRIAN 0.127±0.002

Table 4: Ablation study on dSprites

Ablation Study: We investigate the im-
pact of input-oriented distribution represen-
tation in our DINO framework. We consider
the following variants. DINO-INIT (DINO-
TRAIN) w/o distribution feature: it would
not utilize the input-oriented distribution
representation, i.e., gwg

(P|x) = 1 for all
x ∈ X . DINO-INIT (DINO-TRAIN) w uni-
form distribution feature: the coefficient
βx,x̃i

= 1/n is a constant. The results are
given in Table 4. We observe that the distribution representation improves the domain adaptation
performance. Compared to globally shared distribution representation with βx,x̃i = 1/n, our para-
metric Φx(P) in Eq. (4) encourages to learn the local distribution representation around the input
data point x. The empirical results in Table 4 confirmed the efficacy of the input-oriented distribution
representation.

Impact of Model Architecture and Discrepancy Measure: Figure 3a shows the results of DINO with
different number of neural layers L on dSprites (C → N). The results indicate that the performance
of DINO is positively related to the expressiveness of NTK and NNGP kernel induced by the neural
network. In addition, we compare the proposed ˆMMDΘDA

(·, ·) with MMD-RBF (i.e., MMD with
standard RBF kernel) in domain adaptation regression, where MMD-RBF is estimated in the feature
space learned by different neural layers (see Appendix A.11 for more details). As shown in Figure 3b,
the results on Plant Phenotyping data set reveal that the selection of feature space affects the model
performance when using MMD-RBF, and our proposed ˆMMDΘDA

(·, ·) outperforms the MMD-RBF.

Positive Definiteness of KP|X (X,X): We report the smallest eigenvalue of the distribution kernel
KP|X (X,X) over the training examples on Plant Phenotyping data set. The smallest eigenvalues
of KP|X (X,X) in DINO-TRAIN after training are 3e− 6 and 8e− 7 on M → MU and MU → M,
respectively. This empirically confirms the positive definiteness of KP|X (X,X) in DINO-TRAIN.

6 Conclusion

In this paper, we study the domain adaptation regression by proposing a distribution-informed neural
network. Our domain adaptation framework with distribution-informed neural network subsumes the
existing adaptation approaches based on domain invariant representation, reweighting, and adaptive
Gaussian process. We also analyze the convergence and generalization bound of our framework. The
experiments demonstrate the effectiveness of our DINO framework over state-of-the-art baselines.

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-
2117902, IIS-2137468, and Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-
32799/project accession no.1024178 from the USDA National Institute of Food and Agriculture.
The views and conclusions are those of the authors and should not be interpreted as representing the
official policies of the funding agencies or the government.

10

References
[1] David Acuna, Guojun Zhang, Marc T. Law, and Sanja Fidler. f -domain adversarial learning:

Theory and algorithms. In International Conference on Machine Learning, pages 66–75. PMLR,
2021.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252.
PMLR, 2019.

[3] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[4] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. Advances in Neural Information
Processing Systems, 32, 2019.

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine Learning,
79(1):151–175, 2010.

[6] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classifi-
cation tasks to a new unlabeled sample. Advances in Neural Information Processing Systems,
24:2178–2186, 2011.

[7] Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung, and Qiang Yang. Adaptive transfer
learning. In proceedings of the AAAI Conference on Artificial Intelligence, volume 24, 2010.

[8] Yu Cao, Meng Fang, Baosheng Yu, and Joey Tianyi Zhou. Unsupervised domain adaptation
on reading comprehension. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7480–7487, 2020.

[9] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in Neural Information Processing Systems, 32:10836–10846,
2019.

[10] Xinyang Chen, Sinan Wang, Jianmin Wang, and Mingsheng Long. Representation subspace
distance for domain adaptation regression. In International Conference on Machine Learning,
pages 1749–1759. PMLR, 2021.

[11] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for importance
weighting. Advances in Neural Information Processing Systems, 10:442–450, 2010.

[12] Corinna Cortes and Mehryar Mohri. Domain adaptation and sample bias correction theory and
algorithm for regression. Theoretical Computer Science, 519:103–126, 2014.

[13] Corinna Cortes, Mehryar Mohri, and Andrés Munoz Medina. Adaptation based on generalized
discrepancy. The Journal of Machine Learning Research, 20(1):1–30, 2019.

[14] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. Sample selection
bias correction theory. In International Conference on Algorithmic Learning Theory, pages
38–53. Springer, 2008.

[15] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

[16] Antoine de Mathelin, Guillaume Richard, François Deheeger, Mathilde Mougeot, and Nicolas
Vayatis. Adversarial weighting for domain adaptation in regression. In IEEE 33rd International
Conference on Tools with Artificial Intelligence (ICTAI), pages 49–56. IEEE, 2021.

[17] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685. PMLR, 2019.

11

[18] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

[19] Zhekai Du, Jingjing Li, Hongzu Su, Lei Zhu, and Ke Lu. Cross-domain gradient discrepancy
minimization for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3937–3946, 2021.

[20] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[21] Zhiqiang Gao, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, and Chaoliang Zhong. Gradient
distribution alignment certificates better adversarial domain adaptation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8937–8946, 2021.

[22] Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional
networks as shallow gaussian processes. In International Conference on Learning Representa-
tions, 2019.

[23] Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello,
Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, and Stefan
Bauer. On the transfer of inductive bias from simulation to the real world: a new disentanglement
dataset. Advances in Neural Information Processing Systems, 32:15740–15751, 2019.

[24] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[25] Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the
neural tangent kernel. In Advances in Neural Information Processing Systems, volume 33, pages
1010–1022, 2020.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[27] Fumio Hiai and Minghua Lin. On an eigenvalue inequality involving the hadamard product.
Linear Algebra and its Applications, 515:313–320, 2017.

[28] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
Conference on Machine Learning, pages 1989–1998. PMLR, 2018.

[29] Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning,
pages 4423–4434. PMLR, 2021.

[30] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola.
Correcting sample selection bias by unlabeled data. Advances in Neural Information Processing
Systems, pages 601–608, 2006.

[31] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and
generalization in neural networks. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 8580–8589, 2018.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25:1097–
1105, 2012.

[33] Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

12

[34] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

[35] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in Neural Information Processing Systems, 32:8572–8583,
2019.

[36] Hong Liu, Mingsheng Long, Jianmin Wang, and Michael Jordan. Transferable adversarial
training: A general approach to adapting deep classifiers. In International Conference on
Machine Learning, pages 4013–4022. PMLR, 2019.

[37] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In International conference on machine learning, pages 97–105.
PMLR, 2015.

[38] Wesley Maddox, Shuai Tang, Pablo Moreno, Andrew Gordon Wilson, and Andreas Damianou.
Fast adaptation with linearized neural networks. In International Conference on Artificial
Intelligence and Statistics, pages 2737–2745. PMLR, 2021.

[39] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning
bounds and algorithms. In 22nd Conference on Learning Theory, 2009.

[40] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentangle-
ment testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[41] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks
in python. In International Conference on Learning Representations, 2020.

[42] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via
transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2010.

[43] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[44] Neeti Wagle and Eric W Frew. Forward adaptive transfer of gaussian process regression. Journal
of Aerospace Information Systems, 14(4):214–231, 2017.

[45] Haoxiang Wang, Han Zhao, and Bo Li. Bridging multi-task learning and meta-learning: Towards
efficient training and effective adaptation. In International Conference on Machine Learning,
pages 10991–11002. PMLR, 2021.

[46] Sheng Wang, Kaiyu Guan, Zhihui Wang, Elizabeth A Ainsworth, Ting Zheng, Philip A
Townsend, Kaiyuan Li, Christopher Moller, Genghong Wu, and Chongya Jiang. Unique
contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf
spectroscopy. Journal of experimental botany, 72(2):341–354, 2021.

[47] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding
negative transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11293–11302, 2019.

[48] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

[49] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[50] Jun Wu, Elizabeth A Ainsworth, Sheng Wang, Kaiyu Guan, and Jingrui He. Adaptive transfer
learning for plant phenotyping. arXiv preprint arXiv:2201.05261, 2022.

13

[51] Jun Wu and Jingrui He. Indirect invisible poisoning attacks on domain adaptation. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
1852–1862, 2021.

[52] Jun Wu and Jingrui He. Domain adaptation with dynamic open-set targets. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2039–2049,
2022.

[53] Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian
processes. In Advances in Neural Information Processing Systems, volume 32, 2019.

[54] Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

[55] Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance
trade-off for generalization of neural networks. In International Conference on Machine
Learning, pages 10767–10777. PMLR, 2020.

[56] Yao-Liang Yu and Csaba Szepesvári. Analysis of kernel mean matching under covariate shift.
In International Conference on Machine Learning, pages 1147–1154, 2012.

[57] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[58] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

[59] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International Conference on Machine Learning, pages 7404–7413.
PMLR, 2019.

[60] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In International Conference on Machine Learning, pages
7523–7532. PMLR, 2019.

[61] Yao Zhou, Lei Ying, and Jingrui He. MultiC2: an optimization framework for learning from
task and worker dual heterogeneity. In Proceedings of the 2017 SIAM International Conference
on Data Mining, pages 579–587. SIAM, 2017.

[62] Yao Zhou, Lei Ying, and Jingrui He. Multi-task crowdsourcing via an optimization framework.
ACM Transactions on Knowledge Discovery from Data (TKDD), 13(3):1–26, 2019.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

14

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Abstract and Section 1.

(b) Did you describe the limitations of your work? [Yes] See Appendix A.10.
(c) Did you discuss any potential negative societal impacts of your work? [No] Our work

does not involve any potential negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.2 -

A.9.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and Appendix A.11.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.11.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Appendix

In the appendix, we have the following results.

• In Appendix A.1, we summarize the main notations used in this paper.
• In Appendix A.2 - A.9, we show all the proofs of our theoretical results.
• In Appendix A.10, we present the overall training procedures (e.g., pseudo code) of our

proposed DINO-INIT and DINO-TRAIN algorithms, as well as the limitations of our work.
• In Appendix A.11, we present additional data description and implementation details.

A.1 Notation

Notation Definition

X ,Y,P Input, output and probability distribution space
Psrc,Ptgt ∈ P Source and target joint distributions
Psrc
X ,Ptgt

X Source and target marginal distributions
{xsrc

i , ysrc
i }nsrc

i=1 Labeled source training examples

{xtgt
j , ytgt

j }n
l
tgt

j=1 Labeled target training examples

{xtgt
j }n

u
tgt

j=1 Unlabeled target training examples
X tgt

∗ Target testing examples
Xsrc = {xsrc

i }nsrc
i=1, Y src = {ysrc

i }nsrc
i=1 Labeled source input and output sets

X tgt
l = {xtgt

j }n
l
tgt

j=1, Y tgt
l = {ytgt

j }n
l
tgt

j=1 Labeled target input and output sets
X = Xsrc ∪X tgt

l , Y = Y src ∪ Y tgt
l All the labeled training inputs, and the corresponding outputs

x̃i Basis example of input-oriented distribution representation learning
f(·) L-layer fully-connected neural network
f̃(·) Distribution-informed neural network
KX (·, ·) NNGP kernel over X
KP|X (·, ·) Distribution kernel over P
KDA(·, ·) Distribution-informed NNGP kernel
Θ(·, ·) Neural tangent kernel (NTK)
ΘDA(·, ·) Distribution-informed NTK

Table 5: Notation

A.2 Proof of Lemma 4.1

Lemma 4.1. Assume that all the parameters of f̃(·) follows standard normal distribution, in the limits
as the layer width d → ∞, the output function of the distribution-informed neural network f̃(x) in
Eq (5) at initialization is iid centered Gaussian process, i.e., f̃(·) ∼ N

(
0,KDA

)
where

KDA ((x,P), (x′,P′)) = KX (x, x′) · KP|X (P,P′|x, x′)

where KX (·, ·) is the NNGP kernel induced by the neural network f(·) over input space X , and
KP(·, ·) is a distribution kernel identifying the similarity of the distributions P and P′ over distribution
space P:

KP|X (P,P′|x, x′) =

n∑
i=1

n′∑
j=1

βx,x̃iβx′,x̃jKX (x̃i, x̃
′
j) (10)

where n (n′) is the number of examples in the domain associated with distribution P (P′).

Proof. Following [34], it can be shown that the output function of a fully-connected neural net-
works f(·) is an iid centered Gaussian process with zero mean and varaince KX (x, x′) (i.e.,
NNGP kernel). Using definition of distribution-informed neural network f̃(x) in Eq (5), we have
E[f̃(x,P)] = 0 (due to E[w] = 0), and KDA((x,P), (x′,P′)) = E[ϕ(x)Tϕ(x′)] · Φx(P)TΦx′(P′)
(due to E[wTw] = 1). Using the definition of Φx(P) in Eq. (4), we have KP|X (P,P′|x, x′) =∑n

i=1

∑n′

j=1 βx,x̃i
βx′,x̃′

j
KX (x̃i, x̃

′
j).

16

A.3 Proof of Lemma 4.3

Lemma 4.3. Given the labeled training data X = Xsrc ∪ X tgt
l and the basis examples {x̃r

i }
ñr
i=1

(r ∈ {src, tgt}), we let Υ ∈ R(nsrc+nl
tgt)×(ñsrc+ñtgt) denote the coefficient matrix of KP|X (X,X),

where for xk ∈ X (k = 1, · · · , nsrc + nl
tgt), its kth row [Υ]k,: = [βxk,x̃

src
1
, · · · , βxk,x̃

src
ñsrc

, 0, · · · , 0]
when xk ∈ Xsrc, [Υ]k,: = [0, · · · , 0, βxk,x̃

tgt
1
, · · · , βxk,x̃

tgt
ñtgt

] otherwise. Then, the assumption

λmin(KP|X (X,X)) > 0 holds when ΥTΥ is positive definite.

Proof. Using the definition of the distribution kernel in Eq. (6), we have KP|X (X,X) =

ΥKX (X̃, X̃)ΥT where X̃ denotes all the basis examples. Then, we have λmin(KP|X (X,X)) =

λmin(ΥKX (X̃, X̃)ΥT) ≥ λmin(KX (X̃, X̃)) · λmin(Υ
TΥ). Here KX (X̃, X̃) is the NNGP kernel

matrix of the basis examples induced by the neural network f(·) with infinite width. It is shown [4]
that the key difference between NNGP kernel and NTK is that NTK is generated by a fully-trained
neural network, whereas NNGP kernel is produced by a weakly-trained neural network. That is,
NNGP kernel is a special case of NTK when training only the output layer. Following [18, 3], when
there is no two parallel inputs in X̃ , we have λmin(KX (X̃, X̃)) > 0. Therefore, when ΥTΥ is
positive definite, the assumption λmin(KP|X (X,X)) > 0 can hold.

A.4 Proof of Theorem 4.4

Theorem 4.4. For any coefficient βx,xi of the input-oriented distribution representation in Eq. (4),
there exists η∗ ∈ R+ such that for the infinitely-wide distribution-informed neural network f̃(·)
trained under gradient flow with learning rate η < η∗, the test prediction f̃θt(X

tgt
∗) of the domain

adaptation regression in Eq. (7) over test target data X tgt
∗ is

f̃θt(X
tgt
∗) = f̃θ0(X

tgt
∗)−ΘDA(X

tgt
∗ , X)ΘDA(X,X)−1

(
I− e−ηΘDAC̃t

)(
f̃θ0(X)− Y

)
where ΘDA(·, ·) is the distribution-informed NTK, i.e., ΘDA(x, x

′) = Θ(x, x′) · KP|X (P,P′|x, x′)

and C̃ = diag{α/nsrc, · · · , α/nsrc︸ ︷︷ ︸
nsrc

, (1− α)/nl
tgt, · · · , (1− α)/nl

tgt︸ ︷︷ ︸
nl

tgt

} is a diagonal matrix. Moreover,

under the assumption 4.2, when the network width goes to infinity, limt→∞ f̃θt(X
tgt
∗) converges to a

Gaussian process with mean µ(X tgt
∗) and variance Σ(X tgt

∗ , X tgt
∗) as follows.

µ(X tgt
∗) = ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1Y

Σ(X tgt
∗ , X tgt

∗) = KDA
(
X tgt

∗ , X tgt
∗
)
+ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1KDAΘDA(X,X)−1ΘDA

(
X,X tgt

∗
)

−
(
ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1KDA

(
X,X tgt

∗
)
+ h.c.

)
where “+h.c." means “plus the Hermitian conjugate".

Proof. The objective function of Eq. (7) can be rewritten as follows.

L(θ) = α

2nsrc

nsrc∑
i=1

(
f̃(xsrc

i ,Psrc)− ysrc
i

)2
+

1− α

2nl
tgt

nl
tgt∑

j=1

(
f̃(xtgt

j ,Ptgt)− ytgt
j

)2
+

µ

2
ˆMMD

2

ΘDA

(
Psrc,Ptgt)

=
1

2

∣∣∣∣∣∣Cf̃(X)− CY
∣∣∣∣∣∣2
2
+

µ

2
ˆMMD

2

ΘDA

(
Psrc,Ptgt)

where f̃(X) = vec({f̃(xi)}
nsrc+nl

tgt
i=1), and C = diag{√

α/nsrc, · · · ,
√
α/nsrc︸ ︷︷ ︸

nsrc

,
√

(1− α)/nl
tgt, · · · ,

√
(1− α)/nl

tgt︸ ︷︷ ︸
nl

tgt

} is a constant diagonal matrix.

Then the tangent kernel can be defined as

ΘDA(X,X) = lim
d→∞

∇θ0 f̃(X)∇θ0 f̃(X)T

17

Moreover, we obtain

∇θ0 f̃(x,P) = ∇θ0f(x) · gwg (P|x)

lim
d→∞

〈
∇θ0 f̃(x,P),∇θ0 f̃(x

′,P′)
〉
= Θ(x, x′) · KP|X (P,P′|x, x′)

ΘDA(X,X) = Θ(X,X)⊙KP|X (X,X)

where Θ(x, x′) = limd→∞⟨∇θ0f(x),∇θ0f(x
′)⟩ is standard neural tangent kernel [31] induced by

f(·) with infinite width.

Following [35], we have the linearized neural network given by its first-order Taylor expansion.

f lin
θt (x) = fθ0(x) +∇θ0fθ0(x) (θt − θ0)

and fθt(x) − f lin
θt
(x) = O(1/

√
d∗) → 0 (d∗ → 0). Then we have f̃θt(X) = f̃θ0(X) +

∇θ0 f̃θ0(X) (θt − θ0) + O(1/
√
d∗) where d∗ denotes the network width. Using the lineraized

function f̃ lin
θt
(X) = f̃θ0(X) + ∇θ0 f̃θ0(X) (θt − θ0), we have the dynamics of lineraized neural

network as follows.

θ̇t = −η∇θL(θ) = −η∇θf̃
lin
θt (X)TCTC

(
f̃ lin
θt (X)− Y

)
= −η∇θf̃θ0(X)TCTC

(
f̃θ0(X) +∇θ0 f̃θ0(X) (θt − θ0)− Y

)
Then the ODE has closed form solution as

θt = θ0 −∇θf̃θ0(X)TΘ−1
DA

(
I− e−ηΘDACTCt

)(
f̃θ0(X)− Y

)
Then given random initialization θ0, the predictions of this neural network over training X and testing
example X tgt

∗ are

f̃θt(X) ≈ f̃ lin
θt (X) = f̃θ0(X)−

(
I− e−ηΘDACTCt

)(
f̃θ0(X)− Y

)
f̃θt(X

tgt
∗) ≈ f̃ lin

θt (X
tgt
∗) = f̃θ0(X

tgt
∗)−ΘDA(X

tgt
∗ , X)ΘDA(X,X)−1

(
I− e−ηΘDACTCt

)(
f̃θ0(X)− Y

)
with up to an error of O(1/

√
d∗).

Here, the minimum eigenvalue λmin(ΘDAC
TC) ≥ λmin(ΘDA)λmin(C

TC) = λmin(ΘDA) ·
min{α/nsrc, (1− α)/nl

tgt}. Following [27], using λmin (Θ(X,X)) > 0 and λmin
(
KP|X (X,X)

)
>

0, we have λmin(ΘDA) ≥ 0. When α ∈ (0, 1), limt→∞ limd∗→∞ f̃θt(X
tgt
∗) = f̃θ0(X

tgt
∗) −

ΘDA(X
tgt
∗ , X)ΘDA(X,X)−1

(
f̃θ0(X)− Y

)
.

Over random initialization of θ0, f̃(X tgt
∗) converges to a Gaussian distribution, as it is a linear

transformation of f̃θ0(X
tgt
∗) associated with Gaussian distribution. Using E[f̃θ0(X

tgt
∗)] = 0 and

E[f̃θ0(X
tgt
∗)f̃θ0(X

tgt
∗)] = KDA

(
X tgt

∗ , X tgt
∗
)
, when α ∈ (0, 1), we have the following results:

µ(X tgt
∗) = ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1Y

Σ(X tgt
∗ , X tgt

∗) = KDA
(
X tgt

∗ , X tgt
∗
)
+ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1KDAΘDA(X,X)−1ΘDA

(
X,X tgt

∗
)

−
(
ΘDA

(
X tgt

∗ , X
)
ΘDA(X,X)−1KDA

(
X,X tgt

∗
)
+ h.c.

)
which completes the proof.

A.5 Proof of Theorem 4.5

Theorem 4.5. Assume for any training example (x, y) ∈ X × Y , we have (f̃(x,P)− y)2 ≤ M0 for
some constant M0 ≥ 0. Let F̃ be the hypothesis space induced by infinitely-wide neural networks
f̃ . Then, for any f̃ ∈ F̃ and δ > 0, with probability at least 1− δ, the expected error in the target
domain can be bounded as follows.

EPtgt(f̃) ≤ α

nsrc

nsrc∑
i=1

(
f̃(xsrc

i ,Psrc)− ysrc
i

)2
+

1− α

nl
tgt

nl
tgt∑

j=1

(
f̃(xtgt

j ,Ptgt)− ytgt
j

)2
+ 8αM0 · MMDΘDA

(
Psrc,Ptgt)

18

+ 2αℜnsrc(Hsrc) + 2(1− α)ℜnl
tgt
(Htgt) +M

√
(nsrc + nl

tgt) log(1/δ)

2

where Hsrc = {(x, y) → (f̃(xsrc,Psrc) − ysrc)2 : f̃ ∈ F̃} is a set of functions, ℜnsrc(Hsrc) is the
Rademacher complexity of Hsrc given nsrc examples, and M = max{αM0/nsrc, (1− α)M0/n

l
tgt}.

Proof. Let Ψ(X) = supf̃∈F̃ LPtgt(f̃) − α · LP̂src(f̃) − (1 − α) · LP̂tgt(f̃) where LP̂src(f̃) =

1
nsrc

∑nsrc
i=1

(
f̃(xsrc

i ,Psrc)− ysrc
i

)2
and LP̂tgt(f̃) =

1
nl

tgt

∑nl
tgt

j=1

(
f̃(xtgt

j ,Ptgt)− ytgt
j

)2
.

Then when one point of X is changed, Ψ(X) will change at most M = max{αM0/nsrc, (1 −
α)M0/n

l
tgt}. Using McDiarmid’s inequality, it holds that

Pr[Ψ(X)− E[Ψ(X)] > ϵ] ≤ exp

(
− 2ϵ2

(nsrc + nl
tgt)M2

)
Thus, for any δ > 0, with probability at least 1− δ, we have

LPtgt(f̃) ≤ α · LP̂src(f̃) + (1− α) · LP̂tgt(f̃) + E[Ψ(X)] +M

√
(nsrc + nl

tgt) log(1/δ)

2

Moreover,

E[Ψ(X)] = E

[
sup
f̃∈F̃

α · LP̂src(f̃) + (1− α) · LP̂tgt(f̃)− LPtgt(f̃)

]

≤ α · E

[
sup
f̃∈F̃

LP̂src(f̃)− LPtgt(f̃)

]
+ (1− α) · E

[
sup
f̃∈F̃

LP̂tgt(f̃)− LPtgt(f̃)

]
≤ 2αℜnsrc(Hsrc) + 2(1− α)ℜnl

tgt
(Htgt) + α · sup

f̃∈F̃
LPsrc(f̃)− LPtgt(f̃)

When (f̃(x,P)− y)2 ≤ M0 for any training example (x, y) ∈ X ×Y , Lemma 23 of [13] shows that∣∣∣(f̃(x,P)− y)2 − (f̃ ′(x,P)− y)2
∣∣∣ ≤ 2M0

∣∣∣f̃(x,P)− f̃ ′(x,P)
∣∣∣. Therefore, we have (f̃(x,P) −

y)2 ≤ 2M0

∣∣∣f̃(x,P)− y
∣∣∣. It is shown in [31] that a infinitely-wide neural network would behave as

its linearization around the initialization and achieves zero training loss under MSE loss. Thus, there
exists a small perturbation ∆θ over parameters for each example (x, y) such that f̃θ+∆θ(x,P) = y.

sup
f̃∈F̃

LPsrc(f̃)− LPtgt(f̃) ≤ sup
f̃∈F̃

∣∣∣∣EPsrc

(
f̃(xsrc,Psrc)− ysrc

)2
− EPtgt

(
f̃(xtgt,Ptgt)− ytgt

)2∣∣∣∣
≤ 4M0 · sup

f̃∈F̃

∣∣∣EPsrc

∣∣∣f̃(xsrc,Psrc)− ysrc
∣∣∣− EPtgt

∣∣∣f̃(xtgt,Ptgt)− ytgt
∣∣∣∣∣∣

≤ 8M0 · sup
f̃∈F̃

∣∣∣EPsrc

[
f̃(xsrc,Psrc)− ysrc

]
− EPtgt

[
f̃(xtgt,Ptgt)− ytgt

]∣∣∣
≤ 8M0 · sup

∆θ∈HDA,f̃∈F̃

∣∣∣EPsrc

[
f̃θ(x

src,Psrc)− f̃θ+∆θ(x
src,Psrc)

]
− EPtgt

[
f̃(xtgt,Ptgt)− f̃θ+∆θ(x

tgt,Ptgt)
]∣∣∣

= 8M0 · sup
∆θ∈HDA,f̃∈F̃

∣∣∣EPsrc

[
∇θf̃θ(x

src,Psrc)∆θ
]
− EPtgt

[
∇θf̃(x

tgt,Ptgt)∆θ
]∣∣∣

= 8M0 · MMDΘDA

(
Psrc,Ptgt)

which HDA is the RKHS induced by kernel ΘDA.

A.6 Proof of Corollary 4.6

Corollary 4.6. With the assumptions in Lemma 4.1, when βx,x̃i
= 1/||

∑n
i=1⟨·, x̃i⟩KX ||, the

Gaussian process induced by f̃(x) at the initialization would be equivalent to the adaptive Gaussian
process in [7] over NNKP kernel.

19

Proof. One special case of distribution-informed neural network at initialization is that when the co-
efficient βx,x̃i = 1/||

∑n
i=1⟨·, x̃i⟩KX ||, it can be seen that Φx(P) = 1

||
∑n

i=1⟨·,x̃i⟩KX ||
∑n

i=1⟨·, x̃i⟩KX

is the normalized mean mapping [24] of data distribution P in the NNGP kernel space. In this
case, the distribution kernel KP|X (P,P′|x, x′) in Eq. (6) can be explained as the inner prod-
uct of the mean mappings of P and P′. Moreover, using the definition of maximum mean

discrepancy (MMD) [24], it can be shown that KP|X (P,P′|x, x′) =
c− ˆMMD2

KX
(P,P′)

Φ̄x(P)Φ̄x(P′)
, where

ˆMMDKX (·) denotes the empirical MMD in the NNGP kernel space, and c = 1
n2

∑n
i,j=1 KX (x̃i, x̃j)+

1
n′2

∑n′

i,j=1 KX (x̃′
i, x̃

′
j). It implies that KP|X (P,P′|x, x′) is negatively correlated with the popular

MMD estimator. Moreover, when P = P′, KP|X (P,P′|x, x′) = 1, otherwise KP|X (P,P′|x, x′) =
1

||
∑n

i=1⟨·,x̃i⟩KX ||·||
∑n′

j=1⟨·,x̃′
j⟩KX ||

∑n
i=1

∑n′

j=1 KX (x̃i, x̃
′
j). In this case, the adaptive transfer kernel

KDA(X,X) induced by f̃(x) at the initialization would be equivalent to [7], by setting the transfer
parameter τ of Eq. (3) as KP|X (Psrc,Ptgt|xsrc, xtgt) for any inputs xsrc, xtgt.

A.7 Proof of Theorem A.1

Theorem A.1. When wsrc
i > 0 for all i = 1, · · · , nsrc, the reweighting domain adaptation ap-

proach Eq. (9) and standard supervised learning have identical predictions on test target data, i.e.,
limt→∞ limd∗→∞ fθt(X

tgt
∗) = fθ0(X

tgt
∗)−Θ(X tgt

∗ , X)Θ−1 (fθ0(X)− Y).

Proof. The objective function of Eq. (7) can be rewritten as follows.

LRW (θ) =
α

2nsrc

nsrc∑
i=1

wsrc
i ||f(xsrc

i)− ysrc
i ||22 +

1− α

2ntgt

nl
tgt∑

j=1

∣∣∣∣f(xtgt
j)− ytgt

j

∣∣∣∣2
2
=

1

2
||CBf(X)− CBY ||22

where f(X) = vec({f(xi)}
nsrc+nl

tgt
i=1), and C = diag{

√
α/nsrc, · · · ,

√
α/nsrc︸ ︷︷ ︸

nsrc

,
√

(1− α)/nl
tgt, · · · ,

√
(1− α)/nl

tgt︸ ︷︷ ︸
nl

tgt

}

is a diagonal matrix and B = diag{
√

wsrc
1 , · · · ,

√
wsrc

nsrc︸ ︷︷ ︸
nsrc

, 1, · · · , 1︸ ︷︷ ︸
nl

tgt

}. We have the dynamics of

lineraized neural network as follows (let A = CB for brevity).

θ̇t = −η∇θL2(θ) = −η∇θf
lin
θt (X)TATA

(
f lin
θt (X)− Y

)
= −η∇θfθ0(X)TATA (fθ0(X) +∇θ0fθ0(X) (θt − θ0)− Y)

Then the ODE has closed form solution as

θt = θ0 −∇θfθ0(X)TΘ−1
(
I− e−ηΘATAt

)
(fθ0(X)− Y)

Then given random initialization θ0, the predictions of this neural network over training X and testing
examples X tgt

∗ are

fθt(X
tgt
∗) = fθ0(X

tgt
∗)−Θ(X tgt

∗ , X)Θ−1
(
I− e−ηΘATAt

)
(fθ0(X)− Y)

Therefore, when wsrc
i > 0 for all i = 1, · · · , nsrc, it can be shown that λmin(ΘATA) ≥

λmin(Θ)λmin(A
TA) > 0. Then we have limt→∞ limd∗→∞ fθt(X

tgt
∗) = fθ0(X

tgt
∗) −

Θ(X tgt
∗ , X)Θ−1 (fθ0(X)− Y).

As indicated in previous work [35], the neural network f(·) with standard MSE loss also has the
following objective function

Lsup(θ) =
1

2

nsrc∑
i=1

||f(xsrc
i)− ysrc

i ||22 +
1

2

nl
tgt∑

j=1

∣∣∣∣f(xtgt
j)− ytgt

j

∣∣∣∣2
2
=

1

2
||f(X)− Y ||22

20

For any test examples X tgt
∗ , it has

fsup
θt

(X tgt
∗) = fθ0(X

tgt
∗)−Θ(X tgt

∗ , X)Θ−1
(
I− e−ηΘt

)
(fθ0(X)− Y)

and limt→∞ limd∗→∞ fsup
θt

(X tgt
∗) = fθ0(X

tgt
∗)−Θ(X tgt

∗ , X)Θ−1 (fθ0(X)− Y). This indicates that
when wsrc

i > 0 for all i = 1, · · · , nsrc, the reweighting domain adaptation approach and standard
supervised learning have identical predictions on test target data.

A.8 Proof of Corollary 4.7

Corollary 4.7. With the assumption in Theorem 4.4, our framework Eq. (7) with distribution-
informed neural network f̃(·) can recover the popular reweighting domain adaptation approach Eq.
(9) in the function space.

Proof. We can consider the following special case of the distribution representation in Eq. (4). For
source example x, we can set βx,xi = 1

nsrc||xi||KX
· δ[wsrc

i > 0], where δ[·] is a Kronecker delta

function. For target example x, we can set βx,xj = 1
ntgt||xj ||KX

where ntgt = nl
tgt + nu

tgt, as we use all
the target training examples as the basis examples for learning the input-oriented representation of the
target domain. In this case, for distribution-informed NTK ΘDA(X,X), we have ΘDA(xi, xj) = 0 if
xi (or xj) are source example with wsrc

i > 0 (or wsrc
j > 0), ΘDA(xi, xj) = Θ(xi, xj) otherwise. That

is, when wsrc
i > 0 for all i = 1, · · · , nsrc, we have ΘDA(X,X) = Θ(X,X). Theorem 4.4 indicates

that it can produce the same prediction function over random initialization as the reweighting domain
adaptation approach Eq. (9). When there are some source examples with wsrc

i = 0, the objective
function of our domain adaptation will also simply filter out those source examples, and the final
prediction function depends only on the source examples with wsrc

i > 0.

A.9 Proof of Corollary 4.8

Corollary 4.8. Under mild conditions, our framework Eq. (7) with distribution-informed neural
network f̃(·) can recover the standard domain invariant representation learning in Eq. (1), where the
domain discrepancy measure d(·, ·) is instantiated with MMD in RKHS induced by standard NTK Θ.

Proof. It can be shown when the distribution representation of Eq. (4) is shared by all the input
examples. In this case, for any wg, f̃(x,P) = a · fθ(x) where a = Φx(P)Twg ∈ R is shared by all
examples. Then, we have f̃(x,P) = a · fθ(x) = a · ϕθ<L(x)Tw = ϕθ<L(x)T (aw). Therefore, in
this case, f̃(·) is equivalent to a simple distribution-free neural network. The overall framework Eq.
(7) would be degenerated into the standard domain invariant representation learning in Eq. (1). Notice
that when using the distribution-free neural network, the framework Eq. (1) requires an additional
discrepancy minimization regularization to guarantee the success of domain adaptation. In our case,
the discrepancy minimization regularization would be given by the MMD in RKHS induced by the
NTK ΘDA. Here, when the distribution representation of Eq. (4) is shared by all the input examples,
it holds that for any x, x′ ∈ X , ΘDA(x, x

′) = b · Θ(x, x′) where b = ||Φx(P)||2KX
∈ R. Thus,

ˆMMD
2

ΘDA
(Psrc,Ptgt) = b · ˆMMD

2

Θ (Psrc,Ptgt).

A.10 Algorithms

DINO-INIT vs. DINO-TRAIN: DINO-INIT is weakly-trained (i.e., only the last layer is trained),
while DINO-TRAIN is fully-trained (i.e., all network layers are trained). We observe from the
experimental results that the weakly-trained DINO-INIT might outperform DINO-TRAIN in some
cases. This observation is consistent with previous work [33] on standard neural networks.

The overall training procedures of DINO-INIT are illustrated in Algorithm 1. Here we use both labeled
target examples and unlabeled target examples X tgt

l ∪X tgt
u as the basis target examples of Eq. (4).

This allows the proposed DINO-INIT to be applied for domain adaptation scenarios [5, 13, 47] where
both limited labeled and adequate unlabeled target data are available during model training. When no
unlabeled target data is available [7], i.e., only limited labeled target data is given, we can simply use
those labeled target examples as the basis target examples of Eq. (4).

21

Algorithm 1 DINO-INIT

Input: Labeled source examples (Xsrc, Y src), labeled target examples (X tgt
l , Y tgt

l) and unlabeled
target examples X tgt

u , neural network architecture of f(·).
Output: Predictions on testing target examples X tgt

∗ .
1: Set Xsrc to be basis source examples of Eq. (4);
2: Set X tgt

l ∪X tgt
u to be basis target examples of Eq. (4);

3: Calculate the basis NNGP kernels of Eq. (6);
4: Estimate the coefficient wr and noise variance σsrc, σtgt by maximizing p(Y tgt

l |X tgt
l , Xsrc, Y src);

5: Calculate the posterior distribution with µ̄ and Σ̄;
6: Output Ŷ tgt

∗ |X tgt
∗ ∼ N (µ̄, Σ̄).

In addition, the overall training procedures of DINO-TRAIN are illustrated in Algorithm 2. Note that
in this paper, we focus on analyzing the training dynamics of our model in the adaptation scenarios
where limited labeled data in the target domain is available. But our theoretical results can be extended
to unsupervised domain adaptation setting where only unlabeled data is available in the target domain.
For example, the proposed DINO-TRAIN framework of Eq. (7) can be trained with α = 12 for
unsupervised domain adaptation. Then we can show similar convergence and generalization results
of this framework.

Analysis of the reweighting approach Eq. (9): Notice that if we do not consider the dis-
tribution shift between source and target domain, the prediction function of reweighting ap-
proach Eq. (9) can be simply learned by minimizing the standard supervised learning loss:

Lsup(θ) = 1
2

∑nsrc
i=1 (f(x

src
i)− ysrc

i)
2
2 + 1

2

∑nl
tgt

j=1

(
f(xtgt

j)− ytgt
j

)2
2

over all the labeled training ex-
amples. The following theorem shows that for an infinitely-wide neural network f(·), the reweighting
domain adaptation approach Eq. (9) and the standard supervised learning have identical prediction
function when they converges.

Theorem A.1. When wsrc
i > 0 for all i = 1, · · · , nsrc, in the limit of infinite network width, the

reweighting domain adaptation approach Eq. (9) and the standard supervised learning would
have identical prediction function on testing target data, i.e., limt→∞ fθt(X

tgt
∗) = fθ0(X

tgt
∗) −

Θ(X tgt
∗ , X)Θ−1 (fθ0(X)− Y).

This result can be generalized to the scenarios where wsrc
i ≥ 0. In this case, the reweighting domain

adaptation approach Eq. (9) considers only the source examples with wsrc
i > 0. It is equivalent

to the standard supervised learning over those source examples. Therefore, we have the following
observations. (1) The weight wsrc

i can only filter out some unrelated source examples (i.e., wsrc
i = 0)

for the reweighting approach. (2) For neural networks with infinite width, the learned predictive
functions of the reweighting approach and the standard supervised learning are equivalent in the
function space. Compared to the reweighting approach Eq. (9), our framework of Eq. (7) learns
the distribution-informed representation for both source and target data. The resulting prediction
function is explicitly determined by the domain discrepancy (indicated by the distribution-informed
NTK ΘDA).

Extension: We would like to point out that the proposed DINO framework can be easily generalized
to other network architectures. This is because previous works [4, 22, 53, 54] have shown the
existence of NNGP and NTK in different network architectures, including (residual) convolutional
neural networks, recurrent neural networks, transformer, etc. Therefore, we can adapt our algorithms
and theoretical analysis to those network architectures as well. In this paper, we focus on the
most used fully connected network, and the exploration of network architecture comparison in our
framework is beyond the scope of this paper.

Limitations: In this paper, we assume that there is only one source domain. But in real scenarios,
it is possible to gather source information from multiple domains. In the context of multi-source
domain adaptation regression, the generalization and convergence analysis of domain adaptation
regression with neural network might provide the insight on selecting high-quality source data for
better knowledge transfer. We would like to leave it as our future work.

2In Subsection 4.3, we consider α ∈ (0, 1), as the framework with α = 1 or α = 0 will produce a slightly
different convergence result.

22

Algorithm 2 DINO-TRAIN

Input: Labeled source examples (Xsrc, Y src), labeled target examples (X tgt
l , Y tgt

l) and unlabeled
target examples X tgt

u , neural network architecture of f(·).
Output: Predictions on testing target examples X tgt

∗ .
1: Set Xsrc to be basis source examples of Eq. (4);
2: Set X tgt

l ∪X tgt
u to be basis target examples of Eq. (4);

3: Calculate the basis NNGP kernels of Eq. (6);
4: repeat
5: Minimize the objective function of Eq. (7);
6: until It is converged
7: Output Ŷ tgt

∗ = f̃(X tgt
∗).

A.11 Experimental Details

A.11.1 Data Sets

dSprites [40]: It is composed of 737,280 images from three domains: Color (C), Noisy (N) and
Scream (S). Following [10], we evaluate all the baselines on six adaptation benchmarks: C → N, C →
S, N → C, N → S, S → C, and S → N. For each image, it has three regression tasks, i.e., predicting
three factors of variations (scale, position X and Y).

MPI3D [23]: It contains over 3M images from three domains: Toy (T), Realistic (RC) and Real (RL).
We evaluate all the baselines on six benchmarks: T → RC, T → RL, RC → T, RC → RL, RL → T,
and RL → RC. It is shown [10] that for each image, it involves two regression tasks, i.e., predicting
three factors of variations (position X and Y).

Plant Phenotyping: It aims to predict diverse traits (e.g., Nitrogen) of plants related to the plants’
growth using leaf hyperspectral reflectance (i.e., spectral wavelengths 500-2400 nm). Then the input
example with spectral wavelengths 500-2400 nm is formulated as a 1901-dimensional feature vector.
Here we consider the following two domains [46]: Maize (M) and Maize_UNL (MU). In our case,
the task is to predict the Nitrogen content of maize using the leaf hyperspectral reflectance.

For dSprites and MPI3D, following [10], we use the default train/test split for the target domain. In
this case, we randomly choose 100 training target images as the labeled examples, and others as the
unlabeled ones for all our experiments. For Plant Phenotyping, for the target domain, we randomly
5% of data as the label examples, and others as the unlabeled ones.

A.11.2 Implementations

All the experiments are performed on a Windows machine with four 3.80GHz Intel Cores, 64GB RAM
and two NVIDIA Quadro RTX 5000 GPUs. In the experiments, our algorithms are implemented
based on a L-layer (L = 6) fully-connected neural network with ReLU activation function. In
dSprites and MPI3D data sets, the size of input images is 64 × 64 × 3, we simply vectorize the
input image to a 12288-dimensional vector. That is, each input image x ∈ R12288 can be learned by
the fully-connected neural network. The NNGP and neural tangent kernels induced by this neural
network can be estimated using the Neural Tangents package [41]. In addition, we set α = 0.5
and µ = 0.1 for our DINO-TRAIN method. Note that different from previous works [37, 10], all
the baselines will be trained from scratch and use the same neural network architecture for domain
adaptation. It is shown [59, 10] that initializing the neural network using existing pre-trained models
(e.g. ResNet-50 [26]) can improve the domain adaptation performance, but it is out of the scope of
this paper.

In our experiments, we use three deep domain adaptation baselines: DAN [37], WANN [16] and
RSD [10]. DAN [37] and RSD [10] focus on domain invariant representation learning (see Subsec-
tion 3.2.1) by empirically minimizing the prediction error over the labeled training examples and the
domain discrepancy (i.e., maximum mean discrepancy or representation subspace distance). WANN
uses the reweighting technique in Subsection 3.2.2. Notice that DAN and RSD are proposed for
unsupervised domain adaptation with no label information from the target domain. In the experiments,
for a fair comparison, we extend them to domain adaptation scenarios with little label information
from the target domain, by adding the prediction error over the labeled training target examples.

23

Besides, Figure 3b shows the comparison of the proposed gradient-based MMD ˆMMDΘDA
(·, ·)

and conventional MMD with RBF kernel for domain adaptation in Subsection 5.2. To be more
specific, we consider a simple 3-layer fully-connected neural network with ReLU. Following [37],
we implement the domain adaptation approach by minimizing the prediction error over the labeled
training examples and the MMD with RBF kernel over the source and target features learned by
the first l = 1, 2, 3 layers. We denote those approaches as ‘MMD-RBF (layer 1)’, ‘MMD-RBF
(layer 2)’ and ‘MMD-RBF (layer 3)’ in Figure 3b, respectively. For a fair comparison, we use the
same neural network architecture to implement the domain adaptation approach with our proposed
ˆMMDΘDA

(·, ·), which is denoted as ‘MMD-NTK’ in Figure 3b.

24

	Introduction
	Related Work
	Domain Adaptation
	Overparameterized Neural Networks

	Preliminaries
	Notation and Neural Network Architecture
	Domain Adaptation Techniques
	Domain Invariant Representation
	Reweighting
	Adaptive Gaussian Process

	A Unified Framework
	Distribution-Informed Neural Network
	Initialization
	Gradient Descent Training
	Discussion
	Gaussian Process at Initialization
	Fully Trained Model

	Experiments
	Results
	Analysis

	Conclusion
	Appendix
	Notation
	Proof of Lemma 4.1
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Corollary 4.6
	Proof of Theorem A.1
	Proof of Corollary 4.7
	Proof of Corollary 4.8
	Algorithms
	Experimental Details
	Data Sets
	Implementations

