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Abstract

Incorporating symmetry as an inductive bias into

neural network architecture has led to improve-

ments in generalization, data efficiency, and phys-

ical consistency in dynamics modeling. Meth-

ods such as CNNs or equivariant neural networks

use weight tying to enforce symmetries such as

shift invariance or rotational equivariance. How-

ever, despite the fact that physical laws obey many

symmetries, real-world dynamical data rarely con-

forms to strict mathematical symmetry either due

to noisy or incomplete data or to symmetry break-

ing features in the underlying dynamical system.

We explore approximately equivariant networks

which are biased towards preserving symmetry

but are not strictly constrained to do so. By re-

laxing equivariance constraints, we find that our

models can outperform both baselines with no

symmetry bias and baselines with overly strict

symmetry in both simulated turbulence domains

and real-world multi-stream jet flow.

1. Introduction
Symmetry and equivariance are fundamental to the suc-

cess of deep learning (Bronstein et al., 2021). The canon-

ical examples are translation invariance in convolutional

layers (Fukushima & Miyake, 1982; LeCun et al., 1989;

Krizhevsky et al., 2012), and permutation invariance in

graph neural networks (Bruna et al., 2013; Battaglia et al.,

2018; Maron et al., 2018). Recently, equivariant networks,

which encode symmetry information in network architec-

tures, have gained significant attention for modeling struc-

tured and complex data (Ravanbakhsh et al., 2017; Zaheer

et al., 2017; Kondor & Trivedi, 2018; Cohen & Welling,

2016a; Worrall et al., 2017; Thomas et al., 2018; Cohen

et al., 2018; Maron et al., 2020; Walters et al., 2021).
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Figure 1: Left: When symmetry is a good inductive bias,

prediction performance increases as equivariance or invari-

ance is imposed in the model. But real-world data is very

rarely perfectly symmetric, and so relaxing the strict con-

straint in equivariant networks to balance inductive bias and

expressivity can further improve predictive performance.

Right: Highly flexible models have trouble achieving zero

equivariance error without the guide of appropriate symme-

try biases when the data is symmetric. Perfectly equivariant

models maintain zero equivariance error, which is overly

restricted when data is not perfectly symmetric. An ideal

model for real world dynamics should be approximately

equivariant and automatically learn the correct amount of

symmetry in the data.

However, existing equivariant networks assume perfect sym-

metry in the data. The network is approximating a func-

tion that is strictly invariant or equivariant under a given

group action. However, real-world data are very rarely per-

fectly symmetric. For example, in turbulence modeling,

even though the governing equations of turbulence satisfy

many different symmetries such as scale invariance (Holmes

et al., 2012), effects such as varying external forces, cer-

tain boundary conditions, or the presence of missing values

would break these symmetries to varying degrees. This

significantly hinders the potential applications of equivari-

ant networks. Approximately equivariant networks could

outperform both strictly equivariant networks and highly

flexible models in learning many dynamics in the real world,

as shown in Figure 1.

Relaxing the rigid assumption in equivariant networks to

balance inductive bias and expressivity in deep learning

has been the pursuit of a few recent works. For example,

Elsayed et al. (2020) showed that spatial invariance can be



Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

overly restrictive, and relaxing spatial weight sharing in stan-

dard convolution can improve image classification accuracy.

d’Ascoli et al. (2021) enforce a convolutional inductive bias

in self-attention layers at initialization to improve vision

Transformers. Residual Pathway Priors (Finzi et al., 2021b)

convert hard architectural constraints into soft priors by

placing a higher likelihood on the “residual”. The residual

explains the difference between the structure in the data and

the inductive bias encoded by an equivariant model. Wang

et al. (2021) proposed Lift Expansion which factorizes the

data into equivariant and nonequivariant components and

models them jointly. Despite progress, a formal definition

of approximate symmetry does not exist. While existing

research focuses on translation symmetry, the rich groups of

symmetry in high-dimensional dynamics learning problems

are unexplored.

In this paper, we first define approximate symmetry. It gives

rise to a new class of approximately equivariant networks

that avoid stringent symmetry constraints while maintain-

ing favorable inductive biases for learning. Specifically,

we generalize the weight relaxation scheme originally pro-

posed by (Elsayed et al., 2020). We study three symme-

tries that are common in dynamics: rotation SO(2), scaling

R>0, and Euclidean E(2). For group convolution, we relax

the weight-sharing scheme by expressing the kernel as a

weighted combination of multiple filter banks. For steerable

CNNs, we introduce dependencies on the input to the kernel

basis. We apply our approximate symmetry networks to the

challenging problem of forecasting fluid flow and observe

significant improvements for both synthetic and real-world

datasets 1. Our contributions include:

• We formally characterize the notion of approximate equiv-

ariance, which interpolates between no inductive bias and

a strong inductive bias from equivariance.

• We introduce a new class of approximately equivariant

networks for modeling imperfectly symmetric dynamics

by relaxing equivariance constraints.

• We demonstrate that our approximately equivariant mod-

els can outperform baselines with no symmetry bias, base-

lines with overly strict symmetry, and SoTA approxi-

mately equivariant models in both simulated smoke simu-

lations and real experimental jet flow data.

2. Mathematical Preliminaries
2.1. Equivariant Functions and Neural Networks

Equivariant neural networks incorporate an explicit symme-

try constraint. They are typically employed when a priori

knowledge, such as first principles from physics, imply the

1We open-source our code https://github.com/
Rose-STL-Lab/Approximately-Equivariant-Nets

ground truth function also respects a symmetry.

Equivariance and Invariance. Formally, a function

f : X → Y may be described as respecting the symme-

try coming from a group G using the notion of equivariance.

Assume that an input group representation ρin of G acts on

X and an output representation ρout acts on Y . We say a

function f is G-equivariant if

f(ρin(g)(x)) = ρout(g)f(x) (1)

for all x ∈ X and g ∈ G. The function f is G-invariant if

f(ρin(g)(x)) = f(x) for all x ∈ X and g ∈ G. This is a

special case of equivariance for the case ρout(g) = 1.

Strictly Equivariant Neural Networks. Given an equiv-

ariant f : X → Y , learning can be accelerated by opti-

mizing within a model class of functions {fθ} which are

restricted to be equivariant. Since the composition of equiv-

ariant functions is again equivariant, in general a neural

network will be strictly equivariant if all of its layers, lin-

ear, nonlinear, pooling, aggregation, and normalization, are

equivariant. Most of the variation and challenge in this

area is in designing trainable equivariant linear layers. Two

strategies, involving weight sharing and weight tying, are

G-convolution and G-steerable CNN. See Bronstein et al.

(2021) for more details.

G-Equivariant Group Convolution. A G-equivariant

group convolution (Cohen & Welling, 2016a) takes as input

a cin-dimensional feature map f : G → R
cin and convolves

it with a kernel Ψ: G → R
cout×cin over a group G,

[f �G Ψ](g) =
∑
h∈G

f(h)Ψ(g−1h). (2)

Here, we assume G finite, however, G may also be taken to

be compact if the sum is replaced with an integral. Group

convolution achieves equivariance by weight sharing since

the kernel weight Ψ at (g, h) depends only on g−1h and

thus pairs with equal g−1h share weights.

G-Steerable Convolution. (Cohen & Welling, 2017) Let

f be the input feature map f : R2 → R
cin . Fix a sub-

group H ⊂ O(2), which acts on R
2 by matrix mul-

tiplication and on the input and output channel spaces

R
cin and R

cout by representations ρin : G → R
cin×cin and

ρout : G → R
cout×cout respectively.

We may convolve f with a matrix-valued kernel Φ: R2 →
R

cout×cin . In practice, we discretize the input as f : Z2 →
R

cin and kernel Φ: Z2 → R
cout×cin and compute the

H-action by interpolation after rotation. By (Weiler

et al., 2018a), the standard 2D convolution f �Z2 Φ is H-

equivariant and Z
2-translation equivariant when

Φ(hx) = ρout(h)Φ(x)ρin(h
−1), ∀h ∈ H. (3)
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Again, Φ(hx) is computed based on the group and the

choice of input and output representations. This linear con-

straint induces dependence in the weights, which is called

weight tying. Solving for a basis of solutions to (3) gives

an equivariant kernel basis {Φl}Ll=1 which can be combined

using trainable coefficients Φ =
∑L

l=1 wlΦl to learn any

element of the solution space formed by (3).

2.2. Approximate Equivariance

Figure 2: Simulated diffusion of heat in a metal plate with

(top) uniform diffusion coefficient resulting in perfect sym-

metry and (bottom) slightly varying diffusion coefficient

resulting in approximate symmetry.

Real-world dynamics data may not satisfy the strict equiv-

ariance as in (1). However, since many of the governing

equations contain symmetry, the resulting system may still

be approximately equivariant, as defined below. For ex-

ample, while the heat equation itself is fully rotationally

symmetric, in practice, imperfections in the thickness of the

metal or the composition of the metal can lead to imperfect

symmetry, as shown in Figure 2. Below, we give the formal

definition of approximate symmetry:

Definition 2.1 (Approximate Equivariance). Let f : X →
Y be a function and G be a group. Assume that G acts

on X and Y via representations ρX and ρY . We say f is

ε-approximately G-equivariant if for any g ∈ G,

‖f(ρX(g)(x))− ρY (g)f(x)‖ ≤ ε.

Note that strictly equivariant functions are ε = 0 approxi-

mately equivariant.

3. Approximately Equivariant Networks
Symmetry in equivariant networks is enforced by strict con-

straints on the weights. Here we propose relaxing weight-

sharing and weight-tying to model approximate symmetries.

Elsayed et al. (2020) showed that relaxing spatial weight

sharing in standard convolution neural nets can improve

image classification accuracy. Whereas 2D convolutions

are shift equivariant, this relaxed 2D convolution is only

approximately equivariant. Our method generalizes this ap-

proach to other symmetry groups, including rotation SO(2),
scaling R>0, and Euclidean E(2). Specifically, we relax the

strict weight-sharing and weight-tying constraints in both

group convolution and steerable CNNs.

3.1. Relaxed Group Convolution

The G-equivariance of group convolution results from the

shared kernel Ψ(g−1h) in (2). To relax this and conse-

quently relax the G-equivariance, we replace the single

kernel Ψ with a set of kernels {Ψl}Ll=1. We define the new

kernel Ψ as a linear combination of Ψl with coefficients

that vary with h. Thus, we introduce symmetry-breaking

dependence on the specific pair (g, h),

Ψ(g, h) =

L∑
l=1

wl(h)Ψl(g
−1h). (4)

We define the relaxed group convolution by multiplication

with Ψ as such

[f�̃GΨ](g) =
∑
h∈G

f(h)Ψ(g, h)

=
∑
h∈G

L∑
l=1

f(h)wl(h)Ψl(g
−1h).

(5)

By varying the number of kernels L, we can control the

degree of equivariance. Small L imposes stronger sym-

metry, while large L gives more flexibility. In our ex-

periments, we found that L = 3 gave the best prediction

performance in most cases. The weights wi(h) ∈ R and

the kernels Ψl(g
−1h) ∈ R

cout×cin can be learnt from data.

Relaxed group convolution reduces to group convolution

and is fully equivariant if and only if g−1
1 h1 = g−1

2 h2

implies Ψ(g1, h1) = Ψ(g2, h2). In particular, this oc-

curs if wl(h1) = wl(h2) for all h1, h2 ∈ G and for all

l = 1, · · · , L.

In dynamics learning, we consider velocity vectors as in-

puts. To apply group convolution over the discrete rota-

tion group Cn, we first lift these velocity vectors to feature

maps f : Cn → R as described in Walters et al. (2021)

Table 1. Given v = (a, b) ∈ R
2, for i ∈ Cn we define

f(i) = ca cos(2πi/n) + cb sin(2πi/n) where c ∈ R is a

trainable weight. This amounts to mapping the irreducible

ρ1 representation of Cn to the regular representation. This

process can also be extended to lifting velocity fields to

features f : C4�(Z2,+) → R over the group of discrete ro-

tations and translations. As an additional advantage, the fea-

ture maps f are compatible with element-wise non-linearity.

3.2. Relaxed Steerable Convolution

Although relaxed group convolution does not require pre-

computing an equivariant kernel basis, it is limited to dis-

crete (or compact) groups and is inefficient when the group

order is large. Thus, we also propose relaxed steerable

convolutions.
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G-Steerable 2D Convolution: First, we explicitly write

out the formula for G-steerable 2D convolution described

by (3). Let {Φl}Ll=1 be an equivariant kernel basis of L non-

trainable kernels that satisfy (3) for given input and output

representations ρin and ρout. Denote K = {−k, . . . , k}.

Denote the input feature as fin : Z
2 → R

cin , predetermined

equivariant kernels Φl : K
2 → R

cout×cin , and a trainable

weight tensor w ∈ R
cout×cin×L. Then a G-steerable convo-

lution produces an output fout = fin �Z2 Φ: Z2 → R
cout

defined as

fout(x) =
∑

y∈Z2

∑L
l=1(wl � Φl(y))fin(x+ y)

(6)

for a position x ∈ Z
2 in the input. Here � denotes element-

wise product in R
cout×cin , and y ∈ Z

2 is a spatial location

in the kernel.

Relaxed G-Steerable 2D Convolution: We relax (6) and

break symmetry by introducing a weight w that depends

on y. As w is freely trainable, this breaks the strict posi-

tional dependence of Φl imposed by (3). Formally, letting

w : K2 → R
cout×cin×L be the weight, we define the relaxed

steerable convolution fout = fin�̂Z2Φ by

fout(x) =
∑

y∈Z2

∑L
l=1(wl(y)� Φl(y))fin(x+ y).

(7)

When G is a rotation group and k > 0, we can define

wl(y) = wl(θ), where θ = arctan2(y). Since the weight

depends only on the angle of the vector y, we use fewer

parameters. To prevent the model from becoming overly

relaxed, we initialize wl(y) equally for every y and penalize

the value differences in wl(y) during training, which we

describe in Section 3.3.

For the translation group, we can relax the steerable convo-

lution by further allowing w : Z2 ×K2 → R
cout×cin×L to

vary with the input position x as well:

fout(x) =
∑

y∈Z2

∑L
l=1(wl(x,y)� Φl(y))fin(x+ y).

(8)

However, the above equation is impractical as the space

of the trainable weight is too large. We propose using a

low-rank factorization of w to reduce dimensionality,

wl(x,y) =

R∑
r=1

ar(x)br,l(y)

where ar : Z
2 → R and br,l : K2 → : Rcout×cin . Then

(8) becomes a combination of relaxed translation group

convolution and relaxed steerable convolution.

3.3. Soft Equivariance Regularization

To encourage equivariance and prevent the model from be-

coming over-relaxed, we add regularization terms to the

loss function on the symmetry-independent weights w dur-

ing training. For relaxed group convolution, we add the

following regularizer to constrain w in (4),

Lgconv = α

L∑
i=1

∑
g,h∈G

‖wi(h)− wi(g)‖.

For relaxed steerable convolution, we impose the following

loss term to prevent the w : K2 → R
cout×cin×L in (7) from

varying too much across the kernel spatial domains,

Lsconv = α

(∥∥∥∥∂w(m,n)

∂m

∥∥∥∥+

∥∥∥∥∂w(m,n)

∂n

∥∥∥∥
)
.

The hyperparameter α does not directly control how equiv-

ariant the model is, it only a places a equivariance prior on

the model to be as equivariant as possible given the data.

3.4. Other Alternatives for Approximate Symmetry

We also explored three alternative ways of building approxi-

mately equivariant models.

Lift expansion. Wang et al. (2021) proposed Lift
Expansion for modeling partial symmetry, in which the

input space can be factorized into an equivariant subspace

and a non-equivariant subspace. The model uses a non-

equivariant encoder that is tiled across the equivariant di-

mensions of the feature map as additional channels in equiv-

ariant neural nets. This method can also model approximate

symmetry when both the non-equivariant encoder and the

main equivariant backbone are fed with the same input. The

encoder can extract non-equivariant features that are then

treated as having a trivial representation type and included

in the main equivariant model to break perfect equivariance.

Note that while treating the output data as having a trivial

representation type enforces invariance, treating the input

data this way imposes no constraints.

Constrained locally connected neural nets (CLCNN).
Another way of building approximately equivariant models

is using a very flexible model while imposing soft equivari-

ance constraints on the kernels. We use a locally connected

neural network that has the same locality property as con-

volution but the weights are not shared across the spatial

domain (Wadekar, 2019). Thus, it does not have translation

equivariance and employs many more parameters than con-

volution. Suppose Φ: Z2 × K2 → R
cout×cin is the filter

bank. In addition to the prediction loss, we use the equivari-

ant kernel constraint (3) in the objective with a hinge loss

instead of solving the constraints explicitly before training:

Lhinge = α
∑
h∈G

‖ρout(h)Φ(x)ρin(h
−1)− Φ(hx)‖.

Combination of non-equivariant and equivariant layers.
We also build models that begin with non-equivariant layers
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followed by equivariant layers. The early layers of the

model map observations with approximate symmetries to a

space with an explicit symmetry actions.

3.5. Equivariant Error Analysis

Our hypothesis is that if the ground truth function f is ap-

proximately equivariant, then a model class with a similar

degree of approximate equivariance would better approxi-

mate f than a strictly equivariant class or a class without

bias towards symmetry.

We define equivariance error, which quantifies how much a

function f is approximately equivariant.

Definition 3.1 (Equivariance Error). Let f : X → Y be a

function and G be a group. Assume that G acts on X and

Y via representation ρX and ρY . Then the equivariance
error of f is

‖f‖EE = sup
x,g

‖f(ρX(g)(x))− ρY (g)f(x)‖.

That is, f is ε-approximately equivariant if and only if

‖f‖EE < ε.

We note that a strictly equivariant model cannot perfectly

learn an approximately equivariant function. As stated by

the following proposition, such a model would make errors

at least proportional to the equivariance error. This moti-

vates our choice to use the model class of approximately

equivariant networks.

Proposition 3.2. Let f : X → Y where G acts on X and
Y by ρX and ρY which are norm-preserving. Assume f
is approximately equivariant with ‖f‖EE ≥ 0. Assume fθ
is a G-equivariant approximator for f . Then there exists
x0 ∈ X such that

‖f(x0)− fθ(x0)‖ ≥ ‖f‖EE/2.

For simplicity, we assume representations ρ which are norm

preserving, as with rotations, reflections, and permutations,

although this assumption can be removed by inserting a

factor to account for the operator norm ‖g‖.

By similar logic, we can also show that given a model

class which contains ε-approximately equivariant functions

for varying ε, the equivariance error of the approximator

will converge to the equivariance error of the ground truth

function as they converge in model error. Although the

supremum norm is used for equivariance and model error,

the result holds for other norms as well.

Proposition 3.3. Let {fθ} be an approximately equivariant
model class with varying ‖fθ‖EE ∈ R≥0. Assume a G-
invariant norm. Let f : X → Y be a function with ‖f‖EE =
ε. Assume ‖f − fθ‖∞ ≤ c. Then |‖f‖EE − ‖fθ‖EE| ≤
2c+ ε.

The proofs can be found in Appendix A.3.

4. Related Work
4.1. Equivariance and Invariance

Symmetry has long been implicitly used in DL to design

networks with known invariances and equivariances. Con-

volutional neural networks enabled breakthroughs in com-

puter vision by leveraging translational equivariance (Zhang,

1988; LeCun et al., 1989; Zhang et al., 1990). Similarly, re-

current neural networks (Rumelhart et al., 1986; Hochreiter

& Schmidhuber, 1997), graph neural networks (Maron et al.,

2019; Satorras et al., 2021), and capsule networks (Sabour

et al., 2017; Hinton et al., 2011) all impose symmetries.

Equivariant DL models have achieved remarkable success

in learning image data (Cohen et al., 2019; Weiler & Cesa,

2019b; Cohen & Welling, 2016a; Chidester et al., 2018;

Lenc & Vedaldi, 2015; Kondor & Trivedi, 2018; Bao &

Song, 2019; Worrall et al., 2017; Cohen & Welling, 2016b;

Finzi et al., 2020; Weiler et al., 2018b; Dieleman et al., 2016;

Ghosh & Gupta, 2019; Sosnovik et al., 2020b).

There is also a deep connection between symmetries and

physics. Noether’s law gives a correspondence between con-

served quantities and groups of symmetries. Thus, the study

of equivariant nets in learning dynamical systems has gained

popularity. Walters et al. (2021) proposed a rotationally-

equivariant continuous convolution model for improved

pedestrian and vehicle trajectory predictions. Holderrieth

et al. (2021) introduced Steerable Conditional Neural Pro-

cesses for learning stochastic processes in physics that have

invariances and equivariances. Wang et al. (2020b) designed

fully equivariant models with respect to symmetries of scal-

ing, rotation, and uniform motion in physical dynamics.

But most dynamics in real world do not have perfect

symmetry and thus the proposed models might be overly-

constrained. Recently, some work explored the idea of

building approximately equivariant networks (van der Oud-

eraa et al., 2022; Romero & Lohit, 2021). Elsayed et al.

(2020) showed that spatial invariance may be overly re-

strictive and relaxing the spatial weight sharing could out-

perform both convolution and local connectivity. Finzi

et al. (2021b) proposed a mechanism that sums equivariant

and non-equivariant MLP layers for modeling soft equiv-

ariances, but it cannot handle large data like images or

high-dimensional physical dynamics due to the number of

weights in the fully connected layers. Our method in con-

trast has more efficient convolutional layers and uses relaxed

constraints to achieve approximate equivariance.

4.2. Learning Dynamical Systems

There is an increasing number of works in modeling dy-

namical systems with deep learning (Shi et al., 2017; Chen
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et al., 2018; Kolter & Manek, 2019; Azencot et al., 2020;

Xie et al., 2018; Tompson et al., 2017; Pfaff et al., 2021).

An essential topic is physics-guided deep learning (Raissi

et al., 2017; Lutter et al., 2018; de Bezenac et al., 2018; Li

et al., 2021; Wang et al., 2020a) which integrates inductive

biases from physical systems to improve learning. For exam-

ple, Wang et al. (2020a) proposed a hybrid model marrying

the RANS-LES coupling method and the custom-designed

U-net. Greydanus et al. (2019) and Cranmer et al. (2020)

build models on Hamiltonian and Lagrangian mechanics

that respect conservation laws. Guen et al. (2021) proposed

a framework that augments physics-based models with deep

data-driven models for forecasting dynamical systems. In

this work, we encode approximate symmetries as induc-

tive biases into DL models to improve dynamics prediction

without over-constraining the representation power.

5. Experiments
Baselines We compare with several state-of-the-art

(SoTA) methods from those without symmetry bias to per-

fect symmetry and SoTA approximately symmetric models.

• MLP: multi-layer perceptrons, an non-equivariant baseline

with a weaker inductive bias than convolution neural nets.

• ConvNet: standard convolutional neural nets that have

full translation symmetry.

• Equiv: fully equivariant convolutional models. It is

same as ConvNet for translation symmetry. We use

E2CNN (Weiler & Cesa, 2019a) for rotation and SESN
(Sosnovik et al., 2020a) for scaling symmetry.

• Rpp (Finzi et al., 2021b): Residual Pathway Priors, a

SOTA approximate equivariance model that sums up the

outputs from equivariant and non-equvariant layers while

posing constraints on the non-equivariant layer in the loss

function. We use the combination of MLP and ConvNet
for translation, ConvNet and E2CNN for rotation, and

ConvNet and SESN for scaling.

• Combo: models that start with non-equivariant layers

followed by equivariant layers, discussed in Section 3.4.

• CLCNN: locally connected neural networks with equivari-

ance constraints imposed in the loss function.

• Lift (Wang et al., 2021): Lift expansion for modeling

partial symmetry. Both the encoder and the main equiv-

ariant backbone are fed with the same input.

EMLP (Finzi et al., 2021a) is also a SoTA equivariant model,

but it cannot handle large data like images as stated in the

paper, so we do not include it as a baseline.

Experiments Setup All models are trained to perform

forward prediction of raw velocity fields given historical

data. For all datasets, we use a sliding window approach

to generate sequence samples. We perform a grid hyperpa-

rameter search as shown in Table 3, including learning rate,

batch size, hidden dimension, number of layers, number of

prediction errors steps for training. We also tune the number

of filter banks for group convolution-based models and the

coefficient of weight constraints for relaxed weight-sharing

models. The input length is fixed as 10. Meanwhile, we

make sure that the total number of trainable parameters for

every model is less than 107 for a fair comparison.

We test all models under two scenarios. For test-future,

we train and test on the same tasks but in different time

steps. For test-domain, we train and test on different sim-

ulations/regions with an 80%-20% split. All models are

trained to make the prediction of the next step given the

previous steps as input. The first scenario evaluates how

well the models can extrapolate into the future for the same

task. The second scenario estimates the capability of the

models to generalize across different simulations/regions.

We forecast in an autoregressive manner to generate multi-

step predictions during inference and evaluate them based

on 20-step prediction RMSEs. All results are averaged over

3 runs with random initialization.

5.1. Experiments on Synthetic Smoke Plumes

Data Description: The synthetic 64×64 2-D smoke

datasets are generated by PhiFlow (Holl et al., 2020) and

contain smoke simulations with different initial conditions

and external forces. We explore three symmetry groups:

1) Translation: 35 smoke simulations with different inflow

positions. We also horizontally split the entire domain into

two separate sub-domains that have different buoyant forces.

Although the inflow positions are translation equivariant,

the closed boundary and the two different buoyant forces

would break the equivariance. 2) Rotation: 40 simulations

with different inflow positions and buoyant forces. Both

the inflow location and the direction of the buoyant forces

have a perfect rotation symmetry with respect to C4 group,

but the buoyancy factor varies with the inflow positions to

break the rotation symmetry. 3) Scaling: It contains 40

simulations generated with different spatial steps Δx and

temporal steps Δt. And the buoyant force varies across the

simulations to break the scaling symmetry.

Prediction Performance: Table 1 shows the prediction

RMSEs in three synthetic smoke plume datasets with differ-

ent approximate symmetries by our proposed models and

baselines. CNNs are translation-equivariant because CNNs

are inherently group convolution, where the group is the

translation group, so we do not have a relaxed steerable

model for translation. We can see, on the approximate trans-

lation dataset, our relaxed group convolution (RGroup)

significantly outperforms baselines on both test sets. And

for rotation and scaling, the proposed relaxed steerable con-

volution (RSteer) always achieves the lowest RMSE and
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Table 1: Prediction RMSE on three synthetic smoke plume datasets with approximate symmetries. Our proposed RGroup
and RSteer methods demonstrate competitive performance. Future means testing data lies in the future time of the training

data. Domain means training and test data are from different spatial domain.

Model MLP Conv Equiv Rpp Combo CLCNN Lift RGroup RSteer

Translation
Future 1.56±0.08 —– 0.94±0.02 0.92±0.01 1.02±0.02 0.92±0.01 0.87±0.03 0.71±0.01 —–

Domain 1.79±0.13 —– 0.68±0.05 0.93±0.01 0.98±0.01 0.89±0.01 0.70±0.00 0.62±0.02 —–

Rotation
Future 1.38±0.06 1.21±0.01 1.05±0.06 0.96±0.10 1.07±0.00 0.96±0.05 0.82±0.08 0.82±0.01 0.80±0.00

Domain 1.34±0.03 1.10±0.05 0.76±0.02 0.83±0.01 0.82±0.02 0.84±0.10 0.68±0.09 0.73±0.02 0.67±0.01

Scaling
Future 2.40±0.02 0.83±0.01 0.75±0.03 0.81±0.09 0.78±0.04 1.03±0.01 0.85±0.01 0.76±0.04 0.70±0.01

Domain 1.81±0.18 0.95±0.02 0.87±0.02 0.86±0.05 0.85±0.01 0.83±0.05 0.77±0.02 0.86±0.12 0.73±0.01

Figure 3: Target (ground truth) and model predictions comparison at time step 1, 5, 10, 20 for smoke simulation with

approximate translation (left) and rotation (right) symmetries.

RGroup can outperform most baselines.

Figure 3 shows the target and predictions of our proposed

models and the best baselines at time step 1, 5, 10, 20 for

smoke simulation with approximate translation (left) and

rotation (right) symmetries. From the shape and frequency

of the flows, predictions from our approximately equivari-

ant models are much closer to the target than the baselines.

Moreover, we can see that E2CNN predicts the smoke flow-

ing to the wrong direction at time step 20, which could be a

consequence of over-constraining from equivariance.

Figure 7 in Appendix A.4 shows the prediction performance

of a scaling RSteer model trained with different regular-

ization parameter α discussed in the section 3.3. We see

that the soft equivariance regularization can further improve

its prediction performance on both test sets but large α may

also hinder its learning.

5.2. Learning Different Levels of Equivariance

We use PhiFlow (Holl et al., 2020) to create 10 small smoke

plume datasets with different levels of rotational equivari-

ance. In each data set, both the inflow location and the

direction of the buoyant forces have a perfect rotation sym-

metry with respect to the C4 group. By varying the amount

of difference in buoyant force between simulations with

different inflow positions, we can control the amount of

equivariance error in the data. The data equivariance error

of each dataset is the mean absolute error between the sim-

ulations after they are all rotated back to the same inflow

position.

We trained two-layer ConvNet, E2CNN and our relaxed ro-

tation equivariant steerable convolution RSteerR on these

10 datasets. We calculate the equivariance error of each

well-trained model based on Definition 2.1, where G = C4

and the norm is L1 norm. From Figure 4, we see that

E2CNN always has zero equivariance error due to the overly

restrictive symmetry constraint even if the data does not

have perfect symmetry. And our RSteerR can learn dif-

ferent levels of equivariance in the data more accurately

than other baselines. Since the prediction errors are not

zeros, the equivariance errors in the model and data are not

the same. This experiment demonstrates that our proposed

methods based on relaxed weight sharing can learn the cor-
rect amount of inductive biases from data while avoiding

the stringent symmetry constraints.



Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

Table 2: Prediction RMSEs on experimental jet flow data for different models. The proposed RSteer and RSteer are

designed for the corresponding assumed symmetry group. RSteerTR and RSteerTS combines relaxed translation group

convolution with relaxed rotation and scale steerable convolution.

Model Conv Lift RGroup E2CNN Lift RSteer SESN Rpp RSteer RSteerTR RSteerTS

Translation Rotation Scaling Combination

Future 0.22±0.06 0.17±0.02 0.15±0.00 0.21±0.02 0.18±0.02 0.17±0.01 0.15±0.00 0.16±0.06 0.14±0.01 0.14±0.01 0.14±0.02

Domain 0.23±0.06 0.18±0.02 0.16±0.01 0.27±0.03 0.21±0.04 0.16±0.01 0.16±0.01 0.16±0.07 0.15±0.00 0.15±0.01 0.15±0.00

Figure 4: Model equivariance errors vs. data equivariance

errors on synthetic smoke plume with different levels of

rotational equivariance. We see that our RSteer can learn

different levels of equivariance in the data much more accu-

rately than other baselines.

5.3. Experiments on Experimental Jet Flow Data

Data Description. We use real experimental data on 2D tur-

bulent velocity in NASA multi-stream jets that are measured

using time-resolved particle image velocimetry (Bridges &

Wernet, 2017). Figure 6 in the Appendix A.4 visualizes the

measurement system of the jet flow. The white boxes show

fields of view acquired on the streamwise plane at the jet

centerline for multi-stream flows. There are three vertical

stations at each axial location/white box, as illustrated by

the pink lines. In other words, the dataset was acquired by

24 different stations at different locations. Since the data

collected at the different locations are not acquired concur-

rently, we do not have the complete velocity fields of entire

jet flows at each time step. Thus, we trained and test models

on 24 62×23 sub-regions of jet flows.

Prediction Performance. We compare three equivariant

models, three best-performing approximately equivariant

baselines in the previous experiment as well as our proposed

relaxed steerable convolution and relaxed group convolution.

Table 2 shows the prediction RMSEs on the jet flow dataset,

Figure 5: Target jet flow velocity norm fields and the predic-

tion errors (MAE) of different models over 10 time steps.

and we group the results by each symmetry in the table. For

each symmetry, our models based on relaxed weight shar-

ing achieve lower errors than not only the fully equivariant

model but also approximately equivariant baselines. We

also experimented with combining relaxed translation group

convolution with relaxed rotation and scale steerable con-

volution, which correspond to RSteerTR and RSteerTS
respectively in the table. We observe that RSteerTR out-

perform both RGroup with relaxed group convolution and

RSteer with relaxed steerable convolution. This implies

relaxing more than one equivariance constraint can poten-

tially lead to even better performance. Figure 5 visualizes

the target and mean absolute errors between model jet flow

predictions and the ground truth (target), and we can see

that our relaxed steerable CNNs achieve the lowest errors.
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We also performed experiments on real-world ocean dynam-

ics. We observe that all models have very close prediction

performance after fine-tuning. Unlike the smoke plume

or jet flow experiments in which our model’s approximate

equivariance bias better matched the ground truth than either

the strictly equivariant model or the non-equivariant model,

in this case all three levels of equivariance bias perform

similarly. We hypothesize that, while strict rotational sym-

metry is a feature of ocean currents, imposing it as a strict

inductive bias does not provide a significant advantage over

the baseline CNN. Therefore, imposing a soft approximate

equivariance bias also does not provide an advantage. For

additional results, see Appendix A.2.

6. Discussion
We propose a new class of approximately equivariant net-

works that avoid stringent symmetry constraints to better fit

real-world scenarios. Our methods strike a good balance be-

tween inductive biases and model flexibility by relaxing the

weight-sharing and weight-tying schemes in group convolu-

tion and steerable convolution. Based on the experiments

on smoke plume simulations and real-world jet flow data,

we observe that our proposed approximate equivariant net-

works can outperform many state of the art baselines with

no symmetry bias or with overly strict symmetry constraints.

Future work includes applying our relaxed weight sharing

design to graph neural networks and theoretical analysis

for approximately equivariant networks, including universal

approximation and generalization.
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A. Experiments Details
A.1. Hyperparameter Tuning

We perform grid hyperparameters search as shown in Table 3, including learning rate, batch size, hidden dimension, number

of layers, number of steps of prediction errors for training. We also tune the number of filter banks for group convolution

models and the coefficient of weight constraints α for relaxed weight sharing models. The input length is fixed as 10. In the

meanwhile, we make sure the total number of trainable parameters for every model is fewer than 107 in order to make fair

comparison.

Table 3: Hyperparameter Tuninig Range.

LR Batch size Hid-dim Num-layers Num-banks #Steps for Backprop α

10−2 ∼ 10−5 8 ∼ 64 64 ∼ 512 3 ∼ 6 1 ∼ 4 3 ∼ 6 0, 10−2, 10−4, 10−6

A.2. Additional Experiments on Real-world Ocean Dynamics

Table 4: Prediction RMSE on ocean currents data.

Model Conv LiftT RGroupT E2CNN LiftR RSteerR SESN RppS RSteerS RSteerTR RSteerTS

Future 0.52±0.02 0.52±0.01 0.51±0.00 0.51±0.03 0.56±0.06 0.51±0.01 0.51±0.01 0.50±0.01 0.50±0.01 0.50±0.01 0.50±0.02

Domain 0.46±0.02 0.46±0.01 0.45±0.01 0.45±0.01 0.53±0.04 0.45±0.02 0.45±0.02 0.42±0.03 0.42±0.01 0.42±0.01 0.42±0.01

Data Description: We use the reanalysis ocean current velocity data generated by the NEMO ocean engine (Madec,

2008). We selected an area (-180 ∼ - 150, -30 ∼ 0)from the Pacific Ocean from 01/01/2021 to 12/31/2021 and extracted 36

64×64 sub-regions for our experiments. We not only test all models on the test sets with different time range and spatial

domain from the training set.

Prediction Performance: We compare three equivariant models, three best approximately equivariant baselines as well

as our proposed relaxed steerable CNNs and relaxed group convolutions.

A.3. Equivariance Error Analysis

Proposition A.1. Let f : X → Y where G acts on X and Y by ρX and ρY which are norm-preserving. Assume that f is
approximately equivariant with ‖f‖EE ≥ 0. Assume fθ is a G-equivariant approximator for f . Then there exists x0 ∈ X
such that

‖f(x0)− fθ(x0)‖ ≥ ‖f‖EE/2.

Proof. We leave implicit the action maps ρX and ρY . By definition there exists x ∈ X and g ∈ G such that ‖f(gx) −
gf(x)‖ = ‖f‖, whereas fθ(gx)− gfθ(x) = 0. Thus by triangle inequality

‖f‖EE = ‖f(gx)− gf(x)‖
= ‖f(gx)− gf(x)− fθ(gx) + gfθ(x)‖
≤ ‖f(gx)− fθ(gx)‖+ ‖gfθ(x)− gf(x)‖

As the G-action is norm-preserving,

‖f‖ ≤ ‖f(gx)− fθ(gx)‖+ ‖fθ(x)− f(x)‖.

Thus either ‖f(gx)− fθ(gx)‖ or ‖fθ(x)− f(x)‖ is greater than ‖f‖/2 in which case set x0 to be gx or x respectively.

Proposition A.2. Let {fθ} be an approximately equivariant model class with varying ‖fθ‖EE ∈ R≥0. Assume a G-invariant
norm. Let f : X → Y be a function with ‖f‖EE = ε. Assume ‖f − fθ‖∞ ≤ c. Then ‖‖f‖EE − ‖fθ‖EE‖ ≤ 2c+ ε.
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Proof. By triangle inequality and invariance of the norm,

‖gfθ(x)− fθ(gx)‖ ≤ ‖gfθ(x)− gf(x)‖
+ ‖gf(x)− f(gx)‖+ ‖f(gx)− fθ(gx)‖
≤ 2c+ ε.

A.4. Additional Figures

Figure 6: Visualization of axial measurement locations. White boxes show fields of view acquired on streamwise plane at jet

centerline for multistream flows. There are three vertical stations at each axial locations/white box, as illustrated by the pink

lines. Figure taken from (Bridges & Wernet, 2017).

Figure 7: The prediction RMSEs on test sets of a scaling RSteer model trained with different regularization parameter α


