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Abstract. Wildlife trafficking (WT), the illegal trade of wild fauna,
flora, and their parts, directly threatens biodiversity and conservation
of trafficked species, while also negatively impacting human health,
national security, and economic development. Wildlife traffickers obfus-
cate their activities in plain sight, leveraging legal, large, and globally
linked transportation networks. To complicate matters, defensive inter-
diction resources are limited, datasets are fragmented and rarely inter-
operable, and interventions like setting checkpoints place a burden on
legal transportation. As a result, interpretable predictions of which routes
wildlife traffickers are likely to take can help target defensive efforts and
understand what wildlife traffickers may be considering when selecting
routes. We propose a data-driven model for predicting trafficking routes on
the global commercial flight network, a transportation network for which
we have some historical seizure data and a specification of the possible
routes that traffickers may take. While seizure data has limitations such
as data bias and dependence on the deployed defensive resources, this is a
first step towards predicting wildlife trafficking routes on real-world data.
Our seizure data documents the planned commercial flight itinerary of
trafficked and successfully interdicted wildlife. We aim to provide predic-
tions of highly-trafficked flight paths for known origin-destination pairs
with plausible explanations that illuminate how traffickers make decisions
based on the presence of criminal actors, markets, and resilience systems.
We propose a model that first predicts likelihoods of which commercial
flights will be taken out of a given airport given input features, and then
subsequently finds the highest-likelihood flight path from origin to desti-
nation using a differentiable shortest path solver, allowing us to automati-
cally align our model’s loss with the overall goal of correctly predicting the
full flight itinerary from a given source to a destination. We evaluate the
proposed model’s predictions and interpretations both quantitatively and
qualitatively, showing that the predicted paths are aligned with observed
held-out seizures, and can be interpreted by policy-makers.
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1 Introduction

Wildlife Trafficking (WT) broadly impacts biodiversity, human health, economic
development, and national security [37]. It encompasses a wide array of species
that originate from, and are transported to, supply and demand markets around
the world. WT spans over 150 countries and includes more than 37,000 species
of fauna and flora [37]. Transnational criminal organizations are known to lever-
age the increasingly interconnected air transportation network to move illegal
wildlife products from source to destination locations, generating $19 billion
annually in black market proceeds [18,28,38]. The massive scope, scale, and
diversity of wildlife trafficking networks present a complex and dynamic chal-
lenge for authorities and researchers trying to understand and interrupt the
transiting of illegal wildlife products using detection, interdiction, deterrence,
education, or other activities. Stakeholders working to combat wildlife traffick-
ing also face limited social, physical, and financial capital compared to other
illicit activities such as drug trafficking. Current practice is to rely heavily on
trusted and established personal relationships, “tip-offs” about specific flights,
use of specially trained sniffer dogs, and education of airport personnel; these
practices can be successful in one-off contexts but lack a desired deterrent effect.
Network interdiction models can assist in determining the optimal allocation of
scarce resources along known trafficking networks but have yet to be systemati-
cally applied to the transiting stage of wildlife trafficking supply chains [17,31].
Data-driven methods for understanding underlying wildlife trafficking patterns
could help advance on the ground practice and expand modeling techniques to
a novel domain space and are a necessary first step before targeted interdiction
allocation can be applied effectively and efficiently.

Recognizing the potential for data-driven methods to dramatically enhance
solutions to the problem of wildlife trafficking, multiple sectors have increased
their data collection activities. For example, The Convention on International
Trade in Endangered Species of Wild Fauna and Flora (CITES) is a global agree-
ment among governments to regulate international trade in species under threat
that was established in 1976 and is currently signed by 183 countries and the
European Union. TRAFFIC is an organization that was established in 1976 by
The World Wide Fund for Nature (WWF) and International Union for Conser-
vation of Nature (IUCN) as a wildlife trade monitoring network to undertake
data collection, analysis, and provision of recommendations to inform decision
making on wildlife trade. In 2015, the U.S. Agency for International Devel-
opment (IUCN) established the Reducing Opportunities for Unlawful Trans-
port of Endangered Species (ROUTES) Partnership to bring together transport
and logistics companies, government agencies, law enforcement, and conserva-
tion organizations to eliminate wildlife trafficking from the air transport supply
chain. Importantly, these efforts have contributed to collection and synthesis of
a limited but growing global database of illegal wildlife trade seizure data.

Overall, the flight network’s widespread use for moving illegal goods, as well
as the presence of structured data make it a promising setting for data analysis to
help inform defensive measures. Center for Advanced Defense Studies (C4ADS),
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a nonprofit that is a member of ROUTES, produced in-depth summary analysis
of the global wildlife trade flight seizure data from 2009-2017 [38] and 2016-
2018 [39] and derived insights based on observed concentration of illegal activity
and outliers. Some studies and reports describe traffickers’” modus operandi, or
factors that may influence their decisions to traffic products through certain
ports over others [3,34]. Factors, such as larger airports with higher volume,
prevalence of corruption, lower financial costs, and smaller legal penalties, have
been shown to possibly be beneficial for traffickers [16]. However, there is limited
quantitative research into the factors that impact traffickers’ transit choices and
their relative importance [22,33,35]. In fact, to our knowledge, predictive models
have not been applied to the wildlife trafficking domain. Machine learning models
can be instrumental in extrapolating the patterns from the limited seizure data
to other airports and routes. They can highlight important factors and their
weights to provide insight into traffickers’ objectives that can be utilized when
making interdiction decisions and predicting trafficker responses.

To this end, in this paper, we formulate wildlife trafficking across the global
flight network as a route prediction problem on a graph, synthesize historical
seizure data with data that describes airport nodes and flight edges, and propose
a maximum likelihood machine learning model that exploits recent developments
in differentiable optimization. In particular, we model probabilities of traffick-
ing on each edge in the transportation network as a function of node and edge
features, and train the model by comparing the maximum likelihood path (iden-
tified by computing the shortest path in log space) to the ground truth paths. We
demonstrate the predictive power of our model. We analyze our model’s results
to understand the discrepancies between our predictions and the ground truth
seizure data. By utilizing an interpretable linear model with respect to input
features, we are also able to provide feature importance insights.

A key area of concern in combating WT is the convergence of multiple forms
of illicit trade [14,35]. Convergence can take a variety of forms. For instance,
revenue from WT activities can fund arms trafficking. Additionally, the people,
countries, and transit routes used for various forms of trafficking can substan-
tially overlap due to factors that are mutually beneficial. Convergence has long
been an area of concern but the amount of scientific, quantitative, evidence for
convergence is still limited [15]. Our work makes a step towards quantifying the
scale and impact of convergence by directly incorporating measures of other illicit
activities at given locations as features when predicting wildlife trafficking paths.
Understanding the impact of other illicit activities on the path probabilities of
traffickers provides a quantitative measure of geographic convergence.

2 Related Work

The overall problem of learning route choices may be considered an inverse opti-
mization problem, where we are given “solutions” to optimization problems and
we want to identify what optimization parameters yields those observed solutions
as optimal [1]. Indeed, previous work in trajectory prediction has modeled hidden
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Flight network with IWT seizures

Fig. 1. Visualization of itineraries with historical seizures in red as well as a subset of
the global flight network in grey. (Color figure online)

latencies for travel networks by solving an inverse shortest path problem [42], or
learning transportation preferences for a road network which results in a given
traffic flow on the network [11]. The area of trajectory prediction [10,12,29,43]
aims to predict paths for individuals and thus tend to assume access to the start
location, or continually updating sequence of locations, and try to predict the
rest of the trajectory that the person will take. However, in our case, we have
generally-known source and destination pairs and try to understand what are
the most likely paths that traffickers will take without continuously updating
information.

Recent work in the machine learning literature has investigated how to
integrate optimization solvers as differentiable components in machine learn-
ing pipelines. This effectively allows the model designer to state that the model
predictions will be used downstream by a structured optimization problem which
will output an optimal solution to a problem with given predicted inputs. The
seminal OptNet paper [2] introduces the quadratic optimization program as a
differentiable layer for use in deep learning pipelines, by implicitly differentiating
through the KKT optimality conditions, with follow-up work extending the app-
roach to linear programs [40]. In a different vein, researchers investigated differ-
entiating through blackbox optimizers [26] and differentiating through maximum
likelihood estimation which can represent the optimal solution to a mathemati-
cal program [24]. Our approach directly builds off of [26] and leverages empirical
insights in order to speed up gradient computation. Lastly, several approaches
for smart predict then optimize have been proposed which compute subgradients
of the optimal solution with respect to the inputs in order to train the predic-
tive model [9]. This smart predict then optimize area has work on applicable
theoretical guarantees and integration with decision trees [4,8].

Prior work has successfully used machine learning in the context of wildlife
poaching in conservation areas, but poaching is only the “first” step in the wildlife
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trafficking supply chain [13,23,41]. Poaching-oriented approaches consider clas-
sification models that predict the likelihood of snare detection at a given spatial
location to inform ranger patrolling efforts at the sourcing of wildlife. While
these works demonstrated the ability to predict poacher behavior at each pixel
of a given conservation area, here we address the global wildlife trade problem of
learning trafficker route choices on the broader international air transportation
network.

3 Flight Itinerary Prediction Formulation

We formulate the problem of predicting trafficker flight paths connecting a given
source airport s and intended destination d airport as a supervised learning
problem of predicting a path from s to d on a flight network represented as a
directed graph G. The flight network G represents airports as nodes and the
flights between them as directed edges. We augment the flight network with
WT-related features ¢ on both nodes ¢V and edges ¢¢. We collect N ground-
truthed trafficker paths D™ = {ﬂ-si,di}'fil from centralized databases of seizure
reports. These reports contain the traffickers’ intended itineraries between fixed
source s; and destination d;. We encode these WT itineraries m; as paths in the
flight network, representing them as either a sequence of airport nodes or flight
edges as needed.

Our data sources, collection, and synthesis are described in the section “Data
Sources”. To get a sense of the magnitude of the problem at hand, we visualize
the observed trafficker paths as well as 20% of the full flight network in Fig 1.
We subsample due to the density of the global flight network consisting of 14,118
flight edges connecting 1,933 airport nodes, rendering the image unreadable oth-
erwise.

Formally, we aim to train a model that correctly predicts the observed struc-
tured path 7; given the input source s;, destination d;, flight network G, and
features ¢.

3.1 Predictive Model: Edge Transition Estimator

In order to predict full flight paths from features on just edges and nodes, we
cannot simply predict how likely any individual path is, as the number of possible
simple paths is exponentially large in the size of the network. Instead, we consider
predicting a probability for each edge which then can be used to compute path
likelihood.

We propose an approach for modeling the path prediction problem by predict-
ing “transition” probabilities, or probabilities on which flight edges a trafficker
may take to exit a given “current” node. Since our setting requires a simple
model that can be easily handed off to domain experts and deliver actionable
insights for interdiction, we forego complex architectures in favor of a simplis-
tic predictive model. This models the trafficker as taking a biased random walk
from the source airport to the destination airport on the flight network where
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our model learns the biased probabilities given edge and node features. With
this transition probability modeling approach, we can compute the probability
of taking any given source-destination path as being the product of individual
edge probabilities.

Formally, we model the problem as finding the probability P(i,j) of using
a directed edge (i,j) to leave a starting node i. Here, probabilities on all
edges leaving a given node 7 sum to 1. We use a parametrized model m, with
parameters ), to obtain probability estimates given the relevant features i.e.
P(i,j) = m( i b1 }’;0). For notational simplicity, we consider the feature
vector for a given edge to be the concatenation of edge-specific features, origin
features, and destination features ¢; ; = [ TR <;3;’]. The edge probability pre-
diction model limits the number of trained parameters to prevent overfitting.
This parameter sharing means that the same model is used to predict which
flights will be taken out of an airport whether it is Addis Ababa or Charles de
Gaulle. Furthermore, by predicting edge probabilities from edge and node fea-
tures, we can understand how these features impact our model’s estimates and
thus better understand what factors may be driving wildlife trafficking. Hence,
in our experiments we use a linear model relating the features to the predicted
probabilities to ensure that the resulting model is interpretable.

We denote the set of edges leaving i as 0(¢), and fully specify our linear
model as making predictions on each edge as computing logits with a linear
model, and using a softmax to normalize the edge logits based on the flight origin
node to ensure that the outgoing probabilities sum to one. Mathematically our
probability prediction model is described in Eq. 1.

exp (GTQSZ'J)
Z exp (9T¢i7j/)

J'€8(2)

P(’Lm]) :m(¢;jv ;)7 ;}70) = (1)

Our formulation ensures that the output probability estimates are a differ-
entiable function of the parameters 6 to be trained using standard deep learning
libraries like pytorch [25]. Additionally, we experimented using a 3-layer multi-
layer perceptron (MLP) as well as gradient-boosted decision trees but found poor
generalization of the MLP and the gradient-boosted decision trees performed on
par with our linear model so we opted for the linear model as it was interpretable
with no drawback in performance.

With the given formulation, the probability of a path P(r) is the product
of individual edge probabilities /7, j)eﬂﬁ((i, 7)|i). Furthermore, we can identify
the model’s highest-likelihood path by finding a shortest path with edge weights
corresponding to the negative log probability. A path minimizing the sum of
negative log probabilities is a path that maximizes the sum of log probabilities
which, due to the logarithm’s product rule and monotonicity, is a maximum like-
lihood path. The goal now is to find model parameters 6 such that the observed
trafficking paths 7 have the highest likelihood.

At deployment time, this edge transition model will enable us to identify
easily the highest-likelihood path by solving a shortest path problem in log prob-
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ability space, obtain other highly-likely paths by identifying other near-optimal
solutions, and allows us to easily evaluate the likelihood of any other alternative
path.

3.2 Model Training: Path-Integrated Learning

Given that we want to predict full paths in the flight network, we propose training
the parameters 0 to directly minimize differences between the predicted highest-
probability path and observed trafficking paths. We consider a differentiable
pipeline and loss function that directly aligns model training with the problem
of recovering the ground truth path, and can be optimized using gradient descent.

Using the above definition of our edge transition probability estimator, we
express model training as solving the optimization problem in Eq. 2 which min-
imizes the expected Hamming loss between a given ground-truth path m, 4 with
corresponding source s and destination d against the highest-likelihood path 7 4
predicted by the model connecting that source to that destination. The highest-
likelihood path is computed by Single Source Single Destination shortest path
solver (SSSDSolver) over the negative log of predicted transition probabilities
P. Transition probabilities P are computed according to Eq. (1).

Ultimately, to train the model we compute gradients for the model param-
eters via backpropagation of the hamming loss to the predicted highest-
probability path 7, back to the predicted transition probabilities P, and then to
the model parameters 6.

r%in E;. , [H (71'37,1, SSSDSolver (—log (]5) ) S, d))} (2)

For completeness, we can define the single source single destination shortest
path solver in Eq. (3) as finding the path minimizing the sum of weights on edges
used in the path m, which in our case are negative log probabilities.

SSSDSolver(w; s,d) = arg min (Z(i,j)eﬂs , wm») (3)
Ts,d ’

Here we can use any off-the-shelf shortest path solver without worrying about
negative edge weights since the probabilities are all between 0 and 1 (exclusive),
so the negative log of the probabilities are all positive values. In practice, we
use Dijkstra’s shortest path algorithm. Note that the forward pass to get pre-
dicted path 7 is the same approach we use for determining the highest-likelihood
path, thus aligning our model’s training with the overall deployment pipeline of
correctly identifying the full path.

In order for us to use gradient descent to train our model parameters, we
need to ensure that all steps from the model predictions to the loss evaluation
are differentiable so that gradients may be easily computed using chain rule. All
of the components except for the SSSDSolver are readily differentiable functions
available in Pytorch [25], as a result we need to define a backward pass for the
shortest path solver to enable model training.
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Using the formulation enabling differentiation of blackbox solvers proposed
in [26], we make our forward and gradient update explicit below. In the for-
ward pass, we simply solve the shortest path problem and cache the solution
7 := SSSDSolver(w; s, d). The backward pass itself expects incoming gradients
from the loss layer, and returns outgoing gradients with respect to the input
edge costs w. Overall, the intention of the gradient is to give an indication
of what changes in the edge costs w will produce the desired change in the
returned path to minimize the loss and better align the path with the ground
truth solution. The method for differentiating blackbox solvers introduced in
[26] essentially perturbs the input objective coefficients w in the direction of the
gradient to find a “locally-improved” solution. It then computes the gradients
as the difference between the resulting “locally-improved” solution and the pre-
viously predicted solution. When used in conjunction with the hamming loss,
the “locally-improved” objective coeflicients are simply the input objective coef-
ficients with a given amount increased or decreased depending on whether the
decision component, such as the edge usage, should be used or not. In order to
specify the degree that the input costs should be perturbed, the authors use a
hyperparameter A which determines the degree to which the weights w should
be perturbed in the desired direction. Formally, in the backward pass, we are
given input gradients V;L of the loss with respect to the shortest path 7. We
compute improved edge weights w’ = w + AV ;L. Then we re-solve the problem
with improved edge weights to find a better solution 7’ = SSSDSolver(w’; s, d).
Finally, we compute gradients of this layer as —%(ﬁ —7').

In our setting, this method corresponds to solving the shortest path problem
with perturbed weights where weight is slightly decreased on edges that should
appear in the ground truth solution and slightly increased on edges that aren’t in
the ground truth solution. The gradient that is passed back to the edge costs is
the difference between the predicted path and the “locally-improved” path. Intu-
itively, the approach aims to decrease cost on edges that should be in the locally-
improved short path but aren’t in the predicted path, and increase cost on edges
that are in the outputted shortest path but don’t appear in the locally-improved
path. Additionally, in our initial experiments, we found that performant values of
A were large enough so that the weight perturbation eclipsed the initial weights
themselves, meaning that overall the “locally-improved” solution was simply the
ground truth solution. As such, to cut the number of solves down by half, we
simply used the ground truth solution path 7 as the “locally-improved” solution.

Note that this approach is akin to updating the gradients such that it scores
the ground truth solution 7 to have better objective value than the predicted
solution 7. Additionally, in this scenario we consider that the path 7 is encoded
as a 0-1 vector with a given entry indicating whether edge (4, 7) is used in the
path or not. As such, the weight vector is updated by the difference between
path solutions.
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3.3 Model Training: Edge-Myopic Learning

We compare our path-integrated learning method with an approach that is
trained to minimize the Kullback-Leibler (KL) divergence [19] between the edge
probabilities computed directly from training data P’ to the edge probabilities
predicted as a function of features P. This approach focuses on correctly pre-
dicting rates at which different edges are used for trafficking in the ground truth
rather than looking at full paths, and is a slight variant of baseline approaches
in previous work [5] that is adapted for our setting where we have known source
and destination locations, as well as network features. Previous work estimates
the transition probabilities between different locations, and here we estimate
these transitions with a logistic regression model to obtain a model of how the
features are related to the observed transitions. Using raw training data, we esti-
mate transition probabilities P’(e) as the number of times that a given flight e
is used for trafficking divided by the number of times that the source airport
is used for trafficking. The predictive model’s parameters are then trained to
closely match these transition probabilities based on the given features. Given
probability predictions P and data-driven estimates P’ (e), the KL divergence is

KL (15\|P’(e)) =>. P, log Pﬁﬁ—("é). Overall, the Edge-Myopic learning trains the

parameters 6 to minimize this edge-level KL divergence.

4 Data Sources

Centralized and comprehensive data sources are critical for combating wildlife
trafficking [16]; however, they are often lacking in practice, complicating the
application of models to different domains. In our experiments, we leverage data
regarding wildlife trafficking seizures, flight pricing, available flights, and indices
of general crime prevalence and resilience infrastructure. The global flight net-
work was collected from OpenFlights.org which hosts open-source information
about airports, routes, and flights. The data was last updated on January 2017,
and we have manually added several airports and routes to ensure that we can
place as many seizure records on the flight network as possible. Overall, this
dataset allows us to construct a flight network of 1,933 airport nodes connected
by 14,118 flight edges.

For each flight edge, we record the distance and collect flight pricing esti-
mates using the Skyscanner API [30]. Since flight pricing depends on several
components such as the amount of time before the flight, we collect prices for
all flight routes one month in advance. For each flight edge, we used the API
on October 14, 2021 to request flight quotes for November 2021. The API did
not return valid responses for several airport pairs due to no valid flight plans
existing in the database accessed by the API which we determined manually
from searching google flights. Additionally, we note that data was collected dur-
ing the coronavirus pandemic impacting flight availability, as historical data was
not available.

Each airport is associated with its country’s metrics reported in the Global
Organized Crime Index for 2021 [7], the first year the indices were published by


https://openflights.org/

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 469

Table 1. Node and edge features of the flight network. Features in Bold were selected
by recursive feature elimination.

NODE FEATURES

METADATA

Population
Flight Count

CITES membership

GITOC - CRIMINAL MARKETS

Criminal Markets (Average)
Human Trafficking
Human Smuggling

Arms Trafficking

Flora Crimes

Non-Renewable Resource Crimes

Fauna Crimes
Heroin Trade
Cocaine Trade
Cannabis Trade
Synthetic Drug Trade

GITOC - RESILIENCE

Anti-Money Laundering Systems
Political Leadership And Governance
Govt. Transparency & Accountability
Economic Regulatory Capacity
Victim & Witness Support

Judicial System And Detention

Resilience (Average)
Territorial Integrity

Law Enforcement
International Cooperation
National Policies & Laws

Prevention

GITOC - CRIMINAL ACTOR

Criminal Actors (Average)

State-Embedded Actors

Mafia-Style Groups
Criminal Networks
EDGE FEATURES

Price

Foreign Actors
Non-State Actors

Distance

the Global Initiative Against Transnational Organized Crime (GITOC). These
indices represent expert opinion of a country’s relationship with various forms of
organized crime, including the prevalence of different criminal actors, strength
of resilience resources, and presence of criminal markets. These indices score
countries from 1 to 10 based on 5 rounds of anonymous and independent expert
reviews in 2020. We also add information about whether the airport’s country is
a member of CITES, the city’s population, and the number of flights that serve
the given airport. The node and edge features we collected are summarized in
Table 1.

We obtained seizure data from the Wildlife Trade Portal (WTP) [36] through
which TRAFFIC provides historical seizure data with detailed records like
intended itinerary (source, destination, transit points), trafficked wildlife, traf-
ficker details, and legal outcomes. In total, we accessed 1,067 records between



470 A. Ferber et al.

2017 and 2021 to synthesize a dataset of 454 itineraries of wildlife trafficking.
Only 362 of the 1,933 airport nodes in the global flight network are used by
traffickers in the historical seizure data, highlighting the data sparsity. Further-
more, in terms of the paths themselves, the data is biased towards shorter paths,
having 1-hop, 2-hop, 3-hop, and 4-hop paths making up 60.6%, 24.2%, 15%, and
0.2% of the data respectively.

Seizure data provides a glimpse of how WT networks operate, alert experts to
trends in supply and demand for different species, and point to key locations for
deterring wildlife crime [20]. However, it is important to understand the biases
in seizure data due to being collected by different law enforcement agencies,
using several means of detection, against various criminal agents [6,15]. As a
result, seizure data not only reflects the criminal network, but also the defensive
resources. Nevertheless, seizure data is one of the few tools we have available to
peer into WT networks in a scalable manner.

5 Experiments

Table 2. Summary statistics from 10-fold cross-validation of models using either the
full set of features or an algorithmically-selected subset. We evaluate two training meth-
ods, edge-myopic learning which aims to correctly predict how often individual edges
are used, and path-integrated learning which aims to identify the complete intended
source-destination path. We report the average performance across folds with 95%
confidence intervals.

Training Method | Features | Path recall T | Edge recall T | Edge precision T | Edit distance |
Edge-Myopic Selected | 89.6% + 1.2 [83.1% + 2.6 |86.1% + 1.0 0.115 + 0.04
Path-Integrated |Selected | 92.4% + 2.7 | 88.4% + 4.3 |90.5% =+ 2.6 0.088 + 0.03
Edge-Myopic All 89.2% + 2.5 | 82.8% + 3.5 |85.5% + 3.1 0.113 + 0.03
Path-Integrated | All 89.1% + 3.1 |82.6% + 4.0 |85.4% + 3.4 0.113 + 0.03

5.1 Feature Selection

Feature selection identifies the highest-impact features, limits overfitting, and
avoids correlated features. We use recursive feature elimination to iteratively
remove the least-useful feature from the current feature set by testing each of
them and evaluating the change in 10-fold path recall. Since node features appear
twice for a given edge, once for the edge’s head and again for the tail, we drop
both as needed. The full set and selected features in bold are in Table 1.

5.2 Metrics

We train the models using the Adam optimizer with amsgrad [27], and evalu-
ate the models using 10-fold cross-validation, splitting the dataset by source-
destination pair. This produces a prediction for every source-destination path
using a model that wasn’t trained on information from the given source-
destination pair. We evaluate using several metrics at the path and edge level.
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Fig. 2. Visualization of discrepancies between Path-Integrated predicted itineraries in
blue and observed itineraries in red. Additionally, domain experts identified two likely
errors in Fig. d where our model’s predictions are unrealistic. (Color figure online)

Path Recall is the percent of the ground truth paths the model completely
predicted correctly. Given the N ground truth paths in the dataset D™, the path
recall is % Zws,deD“ § (7s,q = 7rs,4). Here § is just a 1 if the paths are completely
equal (taking the same sequence of edges) and 0 otherwise. Higher values here
mean that our model is not likely to miss out on trafficked paths.

Edge Recall is the percent of trafficked edges that our model predicts to have traf-

ficking. Mathematically this is (Zﬂ LeDr Deen, 40 (€ € 7?'37d)) /2. sepTs.dl-
High values here mean that a large proportion of observed trafficked edges are
picked up by our model.

Edge Precision measures the percent of edges that our model predicts to have
trafficking which did in fact exhibit trafficking in the seizure data. Mathemat-

ically this is (ZWS LeDr Decs, , 0 (€ € ﬂs,d)) /dr. ,epn|Ts,al. High values here

mean that our model’s predictions are trustworthy and that domain users can
expect that the model’s predictions will likely contain trafficking.
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top and bottom 10 feature coefficients over k folds
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Fig. 3. Feature importance boxplot of the model coefficients across 10 training folds.
Positive values suggest higher trafficking rates when the indicator is prevalent and
negative values indicate lower rates when the indicator is prevalent.

Edit Distance or Levenshtein distance [21], is the smallest number of “edits”
(additions, removals, or substitutions) needed to go from the predicted to ground
truth path, considering the itinerary to be a sequence of airports visited. Low
edit distance means that the predicted paths are similar to the observed paths.

5.3 Results Discussion

We present numerical results in Table 2, computing the average and standard
deviation in performance with 10-fold cross-validation. Given the data size of
only 454 itineraries, the differences in performance come from only a few pre-
dicted paths. Additionally, both models benefit from feature selection, with
feature-selected path-integrated learning improving over edge-myopic learning.
The performance of path-integrated learning with feature selection is high in
that the models are able to recall 92.4% of the paths completely, 88.4% of the
edges, and the predicted edges contain trafficking at a rate of 90.5%. Addition-
ally, breaking the results down by path length, we find that on the 1-hop, 2-hop,
3-hop, and 4-hop paths, path-integrated learning with selected features gets path
recalls of 98.9%, 83.1%, 80.7%, and 100%, respectively, and average Levenstein
distances of 0.031, 0.169, 0.192, and 0 respectively. On the other hand, across
1-hop, 2-hop, 3-hop, and 4-hop paths, the edge-myopic learning with selected
features has path recall of 100%, 83.1%, 58.6%, and 0%, respectively, with Lev-
enstein distances of 0.0, 0.261, 0.314, 2.0, respectively. Across all folds, our model
differs with 31 ground truth paths between 25 origin-destination pairs. We note
that our performance improvements aren’t statistically significant for most met-
rics, except for edge precision, due to our small sample size. However, given
that path-integrated learning gives fewer errors in our low data regime and are
promising for future work when more data is available for evaluation. Given the
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data bias, the predicted alternate routes may contain wildlife trafficking even
though it is not present in the ground-truth data. We visualize representative
discrepancies between predicted and observed paths in Fig.2 with predicted
paths in blue and observed paths in red. We categorize the discrepancies into 10
origin-destination pairs where our predictions shortcut the observed itinerary by
removing stops (Fig.2a), and 13 cases where our model predicts different lay-
overs than the observed (Fig.2b, 2¢), identified as highly plausible in informal
consultations with experts. The two cases where our model predicted additional
layovers are visualized in Fig. 2d and are likely errors.

We visualize the path-integrated learning model’s feature importance in
Fig. 3. Here, positive values mean that high feature values induce high estimated
probability, whereas negative values mean that high feature values induce low
estimated probability. Overall, the model considers that traffickers are likely to
travel to locations with high arms trafficking as well as resilience against money
laundering. The convergence between wildlife trafficking and arms trafficking has
been documented and has broad implications for interdiction [32]. Additionally,
the model predicts that traffickers are less likely to enter regions with high flora
crime, criminal networks, or human trafficking. The negative value for the flight
destination’s flora crimes is interesting and warrants further investigation, and
may reflect seizure data bias, or traffickers wanting to flee suspicion. Some fea-
tures have 0 weight from selecting features based on edge-myopic learning, as
well as having correlated features. Ultimately, we propose a model and a train-
ing approach, presenting promising results with the best data available so far.
More in-depth and robust conclusions about wildlife trafficking route prediction
can be made in the future as more complete seizure data and richer feature sets
become available, which can leverage our modeling work.

5.4 Conclusion

We approach the problem of predicting wildlife trafficking on the flight trans-
portation network with differentiable optimization. To align our network training
with the goal of correctly identifying full paths, we train with a differentiable
highest-probability path solver We show that a path-integrated learning model
learns over the available airport and flight features with limited training data,
slightly improving over edge-myopic learning, and can likely further improve as
more seizure data is collected. Lastly, we identify several features that may con-
tribute to traffickers being more likely to take a given path. We hope that our
method will help inform interdiction efforts and the study of wildlife trafficking
networks, and we intend to use our predictions in conjunction with combinatorial
interdiction in future work.
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