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Abstract
We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank:
given symmetric d x d matrices Ay, ..., A, each with ||A4;]op < 1 and rank at most n/log®n,
one can efficiently find +1 signs xi,...,x, such that their signed sum has spectral norm

| >0 @i Aillop = O(yv/n). This result also implies a logn — Q(loglogn) qubit lower bound
for quantum random access codes encoding n classical bits with advantage > 1//n.

Our proof uses the recent refinement of the non-commutative Khintchine inequality in [Ban-
deira, Boedihardjo, van Handel, 2022] for random matrices with correlated Gaussian entries.
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1 Introduction

We study discrepancy minimization in the matrix setting. Let us start with the classical discrepancy
setting where given vectors ay,...,a, € R? satisfying ||a;]|lcc < 1 for all 4 € [n], and the goal is
to find signs x1,...,z, € {£1} to minimize the discrepancy || > ;| Z;ai|]|cc- In a seminal result,
Spencer [Spe85] showed that the O(y/nlogd) bound obtained by a random coloring is not tight
and showed the following bound, which is also the best possible in general.

Theorem 1.1 (Spencer [Spe85]). Given vectors ai,...,a, € RY each satisfying ||ailleo < 1, there

exist signs © € {£1}" such that | Y"1 | 2;villec = O(v/n - max{1, \/log(d/n)}).

In particular for d = O(n), this gives an O(y/n) bound, in contrast to the O(y/nlogn) bound
for random coloring obtained by applying Chernoff and union bounds.

To prove this result, Spencer developed the powerful partial-coloring method via the entropy
method, building on the previous work of Beck [Bec81]. Another approach to prove Theorem 1.1
based on convex geometry was developed independently by Gluskin [Glu89]. While these original
arguments used the pigeonhole principle and were non-algorithmic, in recent years, there has been a
rich line of work [Ban10, BS13, LM15, Rot17, LRR17, ES18, RR20b] on their algorithmic versions.

Matrix Spencer Setting. A natural generalization of Spencer’s problem to matrices is the
following. Let Ay, ..., A, € R¥? be symmetric matrices with maximum singular value, or operator
norm, ||4;llop < 1. Find a coloring € {£1}" that minimizes || > 7, x;A;|lop. In particular,
Spencer’s result corresponds to the case when all the A; = diag(a;) are diagonal.

As in the vector case, for a random coloring = € {£1}", the non-commutative Khintchine
inequality of Lust-Piquard and Pisier [LP86, LPP91, Pis03], or the matrix Chernoff bound [Oli10,

Trol5], give that
E[ inAiHop} = 0(\/logd- | > 1/2), (1)

op
This implies a bound of O(y/nlogd) on the matrix discrepancy. This inequality also holds when
one picks z € R™ to be standard Gaussians, which will play an important role in our results.

Matrix concentration bounds are powerful and widely used tools in mathematics and computer
science, and it is natural to ask when one can beat them. In particular, whether the following
natural analog of Spencer’s result for matrices holds is a tantalizing open question.

Conjecture 1.2 (Matrix Spencer Conjecture [Zoul2, Mekl14]). Given d x d symmetric matrices
Ar, o Ay € R with ||Aillep < 1, there eist signs © € {+1}" such that || Y7, xiAiHop <

O(y/n - max{1,+/log(d/n)}). In particular, the matriz discrepancy is O(y/n) for d = n.

While this conjecture is still open, there has been exciting progress on important special cases.
Recently, Hopkins, Raghavendra and Shetty [HRS22] proved Conjecture 1.2 where each matrix
A; has rank O(y/n); in a different direction, Levy, Ramadas and Rothvoss [LRR17] and Dadush,
Jiang and Reis [DJR22] established Conjecture 1.2 for block-diagonal matrices with block size
h = O(n/d). Recently, Bansal, Jiang, and Meka [BJM22]| gave an approach based on barrier
functions to achieve a bound that unifies and slightly strengthens the results of [HRS22, DJR22].



1.1 Owur Results

The main result of this paper is the following theorem.

Theorem 1.3 (Matrix Spencer Up to Poly-logarithmic Rank). Given d x d symmetric matrices
A1, .. Ay € R each with [|Ajllop < 1 and || As]|2 < n/log®n, there exist signs x € {+1}" such
that || 31, 2 Aillop = O(y/n). Moreover, these signs can be computed efficiently.

Note that the condition ||A;]|2 < n/log®n is satisfied when each A; has rank at most n/log®n
or in particular if d < n/ log® n. Thus Theorem 1.3 resolves Conjecture 1.2 up to poly-logarithmic
dimension or poly-logarithmic rank. We remark that even when assuming the matrices A; have
small rank (even rank 1) or small dimension (even d = y/n), it is known that one cannot hope for a
bound better than ©(y/n) [DJR22]. For instance, let ey, ..., e, € R™ be the standard basis vectors
and take 4; = (1/2)(e1 + €;)(e1 + ¢;)T. Then, for any z € {£1}", the first column of >, z;4; has
norm £2(y/n) so its spectral norm is Q(y/n). This is in sharp contrast to the diagonal case, where an
O(y/rlogn) bound for rank r matrices holds [Ban98], and a O(/r) bound was conjectured [BF81].

Further, when matrices A; have dimension d = w(n) but rank(4;) < n/log®n, the bound in
Theorem 1.3 is O(y/n) and is stronger than the w(y/n) bound suggested by Conjecture 1.2.

A new ingredient in our proof is a recent strengthening of the non-commutative Khintchine
inequality for Gaussian random matrices of the form ), g;A; where gq,..., g, are independent
standard Gaussian random variables due to Bandeira, Boedihardjo, and van Handel [BBvH21].
The central idea is to pick a suitable projection of the random matrix to a subspace so that the
bound of [BBvH21| matches O(y/n). We defer the details to the full proof.

The same proof strategy also implies an improvement over the random coloring bound of
O(y/nlogd) for all d = o(n) by using the result of [Tro18] together with [BBvH21]!.

Implications for Quantum Random Access Codes. [HRS22] identified a beautiful connection
between the matrix Spencer conjecture and quantum random access codes that achieve advantage
C/y/n for a big enough constant. They use this connection in their proof of the conjecture for
matrices of rank O(y/n).

Consider the following two-party communication problem: Alice is given a vector x € {£1}"
and Bob an index i € [n]. We are interested in the one-way quantum communication complexity
(from Alice to Bob) of computing z;. That is, Alice gets to send a quantum message to Bob
and Bob must use this message to compute a guess for x;. For a protocol II, let advy(x,i) =
max (0, P[II(z,i) = x;] — 1/2) be the advantage over random guessing that Alice and Bob have.
Note that the randomness is over that of the protocol.

The seminal works of [ANTSV02] showed that for any protocol II with E, ;[advr(z,4)] = Q(1),
Alice must send Q(n) qubits to Bob?. In [HRS22], the following elegant connection between Con-
jecture 1.2 and the above communication problem is made: The conjecture is true if and only if
there is some constant C' such that any protocol II with min, E;[advy(x,7)] > C//n must send at
least logy m — O(1) qubits from Alice to Bob.

!Specifically, using the bound E[|| X ||op] = O((logd)**o(X) + (logd)*/?\/v(X)a(X)) (this follows by combining
Corollary 3.6 in [Trol8] with Proposition 4.6 in [BBvH21]), instead of the bound given by Theorem 2.1, in the
argument in Section 3 gives the discrepancy bound o(y/nlogd) for all d = o(n).

20n a related note, if one is not interested in the exact constant, one can obtain an €(n) bound easily from the
matrix Chernoff bound in (1) (without using any quantum information theory).



As our main result, Theorem 1.3, proves the conjecture for matrices of dimension n/ log® n, this
combined with Claim 1.6 in [HRS22] immediately imply the following corollary:

Corollary 1.4 (QRAC Lower Bound). There exists a universal constant C' > 0 such that the fol-
lowing holds. Any quantum one-way protocol II as above with ming E;[advri(z, )] > C/\/n requires
at least logy n — 3logy logon — O(1) qubits of communication from Alice to Bob.

Note that the leading constant of 1 in front of logy n is right for the first time and is the best
possible (for sufficiently large constant C' > 0). Previously, the results of [HRS22, DJR22] imply a
lower bound of (1/2)logyn — O(1) on the quantum one-way communication complexity.

Further, a modification of the example in [DJR22] shows that there exists a protocol II such
that for all x € {£1}",i € [n], advi(z,i) > ¢/y/n for some constant ¢ > 0 and involves at
most (1/2)logyn 4+ O(1) qubits of communication. Combined with our lower bound, this shows a
somewhat sharp transition in the communication required for protocols as in Corollary 1.4: for some
constants 0 < ¢ < C, achieving an advantage of C'/+/n requires logs n— O(log log n) qubits, whereas
one can achieve ¢/y/n advantage with (1/2)logy,n 4+ O(1) qubits. Interestingly, the transition is
a quantum phenomenon and is absent for classical randomized communication; a tight bound of
logy 7 + ©(a?) bits of communication is known for achieving advantage o/y/n for all a > 0.

1.2 Further Related Works

Discrepancy Theory. Discrepancy theory is widely studied and has applications to many other
mathematics and computer science areas. We refer readers to the excellent books [Cha00, Mat09,
CST™14] for a more comprehensive account of the rich history of discrepancy. Recent developments
in discrepancy have led to several applications in approximation algorithms, differential privacy,
fair allocation, experimental design, and more [MN12, Rot13, NTZ13, BCKL14, Ban19, JKS19,
HSSZ19, BJSS20, BRS22].

Matrix Discrepancy and Non-Commutativity Random Matrix Theory. Many natural
problems in the study of spectra of matrices can be viewed as questions about matrix discrepancy,
e.g., graph sparsification [BSS12, RR20a], the Kadison-Singer problem [MSS15] and its generaliza-
tion [KLS20], and the design of quantum random access codes [ANTSV02, HRS22].

Matrix discrepancy is also closely related to non-commutative random matrix theory, where
the typical value of || Y . ;A4;||op for a random coloring = has received significant attention. The
bound of E[|| Y. z;4illop] < O(v/nlogm) by matrix Chernoff [AW02] or matrix Khintchine [LP86,
LPP91, Pis03] that is generally tight for commutative matrices, can be often improved in the non-
commutative case (e.g. [Verl8, Trol8, BBvH21] and the references therein). We refer readers to
the book [Tao12, Vul4] for a more comprehensive account of random matrix theory.

2 Preliminaries

We first recall some basic facts about matrices and describe the notations. For a square matrix
A € R™™ with entries a;j;, its trace Tr(A) = Y. a;; and Frobenius norm ||Al|r = /Tr(ATA) =

(>4 a?j)l/z. If A is symmetric with eigenvalues Ay, ..., \,, then we have Tr(A) = >, \;, || A|lr =



(32, A2)Y/2 and its operator norm ||Aflqp = max|z,=1 || Az[[2 = max; [A;|. A symmetric matrix A is
positive semidefinite (PSD) if all its eigenvalues A; > 0.

For a linear subspace H C R™, let H' denote its orthogonal complement. For any matrix
A € R4 we let vec(A) € R% be the vector formed by the d? entries of A in a fixed order. For a
subspace H and convex set K C H, denote vy (K) the Gaussian measure of K restricted to H, i.e.
the probability that a standard Gaussian vector on H lies in K.

2.1 Matrix Concentration

Let X € R™? be a symmetric multi-variate Gaussian random matrix (i.e., the entries of X are
jointly Gaussian). Equivalently, we can assume that X is of the form X =37 | ¢;A; where g; are
independent standard Gaussians and Aj,..., A, € R™9 are symmetric matrices®. Note that this
representation of X is not unique, and by the rotational invariance of the Gaussians, one also has
X=> ;9iBj where B; = > (v7);A; for any n x n orthogonal matrix with columns v7.

Let 0(X)? = |E[X?]|lop = ||>; A?|lop- The fundamental matrix-Chernoff inequality or non-
commutative Khintchine inequality implies, among other things, that for X as above, we have

E[[ Xllop] = O(o(X) - V1ogd).

Note that this bound is tight in general, for instance, if X is a suitable diagonal matrix. Much
attention has been given to finding special cases where the y/logd factor in the bound above can
be improved. Of particular note is the work of Tropp [Trol8] where he introduced a specific matrix
alignment parameter to capture the non-commutativity of the matrices A;.

Recently, Bandeira, Boedihardjo, and van Handel made substantial progress in this direction
in [BBvH21]. In particular, they related the matrix alignment parameter of Tropp to the following
more natural parameter. Let

Cov(X) := E[vec(X)vec(X)"] = E[f: vec(Ai)vec(Ai)T] (2)
i=1

be the d? x d? covariance matrix of its d? scalar entries and define

U(ﬂf)Q = [|Cov(X)l|op-
Bandeira, Boedihardjo, and van Handel [BBvH21] showed the following refinement of the non-
commutative Khintchine inequality of Lust-Piquard and Pisier [LP86, LPP91, Pis03].

Theorem 2.1 ([BBvH21], Theorem 1.2). Given symmetric matrices Ay,--- , A, € R4 et X =
S giA; where g; are i.i.d. standard Gaussians. Then

E[[|Xllop] < C - (o(X) + (log™* d)or(X)!/2u(X)'/?),
where C'is some universal constant. In particular, E[| X ||op] = O(0(X) + (log®? d)v(X)).

We remark that the bound in [BBvH21] is substantially more potent and, in particular, gives
the optimum constant for the o(X) term and even control over the full spectrum of X. However,
the weaker version above suffices for our purposes.

31t will be useful to think of the matrix X by itself as a random matrix, and only use the specific representation
>, giAs when needed.



2.2 Partial Colorings in Convex Sets

The seminal work of Gluskin [Glu89] introduced the idea of finding partial colorings via tech-
niques from convex geometry. At the core is the idea that any symmetric convex set K C R”
with sufficiently large Gaussian volume must contain a vector from {—1,0,1}" with Q(n) non-
zero coordinates (i.e., a good partial coloring). In particular, Giannopoulos [Gia97] showed that
if y(K) > e~ for a sufficiently small constant §, then K must contain a good partial coloring.
Rothvoss [Rot13] gave an algorithmic version of Giannopoulos’s result and extended it to subspaces
with dimension close to n. This extension will be useful for our purposes.

Lemma 2.2 ([Rot17], Lemma 9). Let ¢ < 1/60000 and § := 3elogy(1/e). Given a subspace
H C R™ of dimension at least (1 — 6)n, a symmetric convex set K C H with yg(K) > ™" and a
point xg € (—1,1)". There exists a polynomial time algorithm to find a point x € (xo+ K)N[—1,1]"
so that |{i : x; € {£1}}| > en/2.

3 Proof of the Main Result

Following the standard approach, it suffices to find a partial coloring with O(n'/?) discrepancy. We
show this below in Section 3.1, and then show how Theorem 1.3 follows from it in Section 3.2.

3.1 Main Partial Coloring Lemma

Lemma 3.1 (Main Partial Coloring Lemma). There exist constants ¢, > 0 such that the fol-
lowing holds. Given symmetric matrices Ay,..., A, € R that satisfy || S A op < 02 and
S A% < nf? and a point xg € (—1,1)", there exists a point x € [—1,1]" such that

H Zn:(l’z - ﬂfo,i)Az’
i=1

and |{i : z; € {£1}}| > /n. Moreover, such a point can be found in polynomial time.

< ¢(o + (log™* d)\/o f),

op

The partial coloring upper bound could be changed to the clearer bound of O(c + (log d)*/f)
without too much loss; but the above is better for our recursion. In particular, note that if o < y/n
and f2 < n/log®d (which will be true when ||4;|lop < 1, and rank(4;) < n/log®d), we get a partial
coloring with a spectral norm bound of O(y/n).

The idea behind the proof is as follows. Let X = """ | g;A; where g; are i.i.d standard Gaussian
random variables. Consider the convex body

K:{xeR": Hf:a:,A,
i=1

for some suitably large constant ¢ > 0. If K had Gaussian measure v(K) > exp(—(n)), then we
could directly use Rothvoss’s partial coloring result [Rot17]. As o(X) < o, one may hope that the
improved concentration bound in Theorem 2.1 can be used to show such a lower bound on v(K).
However, it is unclear how to do this directly, as we do not have any control on v(X) and it might
even be larger than o(X). So our key idea is to work with a suitable slice of the body K.

< ca} CR"
op



A key observation is that even if v(X) itself is large, the number of large eigenvalues of Cov(X)
must be small as Tr(Cov(X)) = Y0, |4ill% < nf% In particular, if we set A% > f2/§, then
the number of bad eigenvectors of Cov(X) with eigenvalue greater than A? is at most én. The
main idea is to restrict the g;’s to lie in a subspace H C R" so that if y € H is drawn from
the standard Gaussian distribution on H, the resulting matrix ¥ = >, y;4; is perpendicular
to each of the bad eigenvectors of Cov(X). This ensures that v(Y) < A and by Theorem 2.1,
E[||Y ||lop] = O(c + (log** d)/a - f). Further, as the number of such bad eigenvectors of Cov(X) is
small, we can ensure that H has dimension at least (1 — d)n. We can now apply Lemma 2.2 to get
the desired partial coloring. We now give the details.

Proof of Lemma 3.1. Let constants ¢ := 1/60000 and § := 3¢logy(1/) be as in Lemma 2.2. We
define X = )" | g;A; where g; are i.i.d. standard Gaussian random variables. Consider the PSD
matrix Cov(X) € R¥*% defined in (2). Note that by assumption,

Tr(Cov(X)) = 3 [vec(A))3 = 3 A% < onA2,
=1 =1

where A% := f2/5. This implies that there can be at most k := dn eigenvalues of Cov(X) exceeding
A% Let Vi, --- , Vi € R%4 be such that vec(Vj) is the eigenvector for the jth largest eigenvalue of
Cov(X). Define the subspace

H = {y cR": Zn:yi Tr(A;V;) =0,V € [k]}.
=1

Now we sample the standard Gaussian vector g € R™ as follows: first sample a standard Gaussian
vector y € H, then sample an independent standard Gaussian vector » € H™', and finally let
g=y+r. WedefineY := 3" yA; and R := Y ;" | r;A;, which implies X =Y + R. Since YV’
and R are independent and have zero mean, we immediately have that E[X?] = E[Y?] + E[R?] and
therefore o(Y) < o(X) < o by the assumption in the Lemma.

We next show that v(Y) < A. As Tr(Y'V;) = 0 for any j € [k], we have vec(V;) " Cov(Y )vec(V;) =
0. As Cov(Y) is a PSD matrix, W := span{vec(V1), - ,vec(V})} € R must be a subspace of the
eigenspace corresponding to the eigenvalue 0 of the matrix Cov(Y’). For any vector v € R? with
v L W, we thus have that
v Cov(Y)v < v' Cov(X)v < A2,

as Cov(X) = Cov(Y) + Cov(R), and the (k + 1)th eigenvalue of Cov(X) is at most A2. This proves
that ||Cov(Y)|lop < A2, or equivalently v(Y) < A.

Now we want to apply Theorem 2.1 to Y = >, y;4;. A crucial but elementary fact is that
Theorem 2.1 holds for any (symmetric) matrix-valued random variable whose entries are jointly
Gaussian and the final bound only depends on the overall distribution of the random matrix and
not on the specific representation as a sum of independent matrices. Clearly, the matrix Y we have
is a multi-variate Gaussian random variable so we can apply their result.

To be precise, we can justify its validity even though the vector y does not have independent
coordinates as follows. Let v!,...,v* € R” be an orthonormal basis for H. Then, we can write



Yy = Z§=1 hjvj where h; are i.i.d standard Gaussian variables. We can now write

Y = ZyZA Zh(Z ) Zi:

i=1
where we define B; = Y1 ;(v7);A;. Thus Y can be written in the form of a Gaussian matrix series
in terms of the i.i.d. standard Gaussians h;.

Thus we can apply Theorem 2.1 to Y and obtain for universal constant C' > 0,

E[|Y]lop] < C - (0(Y) + (log** d) - /o (Y)o(Y) < e(o + (log®* d)y/o - f), 3)

for a sufficiently big constant ¢ > C(1 4 1/v/§). Let us consider the convex body

K': {xGH HZxZ i <26 0+(log3/4d)m)}.

By Markov’s inequality and (3), it follows that yg(K’) > 1/2 > e7%. Also note that dim(H) >
(1—0)n since H is defined by dn constraints. It then follows from Lemma 2.2 that we can efficiently
find a point x € (zo + K’) N [—1,1]™ such that [{i : |x;| = 1}| > en/2 = Q(n). By the definition of
K, the guarantee that x € xo + K’ translates to

H En:(wi — T0,)
=1

This completes the proof of the lemma. As (log®*d)v/o - f < (o + f(logd)?/?)/2, this implies a
partial coloring discrepancy bound of at most O(c + (log d)*/2 f). O

Ail| < 2¢(0 + (log®* d)\/o - f).
op

3.2 Proof of Main Theorem

We can now prove Theorem 1.3 (restated below) by recursively applying Lemma 3.1.

Theorem 1.3 (Matrix Spencer Up to Poly-logarithmic Rank). Given d x d symmetric matrices
Ay, .. Ay € R each with ||Allop < 1 and ||A]|2 < n/log®n, there exist signs © € {£1}" such
that || Y11 2 Aillop = O(\/n). Moreover, these signs can be computed efficiently.

Proof of Theorem 1.3. Denote f2 :=n/ log® n. First, without loss of generality, we can assume
that d < n?. Indeed, suppose to the contrary that d > n?. Define M := S A? and note that
Tr(M) =", ||4:|% < nf? By achange of basis, we may assume without loss of generality that M
is diagonal and its diagonal entries are in descending order. Note that M,z .2 < Tr(M)/n* < f?/n.
Define B; € R(4=7")%d the matrix obtained by removing the first n? rows of A;. We have for any
coloring x € {£1}",

n
i=1

n

2

SnH A<
op — op

= () (2 wm)



where the inequality follows as x;x;(BI B; + B]-TBZ-) < (BI'B; + B]TB]-) for all ¢,7. Now we let
L; € R¥? be the matrix obtained by zeroing out the top left n? x n2 block of A;. Since matrices
A; are symmetric, it follows that for any coloring x € {+1}",

n n
; op .
=1 =1

This shows that we only need to keep the top left n? x n? block of each matrix A4; without affecting
the discrepancy by more than an additive term of 2f. We thus assume henceforth that d < n?.
By assumption, the matrices A; satisfy || Y1, A%[lop < n and >0, [|4i||% < nf?. There-
fore, we can apply Lemma 3.1 with 2y = 0 to obtain a partial coloring z(!) € [—1,1]" with
1 . 1 . 1
1557, 2 Alop = O(vn) and [{i : 2] = 1} = Q(n). Next we let Ij := {i € [n] : [\V] < 1},
and recursively apply Lemma 3.1 to the set of matrices {4;}icr, with point z()|;,. Continuing
this process of recursively applying Lemma 3.1 to the set of coordinates i such that |z;| < 1, the
number of such coordinates decreases by a constant factor in each iteration.

< 9f.
2]

o

Let ® € [~1,1]" be the resulting vector in the tth iteration and let n; denote the number of
coordinates in z® that are in (—=1,1). Then, we have nyy1 < An; for some constant A < 1 and
by using Lemma 3.1 with o < |/ng, we get that the discrepancy increases additively by at most
c(y/ni + (log3/ ). fY Qni / 4). Therefore, repeating it for O(logn) iterations, we get a full coloring
with discrepancy at most

¢S (Vi + (log®4 d) - f120}Y) = O(vn) + O((log** n) - f1/2n1/4),
t

where we have used that d < n? and n;’s form a geometrically decreasing series. The theorem now
follows since we have chosen f2 = n/log>n. O

Remark 3.2. One can also use the version of Lemma 2.2 without defining the subspace as in
the proof above, but this requires assuming ||A;||% < n/log*d in Theorem 1.5. In particular, by
taking vec(A’) to be the eigenvectors of the matriz Cov(X) = Y1, vec(A;)vec(A;) T in descending
order of eigenvalues Ay > -+ > X\, the random matriz » ;. , g,-)\gﬂA; has the same distribution as
> giAi. One can then guarantee that v, (K) > 270 by considering the event that g1, - - - , g, are

all 1/poly(n) small for k = ©(n/logn), and applying Theorem 2.1 to control || Y7, ., gi)\g/ZA;Hop.
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