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Resolving Matrix Spencer Conjecture Up to Poly-logarithmic Rank
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Abstract

We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank:
given symmetric d × d matrices A1, . . . , An each with ‖Ai‖op ≤ 1 and rank at most n/ log3 n,
one can efficiently find ±1 signs x1, . . . , xn such that their signed sum has spectral norm
‖
∑n

i=1
xiAi‖op = O(

√
n). This result also implies a logn − Ω(log logn) qubit lower bound

for quantum random access codes encoding n classical bits with advantage & 1/
√
n.

Our proof uses the recent refinement of the non-commutative Khintchine inequality in [Ban-
deira, Boedihardjo, van Handel, 2022] for random matrices with correlated Gaussian entries.

∗University of Michigan, Ann Arbor. bansal@gmail.com.
†University of Washington, Seattle. jhtdavid@cs.washington.edu
‡University of California, Los Angeles. raghum@cs.ucla.edu

http://arxiv.org/abs/2208.11286v2


1 Introduction

We study discrepancy minimization in the matrix setting. Let us start with the classical discrepancy
setting where given vectors a1, . . . , an ∈ Rd satisfying ‖ai‖∞ ≤ 1 for all i ∈ [n], and the goal is
to find signs x1, . . . , xn ∈ {±1} to minimize the discrepancy ‖

∑n
i=1 xiai‖∞. In a seminal result,

Spencer [Spe85] showed that the O(
√
n log d) bound obtained by a random coloring is not tight

and showed the following bound, which is also the best possible in general.

Theorem 1.1 (Spencer [Spe85]). Given vectors a1, . . . , an ∈ Rd each satisfying ‖ai‖∞ ≤ 1, there
exist signs x ∈ {±1}n such that ‖

∑n
i=1 xivi‖∞ = O(

√
n ·max{1,

√

log(d/n)}).

In particular for d = O(n), this gives an O(
√
n) bound, in contrast to the O(

√
n log n) bound

for random coloring obtained by applying Chernoff and union bounds.

To prove this result, Spencer developed the powerful partial-coloring method via the entropy
method, building on the previous work of Beck [Bec81]. Another approach to prove Theorem 1.1
based on convex geometry was developed independently by Gluskin [Glu89]. While these original
arguments used the pigeonhole principle and were non-algorithmic, in recent years, there has been a
rich line of work [Ban10, BS13, LM15, Rot17, LRR17, ES18, RR20b] on their algorithmic versions.

Matrix Spencer Setting. A natural generalization of Spencer’s problem to matrices is the
following. Let A1, . . . , An ∈ Rd×d be symmetric matrices with maximum singular value, or operator
norm, ‖Ai‖op ≤ 1. Find a coloring x ∈ {±1}n that minimizes ‖

∑n
i=1 xiAi‖op. In particular,

Spencer’s result corresponds to the case when all the Ai = diag(ai) are diagonal.

As in the vector case, for a random coloring x ∈ {±1}n, the non-commutative Khintchine
inequality of Lust-Piquard and Pisier [LP86, LPP91, Pis03], or the matrix Chernoff bound [Oli10,
Tro15], give that

E

[

∥

∥

∑

i

xiAi

∥

∥

op

]

= O
(

√

log d ·
∥

∥

∥

∑

i

A2
i

∥

∥

∥

1/2

op

)

. (1)

This implies a bound of O(
√
n log d) on the matrix discrepancy. This inequality also holds when

one picks x ∈ Rn to be standard Gaussians, which will play an important role in our results.

Matrix concentration bounds are powerful and widely used tools in mathematics and computer
science, and it is natural to ask when one can beat them. In particular, whether the following
natural analog of Spencer’s result for matrices holds is a tantalizing open question.

Conjecture 1.2 (Matrix Spencer Conjecture [Zou12, Mek14]). Given d × d symmetric matrices
A1, . . . , An ∈ Rd×d with ‖Ai‖op ≤ 1, there exist signs x ∈ {±1}n such that

∥

∥

∑n
i=1 xiAi

∥

∥

op
≤

O(
√
n ·max{1,

√

log(d/n)}). In particular, the matrix discrepancy is O(
√
n) for d = n.

While this conjecture is still open, there has been exciting progress on important special cases.
Recently, Hopkins, Raghavendra and Shetty [HRS22] proved Conjecture 1.2 where each matrix
Ai has rank O(

√
n); in a different direction, Levy, Ramadas and Rothvoss [LRR17] and Dadush,

Jiang and Reis [DJR22] established Conjecture 1.2 for block-diagonal matrices with block size
h = O(n/d). Recently, Bansal, Jiang, and Meka [BJM22] gave an approach based on barrier
functions to achieve a bound that unifies and slightly strengthens the results of [HRS22, DJR22].
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1.1 Our Results

The main result of this paper is the following theorem.

Theorem 1.3 (Matrix Spencer Up to Poly-logarithmic Rank). Given d × d symmetric matrices
A1, . . . , An ∈ Rd×d each with ‖Ai‖op ≤ 1 and ‖Ai‖2F ≤ n/ log3 n, there exist signs x ∈ {±1}n such
that ‖

∑n
i=1 xiAi‖op = O(

√
n). Moreover, these signs can be computed efficiently.

Note that the condition ‖Ai‖2F ≤ n/ log3 n is satisfied when each Ai has rank at most n/ log3 n
or in particular if d ≤ n/ log3 n. Thus Theorem 1.3 resolves Conjecture 1.2 up to poly-logarithmic
dimension or poly-logarithmic rank. We remark that even when assuming the matrices Ai have
small rank (even rank 1) or small dimension (even d =

√
n), it is known that one cannot hope for a

bound better than Θ(
√
n) [DJR22]. For instance, let e1, . . . , en ∈ Rn be the standard basis vectors

and take Ai = (1/2)(e1 + ei)(e1 + ei)T . Then, for any x ∈ {±1}n, the first column of
∑

i xiAi has
norm Ω(

√
n) so its spectral norm is Ω(

√
n). This is in sharp contrast to the diagonal case, where an

O(
√
r log n) bound for rank r matrices holds [Ban98], and a O(

√
r) bound was conjectured [BF81].

Further, when matrices Ai have dimension d = ω(n) but rank(Ai) ≤ n/ log3 n, the bound in
Theorem 1.3 is O(

√
n) and is stronger than the ω(

√
n) bound suggested by Conjecture 1.2.

A new ingredient in our proof is a recent strengthening of the non-commutative Khintchine
inequality for Gaussian random matrices of the form

∑

i giAi where g1, . . . , gn are independent
standard Gaussian random variables due to Bandeira, Boedihardjo, and van Handel [BBvH21].
The central idea is to pick a suitable projection of the random matrix to a subspace so that the
bound of [BBvH21] matches O(

√
n). We defer the details to the full proof.

The same proof strategy also implies an improvement over the random coloring bound of
O(

√
n log d) for all d = o(n) by using the result of [Tro18] together with [BBvH21]1.

Implications for Quantum Random Access Codes. [HRS22] identified a beautiful connection
between the matrix Spencer conjecture and quantum random access codes that achieve advantage
C/

√
n for a big enough constant. They use this connection in their proof of the conjecture for

matrices of rank O(
√
n).

Consider the following two-party communication problem: Alice is given a vector x ∈ {±1}n
and Bob an index i ∈ [n]. We are interested in the one-way quantum communication complexity
(from Alice to Bob) of computing xi. That is, Alice gets to send a quantum message to Bob
and Bob must use this message to compute a guess for xi. For a protocol Π, let advΠ(x, i) =
max(0,P[Π(x, i) = xi] − 1/2) be the advantage over random guessing that Alice and Bob have.
Note that the randomness is over that of the protocol.

The seminal works of [ANTSV02] showed that for any protocol Π with Ex,i[advΠ(x, i)] = Ω(1),
Alice must send Ω(n) qubits to Bob2. In [HRS22], the following elegant connection between Con-
jecture 1.2 and the above communication problem is made: The conjecture is true if and only if
there is some constant C such that any protocol Π with minx Ei[advΠ(x, i)] > C/

√
n must send at

least log2 n−O(1) qubits from Alice to Bob.

1Specifically, using the bound E[‖X‖op] = O((log d)1/4σ(X) + (log d)1/2
√

v(X)σ(X)) (this follows by combining
Corollary 3.6 in [Tro18] with Proposition 4.6 in [BBvH21]), instead of the bound given by Theorem 2.1, in the
argument in Section 3 gives the discrepancy bound o(

√
n log d) for all d = o(n).

2On a related note, if one is not interested in the exact constant, one can obtain an Ω(n) bound easily from the
matrix Chernoff bound in (1) (without using any quantum information theory).
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As our main result, Theorem 1.3, proves the conjecture for matrices of dimension n/ log3 n, this
combined with Claim 1.6 in [HRS22] immediately imply the following corollary:

Corollary 1.4 (QRAC Lower Bound). There exists a universal constant C > 0 such that the fol-
lowing holds. Any quantum one-way protocol Π as above with minx Ei[advΠ(x, i)] > C/

√
n requires

at least log2 n− 3 log2 log2 n−O(1) qubits of communication from Alice to Bob.

Note that the leading constant of 1 in front of log2 n is right for the first time and is the best
possible (for sufficiently large constant C > 0). Previously, the results of [HRS22, DJR22] imply a
lower bound of (1/2) log2 n−O(1) on the quantum one-way communication complexity.

Further, a modification of the example in [DJR22] shows that there exists a protocol Π such
that for all x ∈ {±1}n, i ∈ [n], advΠ(x, i) > c/

√
n for some constant c > 0 and involves at

most (1/2) log2 n + O(1) qubits of communication. Combined with our lower bound, this shows a
somewhat sharp transition in the communication required for protocols as in Corollary 1.4: for some
constants 0 < c < C, achieving an advantage of C/

√
n requires log2 n−O(log log n) qubits, whereas

one can achieve c/
√
n advantage with (1/2) log2 n + O(1) qubits. Interestingly, the transition is

a quantum phenomenon and is absent for classical randomized communication; a tight bound of
log2 n+Θ(α2) bits of communication is known for achieving advantage α/

√
n for all α > 0.

1.2 Further Related Works

Discrepancy Theory. Discrepancy theory is widely studied and has applications to many other
mathematics and computer science areas. We refer readers to the excellent books [Cha00, Mat09,
CST+14] for a more comprehensive account of the rich history of discrepancy. Recent developments
in discrepancy have led to several applications in approximation algorithms, differential privacy,
fair allocation, experimental design, and more [MN12, Rot13, NTZ13, BCKL14, Ban19, JKS19,
HSSZ19, BJSS20, BRS22].

Matrix Discrepancy and Non-Commutativity Random Matrix Theory. Many natural
problems in the study of spectra of matrices can be viewed as questions about matrix discrepancy,
e.g., graph sparsification [BSS12, RR20a], the Kadison-Singer problem [MSS15] and its generaliza-
tion [KLS20], and the design of quantum random access codes [ANTSV02, HRS22].

Matrix discrepancy is also closely related to non-commutative random matrix theory, where
the typical value of ‖

∑

i xiAi‖op for a random coloring x has received significant attention. The
bound of E[‖

∑

i xiAi‖op] ≤ O(
√
n logm) by matrix Chernoff [AW02] or matrix Khintchine [LP86,

LPP91, Pis03] that is generally tight for commutative matrices, can be often improved in the non-
commutative case (e.g. [Ver18, Tro18, BBvH21] and the references therein). We refer readers to
the book [Tao12, Vu14] for a more comprehensive account of random matrix theory.

2 Preliminaries

We first recall some basic facts about matrices and describe the notations. For a square matrix
A ∈ Rm×m with entries aij , its trace Tr(A) =

∑

i aii and Frobenius norm ‖A‖F =
√

Tr(ATA) =
(
∑

ij a
2
ij)

1/2. If A is symmetric with eigenvalues λ1, . . . ,λn, then we have Tr(A) =
∑

i λi, ‖A‖F =

3



(
∑

i λ
2
i )

1/2 and its operator norm ‖A‖op = max‖x‖2=1 ‖Ax‖2 = maxi |λi|. A symmetric matrix A is
positive semidefinite (PSD) if all its eigenvalues λi ≥ 0.

For a linear subspace H ⊆ Rn, let H⊥ denote its orthogonal complement. For any matrix
A ∈ Rd×d, we let vec(A) ∈ Rd2 be the vector formed by the d2 entries of A in a fixed order. For a
subspace H and convex set K ⊆ H, denote γH(K) the Gaussian measure of K restricted to H, i.e.
the probability that a standard Gaussian vector on H lies in K.

2.1 Matrix Concentration

Let X ∈ Rd×d be a symmetric multi-variate Gaussian random matrix (i.e., the entries of X are
jointly Gaussian). Equivalently, we can assume that X is of the form X =

∑n
i=1 giAi where gi are

independent standard Gaussians and A1, . . . , An ∈ Rd×d are symmetric matrices3. Note that this
representation of X is not unique, and by the rotational invariance of the Gaussians, one also has
X =

∑

j gjBj where Bj =
∑

i(v
j)iAi for any n× n orthogonal matrix with columns vj .

Let σ(X)2 = ‖E[X2]‖op = ‖
∑

i A
2
i ‖op. The fundamental matrix-Chernoff inequality or non-

commutative Khintchine inequality implies, among other things, that for X as above, we have

E[‖X‖op] = O(σ(X) ·
√

log d).

Note that this bound is tight in general, for instance, if X is a suitable diagonal matrix. Much
attention has been given to finding special cases where the

√
log d factor in the bound above can

be improved. Of particular note is the work of Tropp [Tro18] where he introduced a specific matrix
alignment parameter to capture the non-commutativity of the matrices Ai.

Recently, Bandeira, Boedihardjo, and van Handel made substantial progress in this direction
in [BBvH21]. In particular, they related the matrix alignment parameter of Tropp to the following
more natural parameter. Let

Cov(X) := E[vec(X)vec(X)%] = E

[

n
∑

i=1

vec(Ai)vec(Ai)
%
]

(2)

be the d2 × d2 covariance matrix of its d2 scalar entries and define

v(x)2 := ‖Cov(X)‖op.

Bandeira, Boedihardjo, and van Handel [BBvH21] showed the following refinement of the non-
commutative Khintchine inequality of Lust-Piquard and Pisier [LP86, LPP91, Pis03].

Theorem 2.1 ([BBvH21], Theorem 1.2). Given symmetric matrices A1, · · · , An ∈ Rd×d, let X =
∑n

i=1 giAi where gi are i.i.d. standard Gaussians. Then

E[‖X‖op] ≤ C · (σ(X) + (log3/4 d)σ(X)1/2v(X)1/2),

where C is some universal constant. In particular, E[‖X‖op] = O(σ(X) + (log3/2 d)v(X)).

We remark that the bound in [BBvH21] is substantially more potent and, in particular, gives
the optimum constant for the σ(X) term and even control over the full spectrum of X. However,
the weaker version above suffices for our purposes.

3It will be useful to think of the matrix X by itself as a random matrix, and only use the specific representation
∑

i giAi when needed.
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2.2 Partial Colorings in Convex Sets

The seminal work of Gluskin [Glu89] introduced the idea of finding partial colorings via tech-
niques from convex geometry. At the core is the idea that any symmetric convex set K ⊆ Rn

with sufficiently large Gaussian volume must contain a vector from {−1, 0, 1}n with Ω(n) non-
zero coordinates (i.e., a good partial coloring). In particular, Giannopoulos [Gia97] showed that
if γ(K) ≥ e−δn for a sufficiently small constant δ, then K must contain a good partial coloring.
Rothvoss [Rot13] gave an algorithmic version of Giannopoulos’s result and extended it to subspaces
with dimension close to n. This extension will be useful for our purposes.

Lemma 2.2 ([Rot17], Lemma 9). Let ε ≤ 1/60000 and δ := 3
2ε log2(1/ε). Given a subspace

H ⊆ Rn of dimension at least (1 − δ)n, a symmetric convex set K ⊆ H with γH(K) ≥ e−δn and a
point x0 ∈ (−1, 1)n. There exists a polynomial time algorithm to find a point x ∈ (x0+K)∩ [−1, 1]n

so that |{i : xi ∈ {±1}}| ≥ εn/2.

3 Proof of the Main Result

Following the standard approach, it suffices to find a partial coloring with O(n1/2) discrepancy. We
show this below in Section 3.1, and then show how Theorem 1.3 follows from it in Section 3.2.

3.1 Main Partial Coloring Lemma

Lemma 3.1 (Main Partial Coloring Lemma). There exist constants c, c′ > 0 such that the fol-
lowing holds. Given symmetric matrices A1, . . . , An ∈ Rd×d that satisfy ‖

∑n
i=1 A

2
i ‖op ≤ σ2 and

∑n
i=1 ‖Ai‖2F ≤ nf2 and a point x0 ∈ (−1, 1)n, there exists a point x ∈ [−1, 1]n such that

∥

∥

∥

n
∑

i=1

(xi − x0,i)Ai

∥

∥

∥

op

≤ c(σ + (log3/4 d)
√

σf ),

and |{i : xi ∈ {±1}}| > c′n. Moreover, such a point can be found in polynomial time.

The partial coloring upper bound could be changed to the clearer bound of O(σ + (log d)3/2f)
without too much loss; but the above is better for our recursion. In particular, note that if σ ≤

√
n

and f2 ≤ n/ log3 d (which will be true when ‖Ai‖op ≤ 1, and rank(Ai) ≤ n/ log3 d), we get a partial
coloring with a spectral norm bound of O(

√
n).

The idea behind the proof is as follows. Let X =
∑n

i=1 giAi where gi are i.i.d standard Gaussian
random variables. Consider the convex body

K =
{

x ∈ R
n :

∥

∥

∥

n
∑

i=1

xiAi

∥

∥

∥

op

≤ cσ
}

⊆ R
n

for some suitably large constant c > 0. If K had Gaussian measure γ(K) ≥ exp(−Ω(n)), then we
could directly use Rothvoss’s partial coloring result [Rot17]. As σ(X) ≤ σ, one may hope that the
improved concentration bound in Theorem 2.1 can be used to show such a lower bound on γ(K).
However, it is unclear how to do this directly, as we do not have any control on v(X) and it might
even be larger than σ(X). So our key idea is to work with a suitable slice of the body K.
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A key observation is that even if v(X) itself is large, the number of large eigenvalues of Cov(X)
must be small as Tr(Cov(X)) =

∑n
i=1 ‖Ai‖2F ≤ nf2. In particular, if we set ∆2 ≥ f2/δ, then

the number of bad eigenvectors of Cov(X) with eigenvalue greater than ∆2 is at most δn. The
main idea is to restrict the gi’s to lie in a subspace H ⊆ Rn so that if y ∈ H is drawn from
the standard Gaussian distribution on H, the resulting matrix Y =

∑

i yiAi is perpendicular
to each of the bad eigenvectors of Cov(X). This ensures that v(Y ) ≤ ∆ and by Theorem 2.1,
E[‖Y ‖op] = O(σ + (log3/4 d)

√
σ · f). Further, as the number of such bad eigenvectors of Cov(X) is

small, we can ensure that H has dimension at least (1− δ)n. We can now apply Lemma 2.2 to get
the desired partial coloring. We now give the details.

Proof of Lemma 3.1. Let constants ε := 1/60000 and δ := 3
2ε log2(1/ε) be as in Lemma 2.2. We

define X =
∑n

i=1 giAi where gi are i.i.d. standard Gaussian random variables. Consider the PSD

matrix Cov(X) ∈ Rd2×d2 defined in (2). Note that by assumption,

Tr(Cov(X)) =
n
∑

i=1

‖vec(Ai)‖22 =
n
∑

i=1

‖Ai‖2F ≤ δn∆2,

where ∆2 := f2/δ. This implies that there can be at most k := δn eigenvalues of Cov(X) exceeding
∆2. Let V1, · · · , Vk ∈ Rd×d be such that vec(Vj) is the eigenvector for the jth largest eigenvalue of
Cov(X). Define the subspace

H :=
{

y ∈ R
n :

n
∑

i=1

yi · Tr(AiVj) = 0,∀j ∈ [k]
}

.

Now we sample the standard Gaussian vector g ∈ Rn as follows: first sample a standard Gaussian
vector y ∈ H, then sample an independent standard Gaussian vector r ∈ H⊥, and finally let
g = y + r. We define Y :=

∑n
i=1 yiAi and R :=

∑n
i=1 riAi, which implies X = Y + R. Since Y

and R are independent and have zero mean, we immediately have that E[X2] = E[Y 2] +E[R2] and
therefore σ(Y ) ≤ σ(X) ≤ σ by the assumption in the Lemma.

We next show that v(Y ) ≤ ∆. As Tr(Y Vj) = 0 for any j ∈ [k], we have vec(Vj)%Cov(Y )vec(Vj) =

0. As Cov(Y ) is a PSD matrix, W := span{vec(V1), · · · , vec(Vk)} ⊆ Rd2 must be a subspace of the
eigenspace corresponding to the eigenvalue 0 of the matrix Cov(Y ). For any vector v ∈ Rd2 with
v ⊥ W , we thus have that

v%Cov(Y )v ≤ v%Cov(X)v ≤ ∆2,

as Cov(X) = Cov(Y ) +Cov(R), and the (k+1)th eigenvalue of Cov(X) is at most ∆2. This proves
that ‖Cov(Y )‖op ≤ ∆2, or equivalently v(Y ) ≤ ∆.

Now we want to apply Theorem 2.1 to Y =
∑n

i=1 yiAi. A crucial but elementary fact is that
Theorem 2.1 holds for any (symmetric) matrix-valued random variable whose entries are jointly
Gaussian and the final bound only depends on the overall distribution of the random matrix and
not on the specific representation as a sum of independent matrices. Clearly, the matrix Y we have
is a multi-variate Gaussian random variable so we can apply their result.

To be precise, we can justify its validity even though the vector y does not have independent
coordinates as follows. Let v1, . . . , vk ∈ Rn be an orthonormal basis for H. Then, we can write

6



y =
∑k

j=1 hjv
j where hi are i.i.d standard Gaussian variables. We can now write

Y =
n
∑

i=1

yiAi =
k

∑

j=1

hj
(

n
∑

i=1

(vj)iAi

)

=
k

∑

j=1

hjBj ,

where we define Bj =
∑n

i=1(v
j)iAi. Thus Y can be written in the form of a Gaussian matrix series

in terms of the i.i.d. standard Gaussians hi.

Thus we can apply Theorem 2.1 to Y and obtain for universal constant C > 0,

E[‖Y ‖op] ≤ C · (σ(Y ) + (log3/4 d) ·
√

σ(Y )v(Y )) ≤ c(σ + (log3/4 d)
√

σ · f), (3)

for a sufficiently big constant c > C(1 + 1/
√
δ). Let us consider the convex body

K ′ :=
{

x ∈ H :
∥

∥

∥

n
∑

i=1

xiAi

∥

∥

∥

op

≤ 2c(σ + (log3/4 d)
√

σ · f)
}

.

By Markov’s inequality and (3), it follows that γH(K ′) ≥ 1/2 ≥ e−δn. Also note that dim(H) ≥
(1−δ)n since H is defined by δn constraints. It then follows from Lemma 2.2 that we can efficiently
find a point x ∈ (x0 +K ′) ∩ [−1, 1]n such that |{i : |xi| = 1}| ≥ εn/2 = Ω(n). By the definition of
K, the guarantee that x ∈ x0 +K ′ translates to

∥

∥

∥

n
∑

i=1

(xi − x0,i)Ai

∥

∥

∥

op

≤ 2c(σ + (log3/4 d)
√

σ · f).

This completes the proof of the lemma. As (log3/4 d)
√
σ · f ≤ (σ + f(log d)3/2)/2, this implies a

partial coloring discrepancy bound of at most O(σ + (log d)3/2f). !

3.2 Proof of Main Theorem

We can now prove Theorem 1.3 (restated below) by recursively applying Lemma 3.1.

Theorem 1.3 (Matrix Spencer Up to Poly-logarithmic Rank). Given d × d symmetric matrices
A1, . . . , An ∈ Rd×d each with ‖Ai‖op ≤ 1 and ‖Ai‖2F ≤ n/ log3 n, there exist signs x ∈ {±1}n such
that ‖

∑n
i=1 xiAi‖op = O(

√
n). Moreover, these signs can be computed efficiently.

Proof of Theorem 1.3. Denote f2 := n/ log3 n. First, without loss of generality, we can assume
that d ≤ n2. Indeed, suppose to the contrary that d > n2. Define M :=

∑n
i=1 A

2
i and note that

Tr(M) =
∑n

i=1 ‖Ai‖2F ≤ nf2. By a change of basis, we may assume without loss of generality thatM
is diagonal and its diagonal entries are in descending order. Note that Mn2,n2 ≤ Tr(M)/n2 ≤ f2/n.

Define Bi ∈ R(d−n2)×d the matrix obtained by removing the first n2 rows of Ai. We have for any
coloring x ∈ {±1}n,

∥

∥

∥

n
∑

i=1

xiBi

∥

∥

∥

2

op

=
∥

∥

∥

(

n
∑

i=1

xiBi

)%(
n
∑

i=1

xiBi

)∥

∥

∥

op

≤ n ·
∥

∥

∥

n
∑

i=1

B%
i Bi

∥

∥

∥

op

≤ f2,
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where the inequality follows as xixj(BT
i Bj + BT

j Bi) - (BT
i Bi + BT

j Bj) for all i, j. Now we let

Li ∈ Rd×d be the matrix obtained by zeroing out the top left n2 × n2 block of Ai. Since matrices
Ai are symmetric, it follows that for any coloring x ∈ {±1}n,

∥

∥

∥

n
∑

i=1

xiLi

∥

∥

∥

op

≤ 2
∥

∥

∥

n
∑

i=1

xiBi

∥

∥

∥

op

≤ 2f.

This shows that we only need to keep the top left n2×n2 block of each matrix Ai without affecting
the discrepancy by more than an additive term of 2f . We thus assume henceforth that d ≤ n2.

By assumption, the matrices Ai satisfy ‖
∑n

i=1A
2
i ‖op ≤ n and

∑n
i=1 ‖Ai‖2F ≤ nf2. There-

fore, we can apply Lemma 3.1 with x0 = 0 to obtain a partial coloring x(1) ∈ [−1, 1]n with

‖
∑n

i=1 x
(1)
i Ai‖op = O(

√
n) and |{i : |x(1)i | = 1}| = Ω(n). Next we let I1 := {i ∈ [n] : |x(1)i | < 1},

and recursively apply Lemma 3.1 to the set of matrices {Ai}i∈I1 with point x(1)|I1 . Continuing
this process of recursively applying Lemma 3.1 to the set of coordinates i such that |xi| < 1, the
number of such coordinates decreases by a constant factor in each iteration.

Let x(t) ∈ [−1, 1]n be the resulting vector in the tth iteration and let nt denote the number of
coordinates in x(t) that are in (−1, 1). Then, we have nt+1 < λnt for some constant λ < 1 and
by using Lemma 3.1 with σ ≤ √

nt, we get that the discrepancy increases additively by at most

c(
√
nt + (log3/4 d) · f1/2n1/4

t ). Therefore, repeating it for O(log n) iterations, we get a full coloring
with discrepancy at most

c
∑

t

(
√
nt + (log3/4 d) · f1/2n1/4

t ) = O(
√
n) +O((log3/4 n) · f1/2n1/4),

where we have used that d ≤ n2 and nt’s form a geometrically decreasing series. The theorem now
follows since we have chosen f2 = n/ log3 n. !

Remark 3.2. One can also use the version of Lemma 2.2 without defining the subspace as in
the proof above, but this requires assuming ‖Ai‖2F ≤ n/ log4 d in Theorem 1.3. In particular, by
taking vec(A′

i) to be the eigenvectors of the matrix Cov(X) =
∑n

i=1 vec(Ai)vec(Ai)% in descending

order of eigenvalues λ1 ≥ · · · ≥ λn, the random matrix
∑n

i=1 giλ
1/2
i A′

i has the same distribution as
∑n

i=1 giAi. One can then guarantee that γn(K) ≥ 2−O(n) by considering the event that g1, · · · , gk are

all 1/poly(n) small for k = Θ(n/ log n), and applying Theorem 2.1 to control ‖
∑n

i=k+1 giλ
1/2
i A′

i‖op.
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