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Abstract

Unsupervised distribution alignment estimates a transformation that maps two
or more source distributions to a shared aligned distribution given only samples
from each distribution. This task has many applications including generative
modeling, unsupervised domain adaptation, and socially aware learning. Most
prior works use adversarial learning (i.e., min-max optimization), which can be
challenging to optimize and evaluate. A few recent works explore non-adversarial
flow-based (i.e., invertible) approaches, but they lack a unified perspective and
are limited in efficiently aligning multiple distributions. Therefore, we propose to
unify and generalize previous flow-based approaches under a single non-adversarial
framework, which we prove is equivalent to minimizing an upper bound on the
Jensen-Shannon Divergence (JSD). Importantly, our problem reduces to a min-
min, i.e., cooperative, problem and can provide a natural evaluation metric for
unsupervised distribution alignment. We show empirical results on both simulated
and real-world datasets to demonstrate the benefits of our approach. Code is
available at https://github.com/inouye-lab/alignment-upper-bound.

1 Introduction

In many cases, a practitioner has access to multiple related but distinct distributions such as agricultural
measurements from two farms, experimental data collected in different months, or sales data before
and after a major event. Unsupervised distribution alignment (UDA) is the ML task aimed at aligning
these related but distinct distributions in a shared space, without any pairing information between
the samples from these distrbibutions (i.e., unsupervised). This task has many applications such as
generative modeling (e.g., [1]), unsupervised domain adaptation (e.g., [2, 3]), batch effect mitigation
in biology (e.g., [4]), and fairness-aware learning (e.g., [5]).

The most common approach for obtaining such alignment transformations stems from Generative
Adversarial Networks (GAN) [6], which can be viewed as minimizing a lower bound on the Jensen-
Shannon Divergence (JSD) between real and generated distributions. The lower bound is tight if and
only if the inner maximization is solved perfectly. CycleGAN [1] maps between two datasets via two
GAN objectives between the domains and a cycle consistency loss, which encourages approximate
invertibility of the transformations.

However, adversarial learning can be challenging to optimize in practice (see e.g. [7–11]) in part
because of the competitive nature of the min-max optimization problem. Perhaps more importantly,
the research community has resorted to surrogate evaluation metrics for GAN because likelihood
computation is intractable. Specifically, the commonly accepted Frechet Inception Distance (FID)
[12] is only applicable to image or auditory data for which there exist publicly available classifiers
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trained on large-scale data. Moreover, the concrete implementation of FID can have issues due to
seemingly trivial changes in image resizing algorithms [13].

Recently, flow-based methods with a tractable likelihood have been proposed for the UDA task [2, 14–
16]. Specifically, iterative flow methods [14, 15] proposed alternative approaches to distribution
alignment via iteratively building up a deep model via simpler maps. AlignFlow [2] leverages
invertible models to make the model cycle-consistent (i.e., invertible) by construction and introduces
exact log-likelihood loss terms derived from standard flow-based generative models that complement
the adversarial loss terms. On the other hand, log-likelihood ratio minimizing flows (LRMF) [16] use
invertible flow models and density estimation for distribution alignment without adversarial learning
and define a new metric based on the log-likelihood ratio.

However, iterative flow models [14, 15] do not explicitly reduce a global divergence measure
and actually solve non-standard adversarial problems via alternating optimization (see [15]).
AlignFlow [2] assumes that the shared density model for all distributions is a fixed Gaussian and
lacks an explicit alignment metric. LRMF [16] may only partially align distributions if the target
distribution is not in the model class. Also, the LRMF metric is limited because it is only defined for
two distributions and depends on the shared density model class.

To address these issues, we unify existing flow-based methods (both AlignFlow and LRMF) under
a common cooperative (i.e., non-adversarial) framework by proving that a minimization over a
shared density model is a variational upper bound of the JSD. The unifying theory also suggests a
natural domain-agnostic metric for UDA that can be applied to any domain including tabular data
(where FID is inapplicable). This metric is analogous to the Evidence Lower Bound (ELBO), i.e.,
it is a variational bound that is useful for both training models and comparing models via held-
out test evaluation. Furthermore, this unification enables straightforward and parameter-efficient
multi-distribution alignment because the distributions share a latent space density model.

We summarize our contributions as follows:

• We prove that a minimization over a shared variational density model is a variational
upper bound on a generalized version of JSD that allows for more than two distributions.
Importantly, we theoretically quantify the bound gap and show that it can be made tight if
the density model class is flexible enough.

• Based on this JSD upper bound, we derive a novel unified framework for cooperative (i.e.,
non-adversarial) flow-based UDA that includes a novel domain-agnostic AUB metric and
explain its relationship to prior flow-based alignment methods.

• Throughout experiments, we demonstrate that our framework consistently shows superior
performance in both our proposed and existing measures on simulated and real-world
datasets. We also empirically show that our model is more parameter-efficient than the
baseline models.

Notation We will denote distributions as PX(x) where X is the corresponding random variable.
Invertible functions will be denoted by T (·). We will use Xj ∼ PXj

to denote the observed random
variable from the j-th distribution. We will use Zj ≜ Tj(Xj) ∼ PZj

≡ PTj(Xj) to denote the latent
random variable of the j-th distribution after applying Tj to Xj (and note that Xj = T−1

j (Zj)).
We will denote the mixtures of these observed or latent distributions as PXmix ≜

∑
jwjPXj and

PZmix ≜
∑

jwjPZj
, where w is a probability vector. We denote KL divergence, entropy, and cross

entropy as KL(·, ·), H(·), and Hc(·, ·), respectively, where KL(P,Q) = Hc(P,Q)−H(P ).

2 Alignment Upper Bound Loss

In this section, we will present our main theoretical result by proving an upper bound on the
generalized JSD divergence, deriving our loss function based on this upper bound, and then showing
that minimizing this upper bound results in aligned distributions assuming the model components
have a large enough capacity.

Background: Normalizing Flows and Invertible Models. Normalizing flows are generative
models that have tractable distributions where exact likelihood evaluation and exact sampling are
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Figure 1: In our AUB framework, domain specific transformation functions {Tj(·)}kj=1 and a density
model Q are cooperatively trained to make the transformed representations be indistinguishable
in the shared latent space, i.e., aligned. (a) 1-D example. By minimizing our proposed AUB loss,
the transformation functions T1 and T2 are trained to map the corresponding distributions PX1

and
PX2

to latent distributions PT1(X1) and PT2(X2) that have higher likelihood with respect to a base
distribution Q. The density model Q, on the other hand, is trained to fit the mixture of the latent
distributions PT1(X1) and PT2(x2). (b) Intuitively, the optimization process of our method can be
viewed as making the Q distribution tight around the mixture of latent distributions to increase the
likelihood (i.e., MLE) while the transformation functions T1 and T2 are encouraged to expand to
fill the latent space defined by Q. Eventually, the latent distributions and Q converge to the same
distribution, which means that they are aligned.

possible [17]. Flow models leverage the change of variables formula to create an invertible mapping
T such that PX(x) = PZ(T (x))|JT (x)| where PZ is a known latent distribution and |JT (x)| is
the absolute value of determinant of the Jacobian of the invertible map T . To sample from PX ,
one needs to first sample from the latent distribution PZ and then apply the inverse transform T−1.
Therefore, the key challenge in designing invertible models is to have computationally efficient
inverse evaluation for sampling and Jacobian determinant calculation for training. Many approaches
have been proposed by parameterizing mapping function T as deep neural networks including
autoregressive structures [18, 19], coupling layers [20, 21], ordinary differential equations[22], and
invertible residual networks[23, 24]. Flow models can be then learned efficiently by maximizing the
likelihood of the given data.

Background: Generalized JSD. We remind the reader of the generalized Jensen-Shannon
divergence for more than two distributions, where the standard JSD is recovered if w1 = w2 = 0.5.
Definition 2.1 (Generalized Jensen-Shannon Divergence (GJSD) [25]). Given k distributions
{PZj

}kj=1 and a corresponding probability weight vector w, the generalized Jensen-Shannon
divergence is defined as (proof of equivalence in ??.):

GJSDw(PZ1
, · · · , PZk

) ≜
∑

jwj KL(PZj
,
∑

jwjPZj
) ≡ H

(∑
jwjPZj

)
−
∑

jwj H(PZj
) .

2.1 GJSD Variational Upper Bound
The goal of distribution alignment is to find a set of transformations {Tj(·)}kj=1 (which will be
invertible in our case) such that the latent distributions align, i.e., PTj(Xj) = PTj′ (Xj′ )

or equivalently
PZj = PZj′ for all j ̸= j′. Given the properties of divergences, this alignment will happen if and
only if GJSD(PZ1

, · · · , PZk
) = 0. Thus, ideally, we would minimize GJSD directly, i.e.,

min
T1,··· ,Tk∈T

GJSD(PT1(X1), · · · , PTk(Xk)) ≡ min
T1,··· ,Tk∈T

H
(∑

jwjPTj(Xj)

)
−

∑
jwj H(PTj(Xj)) ,

(1)

where T is a class of invertible functions. However, we cannot evaluate the entropy terms in Eqn. 1
because we do not know the density of PXj

; we only have samples from PXj
. Therefore, we will

upper bound the first entropy term in Eqn. 1 (H(
∑

jwjPTj(Xj))) using a variational density model
and decompose the other entropy terms via the change of variables formula for invertible functions.
Theorem 2.2 (GJSD Variational Upper Bound). Given an variational density model class Q, we
form a GJSD variational upper bound:

GJSDw(PZ1 , · · · , PZk
) ≤ min

Q∈Q
Hc(PZmix , Q)−

∑
jwj H(PZj ) ,

where PZmix ≜
∑

jwjPZj
and the bound gap is exactly minQ∈Q KL(PZmix , Q).
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Proof of Theorem 2.2. For any Q ∈ Q, we have the following upper bound:
GJSDw(PZ1 , · · · , PZk

) = Hc(PZmix , Q)−Hc(PZmix , Q)︸ ︷︷ ︸
=0

+H(PZmix)−
∑

jwj H(PZj
)

= Hc(PZmix , Q)−KL(PZmix , Q)−
∑

jwj H(PZj )

≤ Hc(PZmix , Q)−
∑

jwj H(PZj
) ,

where the first equals is merely inflating by Hc(PZmix , Q), the inequality is by the fact that KL
divergence is non-negative, and the bound gap is equal to KL(PZmix , Q). The Q that achieves
the minimum in the upper bound is equivalent to the Q that minimizes the bound gap, i.e.,
Q∗ = argminQ∈Q Hc(PZmix , Q) −

∑
jwj H(PZj

) = argminQ∈Q Hc(PZmix , Q) − H(PZmix) =

argminQ∈Q KL(PZmix , Q), where the second equality is because the entropy terms are constant with
respect to Q and the last is by the definition of KL divergence.

The tightness of the bound depends on how well the class of density models Q (e.g., mixture models,
normalizing flows, or autoregressive densities) can approximate PZmix ; notably, the bound can be
made tight if PZmix ∈ Q. Also, one key feature of this upper bound is that the cross entropy term
can be evaluated using only samples from PXj

and the transformations Tj , i.e., Hc(PZmix , Q) =∑
jwjEPXj

[− logQ(Tj(xj))]. However, we still cannot evaluate the other entropy terms H(PZj
)

since we do not know the density functions of PZj
(or PXj

). Thus, we leverage the fact that the Tj

functions are invertible to define an entropy change of variables.
Lemma 2.3 (Entropy Change of Variables). Let X ∼ PX and Z ≜ T (X) ∼ PZ , where T is an
invertible transformation. The entropy of Z can be decomposed as follows:

H(PZ) = H(PX) + EPX
[log |JT (x)|] , (2)

where |JT (x)| is the absolute value of the determinant of the Jacobian of T .

The key insight from this lemma is that H(PX) is a constant with respect to T and can thus be
ignored when optimizing T , while EPX

[log |JT (x)|] can be approximated using only samples from
PX (formal proof in ??).

2.2 Alignment Upper Bound (AUB)
Combining Theorem 2.2 and Lemma 2.3, we can arrive at our final objective function which is
equivalent to minimizing the variational upper bound on the GJSD:

GJSDw(PZ1
, · · · , PZk

) ≤ min
Q∈Q

Hc(PZmix , Q)−
∑

jwj H(PZj
) (3)

= min
Q∈Q

∑
jwjEPXj

[− logQ(Tj(x))|JTj
(x)|]−

∑
jwj H(PXj

) , (4)

where the cross entropy term is replaced by its definition provided above, and the last term
−
∑

jwj H(PXj
) is constant with respect to Tj functions so they can be ignored during optimization.

We formally define this loss function as follows.
Definition 2.4 (Alignment Upper Bound Loss). Given k continuous distributions {PXj

}kj=1, a class
of continuous distributions Q, and a probability weight vector w, the alignment upper bound loss is
defined as follows:

LAUB(T1, · · · , Tk; {PXj
}kj=1,Q,w) ≜ min

Q∈Q

∑
jwjEPXj

[− log |JTj
(x)|Q(Tj(x))] , (5)

where Tj are invertible and |JTj
(x)| is the absolute value of the Jacobian determinant.

Notice that this alignment loss can be seen as learning the best base distribution given fixed flow
models Tj . We now consider the theoretical optimum if we optimize over all invertible functions.
Theorem 2.5 (Alignment at Global Minimum of LAUB). If LAUB is minimized over the class of all
invertible functions, a global minimum of LAUB implies that the latent distributions are aligned, i.e.,
PTj(Xj) = PTj′ (Xj′ )

for all j ̸= j′. Notably, this result holds regardless of Q.

Informally, this can be proved by showing that the problem decouples into separate normalizing flow
losses where Q is the base distribution and the optimum is achieved only if PTj(Xj) = Q for all Tj

(formal proof in ??). This alignment of the latent distributions also implies the translation between
any of the observed component distributions. The proof follows directly from Theorem 2.5 and the
change of variables formula.
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Corollary 2.6 (Translation at Global Minimum of LAUB). Similar to Theorem 2.5, a global minimum
of LAUB implies translation between any component distributions using the inverses of Tj , i.e.,
PT−1

j′ (Tj(Xj))
= PXj′ for all j ̸= j′.

As seen in Alg. 1, we use a simple alternating optimization scheme for training our translation models
and variational distribution with cooperative (i.e., min-min) AUB objective, i.e., we aim to optimize:

min
T1,··· ,Tk∈T

min
Q∈Q

∑
jwjEPXj

[− log |JTj
(x)|Q(Tj(x))] . (6)

We emphasize that our framework allows any invertible function for Tj (e.g., coupling-based flows
[20], neural ODE flows [22], or residual flows [23]) and any density model class for Qz (e.g., kernel
densities in low dimensions, mixture models, autoregressive densities [26], or normalizing flows
[21]). Even VAEs [27] could be used where the log likelihood term is upper bounded by the negative
ELBO, which will ensure the objective is still an upper bound of GJSD.

Algorithm 1 Training algorithm for AUB

Input: Datasets {Xj}kj=1 for k domains; n as the batch size; xj as a minibatch for the j-th domain;
normalizing flow models {Tj(xj ; θj)}kj=1; density model Q(z;ϕ); learning rate η; maximum
epoch Emax

Output: {θ̂}kj=1;
for epoch = 1, Emax do

for each batch {xj}kj=1 do
ϕ← ϕ+ η∇ϕ

1
k

∑k
j=1

1
n

∑n
i=1 logQ(Tj(xi,j ; θj);ϕ)

end for
for each batch {xj}kj=1 do
∀j, θj ← θj + η∇θj

1
n

∑n
i=1 log |JTj

(xi,j ; θj)|Q(Tj(xi,j ; θj);ϕ)
end for

end for

AUB for UDA is like ELBO for density estimation. Although AUB and ELBO are for
fundamentally different tasks, we would like to point out the similarities between AUB and ELBO.
First, both are variational bounds of the quantity of interest where the tightness of the bounds depend
on the optimization of the variational distributions. Second, both can be made tight if the class of
variational distributions is powerful enough. Third, both can be used to train a model by minimizing
the objective on training data. Fourth, while neither can be used as an absolute performance metric,
they can both be used to evaluate the relative performance of models on held-out test data. Thus,
AUB can be used for UDA as ELBO has been used for density estimation with the same strengths
and weaknesses such as being a relative metric and requiring an auxiliary model for evaluation.

3 Relationship to Prior Works

AlignFlow without adversarial terms is a special case. As illustrated in Fig. 2, AlignFlow [2]
without adversarial loss terms is a special case of our method for two distributions where the density
model classQ only contains the standard normal distribution (i.e., a singleton class). Thus, AlignFlow
can be viewed as initially optimizing a poor upper bound on JSD; however, the JSD bound becomes
tighter as training progresses because the latent distributions independently move towards the same
normal distribution. By using the same architecture of T and Q, AlignFlow can be also viewed as
sharing the last few layers of the T ’s; however, we note that our approach allows for Q that are
not flows, e.g., autoregressive densities or mixture models as in our toy experiments that even have
alternative non-SGD learning algorithms.

LRMF is special case with only one transformation. As illustrated in Fig. 2, Log-likelihood ratio
minimizing flows (LRMF) [16] is also a special case of our method for only two distributions, where
one transformation is fixed at the identity (i.e., T2 = Id). While the final LRMF objective is a special
case of ours, the theory is developed from a different but complementary perspective. The LRMF
metric depends on the shared density model class, which enables a zero point (or absolute value) of
the metric to be estimated but requires fitting extra density models. Usman et al. [16] do not uncover
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Figure 2: These illustrations of flow-based alignment methods AlignFlow, LRMF, and AUB
demonstrate the differences between each setup. Transformation functions in AlignFlow are
independently trained to map the distributions to a fixed standard normal distribution. T1 in LRMF is
trained to directly map the source distribution PX1

onto the target distribution PX2
, i.e., T2 is the

identity. The density model Q in LRMF is not fixed and is trained to fit the mixture 1
2PZ1

+ 1
2PX2

.
In our AUB setup, T1 and T2 are trained to map the source distributions PX1

and PX2
onto the

shared Q distribution, while Q is trained to fit the mixture w1PZ1
+ w2PZ2

. In every setup, the
latent distributions Z1 and Z2 move closer to the target distribution as training progresses. Details
are provided in section 3.

(a) Original (b) LRMF (c) AUB(ours) (d) Original (e) AlignFlow (f) AUB(ours)

Figure 3: (a-c) LRMF, which only has one transformation T may not be able to align the datasets if
the density model class Q is not expressive enough (in this case Gaussian distributions), while using
two transformations as in our framework can align them. (d-f) AlignFlow (without adversarial terms)
may not align because Q is fixed to a standard normal, while our approach with learnable mixture of
Gaussians for Q is able to learn an alignment (both use the same Tj models). Top row is latent space
and bottom is the data translated into the other space.

the connection of the objective as an upper bound on JSD regardless of the density model class3.
Additionally, to ensure alignment, LRMF requires that the density model class includes the true target
distribution because only one invertible transform is used, while our approach can theoretically align
even if the shared density model class is weak. In other words, our bound holds regardless of the
model class Q, whereas the LRMF-JSD discussion further assumes that the target distribution needs
to be in the Q model class (see Theorem 2.5 and our simulated experiments).

4 Experiment
We analyze the performance of our proposed framework comparing to the relevant flow-based baseline
models. In subsection 4.1, we experiment on a toy dataset to clearly show the benefit of our method
over the baseline flow-based models in a controlled environment. In subsection 4.2 and subsection 4.3,
we demonstrate AUB’s superiority over baseline flow-based models on real-world datasets including
tabular data and high-dimensional MNIST data. In subsection 4.4, we additionally conduct Domain
Adaptation [2, 28] experiments for validating AUB alignment in the context of a downstream task.
Implementation details are provided in ??.

4.1 Toy dataset comparison with related works
Single T vs. Double T (LRMF vs. Ours). We first compare our method with LRMF [16] method.
The task is to translate between the two half-circle distributions (i.e., “moons”). We compared

3LRMF did discuss a connection with JSD but only as "biased estimates of JSD", rather than a theoretic
upper bound of JSD.
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our AUB setup with two maps T1 and T2 to the LRMF setup with only T1 where Q is the set of
independent Gaussian distributions. As illustrated in Fig. 3, the LRMF method fails to transform
between X1 and X2. Even though Q can model the transformed data T1(X1), a Gaussian-based Q
cannot fully model the half-circle distribution of X2. Therefore, LRMF fails to transform between
two distributions. However, in the AUB setup, both latent distributions of T1(X1) and T2(X2) can
be modeled by the same Gaussian distribution Q because of the flexibility in both transformations,
which leads to better translation results in this illustrative example. In conclusion, the performance
of LRMF is limited by the choice of density models Q; if Q fails to model the target distribution,
distribution alignment may not be achieved.

Simple Fixed Q vs. Learnable Q (AlignFlow vs. Ours). Next we compare our AUB setup with
the AlignFlow [2, 3] setup. The task is to translate between two random Gaussian mixture datasets
(i.e., "blobs"). We compared our AUB setup where Q is a mixture of Gaussians with the AlignFlow
setup where Q is a fixed standard normal distribution (the models for T1 and T2 are the same). As
illustrated in Fig. 3, the AlignFlow method fails to transform between X1 and X2, because the
transformed dataset T1(X1) and T2(X2) failed to reach the fixed standard normal distribution Q.
However, in the AUB setup, the shared density model Q adapted to the distributions of T1(X1) and
T2(X2) to enable a tighter alignment bound and thus the translation results are better. In conclusion,
the performance of the AlignFlow model is limited by the power of the invertible functions.

4.2 Unsupervised Distribution Alignment on Tabular Datasets
To showcase the application-agnostic AUB metric and the parameter efficiency of our AUB framework,
we conduct two experiments on real-world tabular datasets. In both experiments, we used four
UCI tabular datasets [29] (MINIBOONE, GAS, HEPMASS, and POWER), following the same
preprocessing as the MAF paper [30]. Train, validation, and test sets are 80%, 10%, and 10% of
the data respectively. Also, the experiments are measured by test AUB defined in Definition 2.4,
where a lower AUB score indicates better performance (see end of section 2.2 for discussion on using
test AUB for evaluation). We emphasize that there is no natural metric for evaluating GAN-based
alignment methods on tabular datasets. Thus, these experiments demonstrate one of the key benefits
of our proposed framework over a GAN-based approach.

Our first experiment was designed to compare alignment performance between our proposed method
and the baseline methods. To separate each dataset into two distributions, we choose the last input
feature from each dataset and discretize it based on whether it is higher or lower than the median
value, which ensures the datasets are of equal size. Given the divided dataset, two transformation
functions (T ) are trained to align the distributions. For baselines, we use AlignFlow MLE, Adv. only,
and hybrid versions and LRMF on top of the original implementation. Because AlignFlow Adv. and
hybrid setups optimize over a mixed objective of AUB (special case) and adversarial losses, to be
fair, we additionally fit an identity-initialized flow model Q to the final T ’s. We use the same T and
Q models wherever possible across all methods (e.g., the same Q is used for LRMF and AUB but
AlignFlow has a fixed Q).

As shown in Table 1, our method shows better performance compared to other methods across all
datasets. In particular, because ours and LRMF (trained with learnable Q) outperform AlignFlow
MLE (trained with fixed Q), we can see that learnable Q plays an important role in distribution
alignment. We also observe that ours shows better performance than LRMF, where the gap may come
from aligning in the shared latent space (ours) rather than aligning in the original data space (LRMF).
AlignFlow Adv. only and hybrid versions show worse performance than ours with a large gap,
which implies our proposed cooperative training is competitive to adversarial methods in aligning
distributions of tabular data.

The second experiment demonstrates alignment between 8 distributions and is designed to show that
our proposed method can be more efficient in terms of model parameter compared to the baseline
methods. For this multi-distribution experiment, we separate each dataset into 8 domains by choosing
the last three features from a given dataset and dividing the dataset by the three medians, e.g.,
(+ + +),(+ +−), ..., (−−−). The results are shown in Table 2 where RealNVP (5) and RealNVP
(10) indicates the number of coupling layers used in the RealNVP architecture respectively. LRMF is
excluded because LRMF is only designed for aligning two distributions.

Comparing AlignFlow RealNVP (5) and RealNVP (10), we can see that AlignFlow can achieve
better alignment with more than double amount of parameters. However, as can be observed in a
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Table 1: Our method outperforms baselines in
terms of AUB score (in nats, lower is better)
for the domain alignment task on four tabular
datasets. Numbers below each dataset indicate
the number of features for the dataset.

MINIB
(42)

GAS
(7)

HEPM
(20)

POW
(5)

LRMF 12.79 -6.17 18.49 -0.93
AF (MLE) 14.08 -6.52 19.37 -0.77

AF (Adv. only) 18.18 -3.15 21.70 -0.39
AF (hybrid) 19.49 -3.76 21.42 -0.43

Ours 12.11 -7.09 18.26 -1.19

Table 2: Our AUB method may be more
parameter efficient than AlignFlow especially
for the multi-distribution setting (8 distributions
in this case) where the number of parameters (in
millions) and AUB score are show below.

# T # Q Total AUB
AF (MLE)

T: RealNVP (5) 1.46 0 1.46 20.16

AF (MLE)
T: RealNVP (10) 4.54 0 4.54 19.85

Ours
T: R.(5), Q: R.(10) 1.46 0.57 2.03 18.82

comparison between AlignFlow with RealNVP (10) and ours, our proposed method can achieve
similar performance with the baseline model but with less than half the parameters. These two
results suggest that our model can be more parameter efficient than AlignFlow for multi-distribution
alignment. We hypothesize that our approach may scale better with respect to the number of
distributions because our Q shares parameters across the distributions and can capture the similarities
between distributions.

4.3 Unsupervised Distribution Alignment on MNIST Dataset
We perform an image translation task on MNIST dataset4 [31] to demonstrate that our distribution
alignment method can be applied to high-dimensional datasets and to validate our AUB metric in a
case where FID is also available. We train ours and baseline models with the digit images of 0, 1,
and 2, and compare the translated results both quantitatively and qualitatively. Specifically, we use
RealNVP invertible models for all translation maps Tj , as well as the density model Q. Note that all
methods are flow-based models and thus images translated back to the original domain are exactly
the same, which implies exact cycle consistency.

As represented in Table 3, both of our approaches outperform the baseline models in terms of FID
and AUB. The lower AUB score indicates our method seems to align the distributions better than
baselines.5 We believe this result comes from our model setup, i.e., a learnable shared density model
and transformation to a shared latent space. Specifically, AlignFlow with a fixed standard normal
distribution as their Q obtains worse AUB because the Q is not powerful enough to model the
complex shared space trained from the real world dataset. On the other hand, LRMF shows the lack
of stability when trained with the relatively simple models that we are using across all methods, i.e.,
RealNVP T and RealNVP Q. We expect this is caused by the restrictions of only using one T for
translation without a shared latent space and the fact that the Q distribution must be able to model the
target distribution to ensure alignment.

Figure 4: Qualitative translation results among
MNIST digits 0-2 show that our method has
better translation results than baselines where
in each block the first column is the original
digit, the second is the latent image, and the
last three are translated results. Each row from
the top indicates LRMF, AlignFlow, and ours
respectively.

Table 3: This table of FID (top) and AUB (bottom)
scores for the three pairwise MNIST translation
tasks show that our method has overall better
performance than baselines across both metrics.
FID score for each translation task is calculated
by averaging scores from each direction and AUB
score is shown in nats. AF is short for AlignFlow.

0↔1 0↔2 1↔2 Avg.
AF (MLE) 38.90 71.17 61.33 57.13

LRMF 224.02 141.70 182.31 182.68
Ours 31.26 43.29 41.55 38.70

AF (MLE) -4797 -4504 -4834 -4711
LRMF -713 -592 -1323 -876
Ours -4824 -4555 -4862 -4747

4under the terms of the Creative Commons Attribution-Share Alike 3.0 license
5While lower AUB scores may only mean a tighter upper bound, as with ELBO (see section 2.2, a lower

upper bound generally means a better model.
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The better quantitative performance of our methods can be corroborated by the qualitative results
as seen in Fig. 4. AlignFlow shows less stable translation results than our method especially for
translating to digit ‘2’ from digits ‘0’ and ‘1’. The second column of LRMF is set to be black because
it does not have a latent representation, and LRMF fails to translate in this situation, which is why
the translated results are nearly the same. We believe this phenomenon comes from the lack of
expressivity of their Q model. On the other hand, our model shows stable results across all translation
cases, which are also quantitatively verified via the lower FID score. Note that our method has a
shared space, so different transformation functions for each domain are trained together. This shared
space may provide advantage in terms of sample complexity and computational complexity compared
to multiple independent flows as in AlignFlow. Similarly, we conducted experiments on a ten-domain
translation in ?? to illustrate that our method with a shared space can be easily scaled to more domain
distributions with less number of parameters than the baseline model. Additionally, we visualize an
interpolation over the shared space from the ten-domain experiment. Detailed descriptions and the
results are provided in ??

4.4 Domain Adaptation on USPS-MNIST dataset
We additionally conducted a domain adaptation (DA) experiment between MNIST to USPS for
externally validating our alignment performance compared to baseline methods. We first reduce the
dimensionality of both datasets to 32 using a pretrained variational autoencoder (VAE), which is
trained jointly on both MNIST and USPS images without any label information (i.e., an unsupervised
VAE). We then learn a translation maps in this latent space via our method and baselines. Finally,
following the typical DA evaluation protocol, we train the classifier with source domain data and
evaluate the performance by applying the classifier on the target domain data translated to the source
domain. Image translation results can be obtained by forwarding the latent translated results to the
pretrained decoder.

As seen in Table 4, our method (right column) performs better than baseline methods. This result
is further empirical evidence that our novel cooperative training can be comparable to adversarial
training in certain cases. As shown in Fig. 5, adversarial loss shows mode collapse, e.g., AF(Adv.
only), AF(1e-2). without careful hyperparameter tuning. The other thing to note is AF (MLE) works
for domain alignment itself (i.e., the translated result is in MNIST domain), but it does not maintain
the class information (i.e., the digit changes from USPS to MNIST). We conjecture that this issue
stems from AlignFlow’s simple and fixed Q distribution where arbitrary rotations of the latent space
have equivalent likelihoods throughout the whole training process and thus class information is lost
while transforming to and from such a Q distribution. On the other hand, our learnable Q guides the
alignment training process such that class information is partially preserved during transformation.
LRMF failed to align since the Q distribution is not complex enough to model the density of the target
distribution. This is the consistent result with our toy dataset experiment (Fig. 3, (a)-(c)). LRMF
does not work well with the simple Q while ours can align two different distributions with a simple
Q because of the shared space. Please note that all models in the table use approximately the same
number of model parameters. Further comparisons are provided in ??.

Table 4: Test classification accuracies for domain adaptation from USPS to MNIST. The number
associated with AlignFlow (AF) is the coefficient of MLE term in its hybrid objective. Adversarial
methods (i.e, AlignFlow Hybrid/AlignFlow Adv. only) are set to stop at 200 epochs.

LRMF AF(Adv.only) AF(1e-2) AF(1e-1) AF(1e0) AF(1e1) AF(MLE) AUB(ours)
Accuracy 12.7% 11.1% 16.6% 63.8% 68.6% 35.7% 22% 77.5%

5 Discussion

Pros and cons of our method compared to adversarial method. Flow-based methods have
different benefits and limitations compared to adversarial methods for distribution alignment. As one
clear difference, our framework provides an application-agnostic yet theoretically grounded evaluation
metric for comparing alignment methods. Additionally, our min-min problem is fundamentally
different than a min-max problem and avoids issues unique to min-max problems (as seen in Fig. 6).
However, a key limitation of our approach compared to GANs is that it is restricted to invertible
models. Also, our method requires training a density model, whereas GANs train a discriminator.
Overall, we suggest our alignment approach is a feasible and fundamentally different alternative to
adversarial, which is currently the only dominant approach. With our foundation, future work could
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Figure 5: Samples of translated images from USPS dataset. The leftmost image shows the original
digits from USPS; all remaining images are the translated digits in MNIST domain.

focus on the performance aspects just as adversarial learning has been improving over the past seven
years but is still an active area of research.

(a) Discriminator loss for
AlignFlow

(b) Validation metric for
AlignFlow

(c) Training loss for
AUB(ours)

(d) Validation loss for
AUB(ours)

Figure 6: The losses for AlignFlow with adversarial learning oscillate and are unstable during training,
while our AUB losses show show smooth convergence because of cooperative (i.e., min-min) training.

Alternating minimization against vanishing gradient problem. As revealed in previous works
[16, 32], the vanishing gradient problem can occur while minimizing a JSD approximation. On the
same line, AUB can also suffer from vanishing gradient if the distributions are disjoint, and Q is fit
very well. However, any Q that does not match PZmix provides an upper bound that we conjecture
is smoother than the true JSD. Thus, in experiments, we have found that alternating minimization
does not suffer from vanishing gradients because Q is not fully fitted at each step but provides a
smooth upper bound. Yet, deeper theoretic and empirical analysis is needed in future work to fully
understand this case.

Extensibility. As mentioned in section 1 and section 2, our proposed idea is a general framework
that can be used with any invertible flow models (e.g., Residual Flows [23], Flow++ [33]) and any
density model (e.g., PixelCNN++ [26], FFJORD [22]). Hence, we argue our proposed idea is not
limited to specific flow-based model or density model. We expect our framework could show better
performance in distribution alignment if it is combined with the aforementioned state-of-the-art
components.

6 Conclusion

In this paper, we propose a novel variational upper bound on the generalized JSD that leads to a
theoretically grounded alignment loss. We then show that this framework unifies previous flow-based
distribution alignment approaches and demonstrate the benefits of our approach compared to these
prior flow-based methods. In particular, our framework allows a straightforward extension to multi-
distribution alignment that could be more parameter efficient than naïvely extending prior approaches.
More broadly, we suggest that our AUB metric can be useful as an application-agnostic metric for
comparing distribution alignment methods (analogously to how ELBO is used to evaluate density
estimation methods). An alignment metric that is not tied to a particular pretrained model (as for
FID) or to a particular data type will be critical for systematic progress in unsupervised distribution
alignment. We hope this paper provides one step in that direction.
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