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Abstract

Due to the often limited communication band-

width of edge devices, most existing federated

learning (FL) methods randomly select only a

subset of devices to participate in training at each

communication round. Compared with engaging

all the available clients, such a random-selection

mechanism could lead to significant performance

degradation on non-IID (independent and identi-

cally distributed) data. In this paper, we present

our key observation that the essential reason re-

sulting in such performance degradation is the

class-imbalance of the grouped data from ran-

domly selected clients. Based on this observa-

tion, we design an efficient heterogeneity-aware

client sampling mechanism, namely, Federated

Class-balanced Sampling (Fed-CBS), which can

effectively reduce class-imbalance of the grouped

dataset from the intentionally selected clients.

We first propose a measure of class-imbalance

which can be derived in a privacy-preserving way.

Based on this measure, we design a computation-

efficient client sampling strategy such that the ac-

tively selected clients will generate a more class-

balanced grouped dataset with theoretical guaran-

tees. Experimental results show that Fed-CBS out-

performs the status quo approaches in terms of test

accuracy and the rate of convergence while achiev-

ing comparable or even better performance than

the ideal setting where all the available clients

participate in the FL training.
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1. Introduction
With the booming of IoT devices, a considerable amount of

data is generated at the network edge, providing valuable

resources for learning insightful information and enabling

intelligent applications such as self-driving, video analytics,

anomaly detection, etc. The traditional wisdom is to train

machine learning models by collecting data from devices

and performing centralized training. Data migration usually

raises serious privacy concerns. Federated learning (FL)

(McMahan et al., 2017a) is a promising technique to mit-

igate such privacy concerns, enabling a large number of

clients to learn a shared model collaboratively, and the learn-

ing process is orchestrated by a central server. In particular,

the participating clients first download a global model from

the central server and then compute local model updates

using their local data. The clients then transmit the local

updates to the server, where the local updates are aggregated

and then the global model is updated accordingly.

In practice, due to limited communication and computing

capabilities, one usually can not engage all the available

clients in FL training to fully utilize all the local data. There-

fore, most FL methods only randomly select a subset of

the available clients to participate in the training in each

communication round. However, in practice, the data held

by different clients are often typically non-IID (independent

and identically distributed) due to various user preferences

and usage patterns. This leads to a serious problem that the

random client selection strategy often fails to learn a global

model that can generalize well for most of the participating

clients under non-IID settings (Goetz et al., 2019; Cho et al.,

2020; Nishio & Yonetani, 2019; Yang et al., 2020).

Several heuristic client selection mechanisms have been

proposed to tackle the non-IID challenge. For example, in

the method of (Goetz et al., 2019), the clients with larger

local loss will have a higher probability to be selected to

participate in the training. Power-of-Choice (Cho et al.,

2020) selects several clients with the largest loss from a ran-

domly sampled subset of all the available clients. However,

selecting clients with a larger local loss may not guarantee

that the final model can have a smaller global loss. An-

other limitation of previous research on client selection is
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(a) Global Balanced & One-class (b) Global Balanced & Two-class (c) Global Imbalanced & One-class (d) Global Imbalanced & Two-class

Figure 1. Three different FL client selection strategies on MNIST. All means engaging all the 100 clients in training. Random means

randomly selecting 10 clients. Class Balanced means that we keep the class-balance by intentionally selecting 10 clients. In Figure

1a and 1b, the global dataset of all the 100 clients’ training data is class-balanced. In Figure 1c and 1d, the global dataset is class-

imbalanced. Each client has only one class of data in (a) and (c) and each client has two classes of data in (b) and (d). The results show

significant performance degradation with imbalanced data from random client selection. It is worth noting that when the global dataset is

class-imbalanced, selecting all the clients leads to worse performance compared with the Class Balanced strategy, which suggests the

importance of keeping class-balance for client selection.

the missing comparison between their strategy and the ideal

case, where all the available clients participate in the train-

ing. In general, existing works not only miss a vital criterion

that can measure the performance of their methods, but also

fail to investigate the essential reason why random client

selection can lead to performance degradation on non-IID

data compared with fully engaging all the available clients.

In this paper, we focus on image classification tasks. First,

we demonstrate our key observation for the essential reason

why random client selection results in performance degra-

dation on non-IID data, which is the class-imbalance of the

grouped dataset from randomly selected clients. Based on

our observation, we design an efficient heterogeneity-aware

client sampling mechanism, i.e., Federated Class-Balanced

Sampling (Fed-CBS), which effectively reduces the class-

imbalance in FL. Fed-CBS is orthogonal to numerous exist-

ing techniques to improve the performance of FL (Li et al.,

2018; Wang et al., 2020b; Karimireddy et al., 2019; Chen

et al., 2020; Reddi et al., 2020; Hao et al., 2021; Yang et al.,

2021) on non-IID data, meaning Fed-CBS can be integrated

with these methods to improve their performance further.

Our major contributions are summarized as follows:

• We reveal that the class-imbalance is the fundamental

reason why random client selection leads to perfor-

mance degradation on non-IID data in Section 2.

• To effectively reduce the class-imbalance, we design

an efficient heterogeneity-aware client sampling mech-

anism, i.e., Fed-CBS, based on our proposed class-

imbalance metric in Section 3. We provide theoretical

analysis on the convergence of Fed-CBS in Section

4, as well as the analysis of the NP-hardness of this

problem.

• We empirically evaluate Fed-CBS on FL benchmark

(non-IID datasets) in Section 5. The results demon-

strate that Fed-CBS can improve the accuracy of FL

models on CIFAR-10 by 2% ∼ 7% and accelerate the

convergence time by 1.3× ∼ 2.8×, compared with

the state-of-the-art method (Yang et al., 2020) that

also aims to reduce class-imbalance via client selec-

tion. Furthermore, our Fed-CBS achieves comparable

or even better performance than the ideal setting where

all the available devices are involved in the training.

2. Preliminary and Related Work
We first clarify three definitions. The local dataset is the

client’s own locally-stored dataset, which is inaccessible to

other clients and the server. Due to the heterogeneity of

local data distribution, the phenomenon of class-imbalance

frequently happens in most of the local datasets. The global
dataset is the union of all the available client local datasets.

It can be class-balanced or class-imbalanced, but it is often

imbalanced. The grouped dataset is the union of several

clients’ local datasets which have been selected to partici-

pate in training for one communication round. It follows

that the grouped dataset is a subset of the global dataset.

2.1. Pitfall of Class-Imbalance in Client Selection

Some recent works (Yang et al., 2020; Wang et al., 2020b;

Duan et al., 2019) have identified the issue of class-

imbalance in the grouped dataset by random selection under

non-IID settings. Since class-imbalance degrades the classi-

fication accuracy on minority classes (Huang et al., 2016)

and leads to low training efficiency, we are motivated to

verify whether the class-imbalance of the randomly-selected

grouped dataset is the essential reason accounting for the

performance degradation.

We conduct some experiments on MNIST to verify our

proposition1. As shown in Figure 1a and Figure 1b, the

random selection mechanism shows the worst performance

when the global label distribution is class-balanced. If we

keep the grouped dataset class-balanced by manually select-

ing the clients based on their local label distribution, we can

1Detailed experiment settings are listed in the Appendix (Sec-
tion C.1)
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obtain accuracy comparable to the case of fully engaging all

the clients in training.

Another natural corollary is that when the global dataset is

inherently class-imbalanced, engaging all clients in training

may lead to worse performance than manually keeping the

grouped dataset class-balanced. The results in Figure 1c

and Figure 1d prove our hypothesis and verify the impor-

tance of class-imbalance reduction. This also indicates that

only keeping diversity in the data and fairness for clients

is not enough, which was missed in the previous literature

(Balakrishnan et al., 2021; Huang et al., 2021; Yang et al.,

2020; Wang et al., 2020b; Shen et al., 2022; Wang et al.,

2021). More experimental results on larger datasets will

be provided to verify the importance of class-imbalance

reduction (Section 5).

2.2. Related Work

Some effort has been made to improve client selection for FL

in previous literature. (Cho et al., 2020; Goetz et al., 2019)

select clients with larger local loss, but this cannot guar-

antee that the final global model has a smaller global loss.

Focusing on the diversity in client selection, the authors of

(Balakrishnan et al., 2021) select clients by maximizing a

submodular facility location function defined over gradient

space. A fairness-guaranteed algorithm termed RBCS-F

was proposed in (Huang et al., 2021), which models the

fairness-guaranteed client selection as a Lyapunov optimiza-

tion problem. Although diversity and fairness are impor-

tant, the experimental results in Section 2.1 demonstrate

that they are not enough for client selection if the class-

imbalance issue is not considered. The authors in (Ribero &

Vikalo, 2020) model the progression of model weights by an

Ornstein-Uhlenbeck process and design a sampling strategy

for selecting clients with significant weight updates. How-

ever, the work only considers the identical data distribution

setting. Following the existing works (Goetz et al., 2019;

Cho et al., 2020), we only focus on the data heterogeneity

caused by non-IID data across clients. Additionally, we

included a comparison of our method with other clustered-

based client sampling algorithms in the appendix.

To the best of our knowledge, (Duan et al., 2019) and (Yang

et al., 2020) are the first two attempts to improve client

selection by reducing class-imbalance. An extra virtual

component called a mediator is introduced in Astraea of

(Duan et al., 2019), which has access to the local label

distributions of the clients. With these distributions, As-
traea will conduct client selection in a greedy way. The

method of (Yang et al., 2020) first estimates the local label

distribution of each client based on the gradient of model

parameters and adopts the same greedy way to select clients

as Astraea. Since directly knowing the exact value of local

label distributions of clients in Astraea will cause severe

concerns on privacy leakage, we consider the method in

(Yang et al., 2020) as the state-of-the-art method aiming to

improve client selection through class-imbalance reduction.

However, the solution presented by (Yang et al., 2020) has

several limitations. First, their method requires a class-

balanced auxiliary dataset that consists of all classes of

data at the server. However, that is not always available

in some large-scale FL systems since it requires the server

to collect raw data from clients, which breaches privacy.

Second, their estimations of the clients’ local label distri-

bution are not accurate as shown in Figure 2. Theorem 1

in (Yang et al., 2020) supports their estimations, but it can-

not be generalized to multi-class classification tasks since

it has only been proved in the original paper (Anand et al.,

1993) for two-class classification problems. Finally, the

performance of greedily conducting the client selection is

not guaranteed due to the nature of the greedy algorithm.

We provide an example in Figure 3 to show its weakness.

Their method will select C1 as the first client since it is

the most class-balanced one. Then C2 will be selected

because the grouped dataset of C1 ∪ C2 is the most class-

balanced among the choices C1∪C2, C1∪C3 and C1∪C4.

Similarly, it will choose C3 since the grouped dataset of

C1 ∪ C2 ∪ C3 is more class-balanced than C1 ∪ C2 ∪ C4.

Their method is deterministic and thus only one combination

{C1, C2, C3} is obtained. However, this is clearly not the

optimal solution since {C1, C3, C4} is more class-balanced

than {C1, C2, C3}. The above weaknesses motivate us to

design a more effective solution for this problem.

3. Methodology
We first propose a metric to measure class-imbalance in

Section 3.1. Then we derive the measure with privacy-

preserving techniques in Section 3.2. Based on this measure,

we then design our client sampling mechanism and show its

superiority in Section 3.3.

3.1. Class-Imbalance Measure

Assume there are B classes of data in an image classifica-

tion task, where B ≥ 2. In the k-th communication round,

we assume there are Nk available clients and we select M
clients from them. To make the presentation concise, we

ignore the index “k” and assume the set of indices for the

available clients is {1, 2, 3, ..., N} and the n-th available

client has its own training dataset Dn. We adopt the follow-

ing vector of size B to represent the local label distribution

of Dn, where α(n,b) ≥ 0 and
∑B

b=1 α(n,b) = 1,

αn =
[
α(n,1), α(n,2), ..., α(n,b), ..., α(n,B)

]
. (1)

We aim to find a subset M of {1, 2, 3, .., N} of size M ,
such that the following grouped dataset Dg

M =
⋃

n∈M
Dn is

class-balanced. Assuming the n-th client’s local dataset has
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Figure 2. The exact local label distributions and the estimated ones of the first 5 clients in the experiment of (Yang et al., 2020). Label

distribution quantifies the ratio between the number of data from 10 classes (C-1, C-2, ..., C-10) in each client’s local dataset.

(a) Greedy method (b) Our method

Figure 3. An example demonstrating the weakness of greedy method to deal with class imbalance. Supposing we work on a 6-class

classification task and aim to select 3 clients from 4 available clients C1, C2, C3, C4. Each of them has 30 images. The compositions

of their local datasets are [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 0], [0, 0, 0, 10, 10, 10] and [10, 10, 10, 0, 0, 0] respectively. The greedy method

in (Yang et al., 2020) is deterministic. It can only derive one result {C1, C2, C3} instead of the optimal solution {C1, C3, C4} (see

the text description). But our method is based on probability modeling, which directly models the distribution of the optimal solution

{C1, C3, C4}. Thus when sampling from it, the optimal solution can be returned with high probability.

qn training samples, the following vector αg
M can represent

the label distribution of the grouped dataset Dg
M,

αg
M =

∑
n∈M qnαn∑

n∈M qn
=

[∑
n∈M qnα(n,1)∑

n∈M qn
, ...,

∑
n∈M qnα(n,b)∑

n∈M qn
, ...,

∑
n∈M qnα(n,B)∑

n∈M qn

]
.

Instead of dealing with the Kullback-Leibler (KL) diver-

gence as (Duan et al., 2019; Yang et al., 2020), which is

complicated to analyze, we propose the following function

to measure the magnitude of class-imbalance of M, which

we call Quadratic Class-Imbalance Degree (QCID):

QCID(M) �
B∑

b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
− 1

B
)2.

Essentially, QCID(M) reflects the L2 distance between

the distribution of the grouped dataset Dg
M and the ideally

class-balanced dataset that has a uniform label distribution.

Although there exist several more commonly-used proba-

bilistic distances other than L2, it is easier to analyze QCID
and more efficient to calculate while keeping privacy as

shown in the next section.

3.2. Privacy-Preserving QCID Derivation

Our privacy goal is to calculate the value of QCID while

keeping clients’ local distributions {αn} hidden from the

server since it contains sensitive information. Unlike

Kullback-Leibler (KL) divergence which is difficult to an-

alyze, we can expand the expression of QCID to explore

how the pairwise relationships of the clients’ local label

distributions {αm} affects the class-imbalance degree of

M, where m ∈ M. Below we provide a theorem to show

the feasibility of our method.

Theorem 3.1. The QCID value is decided by the sum of
inner products between each two vectors αm,αm′ ∈ {αm}
with m ∈ M, i.e.,

QCID(M) =

∑
n∈M,n′∈M qnq

′
nαnα

T
n′

(
∑

n∈M qn)2
− 1

B

Theorem 3.1 reveals the fact that there is no need to know

the local label distribution of each client to calculate the

QCID, as long as we have access to the inner products

between each other. To derive the QCID for any subset

M ⊆ {1, 2, 3, .., N}, we only need to know the following

N ×N matrix S with element sn,n′ being αnα
T
n′ , which

is the inner product between the local label distributions of

the available clients n and n′.

S =

⎡⎢⎢⎢⎣
q1q1α1α

T
1 q1q2α1α

T
2 · · · q1qNα1α

T
N

q2q1α2α
T
1 q2q2α2α

T
2 · · · q2qNα2α

T
N

...
...

. . .
...

qNq1αNαT
1 qNq2αNαT

2 · · · qNqNαNαT
N

⎤⎥⎥⎥⎦
Although it is possible to calculate QCID with S, another

concern arises, can a malicious party infer the values of
{αi} from S ? Then we have another theorem to provide

privacy protection.

Theorem 3.2. One can not derive the values of {αi} from
the value of S.
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Based on these two theorems, our privacy goal can be sim-

plified as enabling the server to derive S without access

to {αi}. There are several ways to achieve our goal. One

option is to leverage the server-side trusted execution envi-

ronments (TEEs), e.g., Intel SGX (Anati et al., 2013), which

allows calculating S without leaking information of {αn}.

Another potential solution is to adopt Fully Homomorphic

Encryption (FHE) (Chen et al., 2017; Brakerski et al., 2014;

Fan & Vercauteren, 2012; Halevi & Shoup, 2014; 2015) to

enable the server to compute on encrypted data (i.e., {αi})

to derive S. We provide an example of the system skelon in

Section A.2 to illustrate how to derive S without knowing

the local label distributions {αi} using FHE. Since we focus

on efficient algorithms to reduce class-imbalance instead

of designing the fundamental infrastructure for computing

(which is beyond our scope and not a contribution of this

paper), we leave the detailed system design for future work.

3.3. A Client Sampling Mechanism

To select the most class-balanced grouped dataset Dg
M, we

need to find the optimal subset M∗ that has the lowest

QCID value, which is defined as follows:

M∗ � argmin
M⊆{1,2,3,..,N}

∑
n∈M,n′∈M qnqn′αnα

T
n′

(
∑

n∈M qn)2
− 1

B
.

The main challenge is computational complexity. To find

the exact optimal M∗, we need to loop through all the

possible cases and find the lowest QCID value. The com-

putational complexity thereafter will be O
((

N
M

)×M2
)

,

which is unacceptable when N is extremely large.

A probability approach To overcome the computational

bottleneck, instead of treating M as a determined set, we

consider it as a sequence of random variables, i.e. M =
{C1, C2, ..., Cm, ..., CM} and assign it with some probabil-

ity. Our expectation is that M should have higher proba-

bility to be sampled with if it is more class-balanced. This

means P (C1 = c1, C2 = c2, ..., Cm = cm, ..., CM = cM )
should be larger if M = {c1, c2, ..., cM} has a lower

QCID value. Our sampling strategy generates the ele-

ments in M in a sequential manner, i.e., we first sample

M1 = {c1} according to the probability of P (C1 = c1),
then sample c2 to form M2 = {c1, c2} according to the

conditional probability P (C2 = c2|C1 = c1). The same

procedure applies for the following clients until we finally

obtain M = {c1, c2, ..., cM}. In the following, we will

design proper conditional probabilities such that the joint

distribution of client selection satisfies our expectations.

Let Tn denote the number of times that client n has been

selected. Once client n has been selected in a communica-

tion round, Tn → Tn+ 1, otherwise, Tn → Tn. Inspired

by combinatorial upper confidence bounds (CUCB) algo-

rithm (Chen et al., 2013) and previous work in (Yang et al.,

2020), in the k-th communication round, the first element is

designed to be sampled with the following probability:

P (C1 = c1) ∝ 1

[QCID(M1)]β1
+ λ

√
3 ln k

2Tc1

, β1 > 0,

where λ above is the exploration factor to balance the

trade-off between exploitation and exploration. The sec-

ond term will add a higher probability to the clients that

have never been sampled before in the following commu-

nication rounds. After sampling C1, the second client is

defined to be sampled with probability

P (C2 = c2|C1 = c1) ∝
1

[QCID(M2)]β2

1
[QCID(M1)]β1

+ α
√

3 ln k
2Tc1

, β2 > 0.

For the m-th client, where 2 < m ≤ M , we define

P (Cm = cm|Cm−1 = cm−1, ..., C2 = c2, C1 = c1)

∝ [QCID(Mm−1)]
βm−1

[QCID(Mm)]βm
, βm−1, βm > 0.

With the above sampling process, the final probabil-

ity to sample M is P (C1 = c1, C2 = c1, ..., CM =
cM ) = P (C1 = c1) × P (C2 = c2|C1 = c1) · · · ×
P (CM = cM |CM−1 = cM−1, ..., C2 = c2, C1 = c1) ∝
1/[QCID(M)]βM . Since βM > 0, this matches our goal

that the M with lower QCID value should have higher

probability to be sampled with. Our mechanism, Fed-CBS,

is summarized in Algorithm 1 .

Algorithm 1 Fed-CBS

Initialization: initial local model w(0), client index sub-

set M = ∅, K communication rounds, k = 0, Tn = 1
while k < K do

// Client Selction:

for n in {1, 2, ..., N} do
if n ∈ M then

Tn → Tn + 1
else
Tn → Tn;

end if
end for
Update M using our proposed sampling strategy in

Section 3.3

// Local Updates:
for n ∈ M do
w

(k+1)
n ← Update(w(k)).

end for
// Global Aggregation:

w(k+1) ← Aggregate(w
(k+1)
n ) for n ∈ M

end while
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Details and analysis For any 1 < m < M , we have

P (C1 = c1, C2 = c1, ..., Cm = cm) ∝ 1

[QCID(Mm)]βm
.

This means when we generate the first m elements of

M, we expect the Mm should be more class-balanced

since the Mm with lower QCID value has a higher prob-

ability of being sampled. This is different from the algo-

rithm in (Yang et al., 2020), which greedily chooses the cm
from {1, 2, .., N}/Mm−1 that makes Mm the most class-

balanced one. Unlike the greedy algorithm which has no

guarantees on finding the optimal client set, our method can

generate the globally optimal set of clients in the sense of

probability. An example is provided in Figure 3 to demon-

strate that our method can overcome the pitfall of the greedy

method. After selecting the first two clients, {C1, C3} our

method is less class-balanced than {C1, C2} chosen by the

greedy method. However, after making the last choice, our

method has the chance to derive a perfectly class-balanced

set {C1, C3, C4}. In contrast, the greedy method can only

get one result {C1, C2, C3}, which is less class-balanced.

We require the distribution of P (C1 = c1, C2 =
c1, ..., Cm = cm) to be more dispersed when m is small.

This is because we expect our sampling strategy to explore

more possible cases of client composition at the begin-

ning. We require the distribution of P (C1 = c1, C2 =
c1, ..., Cm = cm) to be less dispersed when m is large.

This is because as we approach the end of our sampling

process, we expect our sampling strategy can find the Mm

that is more class-balanced. Especially when m = M , we

hope the strategy to find the client cM which can make M
the most class-balanced. Since

P (C1 = c1, C2 = c1, ..., Cm = cm) ∝ 1

[QCID(Mm)]βm

we can set 0 < β1 < β2 < ... < βM to satisfy the above

requirements.

Remark: We set a lower bound for QCID(Mm) as Lb

since QCID(Mm) = 0 in some special cases will cause
P (Cm = cm|Cm−1 = cm−1, ..., C1 = c1) → ∞. When

viewing the conditional distribution as the likelihood in

Bayesian inference, our probability can be interpreted as

an estimate of the posterior distribution. This allows us to

comprehend our algorithm through the lens of Bayesian

sampling (Welling & Teh, 2011; Liu & Wang, 2019; Zhang

et al., 2020a; 2019). In our future studies, we will further an-

alyze the connection between them. Below we present two

theorems to show the superiority of our proposed sampling

strategy.

Theorem 3.3 (Class-Imbalance Reduction). We denote the
probability of selecting M with our strategy with βM as
PβM

and the probability of selecting M with the random
selection as Prand. Our method can reduce the expectation

of QCID compared to the random selection mechanism. In
other words, we have

EM∼PβM
QCID(M) < EM∼Prand

QCID(M).

Furthermore, if increasing the value βM , the expectation of
QCID can be further reduced, i.e., for β′

M > βM , we have

EM∼Pβ′
M

QCID(M) < EM∼PβM
QCID(M).

Theorem 3.4 (Computation Complexity Reduction). The
computation complexity of our method is O (

N ×M2
)
,

which is much smaller than the exhaustive search of
O
((

N
M

)×M2
)

.

Theorem 3.4 shows that the computation complexity of our

method is independent of the number of classes. Since the

dimension of neural networks is typically much larger than

the class distribution vector αn, the additional communica-

tion cost is almost negligible. Besides, we also prove the

NP-hardness of the problem formally in Section B.3 in the

appendix.

4. Convergence Analysis
To analyze the convergence of our method, we first define

our objective functions and adopt some general assumptions.

Our global objective function F̃ > 0 can be decomposed

as F̃ = 1
B

∑B
b=1 F̃b, where F̃b is the averaged loss function

with respect to all the data of the b-th class in the global

dataset. Similarly, the n-th client’s local objective function

Fn can be decomposed as Fn =
∑B

b=1 α(n,b)Fn,b, where

Fn,b is the averaged loss function with respect to all the data

of the b-th class in the n-th client’s local dataset, and α(n,b)

is defined in Equation 1. Moreover, let w(k) denote the

global model parameters at the k-th communication round

and w(0) denote the initial global model parameters. If not

stated explicitly, ∇ denotes ∇w throughout the paper.

Assumption 4.1 (Smoothness). The global objective func-

tion F̃ and each client’s averaged loss function Fn,b are Lip-

schitz smooth, i.e.
∥∥∥∇F̃ (w)−∇F̃ (w′)

∥∥∥ ≤ LF̃ ‖w−w′‖ and

‖∇Fn,b(w)−∇Fn,b(w
′)‖ ≤ Ln,b‖w −w′‖, ∀n, b,w,w′.

Assumption 4.2 (Unbiased Gradient and Bounded

Variance). The stochastic gradient gn at each client

is an unbiased estimator of the local gradient:

Eξ [gn(w | ξ)] = ∇Fn(w), with bounded variance

Eξ

[
‖gn(w | ξ)−∇Fn(w)‖2

]
≤ σ2, ∀w, where σ2 ≥ 0.

Assumption 4.3 (Bounded Dissimilarity). There ex-

ist two non-negative constants δ ≥ 1, γ2 ≥ 0 such that∑B
b=1

1
B

∥∥∥∇F̃b(w)
∥∥∥2 ≤ δ

∥∥∥∑B
b=1

1
B∇F̃b(w)

∥∥∥2 + γ2, ∀w.

Assumption 4.4 (Class-wise Similarity). For each class b,
the discrepancy between the gradient of global averaged

6
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all rand pow-d Fed-cucb Fed-CBS

Communication Rounds

α=0.1 757±155 951±202 1147±130 861±328 654±96
α=0.2 746±95 762±105 741±111 803±220 475±110
α=0.5 426±67 537±115 579±140 1080±309 384±74

E[QCID](10−2)
α=0.1 1.01±0.01 8.20±0.21 12.36±0.26 7.09±2.27 0.62±0.20
α=0.2 0.93±0.03 7.54±0.27 10.6±0.48 5.93±1.01 0.51±0.12
α=0.5 0.72±0.03 5.87±0.24 7.36±0.57 6.47±0.77 0.36±0.04

Table 1. The communication rounds required for targeted test accuracy and the averaged QCID values. The targeted test accuracy is 45%
for α = 0.1, 47% for α = 0.2 and 50% for α = 0.5. The results are the mean and the standard deviation over 4 different random seeds.

Figure 4. Test accuracy on Cifar-10 under three heterogeneous settings.

loss function and the local one is bounded by some con-

stant in l2 norm. That means, for every n and b, we have∥∥∥∇F̃b(w)−∇Fn,b(w)
∥∥∥2 ≤ κ2

n,b, ∀w.

Assumptions 4.1, 4.2 and 4.3 have been widely adopted in

previous literature on the theoretical analysis of FL (Li et al.,

2019; Cho et al., 2020; Wang et al., 2020a). Assumption

4.4 is based on the similarity among the data from the same

class. Similar to the standard setting (Wang et al., 2020a),

the convergence of our algorithm is measured by the norm

of the gradients, stated in Theorem 4.5.

Theorem 4.5. Under Assumptions 4.1 to 4.4, if the to-
tal communication rounds K is pre-determined and the
learning rate is set as η = s

10L
√

τ(τ−1)K
, where s < 1,

L = max{n,b} Ln,b and τ is the number of local update
iterations, the minimal gradient norm of F̃ is bounded as:

min
k≤K

∥∥∥∇F̃
(
w(k)

)∥∥∥2 ≤ 1

V
[
σ2s2

25τK
+

sLF̃σ
2

10L
√
τ(τ − 1)K

+ 5κ2 +
10L

√
τ(τ − 1)F̃

(
w(0)

)
s
√
K

+ γ2
E[QCID]],

where V = 1
3 − δBE[QCID] and κ = max{n,b} κn,b.

If the class-imbalance in client selection is reduced,

E[QCID] will decrease. Consequently, 1
V and

E[QCID]
V

will also decrease, making the convergence bound on the

right side tighter2. Therefore, Theorem 4.5 not only pro-

vides a convergence guarantee for Fed-CBS, but also proves

2Theorem 4.5 requires the βM in our method to be large enough
to make E[QCID] < 1

3δB
according to Theorem 3.3. How to

the class-imbalance reduction in client selection could bene-

fit FL, i.e., more class-balance leads to faster convergence.

5. Experiments
We conduct thorough experiments on three public bench-

mark datasets, CIFAR-10 (Krizhevsky et al.), Fashion-

MNIST (Xiao et al., 2017) and FEMNIST in the Leaf

Benchmark (Caldas et al., 2018). In all the experiments,

we simulate cross-device federated learning (CDFL), where

the system runs with a large number of clients with only

a fraction of them available in each communication round,

and we make client selections on those available clients.

The results show that our method can achieve faster and

more stable convergence compared with four baselines: ran-

dom selection (rand), Power-of-choice Selection Strategy

(pow-d) (Cho et al., 2020), the method in Yang et al. (2020)

(Fed-cucb), and the ideal setting where we select all the

available clients (all). To compare them efficiently in the

main text, we present the results from Cifar-10 where the

whole dataset is divided to 200 (or 120) clients, since we

need to engage all the clients for the ideal setting. To sim-

ulate more realistic settings where there are thousands of

clients, we conduct our method on FEMNIST in the Leaf

Benchmark with more then 3000 clients. Due to the space

limit, we move the results of FEMNIST, Fashion-MNIST,

and the ablation studies to Section C.5 & D in the Ap-

pendix. For Fashion-MNIST, we adopt FedNova (Wang

explicitly derive a lower bound for βM is also very interesting and
we leave it as a theoretical future work.

7



Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated Learning via Class-Imbalance Reduction

et al., 2020a) to show that our method can be organically

integrated with existing orthogonal works which aim at im-

proving FL.

Experiment Setup We target cross-device settings where

the devices are resource-constrained, i.e., most of the de-

vices do not have sufficient computational power and mem-

ory to support the training of large models. Therefore, we

adopt a compact model with two convolutional layers fol-

lowed by three fully-connected layers and FedAvg (McMa-

han et al., 2017b) as the FL optimizer. The batch size is 50
for each client. In each communication round, all of them

conduct the same number of local updates, which allows

the client with the largest local dataset to conduct 5 local

training epochs. In our method, we set the βm = m, γ = 10
and Lb = 10−20. The local optimizer is SGD with a weight

decay of 0.0005. The learning rate is 0.01 initially and the

decay factor is 0.9992. We terminate the FL training after

3000 communication rounds and then evaluate the model’s

performance on the test dataset of CIFAR-10. More details

of the experiment setup are listed in Section C.2.

5.1. Results for Class-Balanced Global Datasets

In this experiment, we set 200 clients in total with a class-

balanced global dataset. The non-IID data partition among

clients is based on a Dirichlet distribution parameterized by

the concentration parameter α in Hsu et al. (2019). Roughly

speaking, as α decreases, the data distribution will become

more non-iid. In each communication round, we uniformly

and randomly set 30% of them (i.e., 60 clients) available and

select 10 clients from those 60 available ones to participate

in the training.

As shown in Table 4, our method can achieve the lowest

QCID value compared with other client selection strategies.

As a benefit of successfully reducing the class-imbalance,

our method outperforms the other three baseline methods

and achieves comparable performance to the ideal setting

where all the available clients are engaged in training. As

shown in Table 4 and Figure 4, our method can achieve faster

and more stable convergence. The enhancement in stability

can also be perceived as a reduction in gradient variance, a

concept that has been explored in previous studies (Johnson

& Zhang, 2013; Zhang et al., 2020b; Defazio et al., 2014;

Zhao et al., 2018; Chatterji et al., 2018). It is also worth

noting that due to the inaccurate distribution estimation and

the limitations of the greedy method discussed in Section

2.2, the performance of Fed-cucb is much worse than ours.

5.2. Results for Class-Imbalanced Global Datasets

In real-world settings, the global dataset of all the clients

is not always class-balanced. Hence, we investigate two

different cases to show the superiority of our method and

provide more details of their settings in Section C.3. To sim-

plify the construction of a class-imbalanced global dataset,

each client only has one class of data with the same quantity.

We report the best test accuracy in Table 2 and present the

corresponding QCID values in Section C.4.

5.2.1. CASE 1: UNIFORM AVAILABILITY

Settings. There are 120 clients in total, and the global

dataset of these 120 clients is class-imbalanced. To measure

the degree of class imbalance, we let the global dataset have

the same amount of n1 data samples for five classes and the

same amount of n2 data samples for the other five classes.

The ratio r between n1 and n2 is respectively set to 3 : 1
and 5 : 1. In each communication round, we uniformly set

30% of them (i.e., 36 clients) available with replacement

and select 10 clients to participate in the training.

As shown in Table 2 and Figure 5, our method can achieve

faster and more stable convergence, and it even achieves

slightly better performance than the ideal setting where all

the available clients are engaged. The performance of Fed-

cucb (Yang et al., 2020) is better than the results on the

class-balanced global dataset, which is partly due to the

simplicity of each client’s local dataset composition in our

experiments. The third line in Figure 2 indicates Fed-cucb

can accurately estimate this simple type of label distribution.

Figure 5. Test accuracy on Cifar-10 with class-imbalanced global

dataset in Case 1.

5.2.2. CASE 2: NON-UNIFORM AVAILABILITY

Settings. There are 200 clients in total. In each communica-

tion round, 30% of them (i.e., 60 clients) are set available

uniformly in each training round with replacement. By non-

uniformly setting the availability, the global dataset of those

60 available clients is always class-imbalanced. To measure

the degree of class imbalance, we make the global dataset

have the same amount of n1 data samples for the five classes

and have the same amount of n2 data samples for the other

five classes. The ratio r between n1 and n2 is set to 3 : 1
and 5 : 1. We select 10 clients to participate in the training.

As shown in Table 2 and Figure 5, our method consistently

achieves higher test accuracy and more stable convergence,

and it also outperforms the ideal setting where all the avail-

able clients are engaged. Since the global dataset of the

available 60 clients in each communication round is always

class-imbalanced, engaging all of them is not the optimal

selection strategy in terms of test accuracy.
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all rand pow-d Fed-cucb Fed-CBS

Case 1
3:1 55.17±0.94 50.99±0.97 53.51±0.34 55.11±0.26 56.86±0.34
5:1 50.93±1.64 47.36±2.34 52.73±1.85 53.75±0.58 54.94±0.73

Case 2
3:1 54.01±0.60 50.81±2.03 53.98±1.87 54.48±1.31 57.71±0.50
5:1 50.42±1.27 48.33±3.03 53.54±1.18 53.38±1.48 57.99±0.46

Table 2. Best test accuracy for our method and other four baselines.

Figure 6. Test accuracy on Cifar-10 with class-imbalanced global

dataset in Case 2.

6. Conclusion
We unveil the essential reason for performance degradation

on non-IID data with random client selection strategy in

FL training, i.e., the class-imbalance. Motivated by this

insight, we propose an efficient heterogeneity-aware client

sampling mechanism, Fed-CBS. Extensive experiments val-

idate that Fed-CBS significantly outperforms the status quo

approaches and yields comparable or even better perfor-

mance than the ideal setting where all the available clients

participate in the training. We also provide the theoretical

convergence guarantee of Fed-CBS. Our mechanism has

numerous potential applications, including medical classi-

fication tasks. In addition, since Fed-CBS is orthogonal to

most existing work to improve FL on non-IID data, it can

be integrated with them to further improve the performance.
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A. Privacy Protection in the framework
A.1. Proof of Theorem 3.2

Proof. By the definitions of {αi}, we define the following matrix Aα

Aα �

⎡⎢⎢⎢⎢⎣
q1α1

...
qnαn

...
qNαN

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
q1α(1,1) q1α(1,2) ... q1α(1,b) ... q1α(1,B)

...
qnα(n,1) qnα(n,2) ... qnα(n,b) ... qnα(n,B)

...
qNα(N,1) qNα(N,2) ... qNα(N,b) ... qNα(N,B)

⎤⎥⎥⎥⎥⎦
By the definitions of S, we have

S = Aα ·Aᵀ
α (2)

To derive the exact values of {αi} based on S, we need to solve the problem 2. However, given S, the Aα which satisfies

S = Aα ·Aᵀ
α is not unique. If Āα is a solution to the problem 2, then for any orthogonal matrix Q i.e. Q ·Qᵀ = I where

the I is the identity matrix, the new matrix Āα ·Q is also solution to the problem 2. This is because

Āα ·Q · (Āα ·Q)ᵀ = Āα ·Q ·Qᵀ · Āᵀ
α = Āα · Āᵀ

α = S

Hence, the Aα which satisfies S = Aα ·Aᵀ
α is not unique and we finish our proof.

To understand the Theorem 3.2, we provide the following example. We can conduct the following permutation on the

columns of Aα (i.e. moving the first column to the place before the last column), we can derive a new matrix Āα.

Āα �

⎡⎢⎢⎢⎢⎣
q1α(1,2) ... q1α(1,b) ... q1α(1,1) q1α(1,B)

...
qnα(n,2) ... qnα(n,b) ... qnα(n,1) qnα(n,B)

...
qNα(N,2) ... qNα(N,b) ... qNα(N,1) qNα(N,B)

⎤⎥⎥⎥⎥⎦
We can find that Āα also satisfies S = Āα · Āᵀ

α. Actually, there are also many other permutations that can derive the

solutions to the problem 2. Hence, in our framework shown in 7, the selector can not estimate the exact label distribution of

the clients.

A.2. An Example of Deriving S Using FHE

FHE (Brakerski et al., 2014; Fan & Vercauteren, 2012; Halevi & Shoup, 2015) enables an untrusted party to perform

computation (addition and multiplication) on encrypted data. In Figure 7, we provide a framework as an example to show

it is possible to derive S without knowing the values of local label distributions {αi} using FHE. Our framework can be

realized using off-the-shelf FHE libraries such as (Chen et al., 2017).

There is a selector in our example. It is usually from a third party and keeps a unique private key, denoted by K−1
1 . The

corresponding public key is denoted by K1. In the confidential transmission between server and clients, each client first uses

K1 to encrypt their label distribution vector αk as K1(αk), and transmits it to the server. Since only the server has access to

K1(αk), no one else including the selector can decrypt it and get αk. When the server gets all K1(αk), it will conduct FHE

computation to get the matrix K1(S) = K1({αT
i αj}ij) = {K1(αi)

TK1(αj)}ij . Then the server transmits the K1(S) to

selector, and selector uses K−1
1 to access the final result S. Since only the selector has K−1

1 , only it knows S. After that, the

selector will conduct client selection following some strategy to derive the result M and transmit it back to the server. At

last, the server will collect the model parameters of the clients in M and conduct FL aggregation. In the whole process, the

server, selector or any other clients except client n can not get αn. Furthermore, all clients and servers have no access to the

inner product results S, which prevents malicious clients or servers from inferring the label distributions of the other clients.

12
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Σ
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Selection

FLL Aggregation

ΛΈ(Σ)Inner
Product

Figure 7. An example of FHE to securely transmit S.

The server, selector or any other clients except client n can not get αn, which protects the privacy of the clients. Furthermore,

only the clients have no access to the inner product results S, which prevents malicious clients or servers from inferring the

label distributions of the other clients. We also prove that it is impossible even for the selector to derive {αi} from S with

theorem 3.2.

B. Proof of Theorem 3.1, 3.3, 3.4 and 4.5
B.1. Proof of Theorem 3.1

Proof.

QCID(M) =

B∑
b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
− 1

B
)2

=

B∑
b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
)2 − 2 ∗ 1∑

n∈M qn
∗ 1

B
∗
∑
n∈M

qn +B ∗ 1

B2

=

B∑
b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
)2 − 1

B

=
1

(
∑

n∈M qn)2

∑
n∈M,n′∈M

qnq
′
n(

B∑
b=1

α(n,b)α(n′,b))− 1

B

=
1

(
∑

n∈M qn)2

∑
n∈M,n′∈M

qnq
′
nαnα

T
n′ − 1

B

13
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B.2. Proof of Theorem 3.3

Proof. To select M clients from N available clients, there are
(
N
M

)
different choices to construct M, denoted by

M(1),M(2), ...,M(
(
N
M

)
), respectively. Let xi � QCID(M(i)) and N̄ � (

(
N
M

)
). Then we have

EM∼PβM
QCID(M) = x1

1

x
βM
1

1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

+ x2

1

x
βM
2

1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

+ ...+ xN̄

1

x
βM
N̄

1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

And EM∼Prand
QCID(M) =

1

N̄
(x1 + x2 + ...+ xN̄ )

Without loss of generality, we assume x1 ≤ x2 ≤ ... ≤ xN̄ and define the following yi for the notation simplicity:

yi =

⎧⎨⎩
1

x
βM
i

if 0 ≤ i ≤ N̄

1

x
βM
i−N̄

if N̄ < i ≤ 2N̄ − 1
(3)

Now we calculate the following ratio:

EM∼PβM
QCID(M)

EM∼Prand
QCID(M)

=

N̄(x1
1

x
βM
1

+ x2
1

x
βM
2

+ ...+ xN̄
1

x
βM
N̄

)

(x1 + x2 + ...+ xN̄ )( 1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

)

=

∑N̄
j=1(

∑N̄
i=1 xi

1

x
βM
i

)∑N̄
j=1(

∑N̄
i=1 xiyj+i−1)

Since we assume that x1 ≤ x2 ≤ ... ≤ xN̄ , we have 1

x
βM
1

≥ 1

x
βM
2

≥ ... ≥ 1

x
βM
N̄

. Besides, it is easy to find xi and xi′

satisfying xi �= xi′ . Then for each 1 ≤ j ≤ N̄ , according to the rearrangement inequality, we have

N̄∑
i=1

xi
1

xβM

i

<

N̄∑
i=1

xiyj+i−1 ⇒
N̄∑
j=1

N̄∑
i=1

xi
1

xβM

i

<

N̄∑
j=1

N̄∑
i=1

xiyj+i−1 ⇒

EM∼PβM
QCID(M)

EM∼Prand
QCID(M)

< 1 ⇒ EM∼PβM
QCID(M) < EM∼Prand

QCID(M)

Similarly, for β′
M such that β′

M ≥ βM , denote β′
M = βM +Δβ. We have

EM∼Pβ′
M
QCID(M) =

x1

1

x
β′
M

1

1

x
β′
M

1

+ 1

x
β′
M

2

+ ...+ 1

x
β′
M

N̄

+ x2

1

x
β′
M

2

1

x
β′
M

1

+ 1

x
β′
M

2

+ ...+ 1

x
β′
M

N̄

+ ...+ xN̄

1

x
β′
M

N̄

1

x
β′
M

1

+ 1

x
β′
M

2

+ ...+ 1

x
β′
M

N̄

=

x1
1

x
βM+Δβ
1

1

x
βM+Δβ
1

+ 1

x
βM+Δβ
2

+ ...+ 1

x
βM+Δβ

N̄

+

x2
1

x
βM+Δβ
2

1

x
βM+Δβ
1

+ 1

x
βM+Δβ
2

+ ...+ 1

x
βM+Δβ

N̄

+ ...+

xN̄
1

x
βM+Δβ

N̄

1

x
βM+Δβ
1

+ 1

x
βM+Δβ
2

+ ...+ 1

x
βM+Δβ

N̄
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Now we calculate the following ratio:

EM∼Pβ′
M

QCID(M)

EM∼PβM
QCID(M)

=

(
x1

x
βM+Δβ

1

+ x2

x
βM+Δβ

2

+ ...+ xN

x
βM+Δβ

N

)(
1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

)
(

1

x
βM+Δβ

1

+ 1

x
βM+Δβ

2

+ ...+ 1

x
βM+Δβ

N̄

)(
x1

x
βM
1

+ x2

x
βM
2

+ ...+ xN̄

x
βM
N̄

)

=

∑
1≤i≤j≤N

1

x
βM
i x

βM
j

(
xi

xΔβ
i

+
xj

xΔβ
j

)
∑

1≤i≤j≤N
1

x
βM
i x

βM
j

(
xi

xΔβ
j

+
xj

xΔβ
i

)

Since we assume that x1 ≤ x2 ≤ ... ≤ xN̄ , we have 1

xΔβ
1

≥ 1

xΔβ
2

≥ ... ≥ 1

xΔβ

N̄

. Then for each 1 ≤ i ≤ j ≤ N , according to

the rearrangement inequality, we have

xi

xΔβ
i

+
xj

xΔβ
j

≤ xi

xΔβ
j

+
xj

xΔβ
i

Furthermore, among all the (xi, xj) pairs, it is easy to find one (xi, xi′) such that it satisfies xi �= xi′ . Thus we have

xi

xΔβ
i

+
xi′

xΔβ
i′

<
xi

xΔβ
i′

+
xi′

xΔβ
i

Consequently, we have

∑
1≤i≤j≤N

1

xβM

i xβM

j

(
xi

xΔβ
i

+
xj

xΔβ
j

)
<

∑
1≤i≤j≤N

1

xβM

i xβM

j

(
xi

xΔβ
j

+
xj

xΔβ
i

)
⇒

EM∼Pβ′
M

QCID(M)

EM∼PβM
QCID(M)

< 1 ⇒ EM∼Pβ′
M

QCID(M) < EM∼PβM
QCID(M)

B.3. Proof of NP-hardness

We provide the following proof to prove the NP-hardness. First, we need to clarify the definitions of the following three

problems.

Problem 1: We need to select M clients among N clients such that the grouped dataset of these M clients is class-balanced.

There are B (B 2) classes in total. Our goal is to prove the NP-hardness of Problem 1.

Problem 2: We need to select N clients among 2 N clients such that the group dataset of these N clients is class-balanced.

There are 2 classes in total. We denote the distribution of the local dataset of the n-th client as [xn, yn], where xn and yn are

non-negative integers.

Problem 2 is a particular case of Problem 1. If we can prove the NP-hardness of Problem 2, then Problem 1 is also NP-hard.

Problem 3 (Partition problem): Deciding whether a given multiset S of K positive integers can be partitioned into two

subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of the numbers in S1. We denote the S as

{s1, s2, . . . , sK}
It is well-known that the Partition problem is an NP-complete problem. Hence the overall idea of our proof is to reduce

Problem 2 to Problem 3. Then we can show that Problem 2 is NP-hard.

Proof. Case 1: We first consider the case where K is an even number, where K = 2N . We denote the sum of all the

elements in S as W , where W = s1 + s2 + . . .+ sK . We define a new positive value P as

P = min{ |2W −Ks1| , |2W −Ks2| , . . . , |2W −KsK |}+ 1
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Now, we define the following non-negative xn and yn, where 1 ≤ n ≤ K

x1 = Ks1 + P, y1 = 2W −Ks1 + P
x2 = Ks2 + P, y2 = 2W −Ks2 + P

xK = KsK + P, yK = 2W −KsK + P

Now we can consider the [x1, y1] , [x2, y2] , . . . , [xK , yK ] as the class distributions defined in Problem 2 . If Problem 2 is

not NP-hard, we can find N = K
2 clients among the above K clients such that the grouped dataset is class-balanced within

polynomial time complexity. We denote those N clients’ distribution as [x̄1, ȳ1] , [x̄2, ȳ2] , . . . , [x̄K , ȳN ]. Then we denote

the corresponding elements in S as s̄1, s̄2, . . . , s̄N . Since it is class-balanced solution, we have

x̄1 + x̄2 + . . .+ x̄N = ȳ1 + ȳ2 + . . .+ ȳN

By summarizing all the x̄n and ȳn. we can derive that (x̄1 + ȳ1) + (x̄2 + ȳ2) + . . .+ (x̄N + ȳN ) = N(2W + 2P ). Then

we have x̄1 + x̄2 + . . .+ x̄N = N(W + P ) According to the definition of x̄1, x̄2, . . . , x̄N , we have

(Ks̄1 + P ) + (Ks̄2 + P ) + . . .+ (Ks̄N + P ) = N(W + P )

Since K = 2N we have s̄1 + s̄2 + . . .+ s̄N = W
2 . This means we can solve the Partition problem within polynomial time

complexity when K is an even number. Case 2: If K is an odd number, where K = 2N − 1, we can just add an auxiliary

element s′ = 0 to the original S and derive a new set St = S ∪ {s′}. If Problem 2 is not NP-hard, we can follow the same

process as in Case 1 to solve the Partition problem within polynomial time complexity when K is an odd number.

We know these solutions to Case 2& Case 1 conflict with the fact that the Partition problem is NP-hard. Hence, Problem 2 is

NP-hard. Then Problem 1 is NP-hard, and we finish our proof.

B.4. Proof of Theorem 3.4

Proof. According to (Schneider & Barker, 1989), we first define the principle submatrix, which is a submatrix where the set

of remaining row indices is the same as the remaining set of column indices .

Before selecting the first client, we need to calculate the following value for all clients c1 ∈ {1, 2, 3, ..., N},

P (C1 = c1) ∝ 1

[QCID(M1)]β1
+ λ

√
3 ln k

2Tc1

, β1 > 0.

To derive the QCID(M1) for each c1 ∈ {1, 2, 3, ..., N}, according to Theorem 3.1, we need to find the principle submatrix

of S, denoted by S1, in which the set of column indices is M1. Then we need to calculate the sum of all the elements in S1.

Since there are N different values for c1 and the dimension of S1 is 1× 1, we need to conduct the computation for N times.

After selecting M1 = {c1}, we need to select c2 ∈ {1, 2, 3, ..., N}/M1 to form M2 = M1

⋃{c2}.

Before selecting the second client, we need to calculate the following value for all the M2 = {c1, c2} where c2 ∈
{1, 2, 3, ..., N}/M1,

P (C2 = c2|C1 = c1) ∝
1

[QCID(M2)]β2

1
[QCID(M1)]β1

+ α
√

3 ln k
2Tc1

To derive the QCID(M2) for each c2 ∈ {1, 2, 3, ..., N}/{M1}, according to Theorem 3.1, we need to find the principle

submatrix of S, denoted by S2, in which the set of column indices is M2. Then we need to calculate the sum of all the

elements in S2. Since there are N − 1 different values for c2, there will be N − 1 different S2. Also, because we have

already calculate the sum of all the elements in S1, which is a submatrix of S2, in our first step, we now only need to sum

over all the other elements in S2. Since the dimension of S2 is 2× 2, we need to do the computation for (N − 1)× (22 − 1)
times.
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This procedure goes on. After selecting Mm−1 = {c1, c2, ..., cm−1}, where 3 ≤ m ≤ M , we need to select cm ∈
{1, 2, 3, ..., N}/Mm to form Mm = Mm−1

⋃{cm}. Before selecting the m-th client, we need to calculate the following

value for all the Mm = {c1, c2, ..., cm} where cm ∈ {1, 2, 3, ..., N}/Mm−1,

P (Cm = cm|Cm−1 = cm−1, ..., C2 = c2, C1 = c1) ∝ [QCID(Mm−1)]
βm−1

[QCID(Mm)]βm

To derive the QCID(Mm) for each cm ∈ {1, 2, 3, ..., N}/{Mm−1}, according to Theorem 3.1, we need to find the

principle submatrix of S, denoted by Sm, in which the set of column indices is Mm. Then we need to calculate the sum of

all the elements in Sm. Since there are N − (m− 1) different values for cm, there will be N − (m− 1) different Sm. Since

we have already calculate the sum of all the elements in Sm−1, which is a submatrix of Sm, in our previous step, now we

only need to sum all the other elements in Sm. Since the dimension of Sm is m×m, we need to conduct the computation

for (N − (m− 1))× (m2 − (m− 1)2) times.

In summary, in our strategy, the total times of computations we need to conduct are

N + (N − 1)× (22 − 1) + ...+ (N − (m− 1))× (m2 − (m− 1)2) + ...+ (N −M)× (M2 − (M − 1)2)

≤ N +N × (22 − 1) + ...+N × (m2 − (m− 1)2) + ...+N × (M2 − (M − 1)2)

= N ×M2 ,

which finishes the proof that the computation complexity for our method is O (
N ×M2

)
.

B.5. Proof of Theorem 4.5

Proof. Suppose there are N available clients and their indices are denoted by {1, 2, 3, .., N}. Our goal is to get a subset M
of {1, 2, 3, .., N} following the probability law S of some client selection strategy. Let w

(k,t)
n denote the model parameter

of client n after t local updates in the k-th communication round and w(k,0) denote the global model parameter at the

beginning of the k-th communication round. According to the proof of Theorem 1 in (Wang et al., 2020a), we can define the

following auxiliary variables for the setting where we adopt FedAvg as the FL optimizer and all the client conduct τ local

updates in each communication round k:

Normalized Stochastic Gradient: d
(k)
n = 1

τ

∑τ−1
k=0 gn

(
w

(k,t)
n

)
,

Normalized Gradient: h
(k)
n = 1

τ

∑τ−1
k=0 ∇Fn

(
w

(k,t)
n

)
.

Normalized Class-wise Gradient: h
(k)
(n,b) =

1
τ

∑τ−1
k=0 ∇F(n,b)

(
w

(k,t)
n

)
.

It is easy to verify that h
(k)
n =

∑B
b=1 α(n,b)h

(k)
(n,b).

According to the proof of Theorem 1 in (Wang et al., 2020a), one can show that E
[
d
(k)
n − h

(k)
n

]
= 0. Besides, since clients

are independent to each other, we have E
〈
d
(k)
n − h

(k)
n ,d

(k)
n′ − h

(k)
n′

〉
= 0, ∀n �= n′. Recall that the update rule of the global

model can be written as follows:

w(k+1,0) −w(k,0) = −η

∑
n∈M qnd

(k)
n∑

n∈M qn
,

where η is the learning rate. According to the Lipschitz-smooth assumption for the global objective function F̃ (Asssumption

4.1), it follows that

E

[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− η E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnd

(k)
n∑

n∈M qn

〉]
︸ ︷︷ ︸

T1

+
η2LF̃

2
E

⎡⎣∥∥∥∥∥
∑

n∈M qnd
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦

︸ ︷︷ ︸
T2

(4)
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where the expectation is taken over randomly selected indices set M as well as mini-batches ξ
(k,t)
i , ∀n ∈ {1, 2, . . . ,m}, t ∈

{0, 1, . . . , τ − 1}
Similar to the proof in (Wang et al., 2020a), to bound the T1 in (4), we should notice that

T1 = E

⎡⎣〈∇F̃
(
w(k,0)

)
,

∑
n∈M qn

(
d
(k)
n − h

(k)
n

)
∑

n∈M qn

〉⎤⎦+ E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnh

(k)
n∑

n∈M qn

〉]

= E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnh

(k)
n∑

n∈M qn

〉]

=
1

2

∥∥∥∇F̃
(
w(k,0)

)∥∥∥2 + 1

2
E

⎡⎣∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦− 1

2
E

⎡⎣∥∥∥∥∥∇F̃
(
w(k,0)

)
−
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦ (5)

where the last equation uses the fact: 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

T2 is similar as the one in (Wang et al., 2020a). According to the proof in Section C.3 of (Wang et al., 2020a) , we have the

following bound for T2,

T2 ≤2σ2
E

∑
n∈M q2n

(
∑

n∈M qn)2
+ 2E

⎡⎣∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦

≤2σ2 + 2E

⎡⎣∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦ (6)

Plugging (5) and (6) back into (4), we have

E

[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− η E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnd

(k)
n∑

n∈M qn

〉]
︸ ︷︷ ︸

T1

+
η2LF̃

2
E

⎡⎣∥∥∥∥∥
∑

n∈M qnd
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦

︸ ︷︷ ︸
T2

≤− 1

2
η
∥∥∥∇F̃

(
w(k,0)

)∥∥∥2 − 1

2
ηE

⎡⎣∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦+

1

2
ηE

⎡⎣∥∥∥∥∥∇F̃
(
w(k,0)

)
−
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦

+η2LF̃σ
2 + η2LF̃E

⎡⎣∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦ (7)

If we set η ≤ 1
2L , we have

E

[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− 1

2
η
∥∥∥∇F̃

(
w(k,0)

)∥∥∥2 + 1

2
ηE

⎡⎣∥∥∥∥∥∇F̃
(
w(k,0)

)
−
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
⎤⎦+ η2LF̃σ

2. (8)
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Now we focus on the E

[∥∥∥∥∇F̃
(
w(k,0)

)− ∑
n∈M qnh

(k)
n∑

n∈M qn

∥∥∥∥2
]

in the following:

E

∥∥∥∥∥∇F̃
(
w(k,0)

)
−
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

B

B∑
b=1

∇F̃b

(
w(k,0)

)
−
∑

n∈M qn

(∑B
b=1 α(n,b)h

(k)
(n,b)

)
∑

n∈M qn

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

B

B∑
b=1
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For T3, according to the Cauchy-Schwarz inequality and Assumption 4.3, we have
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For T4, we have
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where where κ = max{n,b}κ{n,b}. According to the results from the proof in C.5 in (Wang et al., 2020a), we have

E

∥∥∥∇F(n,b)

(
w(k,0)

)
− h

(k)
(n,b)

∥∥∥2 ≤ L2
n,b

τ

τ−1∑
k=0

E

[∥∥∥w(k,0) −w(k,t)
n

∥∥∥2]

≤ L2

τ

τ−1∑
k=0

E

[∥∥∥w(k,0) −w(k,t)
n

∥∥∥2]

≤ 2η2L2σ2

1−D
(τ − 1) +

D

1−D
E

[∥∥∥∇Fi

(
w(k,0)

)∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

2D

1−D

∥∥∥∇F̃
(
w(k,0)

)∥∥∥2 + 2D

1−D
E

[∥∥∥∇Fi

(
w(k,0)

)
−∇F̃

(
w(k,0)

)∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

2D

1−D

∥∥∥∇F̃
(
w(k,0)

)∥∥∥2 + 2D

1−D
E

[∥∥∥∇Fi

(
w(k,0)

)
−∇F̃

(
w(k,0)

)∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

2D

1−D

∥∥∥∇F̃
(
w(k,0)

)∥∥∥2 + 1

B

2D

1−D
κ2 (13)

where L = max{n,b}Ln,b and D = 4η2L2τ(τ − 1).

Combining the results in (8), (9), (10), (12) and (13), it is easy to derive that
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Now we have
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Taking the total expectation and averaging over all rounds, one can obtain
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Finally, we have
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If setting η = s

10L
√
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with s < 1, we have
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Since F̃ is larger than 0, Fmin > 0. Now we let w(k) denote the global model parameter at the k-th communication round

and w(0) denote the initial parameter. After changing the notations, we can finish our proof by the following:
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C. Supplemental Experiment Settings and Results
C.1. The Experimental Settings in Section 2.1

We adopt an MLP model with one hidden layer of 64 units and FedAvg (McMahan et al., 2017b) as the FL optimizer. In

Figure 1a, we allocate the MNIST data to N = 100 clients with each client only accessing to the same amount of data from

one class. In Figure 1b, each client is associated with the same amount of data from two classes. In Figure 1c and 1d, we

first allocate the whole MNIST dataset to N = 200 clients and pick 100 to construct a class-imbalanced global dataset. The

global dataset with the 100 clients has the same amount of n1 data samples for five classes and has the same amount of n2

data samples for the other five classes. The ration r between n1 and n2 is set to 3 : 1.

In each training round (communication round), all of the clients conduct 5 local training epochs. The batch size is 50 for

each client. The local optimizer is SGD with a weight decay of 0.0005. The learning rate is 0.01 initially and the decay

factor is 0.9992. We terminate the FL training after 200 training rounds (communication rounds) and then evaluate the

model’s performance on the test dataset of MNIST.

C.2. Additional Experimental Settings in Section 5

The model we adopt has two convolutional layers with the number of kernels being 6 and 16, respectively. And all

convolution kernels are of size 5 × 5. The outputs of convolutional layers are fed into two hidden layers with 120 and 84

units.

In our implementation of Power-of-choice selection strategy (pow-d)(Cho et al., 2020), we first sample a candidate set A of

20 clients without replacement such that client n is chosen with probability proportional to the size of their local dataset qn.

Then the server sends the current global model to the clients in set A, and these clients compute and send back to the server

their local loss. To derive M, we select M clients who have the highest loss from A.

In our implementation of the method in (Yang et al., 2020) (Fed-cucb), the exploration factor to balance the trade-off

between exploitation and exploration is set as 0.2 and the forgetting factor as 0.99, which is the same as the settings in (Yang

et al., 2020).

With the help of FHE, we can derive the matrix of inner products S accurately. Hence, in the simulation of our method,

Fed-CBS, we ignore the process of deriving S and focus on our sampling strategy.

C.3. Additional Details for the Experimental Settings in Case 1 and Case 2

Case 1 In this setting, we have 120 clients in total, and each client has only one class of data.

When n1 : n2 = 3 : 1, there are 18 clients having the data from the 1st class, 18 clients having the data from the 2nd class,

18 clients having the data from the 3rd class, 18 clients having the data from the 4th class, and 18 clients having the data
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from the 5th class. There are 6 clients with data from the 6th class, 6 clients with data from the 7th class, 6 clients with data

from the 8th class, 6 clients with data from the 9th class, and 6 clients the data from the 10th class.

When n1 : n2 = 5 : 1, there are 20 clients having the data from the 1st class, 20 clients having the data from the 2nd class,

20 clients having the data from the 3rd class, 20 clients having the data from the 4th class and 20 clients having the data

from the 5th class. There are 4 clients having the data from the 6th class, 4 clients having data from the 7th class, 4 clients

having data from the 8th class, 4 clients having data from the 9th class, and 4 clients having the data from the 10th class.

Then we uniformly set 30% (36 clients) of them available. Since there are more clients which contain the data from the first

5 classes among the above 120 clients. The global dataset of these 36 clients is often class-imbalanced.

Case 2 In this setting, we have 200 clients in total and each client has only one class of data. For all the i ∈ {1, 2, ..., 10},

there are 20 clients having the data from the i−th class.

When n1 : n2 = 3 : 1, we randomly pick 9 clients from the 20 clients which have the data from the 1st class and set them

available. We randomly pick 9 clients from the 20 clients which have the data from the 2nd class and set them available.

Similarly, for the k-th class (2 < k ≤ 5), we randomly pick 9 clients from the 20 clients which have the data from the k-th

class and set them available. On the contrary, we randomly pick 3 clients from the 20 clients which have the data from the

6th class and set them available. We randomly pick 3 clients from the 20 clients which have the data from the 7th class and

set them available. Similarly, for 7 < k ≤ 10, we randomly pick 3 clients from the 20 clients which have the data from the

k-th class and set them available. There are 60 clients in total.

When n1 : n2 = 5 : 1, we randomly pick 10 clients from the 20 clients which have the data from the 1st class and set them

available. We randomly pick 10 clients from the 20 clients which have the data from the 2nd class and set them available.

For the k-tth class (2 < k ≤ 5), we randomly pick 10 clients from the 20 clients which have the data from the k-th class and

set them available. On the contrary, we randomly pick 2 clients from the 20 clients which have the data from the 6th class

and set them available. We randomly pick 2 clients from the 20 clients which have the data from the 7th class and set them

available. And for the other k-th class (7 < k ≤ 10), we randomly pick 2 clients from the 20 clients which have the data

from the k-th class and set them available. There are 60 clients in total.

Since there are more clients that contain the data from the first 5 classes among the above 60 clients, the global dataset of

these 60 clients is always class-imbalanced.

The difference between the settings of Case 1 and Case 2 is that we uniformly set 30% clients available in Case 1 but

non-uniformly set 30% clients available in Case 2. Nevertheless, the global datasets of the available clients are both

class-imbalanced in both cases.

C.4. The Averaged QCID Values for Case 1 and Case 2 in Section 5.2

E[QCID](10−2) all rand pow-d Fed-cucb Fed-CBS

Case 1
3:1 2.90±0.02 9.33±0.17 13.70±0.39 1.39±0.37 0.57±0.04
5:1 6.17±0.04 12.36±0.20 16.63±0.74 3.43±0.76 2.41±0.07

Case 2
3:1 2.50±0.00 9.91±0.16 13.68±0.72 1.89±1.72 0.001±0.001
5:1 4.44±0.00 11.70±0.20 15.68±0.96 2.63±2.40 0.002±0.001

Table 3. The averaged QCID values for four baselines and our method. Our method, Fed-CBS, has successfully reduced the class-

imbalance. Since the global dataset of all the 60 available clients is always class-imbalanced and the ratio is always fixed in case 2, the

QCID value is fixed and the derivation of it is always zero.

C.5. Experiment Results of Fashion-MNIST Dataset

Experiment Setup We adopt an MLP model with one hidden layer of 64 units and and FedNova (Wang et al., 2020a)

as the FL optimizer . Similar to the setup in the experiment of CIFAR-10, the batch size is 50 for each client. In each

communication round, all of them conduct the same number of local updates, which allows the client with the largest local

dataset to conduct 5 local training epochs. In our method, we set the βm = m, γ = 10 and Lb = 10−20. The local optimizer

is SGD with a weight decay of 0.0005. The learning rate is 0.01 initially and the decay factor is 0.9992. We terminate the FL

training after 3000 communication rounds and then evaluate the model’s performance on the test dataset of Fashion-MNIST.
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all rand pow-d Fed-cucb Fed-CBS

Communication Rounds

α=0.1 115±17 185±27 135±22 124±37 92±6
α=0.2 173±45 284±54 218±55 216±24 166±36
α=0.5 258±44 331±55 281±54 284±51 218±36

E[QCID](10−2)

α=0.1 1.40±0.11 8.20±0.19 11.72±0.33 4.24±0.59 0.15±0.02
α=0.2 1.39±0.22 7.67±0.26 10.31±0.24 4.43±0.38 0.21±0.01
α=0.5 0.94±0.07 5.93±0.26 7.68±0.28 4.34±0.85 0.22±0.01

Table 4. The communication rounds required for targeted test accuracy and the averaged QCID values on Fashion-MNIST dataset. The

targeted test accuracy is 78% for α = 0.1, 80% for α = 0.2 and 82% for α = 0.5. The results are the mean and the standard deviation

over 4 different random seeds.

Figure 8. Test accuracy on Fashion-MNIST dataset under three heterogeneous settings.

C.5.1. RESULTS FOR CLASS-BALANCED GLOBAL DATASET

Similar to the experiment settings, in this experiment, we set 200 clients in total with a class-balanced global dataset. The

non-IID data partition among clients is based on the settings of Dirichlet distribution parameterized by the concentration

parameter α in (Hsu et al., 2019). In each communication round, we uniformly and randomly set 30% of them (i.e., 60

clients) available and select 10 clients from those 60 available ones to participate in the training.

As shown in Table 8, our method successfully reduces the class-imbalance, since it achieves the lowest QCID value

compared with other client selection strategies. Our method outperforms the other three baseline methods and achieves

comparable performance in the ideal setting where all the available clients are engaged in the training. As shown in Table

3 and Figure 8, our method can achieve faster and more stable convergence. It is worth noting that due to the inaccurate

estimation of distribution and the weakness of the greedy method discussed in Section 2.2, the performance of Fed-cucb is

much worse than ours.

C.5.2. RESULTS FOR CLASS-IMBALANCED GLOBAL DATASET: CASE 1

Similar to the settings for Cifar-10, there are 120 clients in total and each client only has one class of data with the same

quantity. The global dataset of these 120 clients is always class-imbalanced. To measure the degree of class imbalance,

we let the global dataset have the same amount n1 of data samples for five classes and have the same amount n2 of data

samples for the other five classes. The ratio r between n1 and n2 is set to 3 : 1 and 5 : 1 respectively in the experiments. In

each communication round, we randomly set 30% of them (i.e., 36 clients) available and select 10 clients to participate in

the training.

As shown in the Table 5 and Figure 9a, our method can achieve faster and more stable convergence, and even better

performance than the ideal setting where all the available clients are engaged. The performance of Fed-cucb (Yang et al.,

2020) is better than the results on class-balanced global dataset, which is partly due to the simplicity of each client’s local

dataset composition in our experiments as discussed in the experiments of Cifar-10.
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(a) Case 1 (b) Case 2

Figure 9. Test accuracy on Fashion-MINST with class-imbalanced global dataset in Case 1 and Case 2.

all rand pow-d Fed-cucb Fed-CBS

Case 1

3:1 78.42±0.79 78.46±0.90 81.08±0.21 80.83±0.91 81.75±0.34
5:1 72.42±2.22 75.49±2.56 80.15±0.41 80.50±0.95 81.42±0.50

Case 2
3:1 74.64±1.87 78.80±0.55 81.13±0.41 79.94±0.31 81.95±0.57
5:1 67.16±4.13 74.17±2.01 80.05±0.39 80.00±0.58 81.92±0.57

Table 5. Best test accuracy for our method and other four baselines on Fashion-MNIST dataset.

C.5.3. RESULTS FOR CLASS-IMBALANCED GLOBAL DATASET: CASE 2

Similar to the settings of Cifar-10, we assume that there are 200 clients in total. In each communication round, 30% of

them (i.e., 60 clients) are set available in each training round. The global dataset of those 60 available clients is always

class-imbalanced. To measure the degree of class imbalance, we make the global dataset have the same amount n1 of data

for the five classes and have the same amount n2 of data for the other five classes. The ratio r between n1 and n2 is set to

3 : 1 and 5 : 1. We select 10 clients from these 60 clients to participate in the training.

As shown in the Table 5 and Figure 9b, our method can achieve higher test accuracy and more stable convergence, which

outperforms the ideal setting where all the available clients are engaged. Since the global dataset of the available 60 clients

in each communication round is always class-imbalanced, the performance of engaging all of them is not good.

D. Ablation Studies and Discussion
D.1. Accurate Estimation vs Inaccurate Estimation for Fed-cucb

Figure 10. Test accuracy on Cifar-10 for Fed-cucb, Fed-cucb+ and Fed-CBS.

As discussed in Sections 2.2 and 5.1, the estimation of the label distribution in Fed-cucb (Yang et al., 2020) is not accurate,

which leads to performance degradation. Hence there comes a natural question, would the performance of Fed-cucb get

improved if it got an exact estimation of the local label distribution? In our simulation, we manually let the Fed-cucb know

the exact value of each client’s local label distribution and name it as Fed-cucb+. Actually, Fed-cucb+ is the core part
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Fed-cucb+ (Astraea) Fed-cucb Fed-CBS

Best Accuracy (%)
α=0.1 49.10±0.70 46.84±0.73 50.36±0.58
α=0.2 50.61±0.77 48.80±1.05 51.95±0.57
α=0.5 52.71±0.27 50.98±0.56 54.21±0.34

E(QCID) (10−2)

α=0.1 0.83±0.18 7.09±2.27 0.62±0.20
α=0.2 0.68±0.05 5.93±1.01 0.51±0.12
α=0.5 0.43±0.04 6.47±0.77 0.36±0.04

Table 6. Best accuracy and the averaged QCID values.

of Astraea (Duan et al., 2019) without data augmentation. Hence, comparing our method with Fed-cucb+ can show the

superiority of our sampling strategy over the greedy method in Fed-cucb (Yang et al., 2020) and Astraea (Duan et al., 2019).

Figure 11. Test accuracy with different exploration factor λ.

D.2. The Effect of Exploration Factor λ

As shown in the Figure 10 and Table 6, Fed-cucb+ does improve the performance of Fed-cucb, which verifies the importance

of accurate estimation. However, our Fed-CBS still outperforms Fed-cucb+. Although, it seems that the accuracy of

Fed-cucb+ increases a little faster than Fed-CBS at the beginning of the training, our method will achieve higher accuracy

as the training proceeds further. As discussed in the Remark 3.3 in Section 3.3 and the Figure 3 of Section 5.1, this is due to

the pitfall of greedy method, where one will miss the optimal solution. This has been verified by the averaged QCID value

in Table 6, which shows that Fed-CBS can achieve lower E(QCID) than Fed-cucb+ (Astraea).

Another potential weakness of greedy method is the diversity of client composition. Following their selection process, once

the first choice of client has been made, the following choices are fixed successively. Hence there are only limited kinds of

client composition. It is interesting to investigate the relationship between the training performance and the diversity of

client composition and we leave it as future work.

In our sampling strategy, when we sample the first client, we introduce the exploration factor λ to balance the tradeoff

between exploitation and exploration. When the λ is small, our method will tend to exploit the class-balanced clients since

their QCID values are smaller. For fairness, we hope every client can get the chance to be selected. Hence, we can increase

the λ and then our method will tend to explore the clients which have seldom been selected before. However, it might cost

many communication rounds for exploration and lead to slower convergence.

We conduct some experiments to verify the effect of exploration factor λ. The settings are the same as the ones in Section
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5.1 when α = 0.2. As shown in the Figure 11, as the λ becomes larger, the increase of accuracy will become a little slower

at the start of the training. This because the it might cost more communication rounds for exploration. As the training

proceeds, the accuracy with larger λ becomes a little higher than the ones with smaller λ. Overall, the improvement on the

convergence speed and best accuracy is very slight, which means the performance of FL training is not very sensitive to the

values of exploration factor λ. Generally, if we want to slightly fasten the convergence, we can decrease the value of λ. If

we want to improve the best accuracy a little, we can increase the value of λ.

D.3. The Performance with Different Amounts of Selected Clients

In this section, we want to investigate how the amount of selected clients will affect the FL training performance. Generally,

we think as the amount of selected clients increases, the FL training process can achieve better performance. However, once

that amount reaches some threshold ε, the improvement will become slighter. This is because we find that select only a

subset of all the available can achieve comparable results with engaging all the available clients into the training. As for how

to decide the threshold ε, we provide the following two principles based on QCID and our experience.

• First, if we work on a classification task with B classes, we can select at least B clients. This is because in some special

cases, each client will only have one class of data in their local dataset, such as the settings in Section 5.2. Hence, if

less than B clients are selected, the grouped dataset of the selected clients will miss some classes of data.

• Second, to avoid missing some classes of data, we increase the threshold ε such that the averaged QCID value could

be smaller than 1
B2 . This is because if the grouped dataset misses at least one class of data, the QCID will be larger

than 1
B2 .

We conducted some experiments to verify our prediction on the effect of the amount of selected clients. The settings are the

same as the ones in Section 5.1 when α = 0.2. As shown in the left figure of Figure 12, as the amount of selected clients

increases, the FL training process can achieve better performance. However, when the amount M is larger than 10, the

improvement is slighter. In the right figure of Figure 12 , we can find that the averaged QCID value of selecting 5 clients is

larger than ( 1
10 )

2 = 0.01 and its performance is obviously worse than the others. These results verify the effectiveness of

our principles on how to set the threshold ε. It is worth noting that due to the limitation of communication capacities, we

cannot select as many clients as possible. Hence, how to identify the appropriate threshold ε is critical to the FL training.

Figure 12. Left: The performance with different amounts of selected clients. Right: The QCID with different amounts of selected clients.

D.4. Additional Experimental Results on FEMNIST Dataset

We also conduct some experiments on the FEMINST Dataset to simulate more realistic settings where there are thousands

of clients. Since in practice, it is impossible to engage all the clients during training, we compare our method by randomly

selecting more clients. . There are 3500 (> 1000) clients in total and we randomly set 10%(< 30%) of them available in

each round. Then our method tries to select 30 clients from them. That is less than 1% of all the 3550 clients and also less

than the number of classes (64). Besides, we also run three baselines, randomly selecting 30 clients, randomly selecting
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120(> 100) clients, and selecting 30 clients with fed-cucb. We present the results in Table 7 and Figure 13. Our performance

is still the best. Due to the global imbalance, the rand-120 is even worse than the rand-30.

rand-30 rand-120 Fed-cucb Fed-CBS

Communication Rounds 1106 ± 24 1394 ± 11 1124± 31 980±17

Table 7. The communication rounds required for targeted test accuracy (75%). The results are the mean and the standard deviation over 3

different random seeds.

Figure 13. Test accuracy for FEMNIST

E. Comparison between Cluster-based Client Sampling Algorithms and Fed-CBS
We present the following comparison between cluster-based client sampling algorithms and our own method to demonstrate

our superiority.

Firstly, the unbiased sampling property of the clustering sampling method (Fraboni et al., 2021) may not lead to optimal

performance when dealing with class-imbalanced global training datasets. In Section 3.1 of (Fraboni et al., 2021), the

authors mention that they “require clustered sampling to be unbiased,” which implies that the expected value of client

aggregation should be equivalent to the aggregation of all clients. However, our findings, as depicted in Figures 1, indicate

that aggregating all clients does not always lead to satisfactory performance, especially when the downstream test task

is class-balanced. It should be noted that ensuring class-balance in the downstream test task is crucial for maintaining

fairness and privacy. This is because the imbalanced performance of the model across different classes can potentially reveal

sensitive information about the global training dataset.

Secondly, our method guides the clustering sampling methods. Although clustering sampling can address many root causes

of heterogeneity in the input space distributions at clients, however, since “unbiased sampling” will cause the mismatch

between the input space distributions at clients and the downstream task’s space distribution, we still need to identify key

causes to make the clustering sampling “biased” to align the input space and downstream space. This is still very challenging

because while clustering sampling methods can include many root causes of heterogeneity in the input space distributions at
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clients, we still need to be careful since most are hard to measure and contain lots of private information. Our analysis of

”class imbalance” provides a valuable measure in this regard, and we also offer an efficient means of utilizing this measure

in a privacy-preserving way. Therefore, our work can contribute to advancing clustering sampling methods in the future

28


