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Improving the generalizability of protein-
ligand binding predictions with AI-Bind

Ayan Chatterjee1, Robin Walters2, Zohair Shafi 2, Omair Shafi Ahmed2,
Michael Sebek 1,3, Deisy Gysi1,3,4, Rose Yu5, Tina Eliassi-Rad1,2,6,7,
Albert-László Barabási1,3,8 & Giulia Menichetti 1,3,9

Identifying novel drug-target interactions is a critical and rate-limiting step in
drug discovery.While deep learningmodels have been proposed to accelerate
the identification process, here we show that state-of-the-art models fail to
generalize to novel (i.e., never-before-seen) structures. We unveil the
mechanisms responsible for this shortcoming, demonstrating how models
rely on shortcuts that leverage the topology of the protein-ligand bipartite
network, rather than learning the node features. Here we introduce AI-Bind, a
pipeline that combines network-based sampling strategies with unsupervised
pre-training to improve binding predictions for novel proteins and ligands.We
validate AI-Bind predictions via docking simulations and comparison with
recent experimental evidence, and step up the process of interpreting
machine learning prediction of protein-ligand binding by identifying potential
active binding sites on the amino acid sequence. AI-Bind is a high-throughput
approach to identify drug-target combinations with the potential of becoming
a powerful tool in drug discovery.

The accurate prediction of binding interactions between chemicals
and proteins is a critical step in drug discovery, necessary to identify
new drugs and novel therapeutic targets, to reduce the failure rate in
clinical trials, and to predict the safety of drugs1. While molecular
dynamics and docking simulations2,3 are frequently employed to
identify potential protein-ligand binding, the computational com-
plexity (namely, run-times) of the simulations and the lack of 3D pro-
tein structures significantly limit the coverage and the feasibility of
large-scale testing. Therefore, machine learning (ML) and artificial
intelligence (AI) based models have been proposed to circumvent the
computational limitations of the existing approaches4, leading to the
development of models that rely either on deep learning architectures
or chemical feature representations5–7.

Deep learning frameworks formulate the binding prediction
problem as either a binary classification task or a regression task.
The successful training of a binary classifier requires positive samples,
pairs of proteins and ligands that are known to bind to each
other, typically extracted from protein-ligand binding databases like
DrugBank8, BindingDB9, Tox2110, ChEMBL11, or Drug Target Commons
(DTC)12. Training also requires negative samples, i.e., pairs that do
not interact or only weakly interact. However, the positive and
the negative annotations associated with different proteins and
ligands are not evenly distributed, but some proteins and ligands have
disproportionately more positive annotations than negative ones, and
vice-versa, an annotation imbalance learned by the ML models, which
then predict that some proteins and ligands bind disproportionately
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more often than others. In other words, the ML models learn the
binding patterns from the degree of the nodes in the protein-ligand
interaction network, neglecting relevant node metadata, like the che-
mical structures of the ligands or the amino acid sequences of the
proteins5,13. This annotation imbalance leads to good performance as
quantified by the Area Under the Receiver Operating Characteristics
(AUROC) and the Area Under the Precision Recall Curve (AUPRC) for
the unknown annotations associated with missing links in the protein-
ligand interaction network used for training. A key signal of such
shortcut learning is the degradation of the performance of an ML
model when asked to predict binding between novel (i.e., never-
before-seen) protein targets and ligands. Thismodeling limitation is in-
linewith the findings ofGeirhos et al.14, who showed that deep learning
methods tend to exploit shortcuts in training data to achieve good
performance. Laarhoven et al. discuss similar bias in drug-target
interaction data and its effect on cross-validation performance15. Lee
et al.16 and Wang et al.17 proposed approaches that partly address
shortcut learning, but fail to generalize to unexplored proteins, i.e.,
proteins that lack sufficient binding annotations, or originate from
organisms with no close relatives in current protein databases. More
recently, models such asMolTrans18, MONN19, and TransDTI20, explore
innovative structural representations of protein and ligandmolecules.
Though these models better leverage the molecular structures to
predict binding, end-to-end training limits their ability to generalize
beyond the molecular scaffolds present in the training data.

Here, we introduce AI-Bind, a pipeline for predicting protein-
ligand binding which can successfully generalize to unseen proteins
and ligands. AI-Bind combines network science methods with unsu-
pervised pre-training to control for the over-fitting and the annotation
imbalanceof existing libraries.We leverage the notion of shortest path
distance on a network to identify distant protein-ligand pairs as
negative samples. Combining these network-derived negatives with
experimentally validated non-binding protein-ligand pairs, we ensure
sufficient positive and negative samples for each node in the training
data. Additionally, AI-Bind learns, in an unsupervised fashion, the
representation of the node features, i.e., the chemical structures of
ligand molecules or the amino acid sequences of protein targets,
helping circumvent the model’s dependency on limited binding data.
Instead of training the deep neural networks in an end-to-end fashion
using binding data, we pre-train the embeddings for proteins and
ligands using larger chemical libraries, allowing us to generalize the
prediction task to chemical structures, beyond those present in the
training data.

Results
Limitations of existing ML models
ML models characterize the likelihood of each node (proteins and
ligands) to bind to other nodes according to the features and the
annotations in the training data. While annotations capture known
protein-ligand interactions, features refer to the chemical structures of
proteins and ligands, which determine their physical and chemical
properties, and are expressed as amino acid sequences or 3D struc-
tures for proteins, and chemical SMILES21 for ligands. In an ideal sce-
nario, the ML model learns the patterns characterizing the features
which drive the protein-ligand interactions, capturing the physical and
chemical properties of a protein and of a ligand that determine the
mutual binding affinity. Yet, as we show next, multiple state-of-the-art
deep learning models, such as DeepPurpose5, ignore the features
and rely largely on annotations, i.e., the degree information for each
protein and ligand in the drug-target interaction (DTI) network, as a
shortcut to make new binding predictions. A bipartite network
represents the binding information as a graph with two different
types of nodes: one corresponding to proteins (also called targets,
representing for example, human or viral proteins) and the other
corresponding to ligands (representing potential drugs or natural

compounds), respectively. A protein-ligand annotation, i.e., evidence
that a ligand binds to a protein, is represented as a link between the
protein and the ligand in the bipartite network22. Experimentally vali-
dated annotations define the known DTI network. While binding
depends only on the detailed chemical characteristics of the nodes
(proteins and ligands), as we show here, many ML models predictions
are primarily driven by the topology of the DTI network. We begin by
noticing that the number of annotations linked to a protein or a ligand
follows a fat-tailed distribution22, indicating that the vast majority of
proteins and ligands have only a small number of annotations, which
then coexist with a few hubs, nodes with an exceptionally large num-
ber of binding records22. For example, the number of annotations for
proteins follows a power law distribution with degree exponent
γp = 2.84 in the BindingDB data used for training and testing Deep-
Purpose, while the ligands have a degree exponent γl = 2.94 (Fig. 1a).
For these degree exponents, the second moment of the distribution
diverges for large sample sizes, implying that the expected uncertainty
in the binding information is highly significant, limiting our ability to
predict the binding between a single protein and a ligand22,23. Fur-
thermore, positive and negative annotations are determined by
applying a threshold on kinetic constants like the constant of dis-
association Kd. If the kinetic constant associated with a protein-ligand
pair is less than a set threshold, we consider that pair as a positive
or binding sample; otherwise, the pair is tagged as negative
or non-binding. However, Kd is not randomly distributed across
the records, but the number of annotations k and the average Kd per k
(i.e., 〈Kd〉), calculated as the average across all links stemming from
nodes of degree k, are anti-correlated (Fig. 1b), indicating stronger
binding propensity for proteins and ligands with more annotations
(rSpearman(kp, 〈Kd〉) = −0.47 for proteins, rSpearman(kl, 〈Kd〉) = −0.29 for
ligands in the BindingDB data used by DeepPurpose). Furthermore, we
observe lower variability in Kd values across links originating from
high-degree nodes, compared to lower-degree nodes (see Supple-
mentary Note 1). As the annotations follow fat-tailed distributions, the
observed anti-correlation drives the hub proteins and ligands to have
disproportionately more binding records on average, whereas pro-
teins and ligands with fewer annotations have both binding and non-
binding examples. This annotation imbalance prompts the MLmodels
to leverage degree information (positive and negative annotations) in
making binding prediction instead of learning binding patterns from
themolecular structures.We term this phenomenon as the emergence
of topological shortcuts (see Supplementary Note 1).

To investigate the emergence of topological shortcuts, for each
node i with number of annotations ki, we quantify the balance of the
available training information via the degree ratio,

ρi =
k +
i

k +
i + k�

i

=
k +
i

ki
, ð1Þ

where, k +
i is the positive degree, corresponding to the number of

known binding annotations in the training data, and k�
i is the negative

degree, or the number of known non-binding annotations in the
training data (Fig. 2a, b). As most proteins and ligands lack either
binding or non-binding annotations (Table 1), the resulting {ρi} are
close to 1 or 0 (See Fig. 1c above), these ρ values represent the
annotation imbalance in the prediction problem. Asmany state-of-the-
art deep learningmodels, such asDeepPurpose5, uniformly sample the
available positive and negative annotations, they assign higher binding
probability to proteins and ligands with higher ρ (Fig. 2c, d).
Consequently, their binding predictions are driven by topological
shortcuts in the protein-ligand network, which are associated with the
positive and negative annotations present in the training data rather
than the structural features characterizing proteins and ligands.

The higher binding predictions in DeepPurpose for proteins with
large degree ratios (Fig. 2c) prompted us to compare the performance
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of DeepPurpose with network configuration models, algorithms that
ignore the features of proteins and ligands and instead predict the
likelihood of binding by leveraging only topological constraints
derived from the network degree sequence22,24,25. In the configuration

model (Fig. 3a, Methods), the probability of observing a link is deter-
mined only by the degrees of its end nodes. In a 5-fold cross-validation
on the benchmark BindingDB dataset (Table 1), we find that the top-
performing DeepPurpose architecture, Transformer-CNN5, achieves

Fig. 1 | Annotation bias in BindingDB training data and DeepPurpose
predictions. a Distributions of the number of annotations in the benchmark Bin-
dingDB data are shown in double logarithmic axes (log-log plot), indicate that P(kp)
and P(kl) are well approximated by a power law for both proteins (pink) and ligands
(green), with approximate degree exponents γp = 2.84 and γl = 2.94, respectively.
b The average Kd over the links for different degree values {kp} are negatively
correlated with rSpearman(kp, 〈Kd〉) = −0.47. For the ligands, we observe similar anti-
correlation with rSpearman(kl, 〈Kd〉) = −0.29. c The distribution of degree ratios for
the proteins {ρp} and the ligands {ρl} in the original DeepPurpose training dataset
(for a selected fold from the 5-fold cross-validation). The degree ratio, defined in

Equation (1), refers to the ratio of positive annotations to the total annotations for a
given node in the protein-ligand interaction network. After thresholding Kd values
associated with each link to create the binary labels, the hubs on average get more
positive or binding annotations, whereas the low-degree nodes get both binding
and non-binding annotations. As the hubs are associated with many links in the
network, learning the type of binding from the degree information helps ML
models to achieve good performance by leveraging shortcut learning. The Source
Data File provided with the manuscript contains the number of samples per data
point in the plots.
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Fig. 2 | Drug-Target Interaction Network. a The drug-target interaction network
used to train the DeepPurpose models consists of 10,416 ligands and 1391 protein
targets. Ligands and proteins are represented by green and pink nodes, respec-
tively. b Network neighborhood of the ligand Ripk1-IN-7. Solid links represent
positive orbinding annotations, while dashed links refer to negative or non-binding
annotations. Ripk1-IN-7 has one positive and two negative annotations in the
training data, implying a degree ratio ρ of 0.33. c Protein degree ratios {ρp} and

DeepPurpose predictions are highly correlated with rSpearman=0.94. We observe
that the predictions for the top 100 false positive protein-ligand pairs include the
proteins with large {ρp} represented by the red crosses, whereas the false negative
pairs are contributed by the proteins with small {ρp} which are represented by the
blue triangles. d Examples of proteins and ligands with large degree ratios, con-
tributing to false positive predictions. Source data are provided as a Source
Data file.
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Fig. 3 | Comparing DeepPurpose and the duplex configuration model. a The
duplex configurationmodel includes two layers corresponding to binding andnon-
binding annotations between proteins (pink nodes) and ligands (green nodes).
Positive link (solid lines) and negative link (dashed lines) probabilities are deter-
mined by entropy maximization (see Methods), and used to estimate the condi-
tional probability in transductive (Equation (7)), semi-inductive (Equation (8)), and
inductive (Equation (9)) scenarios. b–d The average performance of the

configuration model achieves similar results as DeepPurpose on the benchmark
BindingDBdata in a 5-fold cross-validation (dots represent the performance of each
fold, bar height corresponds to the mean, n = 5). Breakdown of performances
shows good predictive performance in transductive and semi-inductive scenarios.
However, the same models have poor predictive performance in the inductive
setting. Source data are provided as a Source Data file.

Table 1 | BindingDB training data for DeepPurpose

Node type Has only positive annotations Has only negative annotations Has both annotations Total node count

Ligand 3084 6539 793 10,416

Protein 168 556 667 1391

Most ligands and proteins in DeepPurpose training data have either binding or non-binding annotations, which creates imbalance in the degree ratio (see Equation (1)).
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AUROC of 0.86 (±0.005) and AUPRC of 0.64 (±0.009). At the same
time, the network configuration model on the same data achieves an
AUROC of 0.86 (±0.005) and AUPRC of 0.61 (±0.009) (Fig. 3b).

In other words, the network configuration model, relying only on
annotations, performs just as well as the deep learning model, con-
firming that the topology of the protein-ligand interaction network
drives the prediction task. The major driving factor of the topological
shortcuts is the monotone relation between k and 〈Kd〉, which associ-
ates a link type with the degree of its end nodes. Moreover, in Bin-
dingDB we observe that hubs encounter less variance for 〈Kd〉
compared to the low degree nodes, making the degree of the hubs a
stronger predictor of the link types. Thus, the configuration model is
able to achieve good test performance in predicting the link types
associated with the hubs. Since hub nodes contribute to the majority
of the links in the protein-ligand bipartite network, the configuration
model achieves excellent test performance by making correct pre-
dictions that mainly leverage the degree information of the hubs. To
further investigate this hypothesis, we tested three distinct scenarios:
(i) unseen edges (Transductive test), when both proteins and ligands
from the test dataset arepresent in the trainingdata; (ii) unseen targets
(Semi-inductive test), when only the ligands from the test dataset are
present in the training data; (iii) unseen nodes (Inductive test), when
both proteins and ligands from the test dataset are absent in the
training data.

We find that both DeepPurpose and the configuration model
perform well in scenarios (i) and (ii) (Fig. 3c, d). However, for the
inductive test scenario (iii), when confronted with new proteins and
ligands, both performances drop significantly (Table 2). DeepPur-
pose has an AUROC of 0.61 (±0.074) and AUPRC of 0.43 (±0.071),
comparable to the configuration model, for which we have AUROC
of 0.50 and AUPRC of 0.30 (±0.038). To offer a final piece of
evidence that DeepPurpose disregards node features, we randomly
shuffled the chemical SMILES21 and amino acid sequences in the
training set, while keeping the same positive and negative annota-
tions per node, an operation that did not change the test perfor-
mance (Table 3). These tests confirm that DeepPurpose leverages
network topology as a learning shortcut and fails to generalize pre-
dictions to proteins and ligands beyond the training data, indicating
that we must use inductive testing to evaluate the true performance
of ML models.

Beyond DeepPurpose, models such as MolTrans18 explore differ-
ent structural representations of protein and ligand molecules.
We investigated transductive, semi-inductive, and inductive perfor-
mances for MolTrans, a state-of-the-art protein-ligand binding pre-
diction model which uses a combination of sub-structural pattern
mining algorithm, interaction modeling module, and an augmented

transformer encoder to better learn the molecular structures (see
Supplementary Note 8). While the innovative representation of the
molecules improves upon DeepPurpose in transductive tests (AUROC
of 0.952 (±0.041), AUPRC of 0.887 (±0.087)), the same representation
still relies only on the training DTI and fails to generalize to novel
molecular structures, as captured by the poor performance in induc-
tive tests (AUROC of 0.572 (±0.104), AUPRC of 0.432 (±0.105)).

AI-Bind and statistics across models
AI-Bind is a deep learning pipeline that combines network-derived
learning strategies with unsupervised pre-trained node features to
optimize the exploration of the binding properties of novel proteins
and ligands. Our pipeline is compatible with various neural archi-
tectures, three of whichwe propose here: VecNet, Siamesemodel, and
VAENet. AI-Bind uses two inputs (Fig. 4a): For ligands, it takes as input
isomeric SMILES, which capture the structures of ligandmolecules. AI-
Bind considers a search-space consisting of all the drug molecules
available in DrugBank and the naturally occurring compounds in the
Natural Compounds in Food Database (NCFD) (see Supplementary
Note 4), and can be extended by leveraging larger chemical libraries
like PubChem26. For proteins, AI-Bind uses as input the amino
acid sequences retrieved from the protein databases Protein Data
Bank (PDB)27, the Universal Protein knowledgebase (UniProt)28, and
GeneCards29.

AI-Bind benefits from several novel features compared to the
state-of-the-art: (a) It relies on network-derived negatives to balance
the number of positive and negative samples for each protein and
ligand. To be specific, it uses protein-ligand pairs with shortest path
distance ≥7 as negative samples, ensuring that the neural networks
observe both binding and non-binding examples for each protein and
ligand (see Fig. 5, Methods, Supplementary Note 5). (b) During unsu-
pervised pre-training, AI-Bind uses the node embeddings trained on
larger collections of chemical and protein structures, compared to the
set with known binding annotations, allowing AI-Bind to learn a wider
variety of structural patterns. Indeed, while models like DeepPurpose
were trained on 862,337 ligands and 7504 proteins provided in Bin-
dingDB, or 7307 ligands and 4762 proteins provided in DrugBank, the
unsupervised representation in AI-Bind’s VecNet is trained on 19.9
million compounds from ZINC30 and ChEMBL11 databases, and on
546,790 proteins from Swiss-Prot31.

We begin the model’s validation by systematically comparing
the performance of AI-Bind to DeepPurpose and the configuration
model on a 5-fold cross-validation using the network-derived dataset
for transductive, semi-inductive, and inductive tests. AI-Bind’s Vec-
Net model uses pre-trained mol2vec32 and protvec33 embeddings
combined with a simple multi-layer perceptron to learn protein-
ligand binding (Fig. 4b, see Methods). We observe that the config-
uration model performs poorly in inductive testing (AUROC 0.5,
AUPRC 0.464 ± 0.017). Due to the network-derived negatives that
remove the annotation imbalance, DeepPurpose shows improved
performance for novel proteins and ligands (AUROC 0.646 ± 0.023,
AUPRC 0.576 ± 0.009). The best performance on unseen nodes is
observed for AI-Bind’s VecNet, with AUROC of 0.75 ± 0.032
and AUPRC of 0.718 ± 0.029 (see Fig. 4c and see Supplementary
Table 3 for a summary of the performances). The unsupervised pre-
training for ligand embeddings allows us to generalize AI-Bind to

Table 2 | DeepPurpose and duplex configuration model performances on BindingDB dataset

Model Transductive Semi-inductive Inductive

AUROC AUPRC AUROC AUPRC AUROC AUPRC

DeepPurpose 0.82 ± 0.004 0.48 ±0.004 0.76 ±0.041 0.70 ±0.073 0.61 ± 0.074 0.43 ±0.071

Config. Model 0.83 ± 0.011 0.50 ±0.012 0.77 ± 0.055 0.71 ± 0.073 0.50 ±0.00 0.30 ±0.038

DeepPurpose and the duplex configuration model perform well in both transductive and inductive tests on the benchmark BindingDB data. Both models fail to achieve good performance in the
inductive test, i.e., while predicting over both unseen proteins and ligands.

Table 3 | Assigning SMILES and amino acid sequences
randomly

Version AUROC AUPRC

Original 0.86 ±0.005 0.64 ±0.009

Randomized 0.84 ±0.004 0.62 ± 0.004

A random reshuffle of SMILES and amino acid sequences does not affect the performance of
DeepPurpose. This outcome suggests the limitation of DeepPurpose in learning chemical
structures.
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naturally occurring compounds, characterized by complex chemical
structures and fewer training annotations compared to drugs (see
Supplementary Note 2), obtaining performances comparable to
those obtained for drugs (Fig. 4d).

Beyond DeepPurpose, AI-Bind’s VecNet consistently achieves
better inductive performance (AUROC 0.75 ± 0.032, and AUPRC

0.718 ± 0.029) compared to MolTrans (AUROC 0.612 ± 0.028,
and AUPRC 0.478 ± 0.034). The comparison between AI-Bind and
state-of-the-art models like DeepPrupose and MolTrans validates
how unsupervised pre-training of the molecular embeddings
improves the generalizability of binding prediction models (see
Supplementary Note 8).
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Validation of AI-Bind predictions on COVID-19 proteins
For a better understanding of the reliability of the AI-Bind predictions,
we move beyond standard ML cross-validation and compare our pre-
dictions with molecular docking simulations, and in vitro and clinical
results on protein-ligand binding. Docking simulations offer a reliable
but computationally intensive method to predict (or validate) binding
between proteins and ligands34. Motivated by the need to model rapid
response to sudden health crises, we chose as our validation set the 26
SARS-CoV-2 viral proteins and the 332 human proteins targeted by the
SARS-CoV-2 viral proteins35–37. These proteins are missing from the
training data of AI-Bind, hence represent novel targets and allow us to
rely on recent efforts to understand the biology of COVID-19 to vali-
date the AI-Bind predictions.We retrieved the amino acid sequences in
FASTA format for 16 SARS-CoV-2 viral proteins and 330 human pro-
teins from UniProt28, and use them as input to AI-Bind’s VecNet.
Binding between viral and human proteins is necessary for the virus to
synthesize its own viral proteins and to facilitate its replication. Our
goal is to predict drugs inDrugBankor naturally occurring compounds
that can bind to any of the 16 SARS-CoV-2 or 330 human proteins
associated with COVID-19, potentially disrupting the viral infection.
After sorting all protein-ligand pairs based on their binding probability
predicted by AI-Bind’s VecNet (pVecNet

ij ), we tested the predicted top
100 and bottom 100 binding interactions with blind docking simula-
tions using AutoDock Vina34, which estimates binding affinity by con-
sidering all possible binding locations on the 3D protein structures
(see Methods). Of the 54 proteins present in the top 100 and bottom
100 predicted pairs, 23 had 3D structures available in PDB27 and
UniProt28, and 51 of the 59 involved ligand structures were available on
PubChem26, allowing us to perform 128 docking simulations (84
involving the top and 44 involving the bottom predictions). We find
that 74 out of 84 top predictions from AI-Bind are indeed validated
bindingpairs. Furthermore,wefind that themedianbinding affinity for
the top VecNet predictions is −7.65 kcal mol−1, while for the bottom
ones is −3.0 kcal mol−1 (Fig. 6a), confirming that for AI-Bind, the top
predictions show significantly higher binding propensity than the
bottom ones (Kruskal–Wallis H-test p-value of 2.5*10−5). As a second
test, we obtained the binary labels (binding or non-binding) from
docking and AI-Bind predictions using the threshold of −1.75 kcalmol−1

for binding affinities38 and the optimal threshold on pVecNet
ij corre-

sponding to the highest F1-Score on the inductive test set (see Sup-
plementary Note 7, Supplementary Fig. 11). In the derived confusion
matrix we observe sensitivity = 0.76, representing the fraction of
bindingpredictionsmadebyAI-Bind that are truebinders, i.e., the ratio
True Positives/(True Positives + False Negatives), and F1-Score = 0.82.
These two numbers confirm that the rank list provided by AI-Bind
predictions shows a significant similarity to the rank list obtained by
binding affinities compared to a random selection (Fig. 6b).

We further check the stability of these performance metrics by
randomly choosing 20 protein-ligand pairs in a 5-fold bootstrapping
set-up and observe F1-Score = 0.90 ± 0.02. Additionally, we find that
the predictions made by AI-Bind’s VecNet (pVecNet

ij ) and the free
energy of protein-ligand binding obtained from docking (ΔG) are
anti-correlated with rSpearmanðpVecNet

ij ,ΔGÞ= �0:51. As lower binding
affinity values correspond to stronger binding, these results docu-
ment the agreement between AI-Bind predictions and docking
simulations.

Among the 50 ligands with the highest average binding prob-
ability we find two FDA-approved drugs Anidulafungin (NDA#021948)
and Cyclosporine (ANDA#065017). Experimental evidence39 shows
that these drugs have anti-viral activity at very low concentrations in
the dose-response curves, and have IC50 values of 4.64 μM and
5.82μM, respectively, measured by immunofluorescence analysis with
an antibody specific for the viral N protein of SARS-CoV-2. These
low IC50 values support anti-viral activity, confirming that Anidula-
fungin and Cyclosporine bind to COVID-19 related proteins40, and the
activity at low concentrations indicate that they are safe to use for
treating COVID-19 patients1. Anidulafungin binds to the SARS-CoV-2
viral Non-structural protein 12 (Nsp12), a key therapeutic target for
coronaviruses41.

AI-Bind also offers several novel predictions with potential
therapeutic relevance. For example, it predicts that the naturally
occurring compounds Spironolactone, Oleanolic acid, and Echino-
cystic acid are potential ligands for COVID-19 proteins, all three
ligands binding to Tripartite motif-containing protein 59 (Trim59), a
human protein to which the SARS-CoV-2 viral proteins Open reading
frames 3a (Orf3a) and Non-structural protein 9 (Nsp9) bind42. Auto-
Dock Vina supports these predictions, offering binding affinities
−7.1 kcal mol−1, −8.0 kcal mol−1, and −7.6 kcal mol−1, respectively.

Spironolactone, found in rainbow trout43, has been suggested to
reduce COVID susceptibility44,45. Oleanolic acid is present in apple,
tomato, strawberry, and peach, and has been proposed as a potential
anti-viral agent for COVID-1946. Oleanolic acid, which passed the drug
efficacy benchmark ADME (Absorption, Distribution, Metabolism, and
Excretion), plays an important role in controlling viral replication of
SARS-CoV-247 and is effective in preventing virus entry at low viral
loads46. Finally, Echinocystic acid, found in sunflower, basil, and gala
apples, is known for its anti-inflammatory48 and anti-viral activity49, but
its potential anti-viral role in COVID-19 is yet to be validated.

Identifying active binding sites
Beyond predicting binding probability, AI-Bind can also be used to
identify the probable active binding sites on the amino acid sequence,
even in absence of a 3D protein structure. Specifically, we can use AI-
Bind to identify which amino acid trigrams in the amino acid sequence
play the most significant role in binding predictions, indicative of
potential protein-ligand binding locations. We perturb each amino
acid trigram in the sequence and observe the changes in AI-Bind pre-
diction (see Supplementary Note 9). Valleys in the obtained binding
probability profile represent the trigrams most predictive of binding
locations on the amino acid sequence. To validate the AI-Bind pre-
dicted binding sites, we focus on the human protein Trim59, a protein
for which we have results from multiple docking simulations. We
visualized thebindingpockets onTrim59using PyMOL50 and identified
the amino acid residues binding to the ligand molecules (Fig. 6c). We
find that the amino acid residues responsible for binding directly map
to the valleys in the binding probability profile identified byAI-Bind. By
viewing the docking results for Pipecuronium, Buprenorphine and
Voclosporin, ligands that bind to threedifferent pockets onTrim59,we
mark the valleys corresponding to the respective binding sites on the
binding probability profiles (Fig. 6c). For example, pocket 1, where
Pipecuronium binds, corresponds to five AI-Bind predicted valleys
marked by 1A, 1B, 1C, 1D and 1E.

Fig. 4 | AI-Bind pipeline: VecNet Performance and Validation. a AI-Bind pipeline
generates embeddings for ligands (drugs and natural compounds) and proteins
using unsupervised pre-training. These embeddings are used to train the deep
models. Top predictions are validated using docking simulations and are used as
potential binders to test experimentally. b AI-Bind’s VecNet architecture uses
Mol2vec and ProtVec for generating the node embeddings. VecNet is trained in a
5-fold cross-validation set-up. Averaged prediction over the 5 folds is used as the
final output of VecNet. c–f The average performance for a 5-fold cross-validation of

VecNet, DeepPurpose, and Configuration Model (dots represent the performance
of each fold, bar height corresponds to the mean, n = 5). All the models perform
similarly in case of predicting binding for unseen edges (transductive) and unseen
targets (semi-inductive). The advantage of using deep learning and unsupervised
pre-training is observed in the case of unseen nodes (inductive test). AI-Bind’s
VecNet is the best performing model across all the scenarios. Additionally, we
observe a similar performance of VecNet for both drugs and natural compounds.
Source data are provided as a Source Data file.
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Fig. 5 | Network-Derived Negatives. a Protein-ligand bipartite network con-
sisting of only binding (positive) annotations for drugs and natural com-
pounds (green) to proteins (pink). b Degree distributions of ligands and
proteins are fat-tailed in nature. c Shortest path length distribution capturing
all possible protein-ligand pairs. We use protein-ligand pairs with shortest
path distance of 7 for training, while absolute negatives obtained from Bin-
dingDB and pairs with shortest path distances ≥11 are used for validation and

test. d Average experimental kinetic constant as a function of the shortest
path distance. Higher path distance corresponds to higher Ki in BindingDB.
Beyond 7 hops, the expected constant exceeds the binding threshold of
106 nM (dashed line). e An example of a protein-ligand pair that is 7 hops
apart and is used as a negative sample in the AI-Bind training set. Source data
are provided as a Source Data file.
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Since not all the valleys in the binding probability profile map
to binding sites, we use the protein secondary structure to
prioritize the valleys. We predict the secondary structure from the
amino acid sequence using S4PRED51 and identify the regions
with α-helix, β-sheet and coil. In particular, α-helices prefer non-
solvent accessible environments52, contain non-polar amino
acid residues53, and consist of weaker inter-molecular interactions54.
Thus, the presence of α-helices reduce the chances of binding

between a ligand and a protein. In contrast, β-sheets and non-regular
coil regions (unstructured regions) are preferred by ligands as
active binding sites since they provide more binding opportunity to
other molecules55. Indeed, most of the ligand-binding valleys
in Fig. 6c map to β-sheets and coils on Trim59, associated with
pockets 1 and 2 (27 out of 34 ligands validated by docking). By
combining the binding probability profile predicted by AI-Bind
and the secondary structure predicted by S4PRED, we can create an
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optimal search grid for the subsequent docking simulations, drasti-
cally reducing runtime.

We pursued further validation of AI-Bind predicted binding sites
with a gold standard protein binding dataset56 and with P2Rank,
another state-of-the-art binding site prediction model57, to extensively
assess the reliability of the AI-Bind pipeline (see Supplementary
Note 13).

In summary, ML models often fail in real world settings when
making predictions on data that they were not explicitly trained upon,
despite achieving good test performance based on traditional
ML metrics. It is, therefore, necessary to validate the applicability of
these models before deploying them. The documented validation of
the AI-Bind predictions with molecular docking simulations and
in vitro experiments offers us confidence that AI-Bind is an effective
prioritization tool in diverse settings.

Discussion
The accurate prediction of drug-target interactions is an essential
precondition of drug discovery. Here we showed that by taking
topological shortcuts, existing deep learningmodels significantly limit
their predictive power. Indeed, a mechanistic and quantitative
understanding of the origins of these shortcuts indicates that uniform
sampling in the presenceof annotation imbalance drivesMLmodels to
disregard the features of proteins and ligands, limiting their ability to
generalize to novel protein targets and ligand structures. To address
these shortcomings, we introduced a pipeline, AI-Bind, which miti-
gates the annotation imbalance of the training data by introducing
network-derived negative annotations inferred via shortest path dis-
tance, and improves the transferability of the ML models to novel
protein and ligand structures by unsupervised pre-training. The pro-
posed unsupervised pre-training of node features also influences the
quality of false predictions, removing potential structural biases
towards specific protein families (see Supplementary Note 10). Once
we improved the statistical sampling of the training data and gener-
ated the node embeddings in anunsupervised fashion, weobserved an
increase in performance compared to DeepPurpose, resulting in
commendable AUROC (24% improvement) and AUPRC (74%
improvement) and, most importantly, an ability to predict beyond
proteins and ligands present in the training dataset.

A major limitation of using binding predictions in drug discovery
is that binding to disease-related protein targets does not always imply
a therapeutic treatment. As a future work, we plan to extend our
implementation by introducing anML-based classifier to sort the list of
potential ligands according to their pharmaceutical (therapeutic)
effects, combining the current node features with additional metrics
derived from traditional network medicine approaches58.

AI-Bind leverages ligands’ Morgan fingerprints and proteins’
amino acid sequences, which encode relevant properties of the
molecules: from the presence of hydrogen donors, hydrogen
acceptors, count of different atoms, chirality, and solubility for
ligands, to the existence of R groups, N or C terminus in proteins. All

these properties influence the mechanisms driving protein-ligand
binding (see Supplementary Note 11)59. Yet, the binding phenomenon
is largely dependent on the 3D structures of the molecules, which
determines the binding pocket structures and the rotation of the
bonds. We plan to embed the 3D structures of protein and ligand
molecules, which will take into account higher order molecular
properties driving protein-ligand binding and refine the predictive
power of AI-Bind. To maximize generalization across 3D structure,
we will use SE(3) equivariant networks to learn embeddings. Equiv-
ariancehas proven to be a powerful tool for improving generalization
over molecular structures60,61. We also plan to explore the perfor-
mance of AI-Bind over the entire druggable genome62, allowing us to
predict for each protein, which domains are responsible for the
binding predictions. Finally, we envision enabling AI-Bind to predict
the kinetic constants Kd, Ki, IC50, and EC50 by formulating a regres-
sion task over these variables.

The existing docking infrastructures allow screening for a spe-
cific protein structure against wide chemical libraries. Indeed,
VirtualFlow63, an open-source drug discovery platform offers virtual
screening over more than 1.4 billion commercially available ligands.
However, running docking simulations over these vast libraries
incurs high costs for data preparation and computation time and are
often limited to only proteins with 3D structures27. For example, in
our validation step, only half (23 out of 54) of the 3D structures of the
proteins associated with COVID-19 were available. Since AI-Bind
only requires the chemical SMILES for ligands21 and amino acid
sequences for proteins, it can offer fast screening for large libraries of
targets and molecules without requiring 3D structures, guiding the
computationally expensive docking simulations on selected protein-
ligand pairs.

Methods
Data preparation
We use InChIKeys and amino acid sequences as the unique identifiers
for ligands and targets, respectively. Positive and negative samples are
selected from DrugBank, BindingDB and DTC (see Supplementary
Note 4). We consider samples from BindingDB and DTC to be binding
or non-binding basedon the kinetic constants Ki, Kd, IC50, andEC50.We
use thresholds of ≤103 nM and ≥106 nM to obtain positive and (abso-
lute) negative annotations, respectively38.We thenfilter out all samples
outside the temperature range 20–45 °C to remove ambiguous pairs.
All amino acid sequences were obtained from UniProt28.

Positive samples. We consider the binding information from Drug-
Bank as positive samples. From these annotations, we removed 53
pairs that are available in BindingDB and have kinetic constants
≥106 nM. To obtain additional positive samples for drugs, we searched
in BindingDB using their InChIKeys. We obtained 4330 binding anno-
tations from BindingDB related to the drugs in DrugBank. Overall, we
gathered a total of 28,188 positive samples for drugs. We identified
also naturally occurring/food-borne compounds, small molecules

Fig. 6 | Validating and interpretingAI-Bindpredictions. aDistribution of binding
affinities for top and bottom 100 predictions made by AI-Bind’s VecNet over viral
and human proteins associated with COVID-19. We ran docking on top 84 predic-
tions and bottom 44 predictions. We observe that the top binding predic-
tions (blue) of AI-Bind show lower binding energies (better binding) compared to
the bottom predictions (orange). Considering the binding threshold of −1.75 kcal
mol−1, 88% of the top predicted pairs by AI-Bind are inline with the docking simu-
lations.bWeconstruct the confusionmatrix for the topand thebottompredictions
fromAI-Bind.We obtain the true labels using the threshold of −1.75 kcal mol−1 (gray
dashed line) on the binding affinities from docking. We observe that AI-Bind pre-
dictions produce excellent F1-Score, offering predictions significantly better than
random selection. c Binding probability profile for the human protein Trim59.
Multiple valleys in the profile directly map to the amino acid residues to which the

ligands bind and are indicative of the active binding sites on the amino acid
sequence. We identify the valleys on the binding probability profiles for three
ligands Pipecuronium, Buprenorphine and Voclosporin, which bind at different
pockets on Trim59. Valleys for these pockets have beenmapped back to the amino
acid sequence (valleys 1A, 1B, 1C, 1D, and 1E for pocket 1, valleys 2A and 2B for
pocket 2, and valleys 3A and 3B for pocket 3). Furthermore, we highlight the sec-
ondary structure of Trim59 obtained from the amino acid sequence. Valleys con-
taining the β-pleated sheets and the coils are more prone to binding compared to
the ones with the α-helices52–55. Combining the binding probability profile and the
secondary protein structure allows us to identify active binding sites, guiding the
design of an optimal search grid for docking simulations. Source data are provided
as a Source Data file.
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generally lacking target annotations, by leveraging the Natural Com-
pounds in Food Database (NCFD) (see Supplementary Note 4)64–66. We
queriedBindingDBandDTCwith the associated InChIKeys, obtaining a
total of 1555 positive samples.

Network-derived negative samples. To generate annotation-
balanced training data for AI-Bind, we merged the positive annota-
tions derived from DrugBank, BindingDB, and DTC, for a total of 5104
targets and 8111 ligands, of which 485 are naturally occurring, and
calculated the shortest path distribution. All odd-path lengths in the
bipartite network correspond to protein-ligand pairs (Fig. 5c). Overall,
the longer the shortest path distance separating a protein and a ligand,
the higher the kinetic constant observed in BindingDB (Fig. 5d). In
particular, pairs more than 7 hops apart have, on average, kinetic
constants Ki ≥ 106 nM,which is generally considered above the protein-
ligand binding threshold38 (see Supplementary Note 5). We randomly
selected a subset of protein-ligand pairs which are 7 hops apart as
negative samples, to create an overall class balance between positive
and negative samples in the training data. Finally, we removed all
nodes with only positive or only negative samples and obtained the
network-derived negative instances.

We performed testing and validation on ≥11-hop distant pairs.
Additionally, we included in testing and validation the absolute non-
binding pairs derived from BindingDB by thresholding the kinetic
constants (Ki, Kd, IC50, and EC50).

Network configuration model
Overview. Protein-ligand annotations are naturally embedded in a
bipartite duplex network, consisting of a set of nodes, comprising
all proteins and ligands, interacting in two layers, each reflecting a
distinct type of interaction linking the same pair of nodes24. More
specifically, one layer (Layer 1) captures the positive or binding
annotations, while the second layer (Layer 2) collects the negative or
non-binding annotations (Fig. 3a). A multilink m between two nodes
encodes the pattern of links connecting these nodes in different
layers. In particular,m = (1, 0) indicates positive interactions,m = (0,
1) refers to negative interactions,m = (0, 0) represents the absence of
any typeof annotations, andm = (1, 1) ismathematically forbidden, as
binding and non-binding cannot coexist for the same pair of protein
and ligand.

We developed a canonical bipartite duplex null model that con-
serves on average the number of positive and negative annotations of
each node, while correctly rewiring positive and negative links and
avoiding forbidden configurations. Bymeans of entropymaximization
with constraints, we derive the analytical formulation of eachmultilink
probability and the conditional probability of observing positive
binding once an annotation is reported.

Mathematical formulation. Let Am
ij be the multi-adjacency matrix

representing the bipartite duplex of ligands ({i}) and proteins ({j}), with
elements equal to 1 if there is a multilink m between i and j and zero
otherwise. We define the multidegree of ligand i and target j as

km
i =

XNT

j = 1

Am
ij , tmj =

XNL

i = 1

Am
ij , ð2Þ

where NT is the number of targets and NL is the number of ligands.
A bipartite duplex network ensemble can be defined as the set of

all duplexes satisfying a given set of constraints, such as the expected
multidegree sequences defined in Equation (2). We determine the
probability of observing a bipartite duplex network PðG!Þ by entropy
maximization with multidegree constraints fkð1,0Þ

i g, fkð0,1Þ
i g, ftð1,0Þj g, and

ftð0,1Þj g, and corresponding Lagrangian multipliers fλð1,0Þi g, fλð0,1Þi g,

fμð1,0Þ
j g, and fμð0,1Þ

j g24,25. The probability PðG!Þ factorizes as

PðG!Þ= 1
Z

Y
ij

exp �
X

m≠ð0,0Þ,ð1,1Þ
ðλmi +μm

j ÞAm
ij

" #
, ð3Þ

with

Z =
Y
ij

1 +
X

m≠ð0,0Þ,ð1,1Þ
e�ðλmi +μm

j Þ
" #

: ð4Þ

Multilink probabilities pm
ij are determined by the derivatives of log

(Z) according to ðλmi +μm
j Þ. For instance, the probability of observing a

positive annotation is

pð1,0Þ
ij =

e�ðλð1,0Þi + μð1,0Þ
j Þ

1 + e�ðλð1,0Þi + μð1,0Þ
j Þ + e�ðλð0,1Þi +μð0,1Þ

j Þ
, ð5Þ

while the probability of observing a negative annotation follows

pð0,1Þ
ij =

e�ðλð0,1Þi + μð0,1Þ
j Þ

1 + e�ðλð1,0Þi + μð1,0Þ
j Þ + e�ðλð0,1Þi +μð0,1Þ

j Þ
, ð6Þ

with pð1,0Þ
ij +pð0,1Þ

ij +pð0,0Þ
ij = 1.

In this theoretical framework, binding prediction is inherently
conditional, as for each ligand i andprotein j, we test only the presence
of positive and negative annotations. Consequently, pð1,0Þ

ij and pð0,1Þ
ij are

normalized by the probability of observing a generic annotation
pð1,0Þ
ij +pð0,1Þ

ij . In case of unseen edges, binding prediction is determined
by

pconditional
ij =

pð1,0Þ
ij

pð1,0Þ
ij +pð0,1Þ

ij

, ð7Þ

while in case of unseen target j*, the binding probability towards a
known compound i follows

pconditional
ij*

=
pð1,0Þ
ij

D E
j

pð1,0Þ
ij

D E
j
+ pð0,1Þ

ij

D E
j

=ρi, ð8Þ

where 〈⋅〉j denotes the average over all known targets, and ρi follows
from Equation (1). In case of unseen ligand i* and target j*, the binding
probability is determined by the overall number of positive (L(1, 0)) and
negative (L(0, 1)) annotations, i.e.,

pconditional
i* j*

=
pð1,0Þ
ij

D E
ij

pð1,0Þ
ij

D E
ij
+ pð0,1Þ

ij

D E
ij

=
Lð1,0Þ

Lð1,0Þ + Lð0,1Þ
, ð9Þ

where 〈⋅〉ij indicates the average over all known pairs of ligands and
targets.

Novel deep learning architectures
VecNet. VecNet uses thepre-trainedmol2vec32 andprotvec33models
(Fig. 4b). These models create 300- and 100-dimensional embeddings
for ligands and proteins, respectively. Based on word2vec67,
these methods treat the Morgan fingerprint68 and the amino acid
sequences as sentences, where words are fingerprint fragments or
amino acid trigrams. The training is unsupervised and independent
from the following binding prediction task.

VAENet. VAENet uses a Variational Auto-Encoder69, an unsupervised
learning technique, to embed ligands onto a latent space. The Morgan
fingerprint is directly fed to convolutional layers. The auto-encoder
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creates latent space embeddings byminimizing the loss of information
while reconstructing the molecule from the latent representation. We
train the Variational Auto-Encoder on 9.5 million chemicals from ZINC
database30, and all drugs and natural compounds in our binding
dataset. Similar to VecNet, we use ProtVec for target embeddings.

Siamesemodel. The Siamesemodel embeds ligands andproteins into
the same space using a one-shot learning approach70. We construct
triplets of the form 〈protein target, non−binding ligand, binding
ligand〉 and train the model to find an embedding space that max-
imizes the Euclidean distances between non-binding pairs, while
minimizing it for the binding ones.

File preparation for docking simulations. We performed docking
simulations for 128protein-ligand interactions foundwithin the top 100
andbottom100predictionsofAI-Bind. ThePDBaccessioncodes for the
3D structures of the proteins are listed in Supplementary Table 8. The
steps to implement docking simulations in AutoDock Vina34 include:
1. Obtain the 3D ligand structures in SDF format from PubChem and

save it in .pdb format with PyMOL for use in AutoDockTools.
2. Download the 3Dprotein structures in .pdb format and load them

into AutoDockTools to remove water molecules from the protein
structure, add all hydrogen atoms, and the Kollman charge to the
protein.

3. Save both the protein and the ligand structures in .pdbqt format
using AutoDockTools.

4. Create the grid for docking that encompasses the whole protein
structure. This grid selection ensures a blind docking set-up, so
that all locations on the protein are considered for determining
the binding affinities. The selected grid sizes are available in
gridsizes.txt (see Data availability).

5. Create the configuration files with the grid details for eachprotein
and launch the docking simulation. We consider the protein
molecules to be rigid, whereas the ligand molecules are flexible,
i.e., we allow rotatable bonds for the ligands.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated and analyzed in the study have been deposited on
Zenodo at https://zenodo.org/record/7226641. The top 100 and bot-
tom 100 binding predictions from AI-Bind on the COVID-19 related
proteins are available within the Supplementary Files. A Source Data
File is provided with this manuscript. The publicly available datasets
used in this study can be foundon their associatedwebsites: DrugBank
(https://www.drugbank.com/), BindingDB (https://www.bindingdb.
org), Drug Target Commons (http://drugtargetcommons.fimm.fi/),
Uniprot (https://www.uniprot.org/), Protein Data Bank (https://www.
rcsb.org/), and PubChem (https://pubchem.ncbi.nlm.nih.gov/).

Code availability
The codes that support the findings of this study are openly available
on our GitHub at https://doi.org/10.5281/zenodo.7730755.
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