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Abstract

An n-bit boolean function is resilient to coalitions of size q if no fixed set of q bits is likely to influence the
value of the function when the other n � q bits are chosen uniformly at random, even though the function is
nearly balanced. We construct explicit functions resilient to coalitions of size q = n/(log n)O(log logn) = n1�o(1)

computable by linear-size circuits and linear-time algorithms. We also obtain a tight size-depth tradeo↵ for
computing such resilient functions.

Constructions such as ours were not available even non-explicitly. It was known that functions resilient to
coalitions of size q = n0.63... can be computed by linear-size circuits [BL85], and functions resilient to coalitions
of size q = ⇥(n/ log2 n) can be computed by quadratic-size circuits [AL93].

One component of our proofs is a new composition theorem for resilient functions.

1 Introduction and our results

A function f : {0, 1}n ! {0, 1} is resilient to coalitions of size q if, informally, no adversary controlling q input
bits can noticeably influence the output of the function, when the other n�q bits are chosen uniformly at random.
A large number of works, many of which are discussed below, has been devoted to constructing and analyzing
resilient functions. Indeed, the study of resilient functions is fundamental in the analysis of boolean functions
[O’D14] and has found many applications, ranging from the original ones about collective coin-flipping protocols
[BL85, AL93, RZ98] to the construction of randomness extractors [KZ07, GVW15, CZ16, Mek17, CL18, HIV22],
to correlation bounds for polynomials [CHH+20].

Given that resilient functions are such powerful objects, the main question we address is: what are the minimal
resources needed to compute resilient functions? This question was explicitly raised in [HIV22].

Before we discuss our answers to this question, we give some background on previous constructions. A
standard example of a resilient function is the majority function, which is resilient to coalitions of size ⇥(

p
n).

Ben-Or and Linial [BL85] proved that one can improve the resilience by recursively composing majority on three
bits. This yields a function which is resilient to coalitions of size ⇥(nlog3 2) = ⇥(n0.63...) and computable by a
linear-size circuit. Jumping ahead, our techniques are flexible enough to recover this result (and show something
much stronger).

There is a beautiful result by Ajtai and Linial [AL93] which remains essentially state-of-the-art to this day.
They prove the existence of functions computable by quadratic-size circuits which are resilient to coalitions of
size ⇥(n/ log2 n). This is nearly the optimal resilience one can achieve, as any boolean function on n bits can be
controlled by coalitions of size ⇥(n/ log n) [KKL88].

The fact that resilient functions with parameters as in the Ajtai-Linial result exist at all may be quite shocking.
Furthermore, given that the quadratic-size bound for non-explicit circuits which are resilient to coalitions of size
n
1�o(1) has not been improved for 30 years, one might naively conjecture this is optimal.

One might also consider the less demanding conjecture that super-linear circuit size is required, as was
conjectured for a list of combinatorial objects including super-concentrators [Val77] and universal hash functions
[IKOS08] – conjectures which were disproved with significant impact on our intuition of what can be computed
super e�ciently. For more discussion on surprising bounds for seemingly di�cult combinatorial objects see [Vio18].

Our contribution is adding resilient functions to the list of objects which can be computed super e�ciently.
In other words, we show the existence of functions with almost the same resiliency as the Ajtai-Linial circuits
that can be computed by linear-time algorithms and linear-size circuits. Furthermore, our techniques also yield
explicit functions with similar parameters. We highlight the fact that before our work, it was not clear how to
achieve this even non-explicitly.

∗This paper subsumes an unpublished work by Meka. PI and EV are partially supported by NSF grant CCF-2114116.
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1.1 Our results Next we define resiliency. As in the literature, we will in fact give tradeo↵s between the
coalition size and how much it can influence the function. We put forth a somewhat di↵erent definition, which is
closely related to the standard definition of resiliency (see Definition 3.1 and Lemma 3.2) but connects better to
our proof strategy.

Definition 1.1. Let f : {0, 1}n ! {0, 1}. For G ✓ {1, 2, . . . , n} we let fG(x, y) denote the output of f when the

bits indexed by G are set by x 2 {0, 1}|G| and the others by y 2 {0, 1}n�|G|. We say that fG is fixed by x to
b 2 {0, 1} if fG(x, y) = b for every y.

Then f is (⇢,�)-fix resilient if for any set G ✓ {1, 2, . . . , n} and any b 2 {0, 1}, with probability

� 1/2� (n� |G|)⇢� � over a uniform x 2 {0, 1}|G| we have that fG is fixed by x to b.

One should think of � as the bias of f . Note if � = 0 this implies that f is balanced (by taking
G = {1, 2 . . . , n}). When this is the case, we will write that f is ⇢-fix resilient. One should think of ⇢�1 as
the maximal coalition size that f is resilient to.

To summarize the discussion in the introduction, all previous constructions either require quadratic size (and
time), or else have fix resiliency � n

⌦(1)
/n. On the other hand, we prove the following:

Theorem 1.1. For all su�ciently large n and b, there are
�
(log n)O(log logb n)

/n, 1/n!(1)
�
-fix resilient functions

computable by circuits of size n · poly(b). In particular:

1. There are explicit
�
(log n)O(log logn)

/n, 1/n!(1)
�
-fix resilient functions computable by linear-size circuits (set

b := O(1)).

2. There are explicit
�
(log n)O(log(1/✏))

/n, 1/n!(1)
�
-fix resilient functions computable by n

1+✏ size circuits for
any constant ✏ > 0 (set b := n

✏).

We give a number of related constructions. In particular in Theorem 2.3 we give non-explicit constructions
as above but with bias zero (the bias in the theorem above is quasi-polynomially small, and can be traded with
the other parameters as will be apparent in the proof).

The depth of the circuits in Theorem 1.1 is of interest. To discuss this it is convenient to work in the
unbounded fan-in model (whereas the size bounds in Theorem 1.1 are with respect to the bounded fan-in model).
In this model, the circuits in Item (1) have depth O(log log n). Those in Item (2) have depth O(log(1/✏)). The
latter matches a result by Chaudhuri and Radhakrishnan [CR96] which says any circuit of depth log(1/✏)/2 and

size n
1+✏ can be made constant by fixing O(n1�✏

2

) = n
1�⌦(1) bits. In other words, there is a coalition of size

n
1�⌦(1) that controls the circuit.

Define “resiliency loss” as ⇢n for a ⇢-fix resilient function. Recall that by [KKL88] the smallest possible
resiliency loss of any function is ⌦(log n), while Theorem 2.1 yields a function with O(log2 n) resiliency loss. Since
both of these quantities are 2⇥(log logn), the “resiliency loss” in Item (1) in Theorem 2.3 is quasi-polynomial in
the optimal. At the other end, Item (2) shows that for any ✏ we can compute functions with resiliency loss
polynomial in the optimal by circuits of size n

1+✏. A natural open problem is to exhibit linear-size circuits
computing a function with resiliency loss polynomial in the optimal.

The complexity of extractors Resilient functions have been used to construct extractors in [KZ07,
GVW15, CZ16] and subsequent works. We briefly discuss the relevance of our results to this line of works.
Resilient functions computable by circuits with small depth are important for the approach in [CZ16], and we
note that the depth of the circuits in Item (1) is small enough to be used in their framework. This could lead
to a�ne and two-source extractors computable by linear-size circuits. Also, combined with the work [HIV22] our
results give non-explicit a�ne extractors computable by constant-depth circuits composed with a layer of parity
gates, a model which lies at the frontier of our understanding of circuit lower bounds. Specifically, we obtain
such extractors computable in size n

1+✏ and depth O(log 1/✏). This matches a lower bound for computing such
extractors in [CGJ+18].

2 Zero-bias constructions

For ease of presentation, we begin in this section with some simpler constructions based on balanced functions
(i.e., with zero bias). This keeps the parameters to a minimum, while conveying the main ideas. In addition,
we will be able to construct explicit functions which are monotone and balanced, something which is not given
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by Theorem 1.1. Moreover, the results in this section will recover and generalize classic results in this area (see
below). The drawback is that for some interesting range of parameters the constructions are not explicit. In
the proceeding Section 3, by building on these ideas and applying a result by Meka [Mek17], we achieve explicit
constructions.

The basic building block of the constructions in this section is the classical Ajtai-Linial construction [AL93],
stated next.

Theorem 2.1. For su�ciently large n, there are O( log
2
n

n
)-fix resilient circuits of size O(n2).

This result appears to be folklore but as stated does not seem to be in the literature. The works we are aware
of [BL85, AL93, RZ98, CZ16, Mek17, Wel20] either don’t prove a full tradeo↵, don’t achieve bias zero, or have
worse resilience. However because the proof is somewhat technical and not needed for our main result, we do not
include it in this paper.

2.1 A composition lemma A new tool we introduce is a generic composition lemma for resiliency. The proof
in hindsight is not involved given our definition of fix resiliency. One can speculate that the lack of a “correct”
definition served as a barrier to proving the result below, despite recursive constructions based on specific functions
already existing in the literature [BL85].

Lemma 2.1. Let f 0 : {0, 1}n
0
! {0, 1} be ⇢

0-fix resilient, and let f 00 : {0, 1}n
00
! {0, 1} be ⇢

00-fix resilient. Then

f := f
0 � f 00 : {0, 1}n

0·n00
! {0, 1} is 2⇢0⇢00-fix resilient.

Proof. Let n := n
0 · n00 and fix a set G ✓ {1, 2, . . . , n} of size n� q. This induces sets Gi of sizes n� qi for the n

0

copies of f 00.
For 1  i  n

0 we let Ai,0, Ai,1 ✓ {0, 1}|Gi| be sets of maximal equal density such that for every xi 2 Ai,b we

have that f 00
Gi

is fixed to b by xi. And let Bi := {0, 1}|Gi| � (Ai,0 [Ai,1).

Note that if xi 2 {0, 1}|Gi| is uniformly sampled from Ai,0 [ Ai,1 then the output of f 00
Gi

is a uniform bit
independent from the rest of the inputs. Furthermore, Bi has density  2⇢00qi since f 00 is ⇢00-fix resilient. We next
describe a sampling process which is equivalent to sampling a uniform x 2 {0, 1}|G|.

1. For every 1  i  n
0 decide independently whether xi 2 {0, 1}|Gi| is sampled from Ai,0 [Ai,1 (in which case

xi is good) or from Bi with probability equal to the corresponding densities.

2. Sample xi uniformly from the set picked in the first step.

After the first step, let G0 ✓ {1, . . . , n0} index the set of of good xi. The second step can be viewed as inputting
f
0 with |G0| uniform independent bits. The locations of these bits depend on the first step, but are fixed before

the second step. Then by the resiliency of f
0, the probability after the second step that x fixes f

0
G

to 1 is
� 1/2� (n0 � |G0|)⇢0.

So the probability that an x sampled as above fixes fG to 1 is

�
n
0X

j=0

P[|G0| = j](1/2� (n0 � |G0|)⇢0) = 1/2� E[n0 � |G0|]⇢0.

Note that n
0 � |G0| =

P
n
0

i=1 1xi2Bi , where 1E is the indicator of the event E. By the aforementioned density of
Bi, P[1xi2Bi ]  2⇢00qi which implies that E[n0 � |G0|]  2⇢00q.

Combining everything together, the probability that a uniform x 2 {0, 1}|G| fixes fG to 1 is � 1/2� 2⇢0⇢00q.
The case of fixing fG to 0 is done identically.

Recursive majority. Lemma 2.1 allows us to recover the classic result of Ben-Or and Linial about the
influence of recursive-majority (Theorem 4(a) in [BL90]). Let f : {0, 1}3 ! {0, 1} be the majority function
on 3 bits. Note that f is 1/4-fix resilient. Indeed, when |G| = 2 the the function is 1 with probability
� 1/4 = 1/2�1 ·(1/4), and when |G| = 1 then the function is 1 with trivial probability � 1/2�2 ·(1/4) = 0. If we
make a balanced ternary tree with 3t leaves where each node corresponds to f we obtain a function on 3t+1 =: n
bits which by Lemma 2.1 is fix resilient with resilience 2t · (1/4)t = 2�t = 2�(log3 n�1) = 2 ·n� log3 2 = 2 ·n�0.6309....

The proof in [BL90] is tailored to the specific function and does not easily extend to other functions. On the
other hand, our approach allows us to compose arbitrary resilient functions.
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2.2 A regular construction By Theorem 2.1 and repeatedly applying Lemma 2.1 we arrive at the next
construction.

Theorem 2.2. For all su�ciently large n and b, there are
�
n
O(log log b)/ log b

/n
�
-fix resilient functions computable

by circuits of size O(nb) which can be constructed in time O(nb) + 2O(b3).

For some intuition on the parameters, consider setting b to some large enough constant. Then we obtain a
function which is 1/n1��-fix resilient and computable in linear time for some constant � > 0. Alternatively,
we can set b = log1/3 n and obtain a function computable in time  n + O(nb) < n log n with resiliency
n
O(log log logn)/ log logn

/n = 1/n1�o(1).
Before we prove Theorem 2.2, we need the following.

Fact 2.1. The circuit from Theorem 2.1 can be brute-forced in time 2O(n3).

Proof. Theorem 2.1 gives a O(log2 b)/b-fix resilient function on b bits computable by a circuit of size O(b2), which

itself can be computed in time 2O(b3) by Fact 2.1.
We recursively compose the previous function t times and obtain a function on n := b

t inputs. The size is
asymptotically dominated by the size of the input layer. This layer consists of n/b functions each taking size
O(b2) for a cost of O(nb).

By Lemma 2.1 the composed function is O((log2 b)/b)t-fix resilient. As t = log n/ log b, this equals
O(log b)2 logn/ log b

/b
t = n

O(log log b)/ log b
/n.

2.3 An irregular construction We are able to significantly improve the parameters by modifying the fan-ins
of the functions in each layer. For intuition on how this is done, consider applying Theorem 2.2 with b =

p
n;

this results in the composed circuit C := fout(f1, f2, . . . , fpn), where each fi, fout has fan-in
p
n. Note the size of

C is dominated by the size of the inner layer, which will be O(b2) ·
p
n = O(n3/2).

Now consider the composition C
0 := fout(f1, f2, . . . , fn2/3) where each fi has fan-in n

1/3 and fout has fan-in
n
2/3. Note the size of both layers are balanced and furthermore, they are both O(n4/3). Additionally, Lemma

2.1 implies that C 0 achieves the same resilience as C.
Generalizing this idea allows us to greatly improve on the resilience, size, and depth of the resulting

composition.

Theorem 2.3. For all su�ciently large n and b, there are
�
(log n)O(log logb n)

/n
�
-fix resilient functions computable

by circuits of size O(nb).

Proof. Consider a tree of functions of depth t where each function at level i has fan-in bi, where i = 0 is the
level closest to the input with b0 = b. We set bi+1 := b

�

i
for some constant � we fix later. Note bi = b

�
i

and

n =
Q

t�1
i=0 bi.

At level i we use the ⇢i-fix resilient circuits from Theorem 2.1 on bi bits, where ⇢i = O(log2 bi)/bi. Additionally,
there is some universal constant c such that the circuits have size  cb

2
i
at every level i.

First we bound the size of the tree. Let si denote the size of the layer at level i. We have

si+1

si
 c(bi+1)2

bi+1 · c(bi)2
=

b
�
i+1

b2�
i = b

�
i(��2)  1/2

as long as 1 < � < 2 and b is su�ciently large. Hence, the size
P

t�1
i=0 si of the tree is O(s0). Note that

s0 = (n/b) · cb2 = O(nb).
Next we compute the resilience. At level i we use functions which are ⇢i-fix resilient. By Lemma 2.1 the final

resilience is
t�1Y

i=0

2⇢i =
t�1Y

i=0

O(log2 bi)/bi = n
�1

t�1Y

i=0

O(log2 bi)  n
�1(log n)O(t)

.

The last inequality follows as bi  n for every i.
To conclude we compute the depth t of the tree in terms of n. We have

n =
t�1Y

i=0

bi = b

Pt�1
i=0 �

i

= b
(�t�1)/(��1)

.
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This implies t = O(log logb n).

3 Proof of Theorem 1.1

In this section we construct explicit and e�cient resilient functions building on the ideas developed in the previous
section. The main technical challenge is dealing with the fact that all existing constructions of explicit tradeo↵
resilient functions have some amount of bias. Hence we will need to generalize the previous results which only
dealt with balanced functions.

First we give an analogous version of Lemma 2.1 that works for unbalanced functions. The proof is similar
to before.

Lemma 3.1. Let f
0 : {0, 1}n

0
! {0, 1} be (⇢0,�0)-fix resilient, and let f

00 : {0, 1}n
00

! {0, 1} be (⇢00,�00)-fix

resilient. Then f := f
0 � f 00 : {0, 1}n

0·n00
! {0, 1} is (2⇢0⇢00, 2n0

⇢
0
�
00 + �

0)-fix resilient.

For intuition on the parameters, consider some f on m bits which is ( d

m
,

d

m
)-fix resilient. The composition

f � f will be ( 3d
2

m2 ,
3d2

m
)-fix resilient.

Proof. Let n := n
0 · n00 and fix a set G ✓ {1, 2, . . . , n} of size n� q. This induces sets Gi of sizes n� qi for the n

0

copies of f 00.
Next, for 1  i  n

0 we let Ai,0, Ai,1 ✓ {0, 1}|Gi| be sets of maximal equal density such that for every xi 2 Ai,b

we have that f 00
Gi

is fixed to b by xi. And we let Bi := {0, 1}|Gi| � (Ai,0 [Ai,1).

Note that if xi 2 {0, 1}|Gi| is uniformly sampled from Ai,0 [ Ai,1 then the output of f 00
Gi

is a uniform bit
independent from the rest of the inputs. Furthermore, Bi has density  2(⇢00qi + �

00) since f
00 is (⇢00,�00)-fix

resilient. We next describe a sampling process which is equivalent to sampling a uniform x 2 {0, 1}|G|.

1. For every 1  i  n
0 decide independently whether xi 2 {0, 1}|Gi| is sampled from Ai,0 [Ai,1 (in which case

xi is good) or from Bi with probability equal to the corresponding densities.

2. Sample xi uniformly from the set picked in the first step.

After the first step, let G
0 ✓ {1, . . . , n0} index the set of good xi. The second step can be viewed as inputting

f
0 with |G0| uniform independent bits. The locations of these bits depend on the first step, but are fixed before

the second step. Then by the resilience of f
0, the probability after the second step that x fixes f

0
G

to 1 is
� 1/2� (n0 � |G0|)⇢0 � �

0.
So the probability that an x sampled as above fixes fG to 1 is

�
n
0X

j=0

P[|G0| = j](1/2� (n0 � |G0|)⇢0 � �
0) = 1/2� E[n0 � |G0|]⇢0 � �

0
.

Note that n0 � |G0| =
P

n
0

i=1 1xi2Bi . By the aforementioned density of Bi, P[1xi2Bi ]  2(⇢00qi + �
00) which implies

E[n0 � |G0|]  2(⇢00q + n
0
�
00).

Combining everything together, the probability that a uniform x 2 {0, 1}|G| fixes fG to 1 is � 1/2� 2⇢0⇢00q�
2n0

⇢
0
�
00 � �

0
. The case of fixing fG to 0 is done similarly.

We will need another way to compose resilient functions. We seek to drive the bias down while not damaging the
resiliency too much. We accomplish this by simply taking the XOR of r independent copies. We will use this in
conjunction with a result in [Mek17] that gives explicit tradeo↵ resilient functions albeit with poor bias.

However, the result in [Mek17] is not stated for fix resilience. So first we state a di↵erent definition of tradeo↵
resilience (referred to as ‘strong resilience’ in the literature) and then we relate it to fix resilience.

Definition 3.1. We say that f is (⇢,�)-change resilient if |P[f = 1] � 1/2|  � and if for any set G ✓
{1, 2, . . . , n}, with probability � 1 � (n � |G|)⇢ over x 2 {0, 1}|G| we have that fG is fixed by x to either 0
or 1.

Lemma 3.2. If f is (⇢,�)-change resilient then it is (⇢,�)-fix resilient. Moreover, if f is (⇢,�)-fix resilient then
f is (2(⇢+ �),�)-change resilient.
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Proof. Suppose f is (⇢,�)-change resilient, and fix some set G ⇢ [n] of size n � q. Then the probability over

x 2 {0, 1}|G| that fG is fixed by x to 1 is at least

P[f = 1]� P
x⇠{0,1}|G| [fG not fixed by x] � 1/2� � � ⇢q.

The same proof shows that fG is fixed to 0 with the same probability.
Now suppose that f is (⇢,�)-fix resilient. First note this immediately implies |P[f = 1] � 1/2|  �. Now

fix any G of size n � q where q � 1. Over a uniform x 2 {0, 1}|G|, fG is fixed to either 0, 1 with probability
� (1/2� q⇢� �) + (1/2� q⇢� �) = 1� 2q⇢� 2� � 1� 2q(⇢+ �).

Lemma 3.3. ([Mek17], Theorem 1.2) There are explicit (O(log2 m)/m, 1/20)-change resilient functions on m

bits computable by circuits of size poly(m).

Applying the strategy above we obtain the following.

Lemma 3.4. For every m, r there are explicit (O(log2 m)/m, 2�r)-fix resilient functions on O(mr) bits computable
by circuits of size poly(m, r).

Proof. We compose the functions in Lemma 3.3 on input length m with the XOR on cr bits, with c a constant
set so that the resulting bias is 2�r.

Now fix a coalition Q ✓ {1, . . . , cmr} of size q. Q induces coalitions of sizes q1, q2, . . . , qcr for each of the cr

subfunctions on m bits. By the definition of change resilience, the probability the i-th coalition can change the
output of the i-th function is  qi ·O(log2 m)/m.

So the probability that Q can change the final output is by a union bound at most q · O(log2 m)/m. We
conclude by applying Lemma 3.2 which implies fix resilience.

Finally we can prove Theorem 1.1.

Proof. It su�ces to prove the theorem for b � log3 n. The theorem for smaller b then follows by padding. That
is, to obtain the theorem for arbitrary n and b < log3 n use the construction for n0 := n/ loga n and b

0 := log3 n0,
padded to n input bits. The circuit size is n0poly(b0) < n for all su�ciently large a. This change does not a↵ect
the resiliency parameter because

(log n0)O(log logb0 n
0)
/n

0  (log n)O(log logb n)
/n

up to the constant in the big-Oh. The bias parameter is similarly una↵ected.
From this point we assume that b � log3 n. We construct a tree of functions of depth t where each function at

level i has fan-in bi, where i = 0 is the level closest to the input with b0 = b. We set bi+1 := b
�

i
for some constant

� we fix later. Note bi = b
�
i

and n =
Q

t�1
i=0 bi.

On input length bi we apply the explicit (r⇢i, 2�r)-fix resilient function on bi bits given by Lemma 3.4, for
r := log2 n and ⇢i := O(log2 bi)/bi. Here we use that b � log3 n.

We can fix some universal constant c so that every circuit above on fan-in bi has size  b
c

i
. Using this we first

analyze the total size of the composed circuit. Let si be the circuit size of the layer at distance i from the input.
We have

si+1

si


b
c

i+1

bi+1 · bic
=

(b�
i+1

)c�1

(b�i)c
= b

�
i((c�1)��c)  1/2

for a universal � and all su�ciently large b. Hence, the total size
P

t�1
i=0 si of the circuit is O(s0). We have

s0  (n/b) · bc = nb
c�1.

Now we compute the resulting resilience. By Lemma 3.1, the final resiliency is

t�1Y

i=0

2r⇢i = n
�1

t�1Y

i=0

O(1)r log2 bi  n
�1 logO(t)

n.

The last inequality follows since bi  n for every i and r = log2 n.
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Next we deal with the bias parameter. Let �i denote the bias at level i of the tree. Recall �0 = 2�r. We
bound �i for i > 0 by Lemma 3.1 which says

�i  2 · �i�1 · bi · (r⇢i) + 2�r  O(�i�1 · log4 n).

The last inequality follows as �i is non-decreasing as i increases, and �i � �0 = 2�r. Hence the final bias �t�1 is

 �0 ·
t�1Y

i=0

O(log4 n)  2� log2
n · (log n)O(t)

.

Next we bound the depth t of the tree. By construction,

n =
t�1Y

i=0

bi = b
(�t�1)/(��1)

.

This implies t = O(log logb n).
Plugging this into the bound above for the resiliency parameter yields the desired result. For the bias

parameter we note that 2� log2
n · (log n)O(log logb n)  1/n!(1).
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