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Random restrictions and PRGs for PTFs in Gaussian
Space
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Abstract

A polynomial threshold function (PTF) f : Rn → R is a function of the form f(x) =
sign(p(x)) where p is a polynomial of degree at most d. PTFs are a classical and well-studied

complexity class with applications across complexity theory, learning theory, approximation

theory, quantum complexity and more. We address the question of designing pseudorandom

generators (PRGs) for polynomial threshold functions (PTFs) in the gaussian space: design a

PRG that takes a seed of few bits of randomness and outputs a n-dimensional vector whose

distribution is indistinguishable from a standard multivariate gaussian by a degree d PTF.

Our main result is a PRG that takes a seed of dO(1) log(n/ε) log(1/ε)/ε2 random bits with

output that cannot be distinguished from n-dimensional gaussian distribution with advantage

better than ε by degree d PTFs. The best previous generator due to O’Donnell, Servedio, and

Tan (STOC’20) had a quasi-polynomial dependence (i.e., seedlength of dO(log d)) in the degree

d. Along the way we prove a few nearly-tight structural properties of restrictions of PTFs that

may be of independent interest.
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1 Introduction

Polynomial threshold functions (PTFs) are a classical and well-studied class of functions with
several applications in complexity theory, learning theory, theory of approximation, and more.
Here we study the question of designing pseudorandom generators (PRGs) that fool test functions

that are PTFs. We first start with some standard definitions. Let sign : R → R be defined as
sign(z) = 1 if z ≥ 0 and 0 otherwise.

Definition 1.1. For an integer d > 0, a degree d PTF f : Rn → {0, 1} is a function of the form

f(x) = sign(p(x)), where p : Rn → R is a polynomial of degree at most d.

Our goal is to design a PRG that takes few random bits and outputs a high-dimensional vector
whose distribution is indistinguishable from a standard multivariate gaussian by any low-degree
PTF. Specifically:

Definition 1.2. A function G : {0, 1}r → Rn is a pseudorandom generator for degree d PTFs with

error ε if for every degree at most d PTF f : Rn → {0, 1},

∣

∣

∣

∣

P
y∈u{0,1}r

(f(G(y)) = 1)− P
x∼N(0,1)n

(f(x) = 1)

∣

∣

∣

∣

≤ ε.

We call r the seedlength of the generator and say G ε-fools degree d PTFs with respect to the

gaussian distribution 1. We say G is explicit if its output can be computed in time polynomial in n.

Of particular interest is the boolean case where the target distribution is not gaussian but the uni-
form distribution on the hypercube {+1,−1}n. The gaussian case is interesting by itself both from

a complexity-theoretic view as well as a geometric one. For instance, a PRG as above can be used
to get deterministic algorithms for approximating the gaussian volumes of polynomial surfaces.
Further, the gaussian case is a necessary stepping-stone to obtaining PRGs in the Boolean case: a

PRG for the latter implies a PRG for the gaussian case. Achieving similar parameters as we do
for the boolean case would be a significant achievement: we do not even have non-trivial corre-

lation lower bounds for NP2 against PTFs of degree ω(logn) over the hypercube, a longstanding
bottleneck in circuit complexity.

Over the last several years, the question of designing PRGs for PTFs has received much atten-
tion. Non-explicitly (i.e., the generator is not necessarily efficiently computable), by the proba-
bilistic method, it is known that there exists PRGs that ε-fool degree d PTFs with seed-length is

O(d logn + log(1/ε)). Meka and Zuckerman [MZ13] gave the first non-trivial PRG for bounded
degree PTFs with a seedlength of dO(d) log(n)/ε2 for the boolean and gaussian cases. Indepen-

dent of [MZ13], [DKN10] showed that bounded independence fools degree-2 PTFs leading to

1Here, and henceforth, y ∈u S denotes a uniformly random element from a multi-set S, and N(0, 1) represents
the standard univariate gaussian distribution of variance 1.

2A PRG would at the very least imply correlation lower bounds against a function in NP.
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seedlength O(log(n)/ε2). Since then, there have been several other works that make progress on
the gaussian case [Kan11b, Kan11a, Kan12, Kan14, Kan15]. The seedlength in all of these works
had an exponential dependence on the degree d of the PTF. In particular, until recently no non-

trivial PRGs (i.e., seedlength o(n)) were known for PTFs of degree ω(logn). In a remarkable
recent work, O’Donnell, Servedio, and Tan [OST20] got around this exponential dependence on

the degree d, achieving a seedlength of (d/ε)O(log d) log(n). Our work builds on their work (which
in turn builds on a framework of [Kan11b]).

1.1 Main Results

Our main result is a PRG that ε-fools n-variate degree-d PTFs with seed-length (d/ε)O(1) log(n):

Theorem 1.3 (PRG for PTFs). There exist constants c, C such that for all ε > 0 and d ≥ 1, there

exists an explicit PRG that ε-fools n-variate degree d PTFs with respect to the gaussian distribution

with seedlength r(n, d, ε) = Cdc log(n/ε) log(1/ε)/ε2.

As remarked above, this is the first result with polynomial dependence on the degree for fooling
PTFs against any distribution and gives the first non-trivial PRGs against PTFs of degree nΩ(1).

Previously, we could only handle degree at most 2O(
√
logn).

Towards proving the above result, we develop several structural results on PTFs in the gaussian
space that might be of independent interest. We expand on these later on. Briefly:

• We show that the derivatives of a low-degree polynomial p, taken at a random point x ∼
N(0, 1)n, are likely to have magnitudes ‖∇kp(x)‖ which grow slowly as k increases.

• We apply this fact to the study of random “gaussian restrictions” of a polynomial p,

px,λ(y) := p
(√

1− λx+
√
λy
)

,

and conclude that for small enough λ, with high probability over x ∼ N(0, 1)n, px,λ(Y )
becomes highly concentrated around its mean value µ when Y ∼ N(0, 1)n, as quantified by
a bound on the higher-moments E(px,λ(Y )− µ)R.

• As this concentration result relies only on moment bounds, it extends easily to pseudorandom
distributions Y over Rn which are k-moment-matching with N(0, 1)n, when k ≥ R ·deg(p).

Note that the magnitudes of the derivatives ∇kpx,λ(0) (with respect to x) are the same as the

magnitudes of the degree-k coefficients of px,λ(y) (as a polynomial in y), up to a scaling factor of
roughly λk/2. However, to obtain the moment bound, we must translate to the basis of Hermite

polynomials and bound the degree-k coefficients with respect to this basis (rather than the standard
basis). In contrast with our work, [OST20] derive coefficient-size bounds for the Hermite basis
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directly and work with it exclusively. However, there are some significant advantages in having
the flexibility to work also within the standard basis which will become relevant later – mainly they
are due to the fact that standard basis representations (or equivalently: derivatives) behave nicely

under the scaling operator p(t) *→ p(γt). The Hermite-basis representation behaves poorly under
scaling3.

For an arbitrary fixed polynomial p(t), a bound on the coefficient-sizes in one basis translates only
to a fairly crude bound in the other basis4. Therefore, we come to the following rather technical

contribution of our work which we would like to highlight: we find that, although it is rather painful
to convert between bases while studying an arbitrary fixed polynomial, it is actually quite possible
to do so when studying certain average-case behaviors of polynomials; for instance, to study the

typical behavior of p(x) in the neighborhood around a random point x ∼ N(0, 1)n, or the typical
moments of p(

√
1− λx+

√
λY ), it is possible to pass freely between either polynomial basis, and

we develop some simple tools for doing so. These tools appear to be new (at least with respect to
the body of works on PTFs) and it seems likely that they could be helpful in future works.

Besides these structural results and technical contributions, we also manage to introduce some
substantial simplifications to the analysis of the main PRG as compared to [OST20]. This is

in part due to the flexibility we have to measure the well-behavedness of a polynomial p in the
neighborhood around a point x directly via the derivatives at x, rather than indirectly by taking
several Hermite expansions of p and other auxiliary polynomials (cf. horizantal, diagonal mollifier

checks in [OST20]). We will expand on this in Section 2 when discussing our analysis, but we
briefly summarize a few key points here.

• Following [Kan11b] and [OST20], the pseudorandom construction we analyze is of the form
Z := 1√

L

∑L
i=1 Yi, where each Yi is a k-moment-matching gaussian. This can be thought of

as the gaussian analogue of the boolean construction from [MZ13], which pseudorandomly
partitions the n input bits into L buckets, and then assigns the bits in each bucket using k-
wise independence. This construction and its variants are by now the most widely-applied

pseudorandom tool for fooling various “geometric” function classes including linear thresh-
old functions and their generalizations (such as PTFs and intersections of halfspaces).

• A tempting first idea for analyzing Z is to apply a hybrid argument – this seems promising

in light of the fact that for a low-degree polynomial, we know that p
(
√

1− 1
Lx+

√

1
LYi

)

should be highly-concentrated around its mean for typical x. However, this naive idea fails

quantitatively: The probability that we have good behavior at x is in general not smaller than
√

1/L, so we cannot afford a union-bound over L events as required by the standard hybrid
argument. Remarkably in [Kan11b], Kane shows how to address this obstacle with a clever

sandwiching argument which in some sense mimics the hybrid argument but manages to pay
for the error caused by “bad points” x only once rather than L times.

3In contrast, the Hermite basis representation behaves nicely under the noise operator, p(t) *→
Ex∼N(0,1)n p(

√
1− λx+

√
λt).

4This is especially true in the current setting where we must control the relative sizes of the magnitudes of coeffi-
cients at degree k vs. k + 1.
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• However, one drawback of Kane’s analysis is that its implementation is highly elaborate.
After the framework was extended by [OST20] to break the log(n)-degree barrier, the com-
plexity only increased and the details of the argument became only more specialized and

technical5. Given the wide applicability of the aforementioned pseudorandom construction
and its variants, it would be highly desirable to have a lean and more transparent analysis

which might better serve as a flexible starting point for future adaptations. We propose that
in this work, we do obtain such an analysis.

PTFs simplify under restrictions. As a byproduct of our analysis, we obtain a structural result

on PTFs that is similar in spirit to the celebrated switching lemmas that show that certain classes of
functions simplify significantly under random restrictions. Switching lemmas and random restric-

tions are a cornerstone in complexity theory, and are one of the main methods we have for proving
lower bounds. We prove analogous results with nearly optimal parameters for the important class
of PTFs in the continuous space.

In the boolean case, i.e., when studying distributions on the hypercube {+1,−1}n, a restriction is
a partial assignment of the form ρ ∈ {+1,−1, ∗}n with the understanding that the ∗-variables are

left free. Typically, restrictions ρ as above are parametrized by some λ > 0, the fraction of ∗’s.

Here, we study analogues of the above results in the continuous world, where the inputs are coming
from the standard gaussian distribution. The first question however is what should the analogue of
random restrictions be in the continuous space? As it turns out, adopting the usual interpretation

(where some coordinates are fixed and some are free) is not a natural one to study in the continuous
space especially for PTFs6.

The answer comes from the work of [Kan11b] (further developed in [OST20]) who introduced the
notion of a zoom of a polynomial. To draw a clearer parallel with random restrictions, we term

these gaussian restrictions:

Definition 1.4. Given a function p : Rn → R and x ∈ Rn, and a restriction parameter λ ∈ (0, 1),
let px,λ : Rn → R be7 the function px,λ(y) = p(

√
1− λx+

√
λy).

Intuitively, we can view px,λ as a restriction where (1−λ)-fraction of the variance is already fixed.

(Note that for independent x, y ∼ N(0, 1)n,
√
1− λx+

√
λy is distributed as N(0, 1)n.)

We show that PTFs simplify significantly, i.e., become essentially constant, under gaussian restric-

tions for λ , 1/d6.

5Refer to [OSTK21], which fills in several details absent in [OST20], to see the full scope of the argument.
6One reason is that the class of PTFs is invariant under linear transformations, so it would be nice to have our

notion of restrictions also have some symmetry under linear transformations.
7As the value of λ will often be clear, we will often in fact just use px for brevity.
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Theorem 1.5. There is a constant C > 0 such that the following holds. For any δ, ε > 0, if

• f : Rn → {0, 1} is a PTF of degree d, and

• λ ≤ C δ2

d6 log(1/ε) ,

then with probability at least 1− δ over x ∼ N(0, 1)n, the gaussian restriction of the PTF (fx,λ) is

nearly fixed to a constant: for some b ∈ {0, 1} we have

P
y∼N(0,1)n

[fx,λ(y) = b] > 1− ε.

The work of [OST20] achieves a similar conclusion but when the restriction parameter is λ =
d−O(log d) as opposed to being polynomially small as above. This improved significantly on the

work of [Kan11b] that implicitly shows a similar claim for λ = 2−O(d).

We remark that in a related line of work, [BLY09, HKM14, DRST14, KKL17] study random
restrictions of PTFs over the hypercube. Our focus here is on gaussian restrictions and obtaining
stronger bounds quantitatively: these works had exponential dependence on the degree d.

Slow-growth of derivatives. The analysis of the PRG (Theorem 5.1) and the random restriction
statement above (Theorem 1.5) rely crucially on a claim about the magnitude of the derivatives of

a polynomial evaluated at random gaussian input which may itself be of independent interest (and
can be stated in a self-contained way).

For a function p : Rn → R, let ‖∇kp(x)‖2 denote the sum of squares of all partial derivatives
of p of order k at x. That is, ‖∇kp(x)‖ is the Frobenius norm of the tensor of k’th order partial

derivatives of p. We show that for any degree d polynomial p, the Frobenius-norm of the k’th order
derivatives are comparable to the (k−1)’th order derivatives on a random gaussian input with high
probability:

Lemma 1.6. For any degree-d polynomial f : Rd → R, and x ∼ N(0, 1)n, the following holds

with probability at least 1− δ:

‖∇kp(x)‖ ≤ O(d3/δ)‖∇k−1p(x)‖, for all 1 ≤ k ≤ d. (1)

Note that the above lemma is tight up to the factor of O(d2): consider the example p(x) = xd
1.

Independent and concurrent work. Independently and concurrent to our work, [OSTK21] (fol-
lowing up on [OST20]) also obtained similar results to Theorem 1.3. They first obtained an ana-

logue of hypervariance reduction (cf., Lemma 2.5) as studied in [OST20] with better parameters
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and combined the improved hypervariance reduction lemma with the framework of [OST20] to
yield a PRG with dO(1) dependence on the degree d.

Our approach differs in that we critically use our new bounds on the growth of derivatives of
polynomials as in Lemma 1.6 (instead of Lemma 2.5 which follows from Lemma 1.6). Working

with the derivatives directly allows us to get a substantially simpler analysis of the main PRG
construction compared to [OST20, OSTK21].

2 Proof Overview

We first describe the high-level ideas underlying our main PRG construction - the proof of Theo-
rem 5.1. We then describe the main idea behind the proof of Lemma 1.6 which is critical in being

able to handle PTFs of polynomially large degree. The proof of Lemma 1.6 is quite different from
the approach taken in [Kan11b, OST20] to prove analogous results in their analysis.

2.1 Analysis of the PRG

We will use the same generator as in [Kan11b], and the high-level strategy is similar in spirit to that

of [Kan11b, OST20]. However, we introduce several additional ingredients that exploit Lemma 1.6
and significantly simplify the analysis.

As in the works of [Kan11b] and [OST20], the PRG output will be

Z :=
1√
L

L
∑

i=1

Yi,

where each Yi is an independent k-moment-matching gaussian vector with k = dΘ(1). For the

time being let us work under the idealized assumption that each Yi is exactly k-moment-matching
with a standard gaussian: i.e., for any polynomial h : Rn → R of degree at most k, E[h(Yi)] =
Ez∼N(0,1)n [h(z)]. We will later relax this condition without too much additional work as is now
standard (see Section 3 for details), and ultimately output a discrete approximation to Z with finite
support. For now, it is appropriate to imagine that the seedlength required for generating each Yi

will be roughly O(k log n); the total seedlength will thus be L·O(k logn). We improve prior works
by showing that it suffices to let L = dΘ(1), rather than L = 2Θ(d) as in [Kan11b] or L = dΘ(log d)

as in [OST20].

For the rest of this section, fix a degree d polynomial p : Rn → R and let f : Rn → {0, 1}
defined as f(x) = sign(p(x)) be the corresponding PTF we are trying to fool. For simplicity in
this introduction, we consider the case where p is multi-linear. The general case is similar but is
slightly more nuanced.
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We wish to compare EZ [f(Z)] to Ez[f(z)] where z ∼ N(0, 1)n. Note that we can rewrite z ∼
N(0, 1)n as z := 1√

L

∑L
i=1 yi where each yi is an independent standard gaussian.

First attempt: A hybrid argument A natural approach to analyze the PRG is to use a hybrid

argument by replacing each yi with a k-moment matching Gaussian vector Yi as in our PRG output.
That is, show the following sequence of inequalities:

E

[

f

(

y1√
L
+

y2√
L
+ · · ·+

yL√
L

)]

≈ E

[

f

(

Y1√
L
+

y2√
L
+ · · ·+

yL√
L

)]

≈ E

[

f

(

Y1√
L
+

Y2√
L
+ · · ·+

yL√
L

)]

· · · ≈ E

[

f

(

Y1√
L
+

Y2√
L
+ · · ·+

YL√
L

)]

. (2)

Let λ = 1/L and y′ =
√
λ(y2 + · · ·+ yL). Note that y′ ∼ N(0, 1− λ)n. The first inequality in the

sequence above, corresponding to a single-step of the hybrid argument is, equivalent to showing:

E

[

f(
√
λy1 + y′)

]

≈ E

[

f(
√
λY1 + y′)

]

.

In other words, the above inequality is asking to show that E[fy′/
√
1−λ(y1)] ≈ E[fy′/

√
1−λ(Y1)]. In-

tuitively, this is equivalent to showing that k-moment matching gaussians fool gaussian restrictions
of a PTF with high probability over the restriction. Indeed, such a claim follows from our bounds

on the derivatives of polynomials at random evaulation points (Lemma 1.6).

We say that a polynomial p is well-behaved at a point x if

‖∇k+1p(x)‖ ≤ (1/ε)‖∇kp(x)‖ for all k = 0, 1, . . . , d− 1,

where ε is a parameter that will be set to be slightly larger than
√
λ. We say p is poorly-behaved at

x if the above condition does not hold.

The starting point of the analysis is that if p is well-behaved at x, then sign(p(x+
√
λY )) is fooled

by a moment-matching Y with very good error:

Proposition 2.1 (Direct Corollary of Lemma 3.2). Let q : Rn → R be a degree d multi-linear

polynomial and suppose that q is well-behaved at a point x. Let R = ε2/λ. Then, for y ∼ N(0, 1)n

and Y a dR-moment matching gaussian,

E
y∼N(0,1)n

[sign(q(x+
√
λy)]− E

Y
[sign(q(x+

√
λY )] ≤ 2−Ω(R).

This fact follows from the following argument. Since q is well-behaved at x, this in particular

implies a non-negligible lower bound on the size of the constant term c of h(t) := q(x +
√
λt),

relative to its other coefficients. In particular, sign(h(t)) is nearly fixed to a constant in the sense
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of Theorem 1.5. Indeed, writing h(t) = c+ (h(t)− c), we see that sign(h(t)) can only differ from
sign(c) if we have a deviation with magnitude at least |h(t)− c| ≥ |c|. We can use a concentration
inequality to bound the probability that either |h(y)− c| ≥ |c| or |h(Y )− c| ≥ |c|. In light of the

bounds on ‖∇kq(x)‖, such a concentration inequality follows from moment bounds obtained from
hypercontractivity.

The above lemma shows the first step of the hybrid argument and suggests the following strategy
for analyzing the PRG. Define Z−i = Z −

√
λYi. We can now aim to show that the polynomial

p is well-behaved at Z−i with high probability. This indeed seems plausible as our Lemma 1.6
indeed shows that when Z is standard gaussian, the polynomial p is well-behaved at Z with high
probability.

Immediately, there are two obstacles for this approach:

• First, Lemma 1.6 works only for truly random gaussian and not for our pseudorandom Z−i.

• Second, even if we argue that p is likely to be well-behaved at Z−i, we cannot apply a union

bound over i. The error guarantee in Lemma 1.6, is .
√
λ; whereas, we have L = 1/λ

choices of i, so we cannot use such a straightforward union-bound argument to replace each

Yi with a yi.

The second issue is especially problematic as the error probability in Lemma 1.6 cannot be im-

proved, at least in that variant; the probability that the derivatives don’t grow too fast is not small
compared to L = 1/λ.

Beating the union bound. Roughly speaking, the main insight in going beyond the union bound

obstacle mentioned above is as follows. There are two sources of error in the naive hybrid argument
outlined above: (1) The probability of failure coming from p being poorly-behaved at the points

Z−i. (2) The error coming from applying Proposition 2.1 to replace a Yi with yi when p is well-
behaved at Z−i.

Note that we have very good control on the error of type (2) above: we could make it be much
smaller than 1/L by increasing the amount of independence k. We will exploit this critically. We

will complement this by showing that even though a naive union bound would be bad for errors
of type (1) above, it turns out that we don’t have to incur this loss: we (implicitly) show that
P (∀i, p is well-behaved at Z−i) ≈ 1−O(εd3). We do so by checking only that p is well-behaved

at the single point Z (in a slightly stronger sense) and then we conclude that p is also highly-
likely to be well-behaved at each of the “nearby” points Z−i. Intuitively, this is what allows us to
circumvent the union bound in the hybrid argument. However, it would be difficult to actually carry

out the analysis as stated this way – we use a sandwiching argument to sidestep the complicated
conditionings which would arise in this argument as stated.

We proceed to describe the sandwiching argument. We wish to lower-bound the PTF sign(p(x))

8



by sign(p(x)) · g(x), where g(x) is some “mollifier” function taking values in [0, 1]. The role of
g(x) is roughly to “test” whether p is well-behaved at x; we ideally want g(x) = 1 at points x
where p is well-behaved and g(x) = 0 at points x where p is poorly-behaved. However, we also

need g(x) to be smooth, so there will be some intermediate region of points for which g(x) yields
a non-informative, non-boolean value.

We set g(x) to be a smoothed version of the indicator function

g(x) ≈
d−1
∏

k=0

(

‖∇k+1p(x)‖ ≤
1

ε
‖∇kp(x)‖

)

,

which tests whether the derivatives of p at x have controlled growth in the sense of Lemma 1.6.
More specifically, we set

g(x) :=
d−1
∏

k=0

ρ

(

log

(

1

16ε2
‖∇kp(x)‖2

‖∇k+1p(x)‖2

))

,

where ρ(t) : R → [0, 1] is some smooth univariate function with ρ(t) = 0 for t ≤ 0 and ρ(t) = 1
for t ≥ 1.

Now, for every point x ∈ Rn we have

sign(p(x)) ≥ sign(p(x))g(x).

Furthermore, under truly-random gaussian inputs z ∼ N(0, 1)n we have

E
z
sign(p(z))g(z) ≥ E

z
sign(p(z))− E

z
|g(z)− 1| ≥ E

z
sign(p(z))− O(εd3),

where the final inequality here follows from Lemma 1.6. Combining these, we get that

E
Z
sign(p(Z)) ≥ E

z
sign(p(z))− O(εd3)− |E

Z
sign(p(Z))g(Z)− E

z
sign(p(z))g(z)|.

Note that we can similarly obtain an upper-bound for EZ sign(p(Z)) by repeating this argument on
the polynomial −p(x).

Thus, it suffices to bound |EZ sign(p(Z))g(Z)−Ez sign(p(z))g(z)|. Having introduced the molli-
fier, we can now afford to do so by a standard hybrid argument. We represent z as z := 1√

L

∑L
i=1 yi

and recall that Z is of a the form Z = 1√
L

∑L
i=1 Yi. We can replace each Yi with yi and get

|E
Z
sign(p(Z))g(Z)− E

z
sign(p(z))g(z)| ≤ γL,

where γ is the (quite small) error coming from the following lemma.

Lemma 2.2. There exists a constant c such that the following holds for λ ≤ ε2/Rdc. For any fixed

vector x ∈ Rn, Y a dR-moment-matching gaussian vector, and y ∼ N(0, 1)n,

|E
Y
sign(p(x+

√
λY ))g(x+

√
λY )− E

y
sign(p(x+

√
λy))g(x+

√
λy)| ≤ γ = 2−Ω(R).
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Technically speaking, the above lemma is where our intuition on going around the union bound
is quantified, allowing us to use the hybrid argument. We briefly outline our proof of this lemma,
where for the purpose of illustration we continue with the simplifying assumption that the polyno-

mial p is multilinear.

The proof is by a case analysis on the behavior of p at the the fixed point x. In the multilinear case
it suffices to consider the derivatives ∇kp(x); in the general case we need to consider something
slightly different.

• Case 1: p is well-behaved at x, i.e., ‖∇k+1p(x)‖ ≤ (1/ε)‖∇kp(x)‖ for all k.

– We can use Lemma 3.2 in this case to conclude that sign(p(x +
√
λy)), sign(p(x +√

λY )) are both almost constant with error 2−Ω(R).

– So, it remains to show that Y fools g(x +
√
λy). We approximate g by a low-degree

polynomial in y using a Taylor-truncation argument. Our assumption on the controlled

growth of derivatives ‖∇kp(x)‖ allows us to bound the truncation error by bounding
the higher-moments of the deviations ‖∇kp(x+

√
λY )‖ − ‖∇kp(x)‖.

• Case 2: p is not well-behaved at x; let k0 be the largest k such that ‖∇k0+1p(x)‖ >
(1/ε)‖∇k0p(x)‖.

– Intuitively, this says that the polynomial p is well behaved at degree above k0, but not
at degree k0. This allows us to show, via an R-th moment bound, that both

* ‖∇k0p(x+
√
λY )‖ ≤ 2ε‖∇k0+1p(x)‖

* ‖∇k0+1p(x+
√
λY )‖ ≥ 1

2‖∇
k0+1p(x)‖

are highly likely. Thus, it is highly likely that

‖∇k0p(x+
√
λY )‖ ≤ 4ε‖∇k0+1p(x+

√
λY )‖.

The latter means p is still sufficiently poorly-behaved at the point x +
√
λY that the

mollifier classifies it correctly as g(x+
√
λY ) = 0.

2.2 Slow-growth of derivatives and simplification under restrictions

The proof of Lemma 1.6 is iterative and is relatively simple given Kane’s relative anti-concentration

inequality for degree d polynomials [Kan13] developed in the context of studying the Gotsman-

Linial conjecture for PTFs.

[Kan13] shows that for any degree d polynomial, and x, y ∼ N(0, 1)n with probability at least
1 − δ, we have |〈y,∇p(x)〉| ≤ (d2/δ)|p(x)|. As y in the above statement is independent of x,

for any x, 〈y,∇p(x)〉 is distributed as N(0, ‖∇p(x)‖2). This says that the inequality is essentially
equivalent to saying that with probability at least 1−δ over x, we have ‖∇p(x)‖2 ≤ O(d2/δ)|p(x)|.
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The latter can be seen as the inequality corresponding to k = 1 in the statement of Lemma 1.6.
The full proof of the lemma is via iteratively applying the above argument using a vector-valued
generalization of Kane’s inequality.

Next, it is not too hard to prove Theorem 1.5 given Lemma 1.6. For illustration, suppose that we

have a degree d multi-linear polynomial p, and write f(t) := p(
√
1− λt). Then, by elementary

algebra8, we have the identity

px(y) = p
(√

1− λx+
√
λy
)

=
∑

α

∂αf(x)

(

λ

1− λ

)|α|/2

yα. (3)

Now, by Lemma 1.6, with probability 1 − δ over x, we have ‖∇kf(x)‖ ≤ O(d3/δ)‖∇k−1f(x)‖,
for all k. Thus, if we take λ , δ2/(R2d6), the factor of λ will kill the growing derivatives leading
to a bound on the higher-order moments of px(y) − px(0) via hypercontractivity. These moment

bounds in turn imply that |px(y) − px(0)| < |px(0)| with high probability over y, and hence that
sign(px(y)) = sign(px(0)) with high probability over y.

Notice that Eq. (3) is essentially a Taylor expansion of p at
√
1− λx: it expresses the function px(y)

as a polynomial in y in the standard basis, whose coefficients are determined by the derivatives of

p at
√
1− λx. We want to do something similar in the general case, but in the Hermite basis; for

non-multi-linear polynomials these two bases no longer coincide. So, in the general case, we rely
on the following identity, which we regard as an analogue of the Taylor expansion for the Hermite

basis.

Lemma 2.3 (See Section 3). Let f(y) =
∑

α f̂(α)hα(y). Then

f
(√

1− λx+
√
λy
)

=
∑

α

∂αg(x)√
α!

(

λ

1− λ

)|α|/2

hα(y),

where g(x) := U√
1−λf(x) =

∑

α f̂(α)(1− λ)|α|/2hα(x).

Hermite polynomials are such a ubiquitous tool used in such a wide range of fields that it seems
unlikely that such an identity is new. However, we are not aware of any previous appearance of
such an identity in the literature (at least in the body of work on PTFs) and we provide a proof.

Hypervariance reduction. We next remark on the relation between slow-growth of derivatives

(as in Lemma 1.6) and hypervariance reduction as studied and introduced in [OST20]. The latter
plays a similar role in their paper as the former does in this work. However, Lemma 1.6 importantly

has only polynomial dependence on the degree d and is also much more conducive to our analysis
of the PRG.

8If p is multi-linear, then the Hermite expansion (see Section 3) is just p(x) =
∑

α∈{0,1}n p̂(α)hα(x) =
∑

I⊆[n] p̂(I)
∏

i∈I xi. We can prove the identity for each monomial and use additivity.
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Recall the Hermite expansion (see Section 3) of polynomials: A degree d polynomial p : Rn → R

can be uniquely expressed as

p(y) :=
∑

|α|≤d

p̂(α)hα(y),

where α ∈ Nn denotes a multi-index and hα(y) is the α’th Hermite polynomial. The hypervariance

and normalized hypervariance of a polynomial introduced in [OST20] are defined as follows:

Definition 2.4. For a polynomial p : Rn → R of the form p(y) :=
∑

α p̂(α)hα(y), define its

hypervariance, HyperVarR( ), and normalized hypervariance, HR( ), as

HyperVarR(p) :=
∑

α'=0

p̂(α)2R2|α|, HR(p) :=
HyperVarR(p)

p̂(0)2
.

Intuitively, if the normalized hypervariance HR(p) of a polynomial is small for a large R, then it
means that the weights of the higher-order Hermite coefficients of p have a geometric decay.

[OST20] showed that for any polynomial p, for a suitable λ > 0, a gaussian restriction of p
will have small normalized hypervariance with high probability. Specifically, they showed that if

λ = d−O(log d), then HR(px,λ) is bounded with high probability over x ∼ N(0, 1)n. They also
asked whether this property holds when λ = d−O(1) instead of being quasi-polynomially small in
d. Lemma 1.6 implies this conjecture without too much difficulty:

Lemma 2.5. For any degree d polynomial p and λ, δ > 0, the following holds. Except with

probability δ over x ∼ N(0, 1)n, the normalized hypervariance HR(px,λ) = O(λd6R2/δ2).

The proof of the analogue of Lemma 2.5 for quasi-polynomially small λ (i.e. λ = d−O(log d)) in
[OST20] was by an iterative process: Intuitively, if one sets λ0 = d−O(1), and λ = λlog d

0 , then

the random restriction pλ,x is equivalent to (log d) independent random restrictions with restriction
parameter λ0. The authors in [OST20] show that each such λ0-restriction (essentially) decreases
the degree by a factor of 2. We instead take a different approach by drawing a connection between

norms of derivatives and to relative anti-concentration as developed in the context of studying the
Gotsman-Linial conjecture for PTFs.

3 Preliminaries

The pseduorandom generator construction: idealization vs. discretization. Following [Kan11b]
and [OST20], we analyze the idealized pseudorandom distribution

Z =
1√
L

L
∑

i=1

Yi,
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where each Yi ∈ Rn is a k-moment-matching gaussian (that is, E[p(Yi)] = Ex∼N(0,1)n [p(x)] for all
polynomials p : Rn → R of degree at most k).

Suppose that, for any such Z with parameters (L, k), it is the case that Z fools degree-d PTFs with
error ε = ε(L, k, d). Then, it is shown in [Kan11b] how to obtain a small-seedlength PRG (in the

sense of Definition 1.2) by providing a specific instantiation and discretization of this construction.

Theorem 3.1 ([Kan11b], implicit in Section 6). Suppose a Z as above with parameters (L, k)
fools degree d-PTFs with error ε = ε(L, k, d). Then, there is an explicit, efficiently computable

PRG with seedlength O(dkL log(ndL/ε) that (2ε)-fools degree d PTFs.

Hermite polynomials. To argue about polynomials which are not necessarily multilinear, we need

some simple facts concerning Hermite polynomials. For our purposes, Hermite polynomials are
simply a convenient choice of polynomial basis which have nice properties (in particular being
orthonormal) with respect to gaussian inputs. For a more detailed background on Hermite polyno-

mials and their use for analyzing functions over gaussian space, see [O’D14, Ch. 11].

One concrete way to define the Hermite polynomials is the following:

• For the univariate polynomials, the degree-m “Probabilist’s” Hermite polynomial is the m-th

coefficient of the generating function

est−
1
2
s2 =

∑

m≥0

Hm(t)s
m.

• We define the degree-m univariate Hermite polynomial by the normalization

hm(t) :=
1√
m!

Hm(t).

• For a multi-index α ∈ Nn, we define the multivariate Hermite polynomial hα : Rn → R via
the product

hα(x) :=
n
∏

i=1

hai(xi).

We record some basic properties of this particular choice of polynomial basis. The final two
properties say that the Hermite basis is orthonormal with respect to correlation under the standard

gaussian distribution – this is the reason for our choice of normalization.

• The set {hα(x) : |α| ≤ d} is a basis for real polynomials in n variables of degree ≤ d.

• h0 is the constant polynomial h0 ≡ 1.

• For multi-indicies α ∈ {0, 1}n, hα(x) is simply the monomial
∏

i:ai=1 xi.

13



• For x ∼ N(0, 1)n, and distinct multi-indices α 3= β, Ex hα(x)hβ(x) = 0.

• For x ∼ N(0, 1)n, and any multi-index α, Ex hα(x)2 = 1.

Guassian noise operator. We recall the definition of the noise operator Uρ, which here we regard
as an operator on real polynomials in n variables (see [O’D14, Ch. 11] for background and a more
general viewpoint). For a polynomial f : Rn → R and a parameter ρ ∈ [0, 1], the action of Uρ on

f is specified by

(Uρf)(x) := E
Z∼N(0,1)n

f
(

ρx+
√

1− ρ2Z
)

.

An important feature of the Hermite basis is that the noise operator acts on it diagonally (see
[O’D14, Ch. 11]):

Uρhα(x) = ρ|α|hα(x).

Thus, if f is a degree-d polynomial given in the Hermite basis as

f(x) =
∑

|α|≤d

f̂(α)hα(x),

then we can express the result of the noise operator applied to f explicitly as

Uρf(x) =
∑

|α|≤d

f̂(α)ρ|α|hα(x).

Higher moments and hypercontractivity. Fix a polynomial f(x) :=
∑

|α|≤d f̂(α)hα(x). For an
even natural number q ≥ 2, we write the gaussian q-norm of f as

‖f‖q :=
(

E
x∼N(0,1)n

f(x)q
)1/q

.

We wish to be able to bound this quantity in terms of the magnitudes of the Hermite coefficients
of f , f̂(α). For this purpose, we extend the definition of Uρ also to ρ > 1 by its action on the

Hermite basis: Uρhα(x) = ρ|α|hα(x). With this notation, we can express the well-known (q, 2)-
hypercontractive inequality [O’D14, Ch. 9,11] as

‖f‖q ≤ ‖U√
q−1f‖2,

which is quite convenient for us, as we can use orthonormality of the Hermite basis to explicitly
compute

‖U√
q−1f‖22 =

∑

|α|≤d

(q − 1)|α|f̂(α)2 ≤
∑

|α|≤d

q|α|f̂(α)2.

To get a feel for the utility of this bound, let’s see how it can be used to prove the following

concentration bound:
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Lemma 3.2. Let f : Rn → R be a degree d polynomial with normalized hypervariance H√
q(f) ≤

1
4 , where q is an even natural number. Then,

P
y∼N(0,1)n

(

sign(f(y)) 3= sign(f̂(0))
)

≤ 2−q.

Further, the same holds more generally for y ∼ Y , as long as the distribution Y is dq-moment-

matching.

Proof. Suppose that f(y) is normalized so that

E
y∼N(0,1)n

f(y) = f̂(0) = ±1.

We have the q-th moment bound

‖f(x)− f̂(0)‖q ≤ ‖U√
q

(

f(y)− f̂(0)
)

‖2 ≤ 1
2 .

From the generic concentration inequality

P (|X| ≥ t‖X‖q) ≤ t−q

we obtain
P

(

sign(f(y)) 3= sign(f̂(0))
)

≤ 2−q.

Thus, we find that the PTF sign(f) almost always yields the value sign(f̂(0)) under random gaus-
sian inputs. Crucially for us, this argument is also easy to derandomize: since the argument merely
relies on a bound on the q-th moment Ey∼N(0,1)n(f(y) − f̂(0))q, and for Y which is k-moment-

matching for k ≥ dq we have

E
Y
(f(Y )− f̂(0))q = E

y∼N(0,1)n
(f(y)− f̂(0))q,

we conclude also that sign(f(Y )) is typically equal to sign(f̂(0)).

We remark that this lemma further implies that Y fools sign(f) when H√
q(f) is small:

E
Y
sign(f(Y )) = E

y∼N(0,1)n
sign(f(y))± O(2−q).

Gaussian restrictions and derivatives on the Hermite basis. Besides the effect of the noise
operator, it will also be important to understand the effect of two further operations on polynomials:

• The derivative map, f(y) *→ ∂αf(y).

• The gaussian restriction at x, f(y) *→ f
(√

1− λx+
√
λy
)

.
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In particular, we are concerned with how these operations affect the Hermite coefficients of a poly-
nomial; ultimately, our goal will be to develop a “Hermite-basis analogue” of the Taylor expansion

which can be applied to expand f
(√

1− λx+
√
λy
)

as a function of y. We start by computing the

effect of these two operations on univariate Hermite polynomials, and then on the full multivariate

Hermite basis, and finally on a general polynomial f(x) expressed in the Hermite basis.

Proposition 3.3. For univariate Hermite polynomials, we have the identities

• ∂k

∂tkhm(t) =
√

m!
(m−k)!hm−k(t),

• hm

(√
1− λx+

√
λy
)

=
∑m

k=0

√

(

m
k

)

(1− λ)(m−k)/2λk/2hm−k(x)hk(y).

Proof. The first of these identities is standard (see e.g. [O’D14, Ex. 11.10]); we provide a proof of

the second.

The second identity can be proved by considering the generating function

est−
1
2
s2 =

∑

m

√
m!hm(t)s

m,

and comparing the coefficient of sm on both sides of

es(
√
1−λx+

√
λy)− 1

2
s2 = e(s

√
1−λ)x− 1

2
(s
√
1−λ)2 · e(s

√
λ)y− 1

2
(s
√
λ)2

The corresponding identities for multivariate Hermite polynomials follow easily from above.

Proposition 3.4. We have

• ∂αhβ(y) =
√

α!
γ!hγ(y), where γ = β − α,

• hβ

(√
1− λx+

√
λy
)

= (1− λ)|β|/2
∑

α≤β
∂αhβ(x)√

α!

(

λ
1−λ

)|α|/2
hα(y),

• ∂αhβ

(√
1− λx+

√
λy
)

= (1− λ)|β−α|/2∑
γ≤β−α

∂α+γhβ(x)√
γ!

(

λ
1−λ

)|γ|/2
hγ(y).

We conclude with a Taylor-like expansion in the Hermite basis that we use repeatedly.

Lemma 3.5. Let f(y) =
∑

α f̂(α)hα(y). Then

f
(√

1− λx+
√
λy
)

=
∑

α

∂αg(x)√
α!

(

λ

1− λ

)|α|/2

hα(y),

where g(x) := U√
1−λf(x) =

∑

α f̂(α)(1− λ)|α|/2hα(x).
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Proof. We express

f
(√

1− λx+
√
λy
)

=
∑

α

f̂(α)hα

(√
1− λx+

√
λy
)

=
∑

α

hα(y)√
α!

(

λ

1− λ

)|α|/2
∑

β≥α

f̂(β)(1− λ)|β|/2∂αhβ(x)

=
∑

α

hα(y)√
α!

(

λ

1− λ

)|α|/2

∂αg(x).

Lastly, we will also need an extension of this theorem which expresses ∂αf , at the point

√
1− λx+

√
λy,

as a polynomial in y in the Hermite basis.

Theorem 3.6. Let f(y) =
∑

α f̂(α)hα(y). Then

∂αf
(√

1− λx+
√
λy
)

= (1− λ)−|α|/2
∑

β≥α

∂βg(x)

√

α!

β!

(

λ

1− λ

)|β−α|/2

hβ−α(y),

where g(x) := U√
1−λf(x).

Proof. We express

∂αf
(√

1− λx+
√
λy
)

=
∑

β

f̂(β)∂αhβ

(√
1− λx+

√
λy
)

=
∑

γ

hγ(y)√
γ!

(

λ

1− λ

)|γ|/2
∑

β≥γ+α

(1− λ)|β−α|/2∂α+γhβ(x)

= (1− λ)−|α|/2
∑

γ

hγ(y)√
γ!

(

λ

1− λ

)|γ|/2

∂α+γg(x).

4 Gaussian restrictions of polynomials

Here we prove the structural properties of gaussian restrictions of polynomials: Theorem 1.5,

Lemma 1.6, Lemma 2.5. Note that Theorem 1.5 follows immediately from Lemma 2.5 and
Lemma 3.2. We next prove Lemma 2.5 from Lemma 1.6.
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Proof of Lemma 2.5 from Lemma 1.6. Define f(x) := U√
1−λp(x). Then, by Lemma 3.5,

px(y) = f(x) +
∑

α'=0

∂αf(x)√
α!

(

λ

1− λ

)|α|/2

hα(y).

Thus,

HyperVarR(px) =
∑

α'=0

(

∂αf(x)√
α!

)2( λ

1− λ

)|α|

R2|α| ≤
∑

α'=0

(∂αf(x))2
(

λ

1− λ

)|α|

R2|α|

=
d
∑

k=1

R2k

(

λ

1− λ

)k

‖∇kf(x)‖2,

where the first inequality follows as
√
α! ≥ 1.

We now conclude by applying Lemma 1.6 to f . We have

HR(px) =

∑d
k=1R

2k
(

λ
1−λ

)k ‖∇kf(x)‖2

f(x)2
.

Except with probability δ over x ∼ N(0, 1)n, we can bound this by

d
∑

k=1

R2k

(

λ

1− λ

)k (Cd3

δ

)2k

≤ O

(

λd6R2

δ2

)

.

4.1 Proof of Lemma 1.6

Our main tool will be Kane’s relative-anticoncentration lemma for gaussian polynomials

Lemma 4.1 ([Kan13]). For a degree d polynomial p, and independent standard gaussian vectors

x, y ∈ Rn,

P(|p(x)| ≤ ε| 〈y,∇p(x)〉 |) ≤ O(εd2).

In fact, we will actually work with the following corollary which is essentially the first of the d
inequalities in Lemma 1.6.

Corollary 4.2. For a degree d polynomial p, and independent standard gaussian vector x ∈ Rn,

P(|p(x)| ≤ ε‖∇p(x)‖) ≤ O(εd2).

Proof. We note that for any fixed x, 〈y,∇p(x)〉 is identical in distribution to Z‖∇p(x)‖, where

Z ∼ N(0, 1) is a standard gaussian. So, we express

P(|p(x)| ≤ ε| 〈y,∇p(x)〉 |) = P(|p(x)| ≤ ε|Z|‖∇p(x)‖)
≥ P(|p(x)| ≤ ε‖∇p(x)‖) · P(|Z| ≥ 1) .
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Since P(|Z| ≥ 1) ≥ Ω(1), we conclude that

P(|p(x)| ≤ ε‖∇p(x)‖) ≤ O(εd2).

The heart of the proof of Lemma 1.6 is a vector-valued variant of the above corrollary:

Lemma 4.3. Let
#»

f (x) := (f1(x), f2(x), . . . , fm(x)) be a collection of m degree-at-most d poly-

nomials fj(x). If x ∈ Rn is a standard gaussian vector, then

P

(

‖
#»

f (x)‖2 ≤ ε2
m
∑

j=1

‖∇fj(x)‖2
)

≤ O(εd2).

Proof of Lemma 1.6. We simply apply the above lemma d times and take a union bound. For

1 ≤ k ≤ d, let
#»

f k(x) := ((∂αf(x) : |α| = k)). Note that ‖
#»

f k(x)‖2 = ‖∇kf(x)‖2. Further, note
that

∑

α:|α|=k

‖∇(∂αf(x))‖2 ≥ ‖∇k+1f(x)‖2,

where the inequality follows as each (k + 1)’th order derivative would be counted at least once in
the expression on the left hand side. Therefore, by the above lemma, for x ∼ N(0, 1)n, we have

P
(

‖∇kf(x)‖2 ≤ ε2‖∇k+1f(x)‖2
)

≤ O(εd2)

Setting ε = δ/d3, and taking a union bound over all k, we get that for a constant C > 0,

P
(

∀k, ‖∇kf(x)‖2 > C(δ2/d6)‖∇k+1f(x)‖2
)

≥ 1− δ.

This proves Lemma 1.6.

Proof of Lemma 4.3. Consider the auxiliary polynomial

h(x, y) :=
m
∑

j=1

fj(x)yj.

As a function of both x and y, we have

∇h(x, y) =
#»

f (x) ◦Mxy,

where Mx is the matrix with columns∇fj(x) (that is, Mx has (i, j)-th entry ∂
∂xi

fj(x)). So, applying

Corollary 4.2 to this auxiliary polynomial gives the probability bound

q := P
(

h(x, y)2 ≤ ε2‖∇g(x, y)‖2
)

= P

(

〈

y,
#»

f (x)
〉2

≤ ε2
(

‖
#»

f (x)‖2 + ‖Mxy‖2
)

)

≤ O(εd2).
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Now, for some constant C ≥ 2 to be specified later, let E denote the event that

(C2 − 1)‖ #»

f (x)‖2 ≤
ε2

2
‖Mx‖2F ,

where ‖Mx‖F is the Frobenius norm of Mx. We note that we can lower-bound the probability q by

q ≥ P(E) · P
(

∣

∣

∣

〈

y,
#»

f (x)
〉
∣

∣

∣
≤ C‖

#»

f (x)‖ and ‖Mxy‖2 ≥
1

2
‖Mx‖2F |E

)

.

We claim that for large enough choice of constant C, this conditional probability can be lower-

bounded by Ω(1). Indeed, we can argue for any fixed x:

• P

(
∣

∣

∣

〈

y,
#»

f (x)
〉
∣

∣

∣
≥ C‖

#»

f (x)‖
)

≤ 1
C2 .

• P
(

‖Mxy‖2 ≥ 1
2‖Mx‖2F

)

≥ Ω(1).

The first item is just a Chebyshev inequality; the second item can be derived e.g. from the basic
anticoncentration bound one obtains for degree-2 polynomials from the Paley-Zygmund bound
together with hypercontractivity (since, for any fixed matrix M , the quadratic form g(y) := ‖My‖2
has second-moment E g(y)2 ≥ (E g(y))2 = ‖M‖2F ).

Thus, by choosing C large enough, we can lower-bound this conditional probability by

Ω(1)−
1

C2
≥ Ω(1).

We conclude that P(E) ≤ O(q) = O(εd2). This gives the desired conclusion

P

(

‖
#»

f (x)‖ ≤ Ω(ε)‖Mx‖F
)

≤ O(εd2).

5 Pseudorandom Generator for PTFs

The following theorem gives quantitative bounds on the error of our main generator:

Theorem 5.1. Fix some parameters ε > 0 and R ∈ N. Let z be a standard gaussian, and

let Z = 1√
L

∑L
i=1 Yi, where each Yi is dR-moment-matching. Then for some sufficiently large

absolute constant c and any polynomial p of degree d,

E
Z
sign(p(Z)) ≥ E

z∼N(0,1)n
sign(p(z))− O(εd3)− L · 2−Ω(R),

as long as L is at least Rdc/ε2.
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Combining the above with Theorem 3.1 immediately implies our main result Theorem 1.3.

Proof of Theorem 1.3. Given a target error ε′, set ε = ε′/Cd3, and R = C log(d/ε) for a suf-
ficiently big constant so that the error in the above lemma is at most ε′/2 for L = Rdc/ε2 =
O(dc log(d/ε)/ε2). While the above theorem only gives a lower bound, we can get an upper bound
by applying the result to −p. Now, by applying Theorem 3.1 there exists an efficient PRG that
fools degree d PTFs with error at most ε′ and seedlength O(dO(1) log(nd/ε′) log(d/ε′)/(ε′)2 which

can be simplified to the bound in the theorem.

We now prove the above theorem by the lower-sandwiching argument outlined in Section 2.1. Fix

a polynomial p(x) of degree d. We remind the reader of our convention sign(t) := (t ≥ 0).

We define the mollifier function

g(x) :=
d−1
∏

k=0

ρ

(

log

(

1

16ε2
‖∇kp(x)‖2

‖∇k+1p(x)‖2

))

,

where ρ : R → [0, 1] is some smooth univariate function with ρ(t) = 0 for t ≤ 0, ρ(t) = 1 for

t ≥ 1, and ‖∂kρ
∂tk ‖∞ ≤ kO(k) for all k. 9

Proof of Theorem 5.1. For every point x ∈ Rn we have

sign(p(x)) ≥ sign(p(x))g(x).

Furthermore, under the truly-random gaussian inputs z ∼ N(0, 1)n we have

E
z
sign(p(z))g(z) ≥ E

z
sign(p(z))− E

z
|g(z)− 1| ≥ E

z
sign(p(z))− O(εd3),

where the final inequality here follows from Lemma 1.6. Combining these, we get that

E
Z
sign(p(Z)) ≥ E

z∼N(0,1)n
sign(p(z))− O(εd3)− |E

Z
sign(p(Z))g(Z)− E

z∼N(0,1)n
sign(p(z))g(z)|.

Thus, it suffices to bound |EZ sign(p(Z))g(Z) − Ez∼N(0,1)n sign(p(z))g(z)|, which we do by a

hybrid argument. We first represent z as z := 1√
L

∑L
i=1 yi where each yi is an independent standard

gaussian. We can replace each Yi with yi and get

|E
Z
sign(p(Z))g(Z)− E

y
sign(p(y))g(y)| ≤ 2−Ω(R)L,

as a consequence of the following lemma (restatement of Lemma 2.2) that we prove in the next
section. Theorem 5.1 now follows.

9For example, it suffices to let ρ(t) be the standard mollifier ρ(t) := 0 for t ≤ 0, ρ(t) := 1 for t ≥ 1, and

ρ(t) := e · exp
(

1
(t−1)2−1

)

for t ∈ (0, 1).
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Lemma 5.2 (Main hybrid-step). There exists a constant c such that the following holds for λ ≤
ε2/Rdc. For any fixed vector x ∈ Rn, Y a dR-moment-matching gaussian vector, and y ∼
N(0, 1)n,

|E
Y
sign(p(x+

√
λY ))g(x+

√
λY )− E

y
sign(p(x+

√
λy))g(x+

√
λy)| ≤ γ = 2−Ω(R).

5.1 Analysis of the main hybrid-step

The proof of Lemma 5.2 is by a case-analysis as outlined in the introduction. Consider the setting
as in the lemma and define

φ(z) := U√
1−λp

(

z√
1− λ

)

.

The core argument will be a case-analysis on the derivatives of φ at the fixed point x and whether
these are slow-growing. Note that if p were multi-linear, then we would simply have φ ≡ p. The
starting point is the following re-scaling of Lemma 3.5:

p
(

x+
√
λy
)

=
∑

|α|≤d

∂αφ(x)√
α!

λ|α|/2hα(y). (4)

Further, by a re-scaling of Theorem 3.6, we get the following identity which gives a nice nearly
self-referential expression relating the derivatives of p to those of φ:

∂αp
(

x+
√
λy
)

=
∑

β≥α

√

α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y). (5)

Now, note that for a truly random gaussian y we have ∂αφ(x) = Ey ∂αp(x +
√
λy). Thus, it is

reasonable to expect that for typical points x and small enough λ, ∂αp(x+
√
λy) will be strongly

concentrated around ∂αφ(x). The following lemma gives quantitative bounds on how much the

derivatives ∂αp(x+
√
λy) deviate from their expectations ∂αφ(x) for a random y ∼ N(0, 1)n. As

we will need such bounds even for k-moment-matching Y , we state the deviation bound in terms
of moments:

Lemma 5.3. Suppose f is a degree-d polynomial, and let φ(z) = U√
1−λf(

z√
1−λ

). Consider the

polynomial

D(y) := ‖∇kf(x+
√
λy)−∇kφ(x)‖2,

which measures the euclidean distance between the k-th order derivatives ∇kf(x+
√
λy) and their

expectations ∇kφ(x).

For y ∼ N(0, 1)n, we have the moment bound

‖D(y)‖q/2 ≤
d
∑

t=k+1

(λdq)t−k‖∇tφ(x)‖2.
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That is,

(

E
y∼N(0,1)n

‖∇kf(x+
√
λy)−∇kφ(x)‖q

)1/q

≤

√

√

√

√

d
∑

t=k+1

(λdq)t−k‖∇tφ(x)‖2.

Proof. We express

D(y) =
∑

α

(

∂αf(x+
√
λy)− ∂αφ(x)

)2
=
∑

α

(

∑

β>α

√

α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

)2

.

First, by triangle-inequality, we get

‖D(y)‖q/2 ≤
∑

α

∥

∥

∥

∥

∥

∥

(

∑

β>α

√

α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

)2
∥

∥

∥

∥

∥

∥

q/2

=
∑

α

∥

∥

∥

∥

∥

∑

β>α

√

α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

∥

∥

∥

∥

∥

q

.

Applying hypercontractivity, we now get

‖D(y)‖q/2 ≤
∑

α

∥

∥

∥

∥

∥

U√
q

∑

β>α

√

α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

∥

∥

∥

∥

∥

2

=
∑

α

∑

β>α

α!

β!
∂βφ(x)2λ|β−α|q|β−α|

≤
∑

α

∑

β>α

∂βφ(x)2λ|β−α|q|β−α|

=
d
∑

t=k+1

(

t

t− k

)

(λq)t−k‖∇tφ(x)‖2

≤
d
∑

t=k+1

(λdq)t−k‖∇tφ(x)‖2.

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. We study two cases:

1. x is poorly-behaved for φ. In this case, we will show that g(x+
√
λY ) = 0 with probability

at least 1− 2−Ω(R).
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2. x is well-behaved for φ: In this case, we will exploit the fact that sign(p(x +
√
λY )) will

equal sign(φ(x)) with probability 1 − 2−Ω(R). We then have to show that Y fools the mol-
lifier g which is a bit technically involved (hence we deal with this case second unlike in

Section 2.1).

We begin with the first case.

Case 1: x is poorly-behaved for φ. Consider the case where the inequality ‖∇kφ(x)‖ ≥ ε‖∇k+1φ(x)‖
is violated for some k, and indeed let k0 be the largest k such that this inequality is violated. We
will argue that with probability at least 1− 2−Ω(R), over random choice of Y , that

‖∇k0p(x+
√
λY )‖ ≤ 4ε‖∇k0+1p(x+

√
λY )‖,

in which case g(x+
√
λY ) = 0.

More specifically, we will show that it is highly likely that both

• ‖∇k0p(x+
√
λY )‖ ≤ 2ε‖∇k0+1φ(x)‖, and

• ‖∇k0+1p(x+
√
λY )‖ ≥ 1

2‖∇
k0+1φ(x)‖.

For this, we will use Eq. (5) and Lemma 5.3. Supposing k0 is the largest k such that

‖∇kφ(x)‖ < ε‖∇k+1φ(x)‖,

we have

• ‖∇k0φ(x)‖ ≤ ε‖∇k0+1φ(x)‖ and

• ‖∇k0+1φ(x)‖ ≥ εt‖∇k0+1+tφ(x)‖ for all t ≥ 0.

Lemma 5.3 therefore gives the bounds

(

E
Y
‖∇k0p(x+

√
λY )−∇k0φ(x)‖R

)1/R
≤ ε‖∇k0+1φ(x)‖

√

∑

t≥1

(λdR/ε2)t

and
(

E
Y
‖∇k0+1p(x+

√
λY )−∇k0+1φ(x)‖R

)1/R
≤ ‖∇k0+1φ(x)‖

√

∑

t≥1

(λdR/ε2)t.

So, as long as λdR/ε2 is at most a sufficiently small constant, we conclude that the following
bounds hold with probability at least 1− 2−R:
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• ‖∇k0p(x+
√
λY )‖ ≤ ‖∇k0φ(x)‖+ ‖∇k0p(x+

√
λY )−∇k0φ(x)‖ ≤ 2ε‖∇k0+1φ(x)‖, and

• ‖∇k0+1p(x+
√
λY )‖ ≥ ‖∇k0+1φ(x)‖−‖∇k0+1p(x+

√
λY )−∇k0+1φ(x)‖ ≥ 1

2‖∇
k0+1φ(x)‖.

In the case that these bounds hold, we get

‖∇k0p(x+
√
λY )‖ ≤ 4ε‖∇k0+1p(x+

√
λY )‖,

and so g(x+
√
λY ) = 0. As this holds with probability at least 1− 2−Ω(R) for both y ∼ N(0, 1)n

as well as Y , the conclusion of Lemma 5.2 follows. This finishes the proof of Case 1.

Case 2: x is well-behaved for φ. We now consider the complimentary case where

‖∇kφ(x)‖ ≥ ε‖∇k+1φ(x)‖

for all k = 0, 1, . . . , d− 1. Consider the normalized polynomial

f(y) :=
p(x+

√
λy)

φ(x)
= 1 +

1

φ(x)

∑

α'=0

∂αφ(x)λ|α|/2hα(y).

Using hypercontractivity, we bound the R-th moment of f(y)− 1 by its
√
R-hypervariance:

‖f(y)− 1‖R ≤ ‖U√
R (f(y)− 1) ‖2 ≤

√

√

√

√

∑

k≥1

(

λR

ε2

)k

≤
1

2
.

So, by a Markov argument, we have

P

(

sign(p(x+
√
λY )) 3= sign(φ(x))

)

≤ 2−R,

and this holds whenever Y is k-moment-matching for k ≥ dR. So, sign(p(x+
√
λY )) is nearly a

constant for random Y ; it remains to show that Y fools g(x+
√
λY ). We do this by (essentially)

truncating the Taylor-series of g about x so that we are left with a degree dR polynomial, which is

fooled by Y . The truncation-error will be small because our assumption,

‖∇kφ(x)‖ ≥ ε‖∇k+1φ(x)‖ for all k,

gives us good control on the R-th order moments of the deviations ‖∇kφ(x)‖−‖∇kp(x+
√
λY )‖.

The exact calculations are somewhat cumbersome and are given below. We will show that Y fools

the mollifier function

g(x+
√
λy) =

d−1
∏

k=0

ρ

(

log

(

1

16ε2
‖∇kp(x+

√
λy)‖2

‖∇k+1p(x+
√
λy)‖2

))

.

To simplify notation we define the shifted function σ(t) := ρ(t− log(16ε2)), and express

g(x+
√
λy) =

d−1
∏

k=0

σ
(

log ‖∇kp(x+
√
λy)‖2 − log ‖∇k+1p(x+

√
λy)‖2

)

.

It will be convenient to think of g (redundantly) as function of 2d auxiliary variables s1 . . . sd,
t1, . . . td, which we will eventually fix to
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• si := ‖∇i−1p(x+
√
λy)‖2

• ti := ‖∇ip(x+
√
λy)‖2,

so we write

g(s, t) :=
d
∏

i=1

σ (log(si)− log(ti)) .

We Taylor-expand g(s, t) around the points

• ai := ‖∇i−1φ(x)‖2

• bi := ‖∇iφ(x)‖2,

which gives
g(s, t) = -(s, t) + h(s, t),

with low-degree part

-(s, t) :=
∑

α,β∈Nd

|α|+|β|<R

∂α
s ∂

β
t g(a, b)

α!β!
(s− a)α (t− b)β

and remainder

|h(s, t)| ≤
∑

α,β∈Nd

|α|+|β|=R

|∂α
s ∂

β
t g(s

∗, t∗)|
α!β!

|s− a|α |t− b|β ,

where “|∂α
s ∂

β
t g(s

∗, t∗)|” is notation for the maximum magnitude of ∂α
s ∂

β
t g on any point on the line

segment from (a, b) to (s, t). We need the following fact to bound the size of the derivatives of g,

Claim 5.4. Suppose σ is a smooth univariate function with uniform derivative bounds

‖σ(n)‖∞ ≤ nO(n).

The bivariate function

r(u, v) := σ(log(u)− log(v))

has derivatives bounded in size by

∣

∣

∣

∣

∂n

∂un

∂m

∂vm
r(u, v)

∣

∣

∣

∣

≤
nO(n)

|u|n
mO(m)

|v|m
.

This claim follows easily from the generalized chain rule (Faà di Bruno’s formula). As a result, we
get the derivative bounds

∣

∣

∣
∂α
s ∂

β
t g(s, t)

∣

∣

∣
≤

|α|O(|α|)

|sα|
|β|O(|β|)

|tβ |
.
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Using this, we bound the remainder

|h(s, t)| ≤
∑

α,β∈Nd

|α|+|β|=R

dO(R)
d
∏

i=1

(

|1− si
ai
|

1− |1− si
ai
|

)αi
(

|1− ti
bi
|

1− |1− ti
bi
|

)βi

.

Now, consider the event E (which depends on y) that

(1− δ)‖∇iφ(x)‖2 ≤ ‖∇ip(x+
√
λy)‖2 ≤ (1 + δ)‖∇iφ(x)‖2

holds for all i, where δ ≤ 1/2 is a parameter we will set shortly. In the case that this indeed holds,
we get

|h(s, t)| ≤ dO(R)O(δ)R.

We set δ just small enough to ensure

|h(s, t)| ≤ 2−R.

Now, we express g (which we now think of as a function of the underlying variable y) as

g = g · E + g · Ē

= - · E + h · E + g · Ē

= -− - · Ē + h · E + g · Ē ,

and we obtain the pointwise bound

|g − -| ≤ 2−R + Ē + |-| · Ē .

On average over Y , we get truncation error

E
Y

∣

∣

∣
g(x+

√
λY )− -(Y )

∣

∣

∣
≤ 2−R + E

Y
Ē(Y ) +

√

E
Y
-2(Y )

√

E
Y

Ē(Y )

≤ 2−R +O

(

d

δ

)R

·
(

λdR

ε2

)−Ω(R)

≤ 2−R + dO(1) ·
(

λdR

ε2

)−Ω(R)

where the second inequality here follows from the moment bounds in Lemma 5.3. As required

by the conditions of Lemma 5.2, we insist that λ is small enough that this error is at most 2−Ω(R).
Since this bound holds also for truly-random standard gaussian y, and EY -(Y ) = Ey -(y), we
obtain the desired bound

|E
Y
g(x+

√
λY )− E

y
g(x+

√
λy)| ≤ 2−Ω(R).

This finishes the proof in Case 2 and hence of Lemma 5.2.
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