
Stash: A comprehensive stall-centric
characterization of public cloud VMs for distributed

deep learning
Aakash Sharma, Vivek M. Bhasi, Sonali Singh, Rishabh Jain,

Jashwant Raj Gunasekaran†, Subrata Mitra†, Mahmut Taylan Kandemir, George Kesidis, Chita R. Das
Computer Science and Engineering, Pennsylvania State University

Adobe Research†

{abs5688, vmbhasi, sms821, rishabh, mtk2, gik2, cxd12}@psu.edu, {jgunasekaran, subrata.mitra}@adobe.com

Abstract—Deep neural networks (DNNs) are increasingly pop-
ular owing to their ability to solve complex problems such as
image recognition, autonomous driving, and natural language
processing. Their growing complexity coupled with the use of
larger volumes of training data (to achieve acceptable accuracy)
has warranted the use of GPUs and other accelerators. Such
accelerators are typically expensive, with users having to pay a
high upfront cost to acquire them. For infrequent use, users can,
instead, leverage the public cloud to mitigate the high acquisition
cost. However, with the wide diversity of hardware instances
(particularly GPU instances) available in public cloud, it becomes
challenging for a user to make an appropriate choice from a
cost/performance standpoint.

In this work, we try to address this problem by (i) introducing
a comprehensive distributed deep learning (DDL) profiler Stash,
which determines the various execution stalls that DDL suffers
from, and (ii) using Stash to extensively characterize various
public cloud GPU instances by running popular DNN models
on them. Specifically, it estimates two types of communication
stalls, namely, interconnect and network stalls, that play a
dominant role in DDL execution time. Stash is implemented
on top of prior work, DS-analyzer, that computes only the
CPU and disk stalls. Using our detailed stall characterization,
we list the advantages and shortcomings of public cloud GPU
instances for users to help them make an informed decision(s).
Our characterization results indicate that the more expensive
GPU instances may not be the most performant for all DNN
models and that AWS can sometimes sub-optimally allocate
hardware interconnect resources. Specifically, the intra-machine
interconnect can introduce communication overheads of up to
90% of DNN training time and the network-connected instances
can suffer from up to 5× slowdown compared to training on a
single instance. Furthermore, (iii) we also model the impact of
DNN macroscopic features such as the number of layers and the
number of gradients on communication stalls, and finally, (iv)
we briefly discuss a cost comparison with existing work.

I. INTRODUCTION

The continual growth of Deep Learning (DL) has fuelled
many facets of Artificial Intelligence such as machine vision
[37], natural language processing [9], neuromorphic comput-
ing [44], [45] etc. The advancements in DL have mainly been
driven by the availability of large amounts of training data
as well as powerful compute platforms such as CPU or GPU
clusters, TPUs, NPUs and other accelerators that can handle
increasingly complex/heavy Deep Neural Network (DNN)
computations. However, the ever-growing DNN-model and

training data sizes accompanied by the increasing ubiquity of
DNNs place a higher demand on compute resources for faster
processing speeds and shorter overall training time. Although
current accelerators enable faster training, they are typically
expensive to maintain, owing to their power-hungry nature.
This potentially renders them cost-ineffective, especially in
intermittent training scenarios. To avoid the prohibitively high
upfront cost of purchasing a GPU machine/cluster, users
employ public cloud GPU resources to run their workloads.

Public cloud providers such as AWS, Azure, and GCP
provide a gamut of GPU instance offerings. These offerings
vary in their hardware configurations and pricing. Cloud
providers typically do not allow any flexibility in changing
the CPU vCores, memory or GPUs of an instance, thereby
limiting users to select from pre-configured instances. Note
that the choice of instance type(s) drives the total cost of
training a model [7] and users may rely on benchmarks such
as DawnBench [7], NVIDIA examples [35], etc. or on their
intuition to choose the best instance(s) for their needs.

To address this problem, we introduce a Distributed Deep
Learning (DDL) profiler Stash, which can measure the various
execution stalls (on network, CPU and disk) that a typical
DDL pipeline experiences. Using our profiler, we characterize
various public cloud GPU instances from both a cost and
performance perspective with emphasis on communication-
related stalls. This characterization provides novel insights into
public cloud GPUs and its network, which can be used by
tenants to make an informed decision vis-a-vis choosing the
right DDL cluster configuration for their specific model.

Stash is built by extending existing profiler DS-analyzer [31]
which characterizes single-node DNN jobs in a private Mi-
crosoft cluster with emphasis on the bottlenecks (stalls) caused
due to CPU pre-processing and storage I/O latency. However,
it has a key omission of not profiling communication-related
stalls. Compared to the single-node scenario, where the pri-
mary stalls were observed to be CPU and/or disk I/O stalls
in the DS-Analyzer work, we observe communication stalls
to be the primary bottleneck in both single and multi-node
DDL (which is also corroborated by prior works [33], [48]). In
fact, storage-related stalls can (at least partially) be eliminated
through DRAM caching in early epoch(s) but communication

875

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00023

stalls hamper every iteration of a typical DDL, thus proving
to be a more pressing concern.

Motivated by this, we propose novel techniques to profile
the communication-related stalls of DDL and implement it
as part of Stash. Next, using the profiler, we extensively
characterize public cloud GPU instances for the various stalls
they suffer from while executing a typical DDL pipeline.
A stall analysis on public cloud (AWS in our experiments)
is particularly useful, since instances differ not just in their
hardware offering, but also in the QoS they provide, as
discussed in later sections. Moreover, a systematic study of the
communication overhead of public cloud instances for DDL
is lacking, partly due to the lack of publicly-available tools or
profiling methodologies to measure such an overhead.

Prior DDL profiling related work such as [28] and [55]
only describe methodologies to estimate and simulate com-
munication overheads. While Srifty [28] characterizes some
AWS GPU instances, they do not provide an analysis of the
various slowdowns instances may experience. Instead, they
only provide the DDL throughput offered by instance type (and
cost incurred) without explaining possible causes. Further, they
do not dive into the hardware characteristics of each instance
type, including the interconnect, and the various idiosyncrasies
that may degrade performance. Thus, they simply suggest that
preferring larger GPU instances is always beneficial and that
instance throughput scales near linearly with added GPUs.
However, our analysis suggests that this is not always true.
Also, though they analyse the variance of the AWS network
bandwidth, we note here that network QoS is subject to
high temporal (up to months) and spatial (availability zones,
regions) variations and is hard to definitively characterize,
unlike intra-node hardware. On the other hand, DS-Analyzer
[31] studies DDL ‘fetch’ and ‘prep’ stalls (see next section),
but does not study network stalls.

Hence, we conduct an extensive stall-based characterization
of various GPU-accelerated instances of a public cloud using
Stash. Furthermore, using this profiler, we analyze a number
of DNN architectures to understand which architectural prop-
erties (such as the number and sizes of layers) drive commu-
nication stall behavior. This work attempts to understand and
introspect the peculiarities of DL on public cloud VMs to help
advance systems research.
Our main contributions in this paper can be summarized as
follows:

• We introduce Stash, a profiling tool which can measure
communication stalls (in addition to CPU and disk stalls)
of DDL running on both single and multiple nodes.

• We perform stall-centric characterization of various AWS
GPU instances, using a number of popular DNN mod-
els. The estimated communication overheads from intra-
machine interconnect are found to be up to 90% of the
training time and network-connected instances are found
to be slowed down by up to 5× compared to a single
node instance. Our profiling has led us to some surprising
discoveries regarding the communication overhead expe-
rienced by AWS GPU instances.

• We identify the limitations of each instance type. Specif-
ically, our results indicate that higher capacity GPU
instances do not always lead to better performance and
that AWS hardware interconnects may have various short-
comings.

• We identify architectural features in DNN models that
influence communication stall behavior, namely, the num-
ber of layers as well as the total number of parameters
(size of the DNN model).

The rest of this paper is organized as follows. In Section II,
we discuss the background pertinent to AWS GPU instances
and DS-Analyzer. In Section III, we motivate our problem and
discuss related work. Our characterization scheme is described
in Section IV. The results from our characterizations are
presented in Sections V and VI. And finally, Section VIII
summarizes our major observations and findings.

II. BACKGROUND

In this section, we provide an overview of the GPU instance
family of AWS, along with background on prior work.

A. Public Cloud Offerings

Hardware capabilities, both in terms of compute and inter-
connects, are particularly significant in the context of DDL on
the public cloud, as the GPU instances offered by providers
(such as AWS) have fixed configurations [3], thereby limiting
user choice of a custom single-node training solution. Table I
lists the P family GPU instance types offered by AWS along
with their hardware specifications and pricing. The P4 in-
stances have the most powerful GPUs (NVIDIA A100 Tensor
core GPUs), while the P3 and P2 instances respectively have
the less powerful, yet quite capable, NVIDIA V100 and K80
GPUs. The P3 and P2 instances are of particular interest to
us, as they offer the most variety in terms of the number of
GPUs available per node amongst all GPU instances viable
for DNN training.1

Apart from the GPUs used, the interconnects and network
links available to these instance types also have a significant
impact on the end-to-end training time as they dictate data
transfer speeds during various training steps. Specifically,
interconnect links are utilized during gradient communication
among workers (GPUs) present on the same physical node,
whereas network links are used when the communication is
between workers on different nodes. The interconnect archi-
tecture for the AWS p3.16xlarge and p3.24xlarge instances
[19] is depicted in Figure 1.

B. DS-Analyzer: Stall Characterization

Among the studies that characterize the private cloud DS-
Analyzer [31] is of particular significance to us as it also aims
to identify DNN training bottlenecks, specifically with regards
to ‘fetch’ and ‘prep’ stalls. These stalls refer to the time spent
fetching mini-batches of data from the disk (fetch stall) and
pre-processing it prior to training with it (prep stall).

1P4 is a dedicated offering not considered herein.

876

Instance type(s) GPU(s) VCPUs Interconnect GPU Memory (GB) Main Memory (GB)
Network
Bandwidth
(Gbps)

Price/hr

P4 8×A100 96 NVSwitch 320 1152 400 $32.7726

P3

p3.2xlarge 1×V100 8 PCIe 16 61 up to 10 $3.06
p3.8xlarge 4×V100 32 PCIe + NVLink 64 244 10 $12.24

p3.16xlarge 8×V100 64 PCIe + NVLink 128 488 25 $24.48
p3.24xlarge 8×V100 96 PCIe + NVLink 256 768 100 $31.218

P2
p2.xlarge 1×K80 4 PCIe 12 61 ¡ 10 $0.90
p2.8xlarge 8×K80 32 PCIe 96 488 10 $7.20

p2.16xlarge 16×K80 64 PCIe 192 732 25 $14.40

TABLE I: AWS GPU instance types with prices (N. Virginia).

!"#

"$#%&'()*+,%-

"$
#%
&./

01
%-
-

"$#%&'()*+,%-

234)56

234)56

Fig. 1: P3.16xlarge interconnect architecture.

DS-Analyzer uses three steps to calculate prep and fetch
stalls (refer to Figure 2). Step 2 pre-populates synthetic
data in the GPUs and runs training to measure the maximum
ingestion rate of the system. This is followed by step 3 which
runs training on actual data but with all OS caches cleared2.
Finally, in step 4 , training is run over actual data such that the
entire data is cached in main memory (from the previous step).
The prep stall is calculated by finding the difference between
4 and 2 . This is because there is no disk I/O involved in

step 4 and any difference in training time after deducting
the time spent in GPU processing of 2 will yield the time
spent in pre-processing at CPU. After this, the fetch stall is
calculated by finding the difference of 3 and 4 , since any
increase in time over 4 would be due to disk I/O.

III. DDL STALL ANALYSIS IN PUBLIC CLOUD

In this section, we highlight the novelty of this work
over prior work and discuss related work. We also motivate
the importance of “profiling communication stalls” in DDL,
especially on the public cloud.
Are there prior works which analyze communication
overhead in DDL?
In [33], the authors measure the communication overhead of
training to be 80% of the entire training time. However, they
do not specify any general methodology to measure the actual
overhead. In comparison, [48] characterizes DDL workloads
on Alibaba PAI [6] and observes the communication overhead
to be 62% with the use of parameter server (PS) [24] (whose
communication performance is strictly less than all-reduce
[23], [48]). Moreover, the said work is specific to a private
cluster and specific hardware details of the machines running

2In the original paper, this step is described to be after the next step but
we observed from the DS-analyzer open source code that that is not the case.

the workload are not available. Although they have released a
general profiling methodology using TensorFlow [1] internal
tooling and manual feature extraction, it is limited to Ten-
sorFlow and the PS communication architecture. They build
a general framework for measuring the DDL performance,
specifically for transient cloud instances which are frequently
revoked. This work, too, does not account for communication
stalls. Finally, tools such as nsight [34], nvprof [36] etc. are
incapable of measuring communication stalls as this requires
instrumenting the model and/or framework.

Why should a communication profiler for DDL be intro-
duced?
A communication stall profiler can potentially help in the end
goal of reducing it. In the past, several distributed DNN algo-
rithms have been proposed [8], [11], [13], [24], [26], [53], [54]
to reduce communication overhead of DDL. However, there is
a lack of a profiling tool to measure the real world efficacy with
regards to the communication overhead for various algorithms.
While [55] aims to predict the efficacy of optimizations intro-
duced in DNNs, it only estimates the communication overhead
through simulations based on the available bandwidth and
size of the communicated gradients. A similar strategy is
employed in [28]. Both these works do not measure the actual
communication overhead in the real world, which depends
on a complicated asynchronous communication pattern and,
consequently, suffers from varying bandwidth availability.
Another question that can be asked here is: why not instrument
the framework directly to measure communication overhead?
The problem with instrumenting the framework is that every
layer needs to be instrumented separately since the compute
and communication is overlapped. The instrumentation would
need to measure when computation ends and communication
begins. This requires additional CUDA synchronization calls
for each layer, since GPU kernels are launched asynchronously
and communication is run concurrently. Such synchronizations
might severely alter the execution runtime [55].
Why characterize GPU instances of public clouds?
The gamut of public cloud GPU-based instances available (see
Section II-A) makes the task of choosing the most performant
configuration a non-trivial one for end-users. This is due to the
presence of various stalls in the DDL pipeline as well as the
lack of a good scientific study that characterizes these stalls
in the various public cloud GPU instances. Prior works on
DL characterization such as [2], [14], [17], [20], [28], [31],
[32], [48] do not characterize the instances of the public cloud
for their QoS; consequently, users cannot use these works to

877

choose the appropriate instance type(s). To further complicate
matters, cloud providers offer different types of interconnects
for their GPU-accelerated instance type(s). Apart from the
interconnect type, the user can also ”tie” various instances
through a computer network. These communication options
introduce further complexity to the choice of instance(s) for
DDL. Without a good characterization study to identify what
slowdowns various hardware of the public cloud induce,
existing work on selecting an appropriate cloud configuration
may fall well short of an optimal solution.
How do existing cloud configuration management systems
fall short?
Prior work such as [28], [51] attempt to find the best VM
configuration to run DL while satisfying user constraints. Al-
though the end objective is met in their respective experiments,
these works require extensive characterization and profiling to
accomplish it. With poor characterization, such works may
not predict the “true” throughput of a VM for a given model.
For instance, none of them consider contention in intra-node
network in their performance estimation models. Moreover, the
cost of profiling itself is high and is not considered in the cost
savings shown in their experiments. Our work too incurred cost
in running the characterization experiments but the users can
use the takeaways without running any further experiments.
Essentially, the cost of automating a recommendation system
for cloud configuration is often not considered. However, our
work can be used by users to find an optimal VM configuration
(albeit manually) without any extra cost to them.

IV. METHODOLOGY

In this work, we use the AWS public cloud to run all
experiments. Specifically, we run DDL experiments in the
AWS N. Virginia region using P type instances, which are
AWS’s recommended instance type for DL. All DDL models
are run using PyTorch distributed in synchronized data parallel
setup [25] with collective allreduce [10], [38] for gradient
exchange. This setup is known to have better reproducability,
convergence and performance [28]. We do not focus on the
parameter server [24] communication protocol as its perfor-
mance has been shown to be strictly less than allreduce.

Using our profiler Stash, we characterized various AWS
P type instances (instance family recommended for training)
with reference to four stall parameters, namely, (i) interconnect
stall, (ii) network stall, (iii) CPU stall (prep stall), and (iv)
disk stall (fetch stall). While these stalls provide important
insights into the hardware characteristics of AWS instances,
we also provide a training time and monetary cost compar-
ison of running DDL on various AWS instance types. Our
characterization exploits the repetitive nature of DL, and is
able to calculate the various stalls from a single epoch. This
is possible since the stall characteristics of a single epoch are
representative of that of the entire training time (which scales
linearly with the number of epochs).

A. Characterization
We conduct two types of characterizations, macro and

micro, on AWS instances as explained below.

Macro Characterization: We run DDL using the models
listed in Table II to characterize relevant GPU instances.
We use two types of DNN models in this work: convo-
lutional (CNNs) and transformer-based. Image classification
with CNNs is the most common task used for evaluating ML-
system performance [30]. A more recent work [28] uses CNNs
for their characterization study. Transformers are growing in
popularity and use cases, especially for NLP. We do not
characterize much larger models such as DLRM as cheaper
VMs from the public cloud are infeasible for them. Such large
models may best be run on large dedicated instances such
as the AWS P4 equipped with A100 GPUs and NVswitch
interconnect. The P4 family has only a single type of instance
and hence, a characterization study is not necessary. Large
DNN models often do not fit on a single GPU’s memory,
thereby forcing users to employ techniques such as model and
hybrid parallelism to train the model with multiple GPUs. Our
profiling tool currently supports only data parallelism as stalls
can be fully expressed through it.

Domain Type Name Gradient
size Input Dataset

Vision
Small

AlexNet [21] 9.63M

Imagenet1k [16] (133 GB)

MobileNet-v2 [40] 3.4M
SqueezeNet [15] 0.73M
ShuffleNet [29] 1.8M
ResNet18 [12] 11.18M

Large
ResNet50 [12] 23.59M
VGG11 [43] 132.8M

NLP BERT-large [9] 345M SQuAD 2.0 [39] (45 MB)

TABLE II: DDL models used.

Micro Characterization: We conduct micro characterization
by running synthetic training experiments using two models –
ResNet and VGG. As part of this, we study various aspects
of the model architecture that influence the communication
stalls including the number of layers. We also modulate
certain model architecture features (such as ”residual” network
branches and batch normalization layers) to study their impact
on communication stalls.

B. Profiler Design
A schematic view of the Stash profiler is depicted in Figure

2(a). In the figure, step 1 and step 5 are our contribution
and steps 2 , 3 , and 4 are from the prior work, DS-
Analyzer. Note that Stash pre-populates the GPU memory with
synthetic training data as part of step 1 , 2 and 5 , and runs
training over it. Training over synthetically pre-populated data
has the advantage of eliminating all stalls (CPU, disk etc.)
in the DDL pipeline before the GPU. However, the training
still suffers from GPU related stalls such as communication.
Communication stalls can be categorized into two – (i) in-
terconnect stall (intra-machine), and (ii) network stall (inter-
machine). Below, we describe the methodology of determining
the communication stalls using step 1 , step 2 , and step 5 .

1) Interconnect (I/C) Stall: We define an interconnect stall
as the inter-GPU communication overhead of DDL in a single
machine that arises due to the communication among the
GPUs. This is a key indicator of the performance of the
underlying interconnect and is also indicative of the end-to-end
training time which is determined using two steps:

878

!
"
#
$
%
&

'
&
(
)
#
4
%
&

!"#$%&&'(
!"#$%&%'()*#+
,!-./#0

!"#$%&%'()*#+
,!-./#0

)%*+#,&&'(
!

"
123)(4+)*#
5((6)78##
9)*) 6)78#+
42.9:5/$

-!"#$%&!%
'!"#$%&!

;/<

;/=

(a) High level view of the Stash profiler

!(!) !* !+

!"&#$%&'("%)*+,)"%&-)./

!0 !1 !2 !3

#$%&'("%)*+,)"%&-)./

!"

!"

!"!"!"

,-./

!

"

!"#$%&'""$&#()#*++(,-.$
/(((((((0" !

)-0
12/

&&
'!

"#
$%
&%
&'

(
)*
+%&
,-

!
"#
$%
&%
&'

(b) I/C stall (M: Mini-batches, batch size = n/4
4)

Fig. 2: Our Stash scheme.

1) Stash pre-populates synthetic data in the memory of a
single GPU only such that the number of samples the
GPU processes is the same as that in a single GPU in
a distributed training setup with multiple GPUs. Here,
the batch size for multi-GPU training is kept the same
as that of a single GPU. Stash then performs synthetic
training on just a single GPU (in a multi-GPU machine)
while keeping all other GPUs idle (see step 1 in Figure
2(a)). Since this is a single-GPU training, no inter-GPU
communication overhead is incurred.

2) Stash then runs distributed training, over all GPUs in
the machine, on synthetic data. The number of samples
each GPU processes and the per-GPU batch size is kept
the same as in step 1 .

Note that distributed training adds communication overhead
to the end-to-end training time as a consequence of gradient
synchronization. As a result, the difference in training time
between 2 and 1 essentially yields the interconnect stall
of the model for a particular machine. In essence, we are
comparing the throughput of a single GPU with multiple GPUs
by adjusting the batch size, but relieving the user of the manual
effort of doing so.

We now describe an example of determining interconnect
stalls using Figure 2(b). Suppose that, in a four GPU machine,
the total DNN training dataset consists of n samples and the
training must run over four mini-batches per epoch such that
the batch size per GPU is set to be n/4

4 . Therefore, as part of
1 , Stash will pre-populate only one GPU with n/4 samples

and a training process will be launched for one epoch using
that particular GPU, keeping the other GPUs idle. This single-
GPU training epoch has no need for gradient synchronization
and hence, does not suffer from any communication overhead.
After step 1 , Stash will pre-populate all other GPUs with n/4
samples each as part of step 2 , and launch distributed training
over n samples (i.e., a DDL epoch). These four training
processes will suffer from communication overheads due to
the all-reduce (gradient synchronization) step, as depicted. The
difference between the elapsed time of training over n samples
with 4 GPUs and training over n/4 samples with a single GPU
is the ”communication overhead” (indicated in figure), which

!"
#$
%&
.'
()
&

*
+%
,".
'(
)&

!"#$%&'""$&#

($#)'%*+,-"*!! !!

!

!

"

!"#$%&'.(#)**.+,-"..........$! "

Fig. 3: Network stall calculation.

is essentially the interconnect stall.
2) Network (N/W) Stall: We define a network stall as the

inter-GPU communication overhead of DNN training over
multiple machines that arises due to the network link(s) be-
tween them. This type of stall occurs when DDL is performed
across multiple machines linked through a network. Since the
all-reduce step requires gradients to be sent via both the intra-
machine interconnect network as well as the inter-machine
computer network, the slowest link becomes a communication
bottleneck. Whenever the network link is the slowest link
(compared to intra-node interconnect), network stalls occur.
Stash determines network stalls as follows. Synthetic dis-
tributed training is run over multiple machines connected via
network such that the total number of GPUs is the same as in
the single machine training of 2 . This is step 5 in Figure 2.
The difference between the training times of 2 and 5 yields
the network stall of the model.

Again, Figure 3 depicts an example of determining network
stall. Suppose we run step 2 in an instance with 4 GPUs
over n data samples, as shown in the figure. As part of 5 ,
Stash now runs training over 2 instances with 2 GPUs each
but with n/2 samples per machine keeping the per GPU batch
size constant. When we train on 2 instances with a network
link between them, the communication is bottlenecked by
the network link if the link is slower than the hardware
interconnect (most cases). For most cases where the network
link is slower than the hardware interconnect, the network stall
is calculated as the time difference between 2 and 5 .

V. MACRO CHARACTERIZATION

Our characterization aims to answer a fundamental question,
i.e., which instance type is the most cost-effective and/or

879

&
'
(
)
*
+
,
-

!"
#$
%#

&

'#
(%
#&
)7

(*
+,
,"#

-
./

0"#

(1
+#

#2
#

!"
#$
%#

&

'#
(%
#&
)7

(*
+,
,"#

-
./

0"#

(1
+#

#2
#

/!&3*&(02#&84 /!&3*&(02#&)47

$#
$&
%&
'(
(&) #(./$!0"# $(.1/%!0"#

$(.1/%!0"#2($(.',/%!0"#

(a) CPU stall % (CPUs are sufficient for pre-processing)

!
"!
#!
$!
%!
&!
'!

!"
#$
%#

&

'#
(%
#&
)7

(*
+,
,"#

-
./

0"#

(1
+#

#2
#

!"
#$
%#

&

'#
(%
#&
)7

(*
+,
,"#

-
./

0"#

(1
+#

#2
#

/!&3*&(02#&84 /!&3*&(02#&)47

!"
#$
&%&

'(
(&)

$(./%)0"# $(.*/%)0"# $(.*/%)0"#2($(.+,/%)0"#

(b) Disk stall % (Scales with #GPUs per instance.)

Fig. 4: CPU and disk stall % of total training time in P2.

performant? To answer this, we realize that further questions
need to be asked and hence, we begin our discussion by
asking a simple but specific question: How much stall does
a DDL job experience from spending time on CPU, disk,
interconnect, and network? We investigate this problem by
conducting a stall analysis on AWS P type instances with
representative DDL workloads, while keeping the GPU as the
first class resource. Although we use specific DNN models
as example workloads, the techniques used herein can be
generalized to all DDL workloads. We run our DDL work-
loads across four different mini-batch sizes (except BERT-
large), with the largest batch size being (approximately) the
maximum size that could fit in the GPU memory. For BERT,
we only run on batch size 4, as that is the maximum size
that allows the resultant data to fit in GPU memory (16
GB). Note that the batch sizes stated in the figures are per
GPU and the effective batch size can be obtained as the per-
GPU batch size times the number of GPUs. For brevity, we
only show the plots of the profiling with the smallest and
largest batch sizes used. The stall percentage is calculated as:
I/C stall% = (I/C stall time

single GPU time) × 100, N/W stall% =

(N/W stall time
single instance time) × 100, where the I/C and N/W stalls

are calculated as described in the previous section.

A. Analysis on AWS P2

AWS P2 instances use the NVIDIA K80 GPU with PCIe
third generation interconnects. The P2 instances consist of
three instance types – p2.xlarge, p2.8xlarge and p2.16xlarge
as discussed in Section II. We profile P2 instances with small
models across four mini-batch sizes – 32, 64, 96 and 128.
Since K80 GPUs have limited compute and memory resources,
they are not very suitable for running large models, i.e. models
with a high parameter count. In practice, we observed very
high I/C stall and monetary cost of training large models on
P2. For e.g., for ResNet50, interconnect stall was observed to
be 750% and monetary cost was $41 to train for a single epoch

&
(&
&&
-&
.&

'&&

!"
#*
+#

,

-#
.+
#,
/7

.*
0,
,"#

1
./

0"#

.2
0#

#3
#

!"
#*
+#

,

-#
.+
#,
/7

.*
0,
,"#

1
./

0"#

.2
0#

#3
#

/!,3*&.03#&84 /!,3*&.03#&/47

!"$
&#$
%&
&&'
(
) $(../%)0"# $(../%)0"#2($(.'-/%)0"#

(a) P2 (K80 GPU)

&
(&
*&
'&
/&

'&&

*"
#+
,#

-

.#
/,
#-
09

/*
1,
,"#

1
2/

0"#

/2
1#

#3
#

*"
#+
,#

-

.#
/,
#-
09

/*
1,
,"#

1
2/

0"#

/2
1#

#3
#

/*-3*&/03#&45 /*-3*&/03#&5:;

!"$
&#$
%&
&&)

$).//%)0"# $).//%)0"#2($).''/%)0"#

(b) P3 (V100 GPU)

Fig. 5: I/C stall small models (p2.16xlarge has the worst stalls due
to PCIe contention, p3.8xlarge suffers from sub-optimal interconnect
allocation)

&
)&&&
-&&&
(&&&

'(&&&

*"
#+
,#

-

.#
/,
#-
67

/*
1,
,"#

1
2/

0"#

/2
1#

#3
#

*"
#+
,#

-

.#
/,
#-
67

/*
1,
,"#

1
2/

0"#

/2
1#

#3
#

/*-3*&/03#&84 /*-3*&/03#&647

!"
#
$&
%&$

'(

$(./%)0"# $(../%)0"# $(../%)0"#2($(.'-/%)0"#

(a) Training time (sec)

&

%

'&

'%

*"
#)
*#

+

,#
-*
#+
.7

-*
/,
,"#

0
1/

0"#

-2
/#

#3
#

*"
#)
*#

+

,#
-*
#+
.7

-*
/,
,"#

0
1/

0"#

-2
/#

#3
#

/*+3*&-03#&84 /*+3*&-03#&.47

$!
"#
&$%

& $(./%)0"# $(../%)0"#
$(../%)0"#2($(.'-/%)0"#

(b) Training cost ($)

Fig. 6: Training Time and Cost for P2, Small Models. (16xlarge is
the least cost-optimal)

(the latter being 2000% more than P3). Hence, we employ the
smaller models to characterize stalls on the K80 GPUs.

1) Stall Analysis: Figure 4 shows the CPU and disk stalls
as a percentage of the total training time for mini-batch sizes
32 and 128. Unlike [31], we notice negligible CPU stalls in
AWS, pointing to the fact that vCPUs at AWS are sufficient
for most pre-processing needs of DL jobs. We further notice
the largest amount of disk stalls for the 16x type machine. This
is because there are 16 data loading workers running on the
16x machine to exploit the 16 GPUs of the machine. The 16
workers read from the attached SSD in parallel and create an
I/O contention. The AWS general purpose SSD used in our
experiments is unable to keep up with this demand and the
training spends a significant amount of time performing disk
I/O (only when data is not cached in DRAM).

We now discuss the interconnect and network stalls of P2
instances. We observe from Figure 6(a) that the 16x large runs
a slower training than two 8xlarge machines that are network-

880

connected. This is true in all our batch runs. Furthermore, we
observe from Figure 5 that 16xlarge has a higher interconnect
stall time than both 8xlarge and 8xlarge*2 (two 8xlarge).
This begs the question, what is causing the slowdown in the
16xlarge?

&
!
"
#
$

%&
%!

.'(!"#$%& '()*!"#$%& '()+,!"#$%&

)*
*!

!"#$%$"%&'3()'
&'3()'%$"%!"#$

Fig. 7: Per GPU PCIe bandwidth mea-
sured in P2

The slowdown
in 16xlarge can be
attributed to the
limited bandwidth of
the PCIe buses of P2
instances used for
communication. In
case of the 16xlarge,
the PCIe bandwidth
is shared among 16
workers causing congestion and ”slicing” of the limited PCIe
bandwidth. We validate this claim by measuring the PCIe
bandwidth available per GPU using CUDA in xlarge, 8xlarge
and 16xlarge instances. All GPUs are used in parallel when
running the bandwidth test and we report the per device
bandwidth in Figure 7. The GPUs in 16xlarge instance receive
significantly less bandwidth than the GPUs of all other P2
instance types. This bandwidth is lower than the expected
network bandwidth and hence the training gets throttled on
the interconnect link, rather than on the network. As the
network is not the slowest link and the 8xlarge instance has
access to higher interconnect bandwidth than the 16xlarge,
the 8xlarge*2 configuration performs better than the 16xlarge.
This gives us an intuition that the 16xlarge instance is the
least cost-optimal and we test this empirically by observing
the monetary cost of running the workloads in Figure 6(b).

A linear increase in cost is observed as the size of the
P2 instance is increased. This confirms the intuition from
our study of interconnect stalls that the monetary cost of
executing a DDL workload is proportional to the observed
interconnect stall of that workload. The lowest cost of running
the training is on p2.xlarge, which has a single GPU and hence,
has no interconnect stalls. However, the DDL execution time
does not always decrease linearly from smaller instance to
larger instance. From Figure 6(a), we notice that there is no
significant improvement in training time on 16xlarge for a
2× increase in cost. In fact, we notice in most cases that
the running time in 16xlarge is more than that of 8xlarge,
even with the instance having twice the resources as that of
8xlarge. This is because although resources like CPU, GPU
and memory are doubled, the PCIe bus bandwidth remains the
same (as already demonstrated), thereby causing congestion
and significant slowdowns.

2) Recommendation: We observe both high interconnect
and disk stalls on the 16xlarge instance and accordingly,
believe the 16xlarge instance may not be the cost-optimal
choice. Even when more GPUs are needed than what the
8xlarge instance can provide, training time and cost are lower
when using a combination of 8xlarge instances connected via
network compared to using the 16xlarge instance.

&
(
*
*
+

'&
'(
'*

"#
$%
&$

'

($
)&
$'
*9

)+
,-
-#$

.
//

0#$

)1
,$

$2
$

"#
$%
&$

'

($
)&
$'
*9

)+
,-
-#$

.
//

0#$

)1
,$

$2
$

/"'3+&)02$&45 /"'3+&)02$&5:;

$#
$&
%&
'(
(&+

$).(/%'0"($).+/%'0"($).+/%'0"(2($).'*/%'0"(

(a) CPU stall % (CPU stall is negligible)

&
'&
(&
)&
*&
+&
,&

"#
$%
&$

'

($
)&
$'
*9

)+
,-
-#$

.
//

0#$

)1
,$

$2
$

"#
$%
&$

'

($
)&
$'
*9

)+
,-
-#$

.
//

0#$

)1
,$

$2
$

/"'3+&)02$&45 /"'3+&)02$&5:;

!"
#$
&%-

%(
(&) $).(/%'0"($).,/%'0"($).,/%'0"(2($).',/%'0"(

(b) Disk stall % (Disk stall highest for 16xlarge)

Fig. 8: CPU and disk stall for P3, small models.

&
&.+
'

'.+
(

(.+
)

.$!"#$%& '(()) *#!"#$%& '(())

+,$-.&!/0#&12 +,$-.&!/0#&3&
$#

$&
%&
'(
(&+

$).(/%'0"($).,/%'0"(
$).,/%'0"(2($).',/%'0"(
$).(*/%'0"(

(a) CPU stall %

&.&&
'&.&&
(&.&&
)&.&&
*&.&&

*#!"#$%& '(()) *#!"#$%& '(())

+,$-.&!/0#&12 +,$-.&!/0#&3&

!"
#$
&%-

%(
(&)

$).(/%'0"($).+/%'0"($).+/%'0"(2(
$).'*/%'0"($).(*/%'0"(

(b) Disk stall %

Fig. 9: CPU and disk stall for P3, Large image models. (CPU stall
is negligible, disk stall high for experiments with 8 GPUs)

B. Analysis on AWS P3

AWS P3 instances use the NVIDIA V100 GPU with
NVLink interconnect as already described in Section II. The
P3 instances are high-performing instances capable of training
large DNN models in a cost-effective manner. We begin our
discussion with the stall analysis of P3 in the sequel.

1) Stall Analysis: We show CPU and disk stalls for small
models in Figure 8 and large models in Figure 9. The CPU

&
'&&&
(&&&
)&&&
*&&&

,#
#%
&#

'

(#
4&
#'
59

4.
,-
-##

.
/+

/##

41
,#

#2
#

,#
#%
&#

'

(#
4&
#'
59

4.
,-
-##

.
/+

/##

41
,#

#2
#

+,'-.&4/2#&67 +,'-.&4/2#&7:;

!"
#
$&
%&$

'($).(/%'0"($).+/%'0"(
$).+/%'0"(2($).'*/%'0"(

(a) Training time (sec)

&
(
*
*
+

,#
#%
&#

'

(#
4&
#'
59

4.
,-
-##

.
/+

/##

41
,#

#2
#

,#
#%
&#

'

(#
4&
#'
59

4.
,-
-##

.
/+

/##

41
,#

#2
#

+,'-.&4/2#&67 +,'-.&4/2#&7:;

$!
"#
&$%

& $).(/%'0"($).+/%'0"(
$).+/%'0"(2($).'*/%'0"(

(b) Training cost ($)

Fig. 10: Training Time and Cost for P3, Small Models. (16xlarge is
the most performant)

881

&
(&
*&
*&
+&

'&&

,#
#%
&#

'

(#
4&
#'
59

4.
,-
-##

.
/+

/##

41
,#

#2
#

,#
#%
&#

'

(#
4&
#'
59

4.
,-
-##

.
/+

/##

41
,#

#2
#

+,'-.&4/2#&67 +,'-.&4/2#&7:;

!"$
&#$
%&
&&+

$).+/%'0"($).+/%'0"(2($).'*/%'0"(

(a) Small

&
(&
*&
*&
+&

'&&

(*4,*':6 /--77 (*4,*':6 /--77 !."#

$%&'(&)*+,&8- $%&'(&)*+,&./ $%&'(&)*+,&0

1"$
&%$

+!
!&"

$).+/%'0"($).+/%'0"(2($).'*/%'0"($).(*/%'0"(

(b) Large

Fig. 11: I/C stall for P3. (16xlarge has the lowest stall)

&
'&&&
(&&&
)&&&
*&&&
+&&&

#!"#!$<% &''(()!"#!$<% &''((*.+,

-.$/0&"12!&34 -.$/0&"12!&=% -.$/0&"12!&5

,1
6
!&
7"!

/8 $).(/%'0"($).,/%'0"(
$).,/%'0"(2($).',/%'0"(

(a) Training time (sec)

&

+

'&

'+

$%%#%&>' ())** $%%#%&>' ())** *+!"

#$%+,&&)'%&() #$%+,&&)'%&?* #$%+,&&)'%&@

+,
&%
&-.

/

$).(/%'0"($).,/%'0"($).,/%'0"(2(
$).',/%'0"($).(*/%'0"(

(b) Training cost ($)

Fig. 12: Training Time and Cost for P3, Large Models. (16xlarge
and 24xlarge are equally performant)

and disk stalls follow the same pattern as in P2. The CPU
stalls are negligible and the disk stall is high for the 16xlarge
instance. Unlike p2.16xlarge, the p3.16xlarge has eight GPUs
and hence, eight workers perform I/O on the attached SSD.
However, the throughput of training is also high due to the
higher compute capacity (of both GPU and CPU) of the
instance, thus, leading to higher usage of the SSD and higher
disk stalls (data is not cached in DRAM).

The P3 instances use NVLink for communication between
the GPUs instead of the PCIe bus. As discussed in Section II,
NVLink offers significantly higher bandwidth compared to
traditional PCIe-based communication and hence, we expect
lower interconnect stalls while using NVLink. We measure
and show the actual interconnect stalls for P3 in Figure 11
and notice that they are lower than those of the P2 instances,
as expected. However, we also observe the 8xlarge (which has
half the number of GPUs as the 16xlarge) to have higher over-
all interconnect stalls than the 16xlarge, especially for smaller
models or while using smaller batch sizes. As the number of
GPUs decreases, the volume of gradients to be transferred

(as each GPU generates gradients) also decreases, thereby,
requiring lesser bandwidth from the underlying interconnect.
This should ideally translate into lower interconnect stalls for
the 8xlarge. Therefore, we ask the question: why does the
p3.8xlarge instance not have strictly lower interconnect stalls
than the 16xlarge?

The reason for this anomaly is that although AWS provides
a highly connected crossbar architecture (refer Figure 1) for
communication via the NVLink, this may not be the case for
the 8xlarge. Ideally, AWS should split the 16xlarge instance
into two 8xlarge instances such that each instance gets an
entire crossbar as shown by the dotted line in Figure 1.
This would have provided the tenant/user with a highly-
connected, high bandwidth GPU interconnect, resulting in
lower interconnect stalls. However, we theorize that AWS is
not able to ”evenly slice” the physical interconnect so as to
give an entire crossbar to the 8xlarge instance. This may be
due to multiple single size GPU requests from several tenants
occupying GPUs in a crossbar. The 8xlarge instance loses
the benefit of the crossbar architecture due to this and ends
up being less performant with respect to interconnect stalls.
This ”trait” of AWS interconnects is essentially probabilistic
in nature and a tenant may indeed end up getting an entire
crossbar for their 8xlarge instance, thereby, resulting in lower
interconnect stalls.

Next, we compare the performance of p3.16xlarge with that
of the p3.24xlarge. The p3.24xlarge is a dedicated instance
offering which has the same number and type of GPUs as
the 16xlarge but with twice the memory. It also comes with
a dedicated local SSD storage along with more vCPUs and
DRAM than the 16xlarge (refer Table I). However, from our
stall analysis of the 24xlarge, we do not observe any significant
decrease in stalls or training time compared to the 16xlarge.
This is true even for our BERT large model which is both
compute and memory–intensive. We now ask: why is the
performance of 24xlarge not strictly better than the 16xlarge?
The answer to this question, again, lies in its GPU inter-
connect. From [19] we know that both the 16xlarge and the
24xlarge use the same NVlink interconnect hardware and
hence they also suffer from the same types of interconnect
stalls. Although the 24xlarge offers a better configuration for
each of its hardware components (GPU, DRAM, CPU, SSD
etc.), it misses out on improving its NVLink interconnect. The
DNN pipeline suffers from the same amount of communication
overhead as the 16xlarge and hence, is not able to exploit the
better hardware. This further lends credence to the importance
of communication overhead in DDL (missed by prior work).

However, there is a caveat to this. The 24xlarge instance
has twice the amount of per-GPU memory (32GB) than the
16xlarge. This allows users to run training with larger batch
sizes thereby reducing time per epoch. However, we can’t
conduct a cost analysis between 16xlarge and 24xlarge by
increasing the batch size of training on 24xlarge due to two
reasons: (i) single epoch with different batch sizes is not
representative of the same end-to-end training, and (ii) large
batch sizes tend to converge to sharp minimizers which leads

882

to poor generalization [18]. But for comprehensiveness, we
run our BERT model on the 24xlarge after doubling the batch
size to 8. This resulted in about 12.8% improvement in training
time and costing about $2.37. This is more than the $2.1 cost
of running the model on 16xlarge with half the batch size.
Finally, we ask: what happens when the instances are con-
nected via the network? To answer this question, we calculate
the network stall of two p3.8xlarge instances connected via the
network (p3.8xlarge*2) in Figure 13 as part of step 5 of Stash
and notice network stalls as high as 500%. This is because
as soon as the ”all-reduce” ring contains a network link, the
training gets throttled on this slow network link. Compared
to the NVLink interconnect, which has a sufficiently large
bandwidth to accommodate fast data transfers, the network
link introduces higher slowdowns. This discourages us to run
training over network links.

!
"!!
#!!
$!!
"!!
&!!
'!!
)!!

!
"!!
#!!
$!!
"!!
&!!
'!!

-. /* 0/ *1

90
1,
,&2
-3

.4
50

90
1,
,&2

610&7&5-8.5

!"#$"%&' ())44 !"#$"%&' ())44
Fig. 13: Network Stall of two p3.8xlarge
instances. (Network stall is as high as
500%)

Note that we do
observe large models
like VGG to have
low interconnect
stall (but high
network stall). The
reasoning for this
will be discussed in
Section VI-A.

2) Cost Analysis:
We show the cost
and time analysis of P3 instances in Figures 10 and 12. The
cost analysis follows the same pattern as that in P2 instances
but the performance of the instances differs. We find that the
smallest P3 instance, the 2xlarge is the most cost optimal
followed by the 8xlarge and the 16xlarge. The 24xlarge is the
least cost-optimal in most experiments. An immediate question
that can be asked here is: how is 8xlarge more cost optimal
than both 16xlarge and the 24xlarge?
The answer to this question is that although 16x/24xlarge
instances have lower interconnect stalls than the 8xlarge, they
still suffer from higher disk stalls (due to more number of
workers, refer Figures 8(b) and 9(b)) and hence, end up being
less cost-effective than the 8xlarge. Note that the actual disk
stall suffered is not as high as shown in the disk stall analysis
due to caching of data. The disk stall is only high enough to
compensate for the small interconnect stall difference between
8xlarge and the 16xlarge. It is mostly the interconnect stall that
drives the cost-effectiveness of an instance. We also observe
that the network connected instances are the least cost optimal
due to high network stalls.

3) Recommendation: We recommend the single 2xlarge
as the most cost-effective instance for training. However,
we realize that using a single GPU is not practical to train
most models due to time constraints. Hence, tenants must
specifically find out the stalls for their models before running
an end-to-end training on an 8xlarge or a 16xlarge. Fortunately,
Stash is designed to solve this very problem and tenants can
use it to find out the various stalls in their model. We do not
recommend the use of 24xlarge unless the model requires the

*
+***
2***
,***
-***
.****

%!"# $"%&"'() %*+,,!" -./0!" %1+""2" 3!"# $"%&"'() %*+,,!" -./0!" %1+""2"

4567 45(7)

80
-
"&
9%"

:;

$+./%'0"($+.-/%'0"($+..,/%'0"($/.+/%'0"($/.-/%'0"($/..,/%'0"(

(a) Training time per epoch

*
+
2
,
-
.*
.+
.2

3,!" #!$%!&'= $()**+! ,-./+! $0)!!1! 2+!" #!$%!&'= $()**+! ,-./+! $0)!!1!

3456 34'6=

7-
$&
&89

:

$+./%'0"($+.-/%'0"($+..,/%'0"($/.+/%'0"($/.-/%'0"($/..,/%'0"(

(b) Training cost per epoch
Fig. 14: P2 vs P3 train-time/cost comparison. (P3 is generally more
cost-optimal except for very small models)

;

<;

A;

B;

C;

BA DC <AE BA DC <AE

!"#$$%&'&()*A +&,5&(-E
.
&/

01
2&#

(3%
4&F

56(7"&,38&

9A4:%61;& 9A4E:%61;& 9A4-D:%61;& 9B4A:%61;& 9B4E:%61;& 9B4-D:%61;&

Fig. 15: GPU memory util. of P2 vs P3 for a two model. (Shufflenet
has low GPU util. in P3)

high GPU memory offered.

C. Comparison between P2 and P3
We now compare the two GPU instance types – P2 and P3

from a cost-efficiency perspective. From Figure 14, we notice
that P3 instances are generally more cost-effective than P2
instances, although P3 instances are about 3.5× costlier per
hour than P2 instances. This is because of the lower stalls
P3 instances experience compared to their P2 counterparts.
However, some smaller models like ShuffleNet are not able to
exploit the memory and compute capacity of large V100 GPUs
present in the P3 instances, unlike models with many layers
like ResNet18 (shown in Figure 15). Hence, such small models
incur the least cost when trained on P2 instances. Figure 14
shows the training time/ cost of running DDL on P2 and P3.

1) Recommendation: While we recommend using P3 in-
stances whenever possible, we do notice that smaller models
such as ShuffleNet can be trained cost-effectively on P2s. We
also note that AWS has limited GPU availability and tenants
might not always receive the desired number/type of GPUs
from AWS. Thus, tenants may be forced to use P2 instances
due to unavailability of P3s.

VI. MICRO CHARACTERIZATION AND NETWORK STALL
ANALYSIS

In this section, we analyze the interconnect and network
stalls through synthetic DNN models to (i) find characteristics
in model architecture that influence interconnect and network
stall behavior, and (ii) express the generality of our intercon-
nect and network stall profiler for unseen models. We then
discuss a cost comparison with Srifty.

883

!

"!

#!

$!

%!

+3 +/ +< +9 01 23 +3+ +2/ ++ +0 +< +1

3##4#$!""

#$$
&%%

&'
'&(

&''(') &''(')*(+!" #$%&$'(&)*$%+,-$

(a) I/C Stall %

.
/..
0..
1..
2..
3..
5..

+) +* ++ +, -. /) +)+ +/* ++ +- ++ +0

3##1#% !""

1$
!
&"#

$%
%&&

#$%&$'
#$%&$'(&)!"
#$%&$'(&)*$%+,-$

(b) N/W Stall %

Fig. 16: VGG has low I/C stall but high N/W stall while ResNet is
vice versa

A. Micro Characterization
In order to verify the generality of our profiling technique

for new models, we create synthetic models by altering the
model architecture of popular DNNs (namely, ResNet and
VGG), to highlight features that can affect stall behavior.
Note that these changes are not meant to improve the DNN
model accuracy or training/convergence time. Rather, they are
meant to provide insights that can be leveraged by users to
architect DNN models to improve system utilization. We run
all experiments on a p3.16xlarge instance with a batch size
of 32 per GPU, repeated thrice with the results averaged
across the runs. A smaller batch size (32) is chosen so
as to maximize all-reduce cycles. This, in turn, exacerbates
communication stalls, thereby, facilitating the analysis of its
underlying cause(s). We begin our discussion by asking two
questions: (i) Is there a relationship between the number
of layers in a model and its communication stalls?, and (ii)
How does the number of gradients to be transferred in a
model affect communication stalls?

1) Relationship between DNN layers, gradients and com-
munication stalls: We answer the above questions by ob-
serving the communication stalls of ResNet and VGG with
varying number of layers (fig 16). We observe that as the
number of layers increases (accompanied by a commensurate
increase in the number of gradients), both the interconnect stall
and network stall time increases. This is expected, as there is
more data to be transferred with the increase in number of
gradients. However, despite the number of gradients in VGG
being far more than that in ResNet (refer table II), VGG is
observed to have lower interconnect stall time than ResNet
(Figure 16) . Moreover, we also notice that the network stall
time of VGG is significantly more than ResNet (Figure 16).
These facts lead us to the next question that arises logically:
Why is the interconnect stall of VGG low and the network
stall high when compared to those of ResNet?

2) Explaining VGG and ResNet communication stalls:
From [25], we know that distributed PyTorch overlaps com-
munication and computation during the backward pass at

individual layers. In case of ResNet, there is a large number
of layers and relatively fewer gradients to transfer per layer.
In comparison, VGG has fewer layers, but a larger number of
gradients to transfer per layer. For instance, VGG16 consists
of about 134.7 million trainable parameters while ResNet152
consists of only 58.5 million [22]. Therefore, the gradients
to transfer per synchronization point is greater in VGG, but
the number of times the gradients get transferred is higher in
ResNet. We now explain how this characteristic leads to the
interconnect stalls observed in the previous subsection.

Suppose VGG has Gvgg bytes of gradients and Lvgg layers,
and ResNet has Gres bytes of gradients and Lres layers. Also,
let us say that NVLink offers Bnv bandwidth with τnv latency.
The time to transfer gradients comprises both latency and data
transfer time. Define this for VGG and ResNet to respectively
be Tvgg and Tres. Thus, the transfer time using NVlink is
given by:

Tvgg =
[
τnv +

Gvgg

Lvgg×Bnv

]
× Lvgg, Tres =

[
τnv +

Gres
Lres×Bnv

]
× Lres

Since NVLink offers very high bandwidth (more than
100 Gbps [23]), and also because both models have a large
number of layers, we can assume: Gvgg

Lvgg×Bnv
" τnv and

Gres
Lres×Bnv

" τnv . Hence, data transfer time over NVLink is
Tvgg ≈ τnv × Lvgg and Tres ≈ τnv × Lres.

Thus, Lres > Lvgg =⇒ Tres > Tvgg

In other words, the training process experiences increased
slowdown due to the larger number of layers to transfer
in ResNet (or in any other deep model, for that matter). It
follows that in the case of VGG, although the data to be
transferred is much larger, the time to transfer is nearly zero
due to the lower number of layers. The only slowdown we
observe here is due to the transfer latency associated with the
transfer link/framework.

Now, we explain the high network stall time observed for
VGG in the previous subsection. As already explained in
Section IV-B2, the collective all-reduce performed across the
network-connected instances is throttled by the network link.
Hence, we can assume that the data transfer time is a function
of the network link only. Suppose the network link offers Bnw

bandwidth with τnw latency. Similarly, the data transfer time
over network is:

Tvgg =
[
τnw + Gvgg

Lvgg×Bnw

]
× Lvgg, Tres =

[
τnw + Gres

Lres×Bnw

]
× Lres

Since the network link is slow, we can assume: τnw " Gvgg

Bnw

and τnw " Gres
Bnw

. Hence, the data transfer time over network
link is: Tvgg ≈ Gvgg

Bnw
and Tres ≈ Gres

Bnw
.

Thus, Gvgg > Gres =⇒ Tvgg > Tres

In other words, since the network link is slow, the data
transfer is throttled on the transfer time rather than the
latency. Since a much larger volume of gradients needs to

884

be transferred in VGG (in total), the network stall is much
higher in VGG than in ResNet.

3) Impact of model architecture: To probe further into
the specific aspects of DNN model architecture that impact
interconnect stalls, we made two changes to the ResNet model
by removing batch normalization (BN) as well as residual
networks. These changes are intended to show the extent to
which these layer types impact communication stalls. From
figure 16 we notice that removing residual networks has
minimal impact on communication overhead. This is because
residual networks do not introduce any new layers and hence
do not impact communication. However, removing BN reduces
the number of layers in the model and hence we see lowering
in communication stalls as shown in the figure 16.

4) Recommendation: From our experiments, we observe
that models with very deep networks and fewer gradients
are unable to fully exploit the fast NVLink interconnect,
whereas shallower networks with large gradient transfers can
be throttled on the network link. Hence, we recommend
running shallow networks with large gradients on instances
with the best interconnect possible. However, if the model is
very deep with fewer gradients per layer, the models can be
run on instances without the best interconnect, such as the
p3.8xlarge. The penalty for running such models on network-
connected instances is also minimized.

B. Discussion: Comparison with Srifty

Srifty extensively measures network-throughput variance
(for it to work) by performing a grid probe of communication
by sweeping different buffer sizes, world size, instance types
and location. This results in 40K unique measurements [28].
Hence, to use srifty one needs to run these probes again if:
(i) they do not gain access to the original measurements, (ii)
the network changes (public cloud network is susceptible to
infra or tenant changes), or (iii) the target location is not
measured by srifty. Moreover, the user is expected to setup
new VMs to take the measurements, which involves cold-start
delays, along with the effort of setting up large clusters (up
to 64 VMs required). Such significant added cost of achieving
an automated recommendation system should be accounted
against srifty’s performance. Note that Stash comes at no such
costs to the users.

VII. RELATED WORK

Characterizing Deep Learning. Existing works in the
area of DL characterization [2], [14], [17], [27], [31], [32],
[48]–[50] do not conduct a stall analysis on public cloud GPU
instances, which is what we do here.

Cost optimization in the public cloud. Prior works such as
[42], [47], [52] explicitly focus on reducing costs of migrating
and running ”generic” workloads on public cloud (including
DNN inference), i.e., not specifically DL. While some prior
works [4], [5] may focus on resource management, they
make implicit monetary decisions by selecting the serverless
platform, which may not be cost-optimal.

VIII. CONCLUDING REMARKS

We introduced a DDL stall profiler Stash and presented
novel methodologies to measure communication stalls in par-
ticular. Using Stash, we extensively characterized public cloud
GPU instances for the various stalls they experience when
training popular DNN models. We found communication stalls
to be the major bottleneck in DDL training and that some
AWS instances are heavily impacted by them. The observed
interconnect stalls and network stalls were up to 90% of single
GPU and 500% of single instance training time respectively
due to severe bandwidth contention when using the PCIe bus,
sub-optimal resource allocation when using the NVLink and
low AWS network bandwidth. Note that these high stalls
translate to higher training costs. Further, we analyzed the
impact of DNN model architecture features on communication
stalls. Finally, we discuss the true cost of cloud recommenders.
Stash is open-sourced at [46] with a technical report available
at [41] along with additional results from those shown here.

ACKNOWLEDGEMENTS

We are indebted to our anonymous reviewers for their
insightful comments. This research was partially supported
by NSF grants #1931531, #1955815, #1763681, #2116962,
#2122155, #2028929 and a grant from Adobe. We also thank
Chameleon Cloud project CH-819640 for their compute grant.
All product names used here are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: A System for Large-scale Machine Learning. In Proc. USENIX
OSDI, 2016.

[2] Ammar Ahmad Awan, Jereon Bédorf, Ching-Hsiang Chu, Hari Sub-
ramoni, and Dhabaleswar K Panda. Scalable distributed DNN training
using TensorFlow and CUDA-aware MPI: Characterization, designs, and
performance evaluation. In Proc. IEEE/ACM CCGRID, 2019.

[3] AWS NVIDIA GPU instances. https://aws.amazon.com/nvidia/, Ac-
cessed: 2022.06.08.

[4] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mah-
mut Taylan Kandemir, and Chita Das. Cypress: Input size-sensitive
container provisioning and request scheduling for serverless platforms.
In Proc., SoCC ’22. ACM, 2022.

[5] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. Kraken:
Adaptive container provisioning for deploying dynamic dags in server-
less platforms. In Proc., SoCC ’21. ACM, 2021.

[6] Alibaba PAI. https://github.com/AlibabaPAI, Accessed: 2022.06.15.
[7] DawnBench. https://dawn.cs.stanford.edu/benchmark/, Accessed: 2022-

06-08.
[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, Quoc Le, and Andrew Ng. Large scale distributed deep
networks. In Proc. Advances in Neural Information Processing Systems,
volume 25, 2012.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In Proc. NAACL-HLT ’19. ACM, 2019.

[10] K. Fukuda. Technologies behind Distributed Deep
Learning: AllReduce. https://tech.preferred.jp/en/blog/
technologies-behind-distributed-deep-learning-allreduce/, Accessed:
2022.06.08.

885

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, 2016.

[13] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee,
Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P.
Xing. More effective distributed ml via a stale synchronous parallel
parameter server. In Proc. NIPS, 2013.

[14] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei
Zhang. Characterization and prediction of deep learning workloads in
large-scale GPU datacenters. In Proc. SC ’21.

[15] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and <0.5MB model size. https://arxiv.org/
abs/1602.07360, 2016.

[16] ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012). https://www.image-net.org/challenges/LSVRC/2012/,
Accessed: 2022.10.18.

[17] Arpan Jain, Ammar Ahmad Awan, Quentin Anthony, Hari Subramoni,
and Dhableswar K DK Panda. Performance characterization of dnn
training using tensorflow and pytorch on modern clusters. In CLUSTER.
IEEE, 2019.

[18] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[19] Rashika Kheria, Purna Sanyal, Sr. James Jeun, and Amr Ragab. Optimiz-
ing deep learning on P3 and P3dn with EFA . https://aws.amazon.com/
blogs/compute/optimizing-deep-learning-on-p3-and-p3dn-with-efa//,
Accessed: 2022.06.08.

[20] Yunyong Ko, Kibong Choi, Jiwon Seo, and Sang-Wook Kim. An in-
depth analysis of distributed training of deep neural networks. In IPDPS.
IEEE, 2021.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems, volume 25, 2012.

[22] Mei Leong, Dilip Prasad, Yong Tsui Lee, and Feng Lin. Semi-cnn
architecture for effective spatio-temporal learning in action recognition.
Applied Sciences, 10:557, 01 2020.

[23] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R
Tallent, and Kevin J Barker. Evaluating modern GPU interconnect: PCIe,
NVLink, NV-SLI, NVSwitch and GPUDirect. IEEE TPDS, 31(1):94–
110, 2019.

[24] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server. In
Proc. USENIX OSDI, 2014.

[25] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and
Soumith Chintala. PyTorch Distributed: Experiences on Accelerating
Data Parallel Training. Proc. VLDB Endow., 13(12):3005–3018, aug
2020.

[26] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous
decentralized parallel stochastic gradient descent. In ICML ’18, pages
3043–3052. PMLR, 2018.

[27] Jie Liu, Jiawen Liu, Wan Du, and Dong Li. Performance analysis and
characterization of training deep learning models on mobile device. In
ICPADS, pages 506–515. IEEE, 2019.

[28] Liang Luo, Peter West, Pratyush Patel, Arvind Krishnamurthy, and Luis
Ceze. Srifty: Swift and thrifty distributed neural network training on the
cloud. MLSys, 4:833–847, 2022.

[29] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In ECCV,
2018.

[30] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman,
Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter
Bailis, Victor Bittorf, et al. Mlperf training benchmark. MLSys, 2:336–
349, 2020.

[31] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay
Chidambaram. Analyzing and mitigating data stalls in dnn training.
https://arxiv.org/abs/2007.06775, 2021.

[32] Saiful A Mojumder, Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari,
José L Abellán, John Kim, David Kaeli, and Ajay Joshi. Profiling DNN
workloads on a Volta-based DGX-1 system. In Proc. IISWC, pages
122–133. IEEE, 2018.

[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. PipeDream: Generalized Pipeline Parallelism for DNN Train-
ing. In Proc. SOSP, 2019.

[34] Nsight. https://developer.nvidia.com/nsight-systems, Accessed: 2023.
[35] NVIDIA Deep Learning Examples for Tensor Cores . https://github.

com/NVIDIA/DeepLearningExamples, Accessed: 2022.06.08.
[36] Nvprof. https://developer.nvidia.com/blog/

cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/, Accessed:
2023.

[37] N.J. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku,
and D. Tran. Image Transformer. In Proc. ICML ’18, 2018.

[38] Rolf Rabenseifner. Optimization of collective reduction operations. In
ICCS. Springer, 2004.

[39] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text, 2016.

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proc. CVPR ’18, 2018.

[41] Aakash Sharma, Vivek M Bhasi, Sonali Singh, Rishabh Jain, Jash-
want Raj Gunasekaran, Subrata Mitra, Mahmut Taylan Kandemir,
George Kesidis, and Chita R Das. Analysis of distributed deep learning
in the cloud. arXiv preprint arXiv:2208.14344, 2022.

[42] Aakash Sharma, Saravanan Dhakshinamurthy, George Kesidis, and
Chita R Das. CASH: A Credit Aware Scheduling for Public Cloud
Platforms. In Proc. IEEE/ACM CCGrid, 2021.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc. ICLR, San Diego,
CA, May 7-9, 2015.

[44] Sonali Singh, Anup Sarma, Nicholas Jao, Ashutosh Pattnaik, Sen
Lu, Kezhou Yang, Abhronil Sengupta, Vijaykrishnan Narayanan, and
Chita R. Das. Nebula: A neuromorphic spin-based ultra-low power
architecture for snns and anns. In Proc. 47th ACM/IEEE ISCA, 2020.

[45] Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Mahmut T.
Kandemir, Emre Neftci, Vijaykrishnan Narayanan, and Chita R. Das.
Skipper: Enabling efficient snn training through activation-checkpointing
and time-skipping. In Proc. 55th IEEE/ACM MICRO, 2022.

[46] Stash. https://github.com/aakash-sharma/Stash, Accessed: 2023.06.5.
[47] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis. Using Burstable

Instances in the Public Cloud: When and How? In Proc. ACM
SIGMETRICS, Urbana-Champaign, IL, June 2017.

[48] Mengdi Wang, Chen Meng, Guoping Long, Chuan Wu, Jun Yang, Wei
Lin, and Yangqing Jia. Characterizing deep learning training workloads
on Alibaba-PAI. In Proc. IEEE IISWC, 2019.

[49] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. MLaaS
in the Wild: Workload Analysis and Scheduling in {Large-Scale}
Heterogeneous GPU Clusters. In Proc. USENIX NSDI, 2022.

[50] Chunwei Xia, Jiacheng Zhao, Huimin Cui, and Xiaobing Feng. Charac-
terizing dnn models for edge-cloud computing. In IEEE IISWC, 2018.

[51] Jun Yi, Chengliang Zhang, Wei Wang, Cheng Li, and Feng Yan. Not
all explorations are equal: Harnessing heterogeneous profiling cost for
efficient mlaas training. In IPDPS. IEEE, 2020.

[52] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In Proc. USENIX ATC, Renton, WA, 2019.

[53] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan
Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing.
Poseidon: An efficient communication architecture for distributed deep
learning on GPU clusters. In Proc. USENIX ATC, 2017.

[54] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning
with elastic averaging SGD. Proc. Advances in neural information
processing systems, 28, 2015.

[55] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. Daydream:
Accurately estimating the efficacy of optimizations for dnn training. In
USENIX ATC 20, 2020.

886

