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Accelerating network layouts using graph
neural networks

Csaba Both1, Nima Dehmamy2, Rose Yu3 & Albert-László Barabási 1,4,5

Graph layout algorithms used in network visualization represent the first and
the most widely used tool to unveil the inner structure and the behavior of
complex networks. Current network visualization software relies on the force-
directed layout (FDL) algorithm, whose high computational complexitymakes
the visualization of large real networks computationally prohibitive and traps
large graphs into high energy configurations, resulting in hard-to-interpret
“hairball” layouts. Here we use Graph Neural Networks (GNN) to accelerate
FDL, showing that deep learning can address both limitations of FDL: it offers a
10 to 100 fold improvement in speed while also yielding layouts which are
more informative.We analytically derive the speedup offered by GNN, relating
it to the number of outliers in the eigenspectrum of the adjacency matrix,
predicting that GNNs are particularly effective for networks with communities
and local regularities. Finally, we use GNN to generate a three-dimensional
layout of the Internet, and introduce additional measures to assess the layout
quality and its interpretability, exploring the algorithm’s ability to separate
communities and the link-length distribution. The novel use of deep neural
networks can help accelerate other network-based optimization problems as
well, with applications from reaction-diffusion systems to epidemics.

The numerical and analytical toolset of network science has played a
key role in the scientific community’s ability to explore large complex
systems, helping to predict and manage the COVID pandemic1,2,
identify drug repurposing opportunities3, quantify traffic patterns in
cities4, or understand the spread of fake news5,6. The first step of net-
work analysis requires us to visualize the network of interest, a process
supported by multiple software packages. The two most popular
visualization packages, Cytoscape7 and Gephi8, have been used in over
40,000 publications, documenting the wide and cross-disciplinary
role of graph layouts from systems biology to ecology, social sciences,
and even literature. Yet, most visualization efforts are limited to net-
works of hundreds, occasionally a few thousand nodes, constrained by
the computational complexity of the existing algorithms.

Network visualization relies on different implementations of
the force-directed layout (FDL)9–12, a graph layout algorithm that
treats links as springs that pull connected nodes close to each other

and relies on short-range repulsive forces to avoid node overlap.
Inspired by energy minimization in computational chemistry13, the
final layout is obtained by minimizing the total potential energy
using gradient descent. While widely effective for hundreds of
nodes, the O(N2) computational cost per iteration makes the algo-
rithmprohibitively expensive for larger networks. Hence, our ability
to explore large real systems, like the protein-protein interaction
network of a human cell with 20, 000 proteins and 300, 000 links,
or networks emerging in social media with millions of nodes, is
hindered by computational complexity, placing fundamental lim-
itations in our ability to unveil their architecture. Attempts to
visualize the structure of such large systems often result in “hair-
balls,” i.e. high energy layouts that are difficult to interpret and offer
only limited insights into the architecture of the network. For this
reason, visualizations of very large networks are rarely seen in
journals or in the media.
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Results
Here we propose an unsupervised machine learning based process to
accelerate FDL, demonstrating the potential of deep learning to dra-
matically speed up graph layout. The key to our approach are Graph
Neural Networks (GNN)14,15, which we use to reparametrize the energy-
based optimization problem behind FDL. The resulting NeuLay algo-
rithm is one or two orders ofmagnitude faster than the existing layout
methods, opening up the possibility to quickly and reliably visualize
large graphs. Importantly, the algorithm often converges to lower
energies than those accessible by FDL, identifying more optimal lay-
outs with clearer and more informative structures. We analytically
show that the superior performance of NeuLay is driven by the neural
networks’ ability to take advantage of the large-scale architecture of
the network, resulting in quantifiable and visually apparent differences
in the quality of the layout.

Neural Networks for graph layout
Let X = (x1, . . . xN) be aN × dmatrix that captures the location xi of node
i in d-dimensional Euclidean space. FDL performs gradient descent
(GD) to minimize the total energy using a loss function LðX Þ (see
Methods A.), formally written as

dxi
dt

= � ε
∂L
∂xi

= � ε LX½ �i � ε
∂VNN

∂xi
, ð1Þ

where ε is the learning rate and L is the graphLaplacian. Computing the
LX (elastic forces) term has time complexity O(N) for sparse graphs,
andO(N2) for dense graphs. VNN is repulsive energy helping avoid node
overlap, with complexity O(N2), which can be decreased to OðN logNÞ
by the Barnes-Hut algorithm16, hence on dense graphs the bottleneck
remains the calculation of the elastic forces (Supplementary Informa-
tion B Computational Complexity). The core idea of our approach is to
represent the node positions X as the output of a neural network,
relying on two architectures: (1) NodeMLP, that starts from a high
dimensional random embedding of the nodes and finds a map to the
target dimensiond = 3of the layout; (2)NeuLay, that exploits the graph
structure via Graph Convolutional Networks (GCN)14 (Fig. 1b, c and
Methods B). NeuLay is a flexible framework and allows for the use of
different GNN architecture other than GCN, such as Graph Attention
(GAT)17 or Graph Network (GN)18. Our experiments (Fig. S11) show
similar performance when using GCN, GAT or GN, in terms of speedup
and final energy. Hence here we focus on GCN in NeuLay due to its
simplicity. In NeuLay-2, we apply twoGCN layers and then concatenate
the layer outputs to obtain a highdimensional node embedding, which
is then projected down to d = 3 dimensions. In our method, unlike
more familiar uses of deep neural networks, retraining of the model is
required for each graph layout as the training process is the
optimization of the FDL which needs to be performed for every new
graph layout. As we show next, the proposed GNN-based method
improves computational complexity by reducing the number of
iterations required for convergence, rather than reducing the per-
step time complexity.

NeuLay offers more optimal layouts faster
To assess performance, we rely on two figures of merit: speed and
quality. For speed, we examine the running time (‘wall-clock’ time). As
a proxy for the layout quality, we explore several measures. The most
natural one is the potential energy (loss value) of the final layout which
we find to strongly correlate with the quality of the layout. But we also
explore two additional measures, such as cluster separation and link
length distribution. We begin by comparing the performance of FDL
with the three proposed neural network models, NodeMLP, NeuLay,
and NeuLay-2 for a simple cubic lattice (Fig. 1d, and Fig. S1b). We find
thatwhileNodeMLP andNeuLay offer significant speedup in laying out
this network with a known optimal layout (Fig. 1f), NeuLay-2 with two

GCN layers has the fastest convergence of the energy, prompting us to
focus on this architecture hereafter. Furthermore, we measured the
speedup using GPU hardware (see in the Fig. S11), consistently obser-
ving results similar to that reported in Fig. 1g, h.

We compared the speedup for four networks constructed using
various graph generation models, like the Erdős-Rényi (ER) random
graph algorithm, Barabási-Albert19 (BA)model, Stochastic BlockModel
(SBM)20, andRandomGeometric Graphs (RGG)21.While these networks
span drastically different topologies, sizes, and link densities, in all
cases NeuLay-2 reaches the final state one to two orders of magnitude
faster than FDL (Fig. 1h, i). We find that the speedup increases with the
number of nodes and links (Fig. 1h, i), and falls with increasing network
density (Fig. 1j). The speedup is particularly remarkable for graphswith
a strong community structure, such as networks generated by the
stochastic block model (SBM), and grid-like graphs, like the random
geometric graph (RGG) (red symbols in Fig. 1h–j), compared to graphs
that lack local structure, like the ER and BA networks (blue and green
symbols in Fig. 1h–j). Yet, we observe speedup for each of those net-
works for a fixed density, finding that the speedup scales as N0.8 for 2D
RGG, N0.3 for BA networks, and N0.2 for ER random graphs (Fig. 1h).

NeuLay-2 is not only faster, but also identifies better layouts.
Indeed, while for small and simpler networks, like the cubic lattice
(Fig. 1d), FDL and NeuLay-2 converge to indistinguishable energies,
for larger networks NeuLay-2 identifies a deeper energy minimum
compared to FDL (Fig. 1g). To systematically quantify this difference,
we measured the ratio between the final energy of FDL and NeuLay-2
(ΔE = EFDL/ENeuLay−2). We find this ratio to increase with the size of the
network (Fig. 1g), indicating that for large networks FDL gets trapped
into a local sub-optimal configuration, successfully avoided by
NeuLay-2. This ratio is especially large and increasing with N for BA
and ER graphs, indicating that while NeuLay-2 may not show as high
speedup over FDL for these networks as it does for more structured
architectures, like RGG, it offers a significant advantage in terms of
energy. Aswe show later, this energy difference has a dramatic impact
on the quality of the final layout.

Large structures and outlier Eigenvalues help accelerate the
layout
The higher speedups observed for networks generated by SBM and
RGG, characterized by communities (SBM) and spatial proximity
(RGG), suggests that the speedup is related to the leading eigenvalues
of the adjacencymatrix. To test this hypothesis,we analytically derived
the speedup, finding that: (i) Speedup of NeuLay-2 is expected to
increase with of the number of outlier eigenvalues; (ii) As a falsifiable
test, we predict that removing the outlier eigenvalues should sig-
nificantly reduce the speedup of NeuLay-2; (iii) Keeping only the out-
lier eigenvalues should be sufficient to achieve a speedup comparable
to using the full spectrum.

We tested predictions (i)–(iii) on networks generated by SBM, for
which the number of outlier eigenvalues equals the number of blocks
(communities), allowing for direct control of the spectrum. Figure 2a
shows the evolution of FDL vs NeuLay-2 for four communities, indi-
cating that in NeuLay-2 the communities converge to their final posi-
tions by step 100, much earlier than in FDL. We find the speedup for
SBM to grow with the number of blocks (communities) as ∼n0:77

block
(Fig. 2b). Plotting the speedup vs number of outlier eigenvalues,
(Fig. 2c), we find that for SBM (as well as for RGG), the speedup
increases as ∼n0:96

out with the number of outliers, validating prediction
(i). Yet, it is not clear if the correlation between the speedup and the
number of outliers is causal, or it is driven by some other uncontrolled
features of the graphs. If the outlier eigenvalues are truly responsible
for the speedup, replacingAwith a similarmatrix that lacks the outliers
must reduce the speedup. We, therefore, used the spectral expansion,
A =Atop +Abulk, to separate the outliers, (Atop, Fig. 2e, red part of the
histograms) and the rest of the modes (Abulk, Fig. 2e, blue part of the
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histograms, also see Methods C.). We find that for SBM and RGG,
networks withmultiple outliers, using only the outlier eigenvalues Atop

results in higher speedup than using the full spectrum A, in line with
prediction (iii) (Fig. 2d, red bars). In contrast, removing the outliers of
the RGG spectrum and using only Abulk in NeuLay-2 dramatically

reduces the speedup (Fig. 2d, blue bars), supporting prediction (ii).
Finally, in line with the prediction (i), we do not observe a difference in
the speedup by using A, Atop, or Abulk in networks that lack outlier
eigenvalues, like networks generated by the ER and the BA
model (Fig. 2d).
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Fig. 1 | Laying out networks using neural network. a FDL optimizes the d
dimensional node positions to find a network layout. b NodeMLP replaces the d
dimensional input by a neural network that relies on a fully connected layer (FC) to
project the high dimensional embedding to the d dimensional layout. c NeuLay
encodes the graph structure by graph neural networks, (GCN), that maps the
adjacency matrix to the node positions. We find that for large networks, two GCN
layers are optimal, asmore than two layers can slow down the computation, while a
single layer does not offer the highest speedup. d The evolution of a simple cubic
lattice, starting from a random configuration, showing its gradual convergence to
the lowest energy state as the FDL algorithm identifies its layout. eThe running time
of the four tested models for a cubic lattice with 27 nodes. f The NeuLay-2 (green)
achieves the same final energy state as all othermodels but converges faster. g The
energy ratio of NeuLay-2 and FDL for networks generated by different models (BA,

ER, and RGG) indicates that FDL becomes trapped in higher energy local minima.
The energy ratio increases with network size. The dependence of speedup (the
running time (`wall-clock' time) ratio of FDL and NeuLaymodels) in function of (h)
the number of nodesN and (i) the numberof links L in the network, forfixeddensity
graphs. j Keeping fixed the number of nodes we find that the speedup decreases
with density, L/N. The gray lines corresponds to no speed up, the blue line (green,
red) is the speedup for the ER (BA, RGG) network, respectively. We also measured
the speedup for several real networks, like the Flavor network26, Norwegian Boards
of Directors (public companies)27, Mouse vascular network28, US Power Grid29,
Word Association Network22, Road network-Oakland30, Protein-protein interaction
network23, Facebook social network24 and the network of Internet at the level of
autonomous system25.
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Fig. 2 | The role of leading eigenvalues in network layout. a Comparing the
training steps of FDL (left column) and NeuLay-2 (right column) on a SBM graph
with 100 nodes and four 25 node blocks. The PCA projection, showing in the right
two columns, is colored for the blocks in the graphs. As the panels show, NeuLay-2
separates the blocks early, in contrastwith FDL that finds the blocks only at the very
end. b Speedup in the function of the number of blocks. c Speedup in the function

of the number of outlier eigenvalues that separate from the Wigner semicircle,
indicating that the higher number of outlier eigenvalues yield higher speedup.
d The NeuLay-2 performance using three different graph eigenvalue decomposi-
tions in GCNmodules. e The spectrum line illustrates the separation if eigenvalues
included in d.
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Note that inmost network visualization problemswe do not know
the relevant eigenvalues, nor the eigenvalue combination that offers
the best optimization. Yet, NeuLay-2 automatically identifies struc-
tures useful for accelerating FDL, and offers a fast convergence whe-
ther the network is dominated by outliers (like SBM and RGG), or lacks
multiple outliers (BA, ER), hence improving the layout of arbitrary
networks.

The quality of large network layouts
To illustrate the practical value of NeuLay-2, we used it to lay out
multiple large real networks in three dimensions, d = 3, like the word
association graph (WAN)22 (N = 10,617, L = 63,781), the human protein-
protein interaction network (PPI)23 (N = 18,448, L = 322,285), Facebook
social network24 (N = 22,470, L = 171,002), and the Internet at the
autonomous system level25 (N = 22,963, L = 48,436). For comparison,
we laid out multiple smaller networks as well, like the flavor network26

(N = 182, L = 641), boards of directors (public companies in Norway)27

(N = 854, L = 2745), mouse vascular network28 (N = 1558, L = 2352), US
power grid29 (N = 4941, L = 6594), and the road network in Oakland30

(N = 6105, L = 7,029) (Fig. 1f–h). In all cases, we find NeuLay-2 to be an
order of a magnitude faster than FDL, resulting in a 14-fold improve-
ment in speed for WAN and a 13-fold improvement for PPI (Fig. 1f–h).
Even more important is the fact that for each real network NeuLay-2
converges to a deeper energy state, a difference that is particularly

remarkable for large networks, like the PPI and WAN. We observe the
most dramatic improvement in the case of the Internet, for which
previous successful visualization efforts had to reduce the network to
its backbone31. Indeed, we find that FDL becomes trapped in a sub-
optimal layout, whose energy is 12% larger than the one identified by
NeuLay-2 (Fig. 3a, and Fig. 4a, c). To ensure that this sub-optimal
configuration is not a result of an accidental trapping of FDL in some
localminima,wehave re-runbothNeuLay-2 andFDL ten times, starting
from different initial configurations, each time observing largely
indistinguishable time and energy curves (Fig. 3a).

The lower energy identified by NeuLay-2 has a visually detectable
impact on how informative the layout is: while the higher energy
NeuLay-2 layout has an observable local community structure (Fig. 4a,
b), the FDL layout appears to be largely random (Fig. 4c, d), reminis-
cent of an unstructured hairball. To better assess how well the two
layouts capture the inherent structure of the network, we used the
Louvain algorithm32 to identify 36 communities in the Internet graph,
coloring 12 of themon Fig. 4 for visual clarity. As Fig. 4a, c indicate (see
also the video https://vimeo.com/732791412), while in the NeuLay-2
layout nodes in the samecommunity are spatially co-localized, the FDL
distributes the community members throughout the layout, failing to
co-localize them. To quantify this difference, we measured the link
length distribution of each community’s internal links (Fig. 3c, and
Fig. S10), finding that the distribution identified by NeuLay-2 is much

Time [s]

L
o

s
s
 e

n
e

rg
y

a b

c

FDL (10 runs)

NeuLay-2 (5 runs)

102 103 104

107

108

109

1010

1011

FDL
NeuLay-2

Edge length

0 10 20 30 40
0

500

1000

1500

2000

2500

Random (FDL)

50

4 x 106

8 x 106

6 x 106

Final loss energy

Edge length

10 20 30 355 15 25

0

20

40

60

70

10

50

30

FDL

NeuLay-2
NeuLay-2 FDL

101

Fig. 3 | The interpretability of the layout. The Internet, with 22, 963 nodes, and
48, 436 links is large enough to represent a difficult visualization task for the
existing algorithms. a The time-energy plot shows that NeuLay-2 converges faster
and finds a considerably lower energy state. NeuLay-2 reparameterizes node
positions from the initial iteration, resulting in a significant decrease in the loss-
energy. Indeed, FDL gets trapped in a higher energy state and is unable to reach the
NeuLay-2 energy level even after amuch longer time. The curves correspond to ten
independent runs, that converge to slightly different final energies, as shown in the

inset. b The link length distribution in the layouts, confirming that the FDL layout
has more long links compared to the NeuLay-2 layout. It also reveals that both
layouts differ from a geometrically randomized layout. c The histogram in the
middle panel shows the link length distribution for FDL and NeuLay-2 for a com-
munity identified by the Louvain algorithm. On the left side of the histogram we
show the NeuLay-2 layout, while on the right side the FDL layout, highlighting with
blue nodes and links the same community. See Fig. S10 for the other communities,
that display the same pattern.
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narrower than the one identified by FDL, confirming better spatial
localization. These local differences also impact the global link length
distribution of the two layouts (Fig. 3b), indicating that the FDL layout
generates more long links than the NeuLay-2 layout, which also
explains its larger elastic energy. Additionally, we have introduced a
spatial similarity metric measuring how well the clusters are separated
in the final layout compared to the FDL layout, finding that NeuLay-2
not only discovers but also better separates the clusters in the final
layout (Fig. S8).

The higher energy state to which FDL converges does not neces-
sarily result in a random layout. To see this, we apply a geometric
randomization, by randomly exchanging the nodes, while keeping the
physical coordinates of the layout and the adjacency matrix unchan-
ged. We find that the link length distribution in the FDL layout is

shorter than expected under geometric randomization (Fig. 3b), indi-
cating that FDLdoes converge to a non-random lowenergy layout. Yet,
its higher energy compared to the layout identifiedbyNeuLay-2 results
in FDL’s failure to identify the network’s inherent local community
structure.

Discussion
The proposed NeuLay algorithm, a Graph Neural Network (GNN)
developed to parameterize node features, significantly improves both
the speed and the quality of graph layouts, opening up the possibility
to quickly and reliably visualize large networks. It offers a fast and easy-
to-use tool for large network visualization. We find that, many large
networks have informative large-scale structures that remain hidden if
the layout algorithms do not extract their main structural

Fig. 4 | The 3D layout of the Internet. a The layout generated by NeuLay-2. We
used the Louvain algorithm32 to identify the community structure of the network
and for visual clarity we highlight 12 communities in color. For a better view of the
full 3D representation, see the video https://vimeo.com/732791412. b The FDL, by

being trapped in a higher energy state, fails to identify the local communities, and
the large scale layout appears to be random, resembling a “hairball”. cA local zoom
into the FDL layout, documenting the absence of community structure.
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characteristics and find a way to display them. As we have shown here,
NeuLay excels at this task, producing a high-quality layout, with dis-
tinct clusters and a clear internal structure. It achieves this perfor-
mance by speeding up the dynamics of slow modes. Indeed, the
leading eigenvectors of the adjacency matrix, or Principal Compo-
nents (PC) in machine learning, are the “slow modes” in the dynamics
of FDL33,34. NeuLay projects the graph layout to the top few PC (Fig. 2a)
from the first iteration, separating the large communities which slows
the dynamics, and catalyzing a faster convergence.

ThemechanismappliedbyNeuLay to accelerate convergence is not
restricted to graph layouts, but can be applied to any energy mini-
mization problem on graphs, or graph dynamical processes expressed
as gradient descent. Indeed, FDL is a special case of general reaction-
diffusion problems on graphs, where in (1)LX is the “diffusion” and
FNN ≡−∂VNN/∂x are the nonlinear “reaction” terms. As our theoretical
results do not depend on the exact form of VNN, they apply to any
problem in the reaction-diffusion class, independent if the node features
xi, are densities (e.g. of material flowing on the graph), or probabilities
(e.g. susceptible, or infected nodes in epidemic spreading). Hence the
method can improve the finding of endemic state in epidemics35, help
with interventions and mitigation36, improve the modeling of cascading
failures37, and help find optimal graph layout in chip design38, as well as
accelerate models capturing opinion dynamics in social media6,39.

Currently, the efficiency of NeuLay is limited only by the com-
putational complexity of GNN, which, while considerably faster than
FDL, can still be expensive on exceptionally large graphs. We foresee
further improvement by exploiting symmetries or hierarchical
structures40 present in networks, leading to more efficient message-
passing in GNN. These ideas could result in more advanced GNN
architectures similar toGraphSage41 andClusterGCN42, whichmake the
graph sparser and thus reduces the computational complexity of GNN.
It wouldbe equally valuable thedevelopmentofGNNorotherAI-based
tools to accelerate the layout of physical networks whose links are not
straight, but curve to avoid overlaps43,44, capturing network layouts
observed in the brain connectome or metamaterials.

Methods
Force Directed Layout (FDL)
Consider an undirected network with N nodes and A 2 RN ×N adja-
cencymatrix, where Aij is the weight of the link connecting node, i and
j, and denote with X = (x1, . . . xN) the N × d matrix that captures the
location xi of node i in a d-dimensional Euclidean space. FDL brings
connected nodes close by minimizing the total energy, L, that also
plays the role of the “loss function” in machine learning9–12:

LðX Þ=Vel +VNN , Vel =
1
2

X

i,j

Aij ∣xi � xj ∣
2 =

1
2
Tr½XTLX � ð2Þ

where L =D −A is the graph Laplacian and Dij = δij∑kAik is the degree
matrix. For the repulsive potential VNN we choose a short-range
Gaussian repulsion VNNðX Þ=aN

P
ij expð∣xi � xj ∣

2=4r20Þ43, but any
rapidly falling repulsive potential would work. FDL performs gradient
descent (GD) tominimize the total energy (eq.(1)). Note that in FDL the
repulsive potential is usually chosen to be “long-range”, e.g.
VNN = aN∑ijr0/∥xi − xj∥. This results in an all-to-all repulsive force with
complexity O(N2). The Barnes-Hut algorithm16 can be used to reduce
this to OðN logNÞ. Despite the widespread use of long-range repulsive
forces for the layout of large and sparse graphs, short-range repulsive
forces are lower complexity (O(N)).We note that, while FDLwith short-
range forces failed to yield a good layout for the Internet graph, FDL
using long-range forces does yield a good layout. However, because
long-range forces can become intractable for large graphs, we
implement short-range forces43. Our experiments on the Internet
graph show that NeuLay does not require long-range forces to find
good layouts for large graphs.

Reparametrizing node positions with deep neural networks
To reparametrize X, we introduce two architectures: NodeMLP and
NeuLay, described in Figure 1 and in Supplementary Information A.
NodeMLP starts from an N × h dimensional random Z embedding of
the nodes. It then projects to the target dimension d = 3 of the layout
by defining node positions as X = σ(ZW + b), where σ is a nonlinear
function such as tanh and θ = {Z,W, b} are the set of trainable para-
meters of the neural network. NeuLay uses GNN, that starts from an
N × h random embedding Z and applies a Graph Convolutional Net-
works (GCN)14 layer to obtain G1 = σ(f(A)ZW(1)), with f ðAÞ= ~D

�1=2~A~D
�1=2

,
where ~A=A+ I and ~Dii =

P
j
~Aij is the degreematrix of ~A. HereG1 isN × h1

and is a new embedding of nodes in h1 dimensions that incorporates
the graph structure via f(A). In the two-layer NeuLay-2, we apply
another GCN with output G2 = σ(f(A)G1W(2)) and dimensions N × h2.
Then, we concatenate the layer outputs G1 and G2 with Z along the
embedding dimensions to obtain the (h + h1 + h2) dimensional node
embedding G = [Z∣G1∣G2]. Finally, we project G down to d dimension as
X = σ(GW + b). The set of trainable parameters of NeuLay-2 are
θ = {Z,W(1),W(2),W, b}.

To obtain a layout we input X(θ) into the FDL algorithm and using
the loss function (2). We perform energy minimization using gradient
descent. Instead of optimizing X directly, we optimize the neural net-
work parameters θ. Using the chain rule we can rewrite the GD equa-
tion (1) in terms of θa,

dθa
dt

= � ε
∂L
∂θa

= � ε
X

i

∂xi

∂θa

∂L
∂xi

ð3Þ

Unlike the familiar uses of deep neural networks, where training is
done only once, here we retrain each θ for each layout.

The role of outliers in the eigenspectrum
To understand the mechanism that drive the faster convergence of
NeuLay, we study the spectral expansions A=

P
iλiψiψ

T
i and

L=D� A=
P

iliϕiϕ
T
i .While in general the eigenvectorsψiofA andϕiof

L differ, in RGG and SBM all node degrees are close to an average
degree <k> and we have L≈hkiI � A, yielding ϕi ≈ψi and li≈hki � λi.
Therefore, the elastic energy Vel =Tr½XTLX �=2 in (2) dominates in the
early stages of the optimization. Using (1) and L≈Vel to examine the
early stage evolution of the overlap of X with ψi for graphs where
L≈hkiI � A, finding

d ψT
i X

� �

dt
≈� εψT

i LX = � εðhki � λiÞψT
i X : ð4Þ

Hence, for FDL on lattices, RGG, and SBM, the mode ψT
i X for each i

evolves almost independently of othermodes j ≠ i. Eq. (4) predicts that
in early iterations themagnitude of themodeψT

i X drops exponentially
with a rate �εðhki � λiÞ, and that modes with the largest λi drop at the
slowest rate during GD (as L is positive semi-definite, λi ≤ hki). Impor-
tantly, if the spectrum of A contains “outlier” eigenvalues {λo}, with
λo≫meani[λi], the corresponding modes ψT

o X evolve the slowest.
Specifically, define the set of outlier eigenvalues as the indices
Out = fj∣~λj>meani½~λi�+ σ~λg, with σ~λ being the standard deviation of the
eigenvalues. The projection onto top eigenvectors is defined as
Atop =

P
i2Out

~λiψiψ
T
i and the rest is Abulk=A −Atop.

Both NodeMLP and NeuLay start from a random node embed-
ding Z. The difference is that NodeMLP performs X = σ(ZW + b), while
NeuLay applies G1 = σ(f(A)ZW(1)). In NeuLay we choose
f ðAÞ= ~D

�1=2~A~D
�1=2

, which for lattices, RGG and SBM, again has
approximately the same eigenvectors as A. Using the spectrum
f ðAÞ=Pi

~λiψiψ
T to expand Z =∑iziψi, we find f ðAÞZ =

P
i
~λiziψi. In

graphs with many outliers significantly larger than the bulk of the
eigenvalues, the outliers dominate the spectral expansion and
f ðAÞZ≈Pi2Out

~λiziψi. Hence, when performing GD dZ=dt = � ε∂ZL, in
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the presence of a GCN layer the gradients for outliers are magnified
by ~λi, supporting prediction (i), that the more outliers eigenvalues
the graph has, the higher the speedup.We usedOut, the set of outlier
eigenvalues to build Atop and Abulk to separate the relevance of the
outlier eigenvalues in predictions (ii) and (iii). The details for how the
outliers eigenvectors result in a faster drop in loss dL=dt refer to
Supplementary Information C.

Data availability
All data that support the plots within this paper and other findings of
this study are available at https://github.com/csabath95/NeuLay.
gitand the listed public sources: the word association graph (WAN)22:
[http://w3.usf.edu/FreeAssociation/], the human protein-protein
interaction network (PPI)23, the Facebook social network data24:
http://snap.stanford.edu/index.html, the Internet at the autonomous
system level25: http://www-personal.umich.edu/~mejn/netdata/, the
flavor network26, boards of directors (public companies in Norway)27:
https://networks.skewed.de/net/board_directors, US power grid29:
http://www-personal.umich.edu/~mejn/netdata/, and the road net-
work in Oakland30: http://snap.stanford.edu/index.html.

Code availability
Code is available for this paper at https://github.com/csabath95/
NeuLay.git. All other codes that support the plotswithin this paper and
other findings of this study are available from the corresponding
author upon request.
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