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Abstract: The transport of energy and information in semiconductors is limited by scattering 
between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that 
curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic 
semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic 
quasiparticle shielded from phonon scattering. We directly image polaron transport in Re6Se8Cl2 
at room temperature and reveal quasi-ballistic, wavelike propagation sustained for nanoseconds 
and several microns. Shielded polaron transport leads to electronic energy propagation orders of 
magnitude greater than in other vdW semiconductors, exceeding even silicon over nanoseconds. 
We propose that, counterintuitively, quasi-flat electronic bands and strong exciton–acoustic 
phonon coupling are together responsible for the remarkable transport properties of Re6Se8Cl2, 
establishing a new path to ballistic room-temperature semiconductors. 
 
 

Main text: 
Semiconductor technologies rely on transporting energy and information carriers, often in 

the form of electrons or excitons (bound electron-hole pairs), from source to target. At room 
temperature, these carriers rapidly scatter with lattice vibrations (phonons) on nanometer and 
femtosecond scales. Scattering leads to electronic energy dissipation, joule heating and loss of 
phase coherence and directionality, imposing strict speed and efficiency limits on all 
semiconductor technologies. Breaking through these limits requires semiconductors that sustain 
ballistic (scatter-free), wavelike flow of energy over macroscopic distances at room temperature, 
a long sought goal that would enable ballistic transistors (1), low-loss energy harvesting and wave-
based information technologies (2).  

Here, we demonstrate macroscopic, wavelike exciton flow at room temperature in the van 
der Waals (vdW) superatomic material Re6Se8Cl2 (Fig. 1A). Re6Se8Cl2 is a semiconductor with an 
indirect bandgap of 1.6 eV and an exciton binding energy of ~100 meV (3). Its superatom building 
blocks consist of Re6 octahedra enclosed in Se8 cubes. Each Re6Se8 unit is covalently bonded to 
four neighbors to form a two-dimensional (2D) pseudo-square lattice capped by Cl atoms at the 
apical positions. The Re6Se8Cl2 layers stack out of plane to create a bulk vdW crystal with weak 
interlayer electronic coupling (4). The crystal can be exfoliated to the monolayer limit, 
advantageous for integration in gated devices (3, 5, 6). Re6Se8Cl2 exhibits relatively weak inter-
cluster electronic coupling, as evidenced by the electronic band structure (Fig. 1B) (3, 7). Strong 
coupling of electrons to inter-cluster optical phonons (8) leads to further band flattening at room 
temperature (7) and has been implicated in the emergence of superconductivity in this material 
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and related classes (6, 9). In this work, we demonstrate that these quasi-flat electronic bands, in 
combination with strong coupling to acoustic phonons, lead to the formation of acoustic exciton-
polarons (Fig. 1C), quasiparticles of excitons bound to an acoustic lattice deformation. Through 
direct imaging of polaron propagation, we reveal that they are shielded from lattice scattering, 
leading to quasi-ballistic transport over several microns at room temperature, currently limited 
only by crystal size. Our observations challenge the common notion that strong electronic coupling 
is required for long-range transport. 

 
Figure 1. Imaging exciton transport in Re6Se8Cl2. (A) Crystal structure of Re6Se8Cl2. (B) Band 
structure of Re6Se8Cl2 calculated at the DFT/PBE level. (C) Formation of acoustic polarons via a 
deformation potential interaction. (D) Schematic for optical far-field imaging of polaron transport 
(details in the text and figs. S1–S3). (E) stroboSCAT time series displaying exciton (dark contrast) 
and exciton-polaron (bright contrast) propagation in Re6Se8Cl2. (F) Exciton propagation in bilayer 
WSe2 on glass. (G) Mean squared displacement (msd) of exciton-polarons in Re6Se8Cl2 (red), 
excitons in WSe2 (blue), and charge carriers in Si (grey and black). Error bars are 1 standard 
deviation. Only Re6Se8Cl2 displays superlinear behavior, indicating superdiffusive transport 
characterized by the exponent α. The box plot shows the spread of α values across 11 different 
datasets, indicating mean and median values of 1.67 and 1.7, respectively. (H) Monte Carlo 
simulation of α for different particle velocities (v) and scattering times (𝜏) for our experimental 
configuration. The circle corresponds to simulation parameters of v = 5.5 km/s and 𝜏 = 215 ps that 
reproduce the experimental msd. The black contour traces 𝛼 = 1.67. (I) Illustration of quasi-
ballistic motion of polarons in Re6Se8Cl2, compared to diffusive motion for excitons in WSe2 and 
other semiconductors. 

Exciton transport in Re6Se8Cl2 is quasi-ballistic. We directly image exciton transport in single-
crystal Re6Se8Cl2 using ultrafast stroboscopic scattering microscopy (10–12) (stroboSCAT, Fig. 
1D and figs. S1–S3). An above-gap, diffraction-limited visible pump generates excitons, and then 
a backscattering widefield probe (1.55 eV) slightly below the electronic bandgap spatially resolves 
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how the excitons modify the local polarizability of the material. By varying the pump-probe time 
delay, we spatiotemporally track the evolution of photoexcitations in an all-optical, non-invasive 
and contact-free measurement. Figure 1E and movie S1 display representative stroboSCAT data 
obtained in a 60 nm thick Re6Se8Cl2 flake prepared by mechanical exfoliation (13). Two key 
features emerge from this data: First, the initial negative (dark) stroboSCAT contrast turns to 
positive (bright) contrast on a few-picosecond timescale, which we show below represents a 
transition from a bare exciton to an exciton-polaron. Second, the exciton-polaron propagates 
several microns to the edge of the flake in less than a nanosecond. This remarkably fast and long-
range transport differs starkly from exciton transport in other molecular or 2D semiconductors 
(Table S1). For comparison, Figure 1F displays stroboSCAT data of exciton transport in the 
archetypal vdW semiconductor WSe2 (bilayer flake on glass — see fig. S4 for monolayer and bulk 
data), exhibiting much slower and shorter-range transport. These results are counterintuitive, since 
the effective mass of excitons in WSe2 is much smaller than in Re6Se8Cl2 (Table S1). 

To quantify and rationalize the remarkable transport properties of Re6Se8Cl2, we plot the 
mean squared displacement of the photoexcited population profile observed in stroboSCAT as msd 
= 𝜎2(𝑡) − 𝜎2(0), where 𝜎 is the Gaussian width of the population density profile at time delay t 
(13). Figure 1G compares the msd for exciton-polarons in Re6Se8Cl2 against the msd for excitons 
in bilayer WSe2 and charge carriers in intrinsic monocrystalline Si (14), which exhibit some of the 
best transport among 2D and 3D semiconductors, respectively. We find that the msd at 1.1 ns in 
Re6Se8Cl2 is 23 times that in bulk WSe2, 65 times that in bilayer WSe2, 120 times that in monolayer 
WSe2, and remarkably almost twice that of electrons in intrinsic Si and the recently-reported cubic 
boron arsenide (15, 16) (Table S1). Based on the 11 ns polaron lifetime (fig. S5), we estimate that 
the polaron propagation length in Re6Se8Cl2 would exceed 25 μm in the absence of crystal 
boundaries. 

The superlinear behavior of the msd for Re6Se8Cl2 differs from the linear behavior in Si 
and WSe2. We fit the msd to a power law, msd ∝ 𝑡𝛼  (11, 12, 17). In the limit of diffusive transport, 
where scattering lengths are much shorter than the propagation length, α = 1. This regime, 
exemplified by the linear msd for Si and WSe2 in Figure 1F, is observed in virtually all 
semiconductors beyond the first few femtoseconds following photoexcitation (18). In the limit of 
coherent, ballistic transport (no scattering), α = 2, i.e. distance is proportional to time with a slope 
that defines the velocity. In Re6Se8Cl2, we observe quasi-ballistic transport (α = 1.67 ± 0.13, Fig. 
1G) sustained for nanoseconds, until the flake edge is reached. Plotting the same data as distance 
vs. time provides an effective propagation velocity of 2.3 km/s (fig. S6). Monte Carlo simulations 
reproducing the observed msd yield an exciton–lattice scattering time of 215 ps, indicating an 
extraordinary mean free path between scattering events exceeding 1 μm for exciton-polarons in 
Re6Se8Cl2 (Fig. 1H; see figs. S7–S8 for simulation details and alternative models). These findings 
reveal that the mechanism for fast and long-range transport in Re6Se8Cl2 is efficient shielding from 
scattering, amply compensating for the large effective mass (and thus low intrinsic velocity) of the 
polaron. These results are reproducible in multiple flakes of different thicknesses, for both above-
gap and band-edge pump excitation, for pump temporal pulsewidths spanning 50 fs–50 ps, and 
across a range of fluences explored in detail below, indicating that hot carrier transport (19), 
phonon winds (20, 21), nonlinear recombination (22), thermal gradients (23), or strain waves (24–
27) are not responsible for the observed behavior (fig. S9–S11, Table S2). 
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Figure 2. Spatio-energetic tracking of polaron formation in Re6Se8Cl2. (A) Transient 
reflectance spectra near the band edge following 2.41 eV pump excitation at an initial exciton 
density of 5 x 1017/cm3. (B) Trace of the redshift highlighted with a dashed line in panel A. The 
red line is a fit using a damped oscillator model with a frequency of 0.31 THz and damping time 
of 0.37 ps, combined with a 3 ps exponential decay. (C) Spacetime-transient reflection spectra 
following 2.41 eV pump excitation at an initial exciton density of 8 x 1018/cm3 for three time 
delays. The correlated redshift and transport dynamics are emphasized with arrows in the middle 
panel. Supplementary Movies S2, S3 display these coupled spatio-energetic dynamics for different 
excitation fluences. 

Excitons in Re6Se8Cl2 form exciton-polarons. To confirm that polaron formation is responsible 
for the observed transport behavior, we track the energetic evolution of excitons following 
photoexcitation and correlate these dynamics to optical transport measurements. Figure 2A 
displays transient reflectance spectra in the region of the semiconductor band edge, exhibiting a 
bleach around 1.57 eV and a photoinduced absorption ~90 meV higher in energy. The primary 
dynamic evolution observed is a spectral redshift on a 1.5 ps timescale that convolves all peaks. 
Identical dynamics are observed for near band-edge excitation (fig. S9), ruling out the possibility 
that electronic thermalization is responsible for the redshift. Tracking the zero-crossing of the 
transient reflectance profile (dashed line in Fig 2A) provides a handle on redshift kinetics, plotted 
in Figure 2B. We observe an overall 48 meV redshift with an evolution resembling a strongly 
damped oscillator (red line in Fig. 2B). These dynamics echo those previously observed for 
(exciton- or large) polaron formation (28–31), wherein energetic stabilization occurs over a single 
vibrational period of the associated lattice deformation. This spectral evolution is responsible for 
the switch from dark to bright contrast in stroboSCAT in Fig. 1E: the probe at 1.55 eV is initially 
pre-resonant with the exciton transition (dark contrast), but switches to resonant with the induced 
polaron absorption following the redshift, generating a bright contrast (additional stroboSCAT 
datasets at different probe wavelengths are displayed in fig. S12). Below, we discuss 
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measurements of correlated spatio-energetic dynamics, fluence-dependent redshift dynamics and 
population saturation that cement our assignment of these redshift dynamics to polaron formation.  

Polarons should exhibit correlated spatial and spectral dynamics, since energetic 
stabilization associated with polaron formation results in a modification of transport properties. To 
directly image these correlated dynamics and further support the correspondence between the 
redshift timescale and the polaron formation timescale, we develop a new approach capable of 
simultaneously resolving spectral and spatial evolution by merging stroboSCAT with transient 
reflectance microscopy (fig. S2). Figure 2C displays spatially-resolved transient spectra at 
different pump-probe time delays (see also movies S2–S3). At early times, the transient reflectance 
signal associated with excitons is concentrated around the pump excitation location at 0 μm. 
Between 4 and 50 ps, a V-shaped pattern emerges (highlighted with arrows in Fig. 2C), indicating 
that the spectral redshift associated with polaron formation is correlated to transport away from 
the excitation location. By 1 ns, only the redshifted polaron spectral signature remains, showing 
propagation over several microns. The correlated spatio-energetic dynamics are a clear indication 
that excitons in Re6Se8Cl2 become substantially mobile only after they have formed exciton-
polarons; bare excitons are effectively immobile, whereas polarons propagate over microns. The 
observed transport dynamics also rule out traditional exciton self-trapping (small polarons), which 
would reduce the exciton mobility upon polaron formation (32). These results illustrate the power 
of our correlative approach for understanding how polaron formation affects transport. 

Finally, we confirm the formation of polarons in Re6Se8Cl2 and experimentally infer their 
size by determining the density at which they begin to interact. At high densities, lattice 
deformations compete to displace the same atoms, resulting in a diminished ability to form 
polarons (Fig. 3A) (32). stroboSCAT data displayed in Fig. 3B shows that as the photoexcitation 
density increases, the bare exciton signal (dark contrast) begins to dominate over the polaron signal 
(bright contrast), indicating that polaron formation is suppressed in regions of high excitation 
density. Figure 3C compares the polaron population (red trace) and bare exciton population (black 
trace) as a function of excitation fluence (analysis in fig. S13). We observe clear saturation of the 
polaron population at exciton densities between 0.45 x 1018 /cm3 and 1.8 x 1018 /cm3 (highlighted 
with a blue rectangle). This behavior signals that polarons are overlapping in space, analogous to 
a Mott transition that prevents further polaron formation (33). The onset of polaron saturation is 
also reflected in a transition from superdiffusive to almost diffusive transport (Fig. 3D), which we 
attribute to polaron–polaron scattering above the saturation density. The suppression of exciton-
to-polaron conversion above saturation is most evident in the spectral dynamics (Fig. 3E and fig. 
S14), where the redshift time associated with exciton stabilization increases from ~1.5 ps to 
hundreds of ps. We reproduce these spectral dynamics (right panels of Fig. 3E) with a saturation 
model accounting for a kinetic blockade and polaron transport away from the excitation area (figs. 
S14–S15). The polaron interaction radius associated with the observed critical density range of 
(0.45–1.8) x 1018/cm3 is 2.1–3.4 nm within the Mott criterion (34), corresponding to 3–5 unit cells 
in Re6Se8Cl2. 
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Figure 3. Determining polaron size. (A) Depiction of polaron blockade at high densities. (B) 
stroboSCAT images at pump/probe energies of 2.41 eV/1.55 eV at initial exciton densities ranging 
from (1–20) x 1018 /cm3

 in a 350 nm thick flake. Bare excitons are associated with dark contrast, 
whereas polarons are associated with bright contrast. The rings observed at high exciton densities 
are diffraction rings. All scale bars are 3 μm. (C) Relative populations of polarons and bare 
excitons at a pump-probe time delay of 5 ps as a function of initial exciton density, indicating 
saturation of the polaron population. The blue shaded region for exciton densities between 0.45 x 
1018 and 1.8 x 1018 /cm3 indicates the range of critical polaron overlap density. (D) msd exponent, 
𝛼, as a function of initial exciton density. Error bars are 1 standard deviation. (E) Experimental 
(left) and simulated (right) transient reflectance spectra taken at the center of the focused pump 
excitation (panel B) for different initial exciton densities. Simulations are based on a saturation 
model accounting for exciton to polaron conversion and polaron transport away from the excitation 
spot (13).  

Acoustic polarons are responsible for wavelike transport. Large polarons, known to form in 
materials such as lead halide perovskite semiconductors, have been suggested to partially shield 
carrier-lattice scattering (35). Nevertheless, experiments consistently demonstrate a diffusive 
transport regime (10, 18, 19, 36), with sub-100 fs scattering times that indicate insufficient 
shielding to switch into the much-desired macroscopic ballistic transport regime. In contrast, the 
sustained quasi-ballistic behavior observed in Re6Se8Cl2 is reminiscent of acoustic polarons, which 
can form in low-dimensional materials and were theoretically invoked to rationalize the transport 
properties of polydiacetylene in one dimension (37, 38).  

The formation of acoustic polarons is rare, and our observation of micron-scale exciton 
mean free paths at room temperature is unprecedented. To rationalize this striking behavior in 
Re6Se8Cl2, we employ an approximate strong-coupling theory that describes an exciton of mass 𝑚 
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coupled to acoustic phonons with a strength quantified by the deformation potential 𝐷 in two 
dimensions. The acoustic phonons derive from superatoms of mass 𝑀 with inter-cluster vibrational 
frequency Ω. In two dimensions, the energy to form a circular polaron with radius a and area πa2 
is (39) 

𝐸 =
ℏ2

2𝑚𝑎2
+

1

2
𝑀Ω2Δ2𝜋𝑎2 − 𝐷∆                        (1) 

where ∆ is the dimensionless lattice displacement. In this simple picture, the polaron is only bound 
if the electron-phonon interaction outweighs the energetic penalties associated with exciton 
localization and lattice deformation. Minimizing equation (1) with respect to the lattice 
displacement ∆ gives the existence criterion 

𝜆 > 𝜆c, 𝜆 =
𝑚𝐷2

2ℏ2𝑀Ω2
=

𝐷2

4𝐽𝑀𝑠2
 ,       𝜆c = 𝜋

2⁄ ≈ 1.6             (2) 

where λ is a dimensionless measure of the exciton–acoustic phonon coupling strength, and in the 
second equality we have introduced the exciton transfer integral J and the speed of sound s = Ωa. 
Applying density functional theory to Re6Se8Cl2, we calculate D = 4.4 eV. Taking into account the 
experimentally-inferred electronic band flattening due to inter-cluster optical phonons, which 
increases the exciton effective mass from 1.9 𝑚𝑒 at 0 K to 60 𝑚𝑒 at 300 K (7, 13), we calculate a 
very small J of 1.5 meV at 300 K. When combined with the other material parameters (13), we 
find that 𝜆 = 7 > 𝜆c, predicting a strongly bound polaron. Figure 4A plots the coupling strength λ 
for Re6Se8Cl2, monolayer WSe2, crystalline pentacene and 2D organic-inorganic halide 
perovskites. Re6Se8Cl2 has a coupling strength λ that is 10–1000 times larger than that of the other 
materials and is thus the only one predicted to exhibit bound acoustic polarons according to the 
criterion in equation (2). Within this theory, the key parameters setting Re6Se8Cl2 apart from other 
two- and three-dimensional semiconductors is the combination of a quasi flat-band electronic 
structure at room temperature (small J) and strong exciton–acoustic phonon interactions (large D), 
yielding a large coupling strength 𝜆 and associated strongly bound acoustic polarons. The polaron 
binding energy is reduced with decreasing temperature due to the increase in the transfer integral 
J (7, 13). The estimate in equation (2) predicts that the polaron is not bound below ~175 K. 
Temperature-dependent stroboSCAT experiments (fig. S16) display a dramatic reduction in msd 
below ~150 K, lending support to our central hypothesis and theory of acoustic polarons. We 
emphasize that equation (2) only provides a qualitative criterion for polaron formation and a 
detailed understanding of the polaron stability and lifetime at finite temperature requires a more 
complete theoretical treatment (13).  

Rationalizing the quasi-ballistic dynamics of acoustic polarons requires a more 
sophisticated quantum mechanical treatment. We generalize the stationary polaron description 
above and propose a variational wavefunction for the moving polaron defined by its average crystal 
momentum (13). Energy minimization produces the polaron dispersion shown in Fig. 4B. Near the 
band bottom, we extract a large effective polaron mass 𝑚∗  ≈  200 𝑚𝑒, a substantial increase from 
the bare exciton mass of 60 𝑚𝑒 at 300 K. More significantly, at higher momenta, the polaron 
inherits the linear dispersion of acoustic phonons — a renormalization evocative of light-matter 
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hybridization to form polaritons (40). The linear dispersion of acoustic polarons with a slope below 
that of other acoustic phonons implies weak scattering, since there are no dissipation channels that 
conserve both energy and momentum (38). The polaron is thus predicted to move quasi-
ballistically at a speed proportional to the speed of sound of the lattice, consistent with our 
experimental observations. 

 
Figure 4. Energy of an acoustic polaron. (A) The coupling strength λ for different systems, 
presented as a function of their exciton transfer integral J (material properties collected in Table 
S3). The boxed regions represent the upper and lower bounds calculated for a range of deformation 
potentials and exciton transfer integrals within 30% of reported data. The critical value of 𝜆𝑐  =
1.6 is plotted as a dashed line. (B) Calculated polaron dispersion. The band effective mass is 
estimated by a parabolic fit at the minimum (dashed blue line). The red solid line emphasizes the 
linearity of the dispersion for higher values of momentum. 

We have observed a new transport regime mediated by acoustic exciton-polarons in the 
vdW superatomic semiconductor Re6Se8Cl2. Polaron formation shields excitons from scattering 
with lattice phonons, resulting in quasi-ballistic electronic energy flow over several microns within 
a nanosecond at room temperature. We reveal an extraordinary exciton mean free path of ~1 μm, 
suggesting the possibility of ballistic excitonic transistors. Our discovery of record-breaking 
transport in a material with weak electronic dispersion is astounding, providing an alternative to 
the current paradigm of increasing electronic conjugation to improve transport. Indeed, our model 
for 2D acoustic polarons suggests that quasi-flat electronic bands and strong electron-phonon 
interactions can counterintuitively result in exceptional electronic transport. Beyond 2D 
superatomic materials such as Re6Se8Cl2 and the recently reported graphullerene (41), moiré 
superlattices of 2D semiconductors may provide an interesting testing ground for acoustic 
polarons. Their superlattice potentials enable tuning electronic bands (42, 43) to achieve values of 
𝐽 down to ~0. Combined with their strong deformation potentials (44), these flat bands could yield 
acoustic polarons with tunable transport properties across a large temperature range. Generalizing 
wavelike, ultralong-range electronic energy flow in 2D materials could herald a new era of 
essentially lossless nanoelectronics.  

 

 

1 10 100 1000

0.01

0.1

1

10

100

0 0.5 1.0

-1.5

-1.0

-0.5

C
ou

pl
in

g 
S

tre
ng

th
 l

Exciton Transfer Integral J (meV)

WSe2
lc = 1.6

Re6Se8Cl2

Pentacene

2D Perovskite

A B
 Calculated
 Quadratic Fit
 Linear Fit

B
in

di
ng

 E
ne

rg
y 

(E
/J
)

Momentum (p/a)



9 
 

References and Notes 

1.  A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect 
transistors. Nature. 424, 654–657 (2003). 

2.  G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, 
G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. 
Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, X. 
Zhu, Using coherence to enhance function in chemical and biophysical systems. Nature. 
543, 647–656 (2017). 

3.  X. Zhong, K. Lee, B. Choi, D. Meggiolaro, F. Liu, C. Nuckolls, A. Pasupathy, F. De 
Angelis, P. Batail, X. Roy, X. Zhu, Superatomic Two-Dimensional Semiconductor. Nano 
Lett. 18, 1483–1488 (2018). 

4.  B. Choi, K. Lee, A. Voevodin, J. Wang, M. L. Steigerwald, P. Batail, X. Zhu, X. Roy, 
Two-Dimensional Hierarchical Semiconductor with Addressable Surfaces. J. Am. Chem. 
Soc. 140, 9369–9373 (2018). 

5.  E. A. Doud, A. Voevodin, T. J. Hochuli, A. M. Champsaur, C. Nuckolls, X. Roy, 
Superatoms in materials science. Nat. Rev. Mater. 5, 371–387 (2020). 

6.  E. J. Telford, J. C. Russell, J. R. Swann, B. Fowler, X. Wang, K. Lee, A. Zangiabadi, K. 
Watanabe, T. Taniguchi, C. Nuckolls, P. Batail, X. Zhu, J. A. Malen, C. R. Dean, X. Roy, 
Doping-Induced Superconductivity in the van der Waals Superatomic Crystal Re6Se2Cl2. 
Nano Lett. 20, 1718–1724 (2020). 

7.  Q. Li, F. Liu, J. C. Russell, X. Roy, X. Zhu, Strong polaronic effect in a superatomic two-
dimensional semiconductor. J. Chem. Phys. 152, 171101 (2020). 

8.  K. Lee, S. F. Maehrlein, X. Zhong, D. Meggiolaro, J. C. Russell, D. A. Reed, B. Choi, F. 
De Angelis, X. Roy, X. Zhu, Hierarchical Coherent Phonons in a Superatomic 
Semiconductor. Adv. Mater. 31, 1903209 (2019). 

9.  J. Chen, A. J. Millis, D. R. Reichman, Intermolecular coupling and superconductivity in 
PbMo6S8 and other Chevrel phase compounds. Phys. Rev. Mater. 2, 114801 (2018). 

10.  M. Delor, H. L. Weaver, Q. Yu, N. S. Ginsberg, Imaging material functionality through 
three-dimensional nanoscale tracking of energy flow. Nat. Mater. 19, 56–62 (2020). 

11.  T. Zhu, J. M. Snaider, L. Yuan, L. Huang, Ultrafast Dynamic Microscopy of Carrier and 
Exciton Transport. Annu. Rev. Phys. Chem. 70, 219–244 (2019). 

12.  N. S. Ginsberg, W. A. Tisdale, Spatially Resolved Photogenerated Exciton and Charge 
Transport in Emerging Semiconductors. Annu. Rev. Phys. Chem. 71, 1–30 (2020). 

13.  Materials and methods are available as supplementary materials. 

14.  C. Jacoboni, C. Canali, G. Otiaviani, A. A. Quaranta, A Review of Some Charge 
Transport Properties of Silicon. Solid State Phys. 20, 77–89 (1977). 

15.  J. Shin, G. A. Gamage, Z. Ding, K. Chen, F. Tian, X. Qian, J. Zhou, H. Lee, J. Zhou, L. 



10 
 

Shi, T. Nguyen, F. Han, M. Li, D. Broido, A. Schmidt, Z. Ren, G. Chen, High ambipolar 
mobility in cubic boron arsenide. Science. 377, 437–440 (2022). 

16.  S. Yue, F. Tian, X. Sui, M. Mohebinia, X. Wu, T. Tong, Z. Wang, B. Wu, Q. Zhang, Z. 
Ren, J. Bao, X. Liu, High ambipolar mobility in cubic boron arsenide revealed by 
transient reflectivity microscopy. Science. 377, 433–436 (2022). 

17.  G. M. Akselrod, P. B. Deotare, N. J. Thompson, J. Lee, W. A. Tisdale, M. A. Baldo, V. 
M. Menon, V. Bulović, Visualization of exciton transport in ordered and disordered 
molecular solids. Nat. Commun. 5, 3646 (2014). 

18.  J. Sung, C. Schnedermann, L. Ni, A. Sadhanala, R. Y. S. Chen, C. Cho, L. Priest, J. M. 
Lim, H. K. Kim, B. Monserrat, P. Kukura, A. Rao, Long-range ballistic propagation of 
carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 
(2020). 

19.  Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Long-range hot-carrier transport 
in hybrid perovskites visualized by ultrafast microscopy. Science. 356, 59–62 (2017). 

20.  M. M. Glazov, Phonon wind and drag of excitons in monolayer semiconductors. Phys. 
Rev. B. 100, 45426 (2019). 

21.  L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, H. Morkoç, 
Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well. 
Phys. Rev. B. 39, 1862–1870 (1989). 

22.  M. Kulig, J. Zipfel, P. Nagler, S. Blanter, C. Schüller, T. Korn, N. Paradiso, M. M. 
Glazov, A. Chernikov, Exciton Diffusion and Halo Effects in Monolayer Semiconductors. 
Phys. Rev. Lett. 120, 207401 (2018). 

23.  R. Perea-Causín, S. Brem, R. Rosati, R. Jago, M. Kulig, J. D. Ziegler, J. Zipfel, A. 
Chernikov, E. Malic, Exciton Propagation and Halo Formation in Two-Dimensional 
Materials. Nano Lett. 19, 7317–7323 (2019). 

24.  P. Ruello, V. E. Gusev, Physical mechanisms of coherent acoustic phonons generation by 
ultrafast laser action. Ultrasonics. 56, 21–35 (2015). 

25.  J. Rudolph, R. Hey, P. V. Santos, Long-Range Exciton Transport by Dynamic Strain 
Fields in a GaAs Quantum Well. Phys. Rev. Lett. 99, 047602 (2007). 

26.  E. Baldini, A. Dominguez, T. Palmieri, O. Cannelli, A. Rubio, P. Ruello, M. Chergui, 
Exciton control in a room temperature bulk semiconductor with coherent strain pulses. 
Sci. Adv. 5, eaax2937 (2019). 

27.  K. Datta, Z. Lyu, Z. Li, T. Taniguchi, K. Watanabe, P. B. Deotare, Spatiotemporally 
controlled room-temperature exciton transport under dynamic strain. Nat. Photonics. 16, 
242–247 (2022). 

28.  K. Miyata, D. Meggiolaro, M. T. Trinh, P. P. Joshi, E. Mosconi, S. C. Jones, F. De 
Angelis, X.-Y. Zhu, Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 
(2017). 



11 
 

29.  F. X. Morrissey, J. G. Mance, A. D. Van Pelt, S. L. Dexheimer, Femtosecond dynamics of 
exciton localization: self-trapping from the small to the large polaron limit. J. Phys. 
Condens. Matter. 25, 144204 (2013). 

30.  V. Chorošajev, A. Gelzinis, L. Valkunas, D. Abramavicius, Dynamics of exciton-polaron 
transition in molecular assemblies: The variational approach. J. Chem. Phys. 140, 244108 
(2014). 

31.  B. Wu, W. Ning, Q. Xu, M. Manjappa, M. Feng, S. Ye, J. Fu, S. Lie, T. Yin, F. Wang, T. 
W. Goh, P. C. Harikesh, Y. K. E. Tay, Z. X. Shen, F. Huang, R. Singh, G. Zhou, F. Gao, 
T. C. Sum, Strong self-trapping by deformation potential limits photovoltaic performance 
in bismuth double perovskite. Sci. Adv. 7, 1–12 (2021). 

32.  D. Emin, Polarons (Cambridge University Press, 2012). 

33.  J. M. Frost, L. D. Whalley, A. Walsh, Slow Cooling of Hot Polarons in Halide Perovskite 
Solar Cells. ACS Energy Lett. 2, 2647–2652 (2017). 

34.  P. P. Edwards, M. J. Sienko, Universality aspects of the metal-nonmetal transition in 
condensed media. Phys. Rev. B. 17, 2575 (1978). 

35.  H. Zhu, K. Miyata, Y. Fu, J. Wang, P. P. Joshi, D. Niesner, K. W. Williams, S. Jin, X.-Y. 
Zhu, Screening in crystalline liquids protects energetic carriers in hybrid perovskites. 
Science. 353, 1409–1413 (2016). 

36.  Z. Guo, J. S. Manser, Y. Wan, P. V. Kamat, L. Huang, Spatial and temporal imaging of 
long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. 
Commun. 6, 7471–7479 (2015). 

37.  H.-B. Schüttler, T. Holstein, Transport Dynamics of a Large Acoustic Polaron in One 
Dimension. Phys. Rev. Lett. 51, 2337–2340 (1983). 

38.  E. G. Wilson, A new theory of acoustic solitary-wave polaron motion. J. Phys. C Solid 
State Phys. 16, 6739–6755 (1983). 

39.  G. Whitfield, P. B. Shaw, Interaction of electrons with acoustic phonons via the 
deformation potential in one dimension. Phys. Rev. B. 14, 3346–3355 (1976). 

40.  D. L. Mills, E. Burstein, Polaritons: the electromagnetic modes of media. Reports Prog. 
Phys. 37, 817–926 (1974). 

41.  E. Meirzadeh, A. M. Evans, M. Rezaee, M. Milich, C. J. Dionne, T. P. Darlington, S. T. 
Bao, A. K. Bartholomew, T. Handa, D. J. Rizzo, R. A. Wiscons, M. Reza, A. Zangiabadi, 
N. Fardian-Melamed, A. C. Crowther, P. J. Schuck, D. N. Basov, X. Zhu, A. Giri, P. E. 
Hopkins, P. Kim, M. L. Steigerwald, J. Yang, C. Nuckolls, X. Roy, A few-layer covalent 
network of fullerenes. Nature. 613, 71–76 (2023). 

42.  F. Wu, T. Lovorn, E. Tutuc, A. H. MacDonald, Hubbard Model Physics in Transition 
Metal Dichalcogenide Moiré Bands. Phys. Rev. Lett. 121, 026402 (2018). 

43.  L. Wang, E. M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C. Tan, M. Claassen, D. M. 
Kennes, Y. Bai, B. Kim, K. Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio, A. N. 



12 
 

Pasupathy, C. R. Dean, Correlated electronic phases in twisted bilayer transition metal 
dichalcogenides. Nat. Mater. 19, 861–866 (2020). 

44.  D. Waters, Y. Nie, F. Lüpke, Y. Pan, S. Fölsch, Y.-C. Lin, B. Jariwala, K. Zhang, C. 
Wang, H. Lv, K. Cho, D. Xiao, J. A. Robinson, R. M. Feenstra, Flat Bands and 
Mechanical Deformation Effects in the Moiré Superlattice of MoS2-WSe2 Heterobilayers. 
ACS Nano. 14, 7564–7573 (2020). 

45.  O. Madelung, Semiconductors: Data Handbook (Springer Berlin Heidelberg, Berlin, 
Heidelberg, 2004). 

46.  K. Bushick, K. Mengle, N. Sanders, E. Kioupakis, Band structure and carrier effective 
masses of boron arsenide: Effects of quasiparticle and spin-orbit coupling corrections. 
Appl. Phys. Lett. 114, 022101 (2019). 

47.  Y. Yamada, H. Mino, T. Kawahara, K. Oto, H. Suzuura, Y. Kanemitsu, Polaron Masses in 
CH3NH3PbX3 Perovskites Determined by Landau Level Spectroscopy in Low Magnetic 
Fields. Phys. Rev. Lett. 126, 237401 (2021). 

48.  T. Deilmann, K. S. Thygesen, Finite-momentum exciton landscape in mono- and bilayer 
transition metal dichalcogenides. 2D Mater. 6, 035003 (2019). 

49.  R. J. Hudson, D. M. Huang, T. W. Kee, Anisotropic Triplet Exciton Diffusion in 
Crystalline Functionalized Pentacene. J. Phys. Chem. C. 124, 23541–23550 (2020). 

50.  D. Y. Qiu, G. Cohen, D. Novichkova, S. Refaely-Abramson, Signatures of Dimensionality 
and Symmetry in Exciton Band Structure: Consequences for Exciton Dynamics and 
Transport. Nano Lett. 21, 7644–7650 (2021). 

51.  Y. Nakayama, Y. Mizuno, M. Hikasa, M. Yamamoto, M. Matsunami, S. Ideta, K. Tanaka, 
H. Ishii, N. Ueno, Single-Crystal Pentacene Valence-Band Dispersion and Its Temperature 
Dependence. J. Phys. Chem. Lett. 8, 1259–1264 (2017). 

52.  L. Yuan, T. Wang, T. Zhu, M. Zhou, L. Huang, Exciton Dynamics, Transport, and 
Annihilation in Atomically Thin Two-Dimensional Semiconductors. J. Phys. Chem. Lett. 
8, 3371–3379 (2017). 

53.  V. F. Gantmakher, Y. B. Levinson, in Modern Problems in Condensed Matter Sciences, 
V. M. Agranovich, A. A. Maradudin, Eds. (Elsevier, 1987), vol. 19. 

54.  C. Jacoboni, L. Reggiani, The Monte Carlo method for the solution of charge transport in 
semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 
(1983). 

55.  P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. 
Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. 
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. 
Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. 
Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, 
QUANTUM ESPRESSO: a modular and open-source software project for 
quantumsimulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). 



13 
 

56.  P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, 
R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal 
Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. 
Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. 
Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. 
Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. 
Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, 
P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with 
Quantum ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017). 

57.  Z. Huang, W. Zhang, W. Zhang, Computational Search for Two-Dimensional MX2 
Semiconductors with Possible High Electron Mobility at Room Temperature. Materials 
(Basel). 9, 716 (2016). 

58.  C. G. Van de Walle, R. M. Martin, “Absolute” deformation potentials: Formulation and ab 
initio calculations for semiconductors. Phys. Rev. Lett. 62, 2028–2031 (1989). 

59.  J. Wiktor, A. Pasquarello, Absolute deformation potentials of two-dimensional materials. 
Phys. Rev. B. 94, 245411 (2016). 

60.  M. Topsakal, S. Cahangirov, S. Ciraci, The response of mechanical and electronic 
properties of graphane to the elastic strain. Appl. Phys. Lett. 96, 091912 (2010). 

61.  S. Thomas, K. M. Ajith, S. U. Lee, M. C. Valsakumar, Assessment of the mechanical 
properties of monolayer graphene using the energy and strain-fluctuation methods. RSC 
Adv. 8, 27283–27292 (2018). 

62.  J. H. Fetherolf, D. GoleŽ, T. C. Berkelbach, A Unification of the Holstein Polaron and 
Dynamic Disorder Pictures of Charge Transport in Organic Crystals. Phys. Rev. X. 10, 
021062 (2020). 

63.  H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. 
Kudo, D. Hobara, Y. Tokita, M. Itabashi, Hopping and band mobilities of pentacene, 
rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first 
principle calculations. J. Chem. Phys. 139, 014707 (2013). 

64.  K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, Laser-induced phonon spectroscopy. 
Optical generation of ultrasonic waves and investigation of electronic excited-state 
interactions in solids. Phys. Rev. B. 24, 3261–3275 (1981). 

65.  F. Mahrouche, K. Rezouali, S. Mahtout, F. Zaabar, A. Molina-Sánchez, Phonons in 
WSe2/MoSe2 van der Waals Heterobilayers. Phys. status solidi. 259, 2100321 (2022). 

66.  P. Maity, J. Yin, B. Cheng, J.-H. He, O. M. Bakr, O. F. Mohammed, Layer-Dependent 
Coherent Acoustic Phonons in Two-Dimensional Ruddlesden–Popper Perovskite Crystals. 
J. Phys. Chem. Lett. 10, 5259–5264 (2019). 

67.  A. Giri, A. Z. Chen, A. Mattoni, K. Aryana, D. Zhang, X. Hu, S.-H. Lee, J. J. Choi, P. E. 
Hopkins, Ultralow Thermal Conductivity of Two-Dimensional Metal Halide Perovskites. 
Nano Lett. 20, 3331–3337 (2020). 

68.  M. Dyksik, H. Duim, X. Zhu, Z. Yang, M. Gen, Y. Kohama, S. Adjokatse, D. K. Maude, 



14 
 

M. A. Loi, D. A. Egger, M. Baranowski, P. Plochocka, Broad Tunability of Carrier 
Effective Masses in Two-Dimensional Halide Perovskites. ACS Energy Lett. 5, 3609–
3616 (2020). 

69.  N. Miyasaka, Y. Ono, Acoustic Polaron in a Two-Dimensional Electron-Lattice System. 
J. Phys. Soc. Japan. 70, 2968–2976 (2001). 

70.  B. Gerlach, H. Löwen, Analytical properties of polaron systems or: Do polaronic phase 
transitions exist or not? Rev. Mod. Phys. 63, 63–90 (1991). 

 

Acknowledgements: 
We thank Professors Louis E. Brus, Xiaoyang Zhu, Colin Nuckolls and David R. Reichman for 
helpful discussions, and Ding Xu and James Baxter for technical help with measurements and 
analysis. 

Funding: This material is primarily based upon work supported by the National Science 
Foundation (NSF) through the Columbia MRSEC on Precision-Assembled Quantum Materials 
(PAQM) (DMR-2011738) (MD, XR, TB) and by the Air Force Office of Scientific Research 
(AFOSR) under grant number FA9550-22-1-0389 (MD, XR). stroboSCAT instrument 
development was supported by the NSF under grant number DMR-2115625 (MD). MD 
acknowledges support from the Arnold and Mabel Beckman Foundation through a Beckman 
Young Investigator award. XR and JY acknowledge support from the National Science Foundation 
CAREER Award DMR-1751949. JAT was supported by the NSF Graduate Research Fellowship. 
JCR was supported by the Department of Defense National Defense Science and Engineering 
Graduate Fellowship. 

Author contributions: JAT and MD conceived and designed the experiments. JAT performed, 
analyzed, and simulated stroboSCAT and STR experiments with assistance from ACS. JY, JCR, 
DGC and XR synthesized and characterized Re6Se8Cl2 single crystals. JY performed and analyzed 
heat capacity measurements. JAT, MER, JY and HS prepared exfoliated samples. PS and TCB 
developed the theory and performed DFT calculations and polaron dispersion calculations. MD 
supervised the project. JAT, PS, JY, XR, TCB and MD wrote the manuscript, with input from all 
authors. 

Competing interests: Authors declare that they have no competing interests. 

Data and materials availability: All data are available in the main text or the supplementary 
materials. Raw files are available from the corresponding author upon reasonable request. 

  



15 
 

 

 

Supplementary Materials for 
 

Room temperature wavelike exciton transport in a van der Waals superatomic 
semiconductor 

 
Jakhangirkhodja A. Tulyagankhodjaev, Petra Shih, Jessica Yu, Jake C. Russell, Daniel G. Chica, 

Michelle E. Reynoso, Haowen Su, Athena C. Stenor, Xavier Roy, Timothy C. Berkelbach,  
Milan Delor 

 

Correspondence to: milan.delor@columbia.edu 

 

 



16 
 

1 Materials and Methods 

1.1 Synthesis, exfoliation, and characterization of Re6Se8Cl2 

Re6Se8Cl2 crystals were synthesized via chemical vapor transport following previous 
reports (3, 6). Re (330 mg, 1.77 mmol), Se (190 mg, 2.41 mmol) and ReCl5 (200 mg, 0.55 mmol) 
were pressed into a pellet and sealed in a 30 cm quartz tube under a pressure of ~30 mtorr. The 
tube was heated at 1 C/min to 1100 C in a three-zone tube furnace and held for 3 days. To achieve 
single crystals, the tube was then cooled over seven hours to a temperature gradient with the hot 
end held at 970 C and the cool end fluctuating between 970 C and 925 C for three cycles over 
200 hours. The tube was further cooled at 6.3 C/min to a gradient of 340–295 C, and the furnace 
was then shut off. Excess volatile components were separated from the single crystals using a 
gradient of 300–25 C, and large ~0.5 mm single crystals were recovered from the middle section 
of the tube. Thin Re6Se8Cl2 flakes were subsequently prepared from single crystals by mechanical 
exfoliation using a polyvinyl chloride adhesive surface protective tape (ProTapes Nitto SPV224) 
and transferred onto a borosilicate substrate (#1.5 cover glass, 0.17 mm). Once the crystals were 
exfoliated onto the cover glass, atomic force microscopy (AFM) images and height profiles were 
acquired in PeakForce Quantitative Nanoscale Mapping in tapping mode using a Bruker 
Dimension FastScan AFM under ambient conditions. 

1.2 StroboSCAT and Spacetime Transient Reflectance (STR) 

Time-resolved optical measurements were carried out using two separate instruments 
depending on the time resolution and dynamic range needed. The first is a femtosecond system 
operating at 1 MHz repetition rate, with ~60 fs pulses, a temporal instrument response function 
(IRF) of 187 fs, and a maximum pump-probe time delay of 2.2 ns. The second is a picosecond 
system operating at 7.814 MHz with ~60 ps pulses, a temporal IRF of 98 ps, and a maximum 
pump-probe time delay up of 125 ns. All experiments are conducted at room temperature. 

1.2.1 Femtosecond stroboSCAT and STR 

For ultrafast stroboSCAT measurements (fig. S1), a 40 W Yb:KGW ultrafast regenerative 
amplifier (Light Conversion Carbide, 40 W, 1030 nm fundamental, 1 MHz repetition rate) seeds 
an optical parametric amplifier (OPA, Light Conversion, Orpheus-F) with a signal tuning range of 
640–940 nm and an average pulsewidth of 60 fs. Unless otherwise stated, stroboSCAT and STR 
experiments use the 2nd harmonic of the fundamental (515 nm) as the pump pulse. STR 
experiments using lower-energy pump pulses (e.g. for band-edge excitation) use the tunable signal 
output of the OPA as pump pulses. stroboSCAT probe pulses are generated using the signal output 
of the OPA. STR probe pulses use broadband white light (~550–980 nm) generated by focusing 
the fundamental into a 4 mm YAG window (EKSMA Optics, 555-7124). Dispersion of the OPA 
output caused by refractive optics (the microscope objective in particular) is partially pre-
compensated using a pair of chirped mirrors (Venteon DCM7). For all experimental 
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configurations, the pump pulse train is modulated at 647 Hz using an optical chopper and is 
collimated into a high numerical-aperture objective (Leica HC Plan Apo 63x, 1.4 NA oil 
immersion), resulting in a diffraction-limited excitation on the sample. The probe is sent to a 
double-passed, computer-controlled, mechanical delay line for control over the pump-probe time 
delay and is combined with the pump beam through a dichroic mirror. An f = 250 mm widefield 
lens is inserted prior to the dichroic mirror to focus the probe into the back focal plane of the 
objective, resulting in widefield illumination of the sample. Probe light reflected from the sample-
substrate interface and scattered light from the sample are collected along the same path through 
the objective and are directed to a complementary metal-oxide-semiconductor camera (FLIR BFS-
U3-28S5M-C with a Sony IMX 421 global shutter sensor) through an imaging lens. For 
stroboSCAT measurements, a bandpass filter is placed before the camera to eliminate stray light 
and select a narrow spectral region of the probe. Temperature-dependent stroboSCAT is performed 
with an identical setup, but with the sample mounted in a Montana Instruments s100 closed-loop 
Helium cryostat with a base temperature down to 3.5 K. The cryostat is equipped with an in-
vacuum objective (Zeiss LD EC Epiplan-Neofluar 100x/0.90 DIC, NA = 0.9).  

STR measurements are carried out using a homebuilt imaging spectrometer as illustrated 
in figures S1B and S2. The stroboSCAT image formed by a white light probe passes through a slit 
aperture with a width of ~500 nm (after accounting for magnification) placed in the image plane. 
The transmitted ‘vertical image’ is then collimated, dispersed horizontally using a prism (ThorLabs 
PS853), and focused on a CMOS array camera (FLIR BFS-U3-28S5M-C). Both the spectrometer 
camera and the real-space camera are triggered at twice the pump modulation rate, allowing the 
consecutive acquisition of images with the pump ON followed by the pump OFF. Consecutive 
frames are then processed according to (pump on/pump off – 1). 
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Figure S1. Femtosecond system. (A) Configuration for femtosecond stroboSCAT. (B) 
Configuration for spacetime transient reflection (STR). 1030 nm (orange) is rerouted into the 
original signal path. A YAG crystal generates the white light. The light is rerouted into a homebuilt 
spectrometer. The signal can be optionally rerouted into the 515 nm line to be used as a pump as 
shown by the dashed mirrors. 
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Figure S2. Simplified illustration for the principle of spacetime transient reflectance. A slit 
is inserted in the imaging plane. The image selected by the slit gets spectrally resolved by a 
spectrometer before being imaged on a 2D camera, resulting in a spatial axis along one dimension 
and a spectral axis along the other. 

1.2.2 Picosecond stroboSCAT 

For picosecond stroboSCAT (fig. S3), probe pulses are obtained from an NKT Photonics 
SuperK Extreme (Fianium) white light supercontinuum laser coupled into an acousto-optic tunable 
filter (AOTF) to select a tunable probe wavelength range from 500–900 nm with a ~30 ps 
pulsewidth. The pump pulses are obtained using a PicoQuant laser diode (LDH-D-C-440, 440 nm, 
60 ps pulsewidth) driven by a PicoQuant laser driver (PDL-828-S “SEPIA II” equipped with a 
SOM 828-D oscillator). The two laser sources are synchronized by triggering the laser diode driver 
using a pulse train synchronization signal from the supercontinuum laser at a repetition rate of 
7.814 MHz. Pump-probe time delays are controlled using the electronic delay capabilities of the 
diode driver, which are used to negatively delay the diode pulses with respect to the 
supercontinuum pulses with 20 ps resolution. 

 
Figure S3. Picosecond stroboSCAT system.  
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2 Supplementary Text 

a Diffusivity comes from a stroboSCAT measurement reported in fig. S4. 
b To allow direct comparison against other semiconductors, the effective diffusivity and effective velocity are both 
reported for Re6Se8Cl2. The effective velocity is described in the main text and section 2.2. The effective diffusivity 
is calculated via a linear fit from 500 to 1000 ps of Figure 1G.  
c We report the effective mass from the zero-temperature band structure for comparison with other materials. For 
Re6Se8Cl2, the effective mass (electronic dispersion) becomes much larger (flatter) at room temperature, as detailed 
in the main text. 
d Exciton effective mass | Acoustic exciton-polaron effective mass 
 

Table S1. Comparison of effective masses and mobilities of different materials to Re6Se8Cl2. 
Materials are organized by increasing zero-temperature band effective mass (from electron, hole, 
or exciton bands). The dominant energy carrier is listed under energy type along with its diffusivity 
(𝐷). For charged carriers, a mobility (𝜇) was calculated using the Einstein relation, 𝜇 =  𝑒𝐷/𝑘𝐵𝑇, 
where 𝑒 is the free electron charge, and 𝑇 is the temperature. Exciton effective masses are reported 
within the effective mass approximation as 𝑚ℎ + 𝑚𝑒 . Given the complexities associated with 
momentum and band dependence of the effective mass, a range of values between the minimum 
and maximum experimental values are reported (45).  

Material Energy Type 
Diffusivity/Effective 

Speed 
Mobility 
(cm2/Vs) 

Band Effective 
Mass (me) 

GaAs (45) 
e- 62–232 cm2/s 2400–9000 0.082–0.75 

h+ 8.3–10.3 cm2/s 320–400 0.57 

CdTe (45) 
e- 27 cm2/s 1044 ~0.095 

h+ 1.6 cm2/s 60 0.12–0.81 

Si (45) 
e- 37 cm2/s 1450 0.1905–0.9163 

h+ 13 cm2/s 505 0.153–0.537 

Cubic Boron 
Arsenide (15, 46) 

e-/h+ (ambipolar) 41.4 cm2/s 1600 0.136–1.093 

CH3NH3PbBr3 
(Metal Halide 

Perovskite) (28, 47) 

e- polaron 3.9 cm2/s 149.8 0.343 

h+ polaron 2 cm2/s 79.2 0.448 

Bulk WSe2 a Exciton 5.7 cm2/s -- 0.68 

Monolayer WSe2 a 

(48) Exciton 0.55 cm2/s -- 0.72 

Re6Se8Cl2 a, b, c 
Acoustic exciton-

polarons 65 cm2/s | 2300 m/s -- 1.88 | 203d 

Pentacene (49–51) Triplet Exciton 3.5 x 10-3 cm2/s -- 3.8–12 
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2.1 General transport characterization 

stroboSCAT and STR are both capable of directly measuring the density profile of 
photoexcited species across several orders of magnitude in space and time. The density profiles 
for these measurements are azimuthally averaged by taking the arithmetic mean of pixel values 
along the circumference of a circle. Gaussian functions of the form 

𝜌(𝑟, 𝑡; 𝜆) = 𝜌0(𝑡) 𝜀(𝜆) 𝑒
−

(𝑟−𝑟0)2

2𝜎2(𝑡)  

are then utilized to fit to the measured density profiles along the spatial axis r, where 𝜌0(𝑡) 
represents the true photoexcitation density at the center, 𝜀(𝜆) is a spectral modification parameter 
to account for wavelength dependent scattering/absorption cross-sections, 𝑟0 marks the origin, and 
𝜎(𝑡) is a time dependent Gaussian width parameter. 

For transport characterizations, 𝜌0(𝑡) and 𝜀(𝜆) are combined into a single amplitude 
parameter 𝐴(𝑡; 𝜆) =  𝜌0(𝑡)𝜀(𝜆), which becomes representative of the density. In the instance 
when multiple species are present, such as when the polaron blockade occurs at high fluences, 
additional Gaussian profiles are introduced so that the net density profile becomes 𝜌(𝑟, 𝑡; 𝜆) =

𝜌𝑋 + 𝜌𝑃, where the subscripts 𝑋 and 𝑃 refer to bare excitons and exciton-polarons, respectively. 
Due to the large difference in width expansion between slow moving excitons and rapidly 
propagating polarons, double Gaussian fits are well constrained with low inter-Gaussian 
dependencies. All nonlinear fitting procedures use a Levenberg-Marquardt algorithm to minimize 
the least squares. 

Standard diffusion theory predicts that the squared width of a Gaussian follows 

𝜎2(𝑡) = 𝜎2(0) + 2𝐷𝑡 

where 𝜎2(0) is the initial width of the Gaussian at 𝑡 = 0 and 𝐷 is the diffusion constant (12). We 
refer to 𝜎2(𝑡) − 𝜎2(0) as the mean squared displacement (msd). 𝐷 is typically determined by a 
linear fit to the msd. However, as discussed in the main text, the msd can appear nonlinear. In this 
instance, we characterize the msd as a power law, 𝜎2(𝑡) − 𝜎(0)2 = 𝐴𝑡𝛼, where 𝛼 = 2 is classified 
as ballistic, 2 > 𝛼 ≥ 1 is considered superdiffusive, 𝛼 = 1 is diffusive and 𝛼 < 1 is subdiffusive.  

It is helpful to further characterize a nonlinear msd by a linear fit to the width of the 
Gaussian profile 𝜎(𝑡), providing a measure of an “effective” velocity. Figure S6 shows a linear fit 
to the function 𝜎(𝑡) − 𝜎(0) = 𝑉𝑒𝑓𝑓𝑡, where 𝑉𝑒𝑓𝑓 is the effective velocity. In conjunction with the 
polaron lifetime, 𝜏𝑃 (fig. S5), we use the effective velocity as an alternative definition for the 
propagation length/diffusion length, 𝐿 = 𝑉𝑒𝑓𝑓𝜏𝑃 as opposed to the usual 𝐿 = √2𝐷𝜏, due to a 
nonlinear msd (12). 
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Figure S4. Exciton transport in WSe2. (A) stroboSCAT data for monolayer, bilayer and 70 nm 
thick (bulk) WSe2 on glass. (B) Mean squared displacement and extracted diffusion coefficients 
for the three datasets, consistent with previous reports (22, 52). Scale bars are 3 μm. 

 

 
Figure S5. Polaron lifetime in Re6Se8Cl2. The measurement was carried out at pre-saturation 
densities using picosecond stroboSCAT (fig. S3). 
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Figure S6. Effective velocity of the polaron population profile in Re6Se8Cl2. The data plots 
𝜎 − 𝜎0 as opposed to 𝜎2 − 𝜎0

2 in Fig 1G. A linear fit provides an estimated effective velocity of 
2.3 ± 0.2 km/s for the population profile. The shaded red indicates the 95% confidence band in the 
fit. 

 

2.2 Monte Carlo simulations of superdiffusive transport 

Monte Carlo (MC) simulations were carried out to model superdiffusive transport and 
extract the scattering time and mean free path of polarons. Although these parameters may be 
extracted from a Langevin transport analysis of the msd, MC simulations allow us to account for 
a finite experimental field of view (11.6 μm x 11.6 μm) and observation time (𝑇𝑜𝑏𝑠 = 1100 ps) 
over which the signal-to-noise ratio (SNR) of our measurements is sufficient to reliably fit 
Gaussian density profiles. The simulations generate the trajectories of 10,000 non-interacting 
particles that scatter with a probability 𝑑𝑡/𝜏 every iteration, where 𝑑𝑡 = 1 ps is the step size and 𝜏 
is the scattering time. The particles move with a velocity 𝑣 in 2 dimensions. The initial state is a 
Gaussian spatial distribution of particles.  

Since we have no a priori knowledge of the electronic dispersion of this system and the 
initial distribution of particles along this dispersion, we carry out MC simulations for a range of 
different dispersions and parameters in figs. S7 and S8. We begin by explaining the procedure with 
a simple linear dispersion model (all particles sharing the same speed) in fig. S7 before detailing 
the results of the other models.  

To understand the relationship between the msd power law and the number of scattering 
events, the scattering time and microscopic particle velocity (slope of the linear dispersion) were 
systematically varied, generating images analogous to stroboSCAT for each simulation time step. 
We fit the simulated density profile using the same procedure as that used for stroboSCAT. Fig. 
S7A confirms that the average number of observed scattering events per particle over the 
observation time, 𝑇obs, is set by the scattering time: 𝑁scattering =  𝑇obs/𝜏. 𝑁scattering shows a 
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measurable dependence on the velocity only for instances when a significant portion of particles 
escape the experimental window. Fig. S7B shows the extracted values of 𝛼 (where msd = 𝐴𝑡𝛼) 
over the same parameter range. 𝛼 has a strong 𝜏 dependence and a weak dependence on the 
velocity, indicating that the curvature of the msd is a nearly independent gauge into the scattering 
time of a particle. Once the number of scattering events per particle becomes less than ~10 within 
𝑇obs, 𝛼 becomes noticeably larger than 1. Fig. S7C shows the value of the msd at 𝑡 = 1.1 ns as a 
function of the scattering time and particle velocity. Unlike 𝛼, the msd strongly depends on both 
the scattering time and particle velocity. 

 

 
Figure S7. Results of Monte Carlo simulations to model superdiffusive transport. (A) The 
average number of scattering events per particle as a function of the scattering time and 
microscopic velocity for a total simulation time of 1.1 ns. (B) The exponent 𝛼 resulting from a 
fit to msd = 𝐴𝑡𝛼  of the simulated particle density profiles. (C) The msd value at 1.1 ns as a function 
of scattering time and particle velocity. White pixels in panels B and C are regions where Gaussian 
fits failed due to a significant number of particles exiting the simulation window. (D) Contours of 
𝛼 = 1.67 (blue) and msd (1.1 ns) = 14.6 μm2 (red). The crossing of these contours, at around 𝜏 =

215 ps and 𝑣 = 5.5 km/s, represents simulation parameters that reproduce the experimental msd. 
The shaded area refers to 95% confidence intervals in the fitting procedure.  

 
To extract the simulation parameters that reproduce the experimental data shown in Figure 

1G [𝛼 = 1.67, msd (1.1 ns) = 14.6 μm2], we plot contours of constant 𝛼 = 1.67 and constant 
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msd (1.1 ns) = 14.6 μm2 extracted from panels B and C in fig. S7D. The 95% confidence 
intervals of the fit for each simulation is used to determine upper and lower bounds for the 
contours. The intersection of the 𝛼 = 1.67 and msd = 14.6 μm2 contours are the parameters that 
reasonably reproduce the observed data. For this linear dispersion model, we extract 𝜏 = 215 ps 
and 𝑣 = 5.5 km/s, suggesting a mean free path of 1.2 µm. 

 

 
Figure S8. Monte Carlo simulations for different model dispersions.  (A) Linear dispersion, 
equivalent to data shown in fig. S7. (B) Parabolic-linear dispersion consistent with our theory of 
acoustic polarons, starting with a thermal distribution. (C) Same as panel B, starting with a non-
thermal distribution and incorporating inelastic scattering. (D) Parabolic dispersion, where the x-
axis reports the average particle velocity for a given effective mass. Contours plotted in the bottom 
row are for 𝛼 = 1.67 (blue) and msd (1.1 ns) = 14.6 μm2 (red). The shaded area refers to 95% 
confidence intervals in the fitting procedure. Intersections of the shaded areas reproduce the 
experimental msd. The white circles and associated labels are the central values of the areas. 

 

Fig. S8 repeats the MC analysis for a range of model dispersions. Specifically, we 
investigate (top row, fig. S8): (i) A simple linear dispersion with all particles sharing the same 
input velocity dictated by the slope of the dispersion (fig. S8A); (ii) A parabolic-linear dispersion 
consistent with our theory of acoustic polarons in Re6Se8Cl2, displayed in Fig. 4B of the main text. 
Two different simulations for this parabolic-linear dispersion are carried out: one with a 
thermalized (Boltzmann) starting condition (fig. S8B), and one with a non-equilibrium starting 
condition which thermalizes over time through inelastic scattering with acoustic phonons (fig. 
S8C). The parabolic-linear dispersion is constructed with a piecewise function composed of a 
parabola and a line at a crossover momentum (KC). Enforcing continuity and differentiability at a 
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fixed parabolic-linear crossover results in an effective mass, 𝑚∗, of the parabolic band that depends 
on the input particle velocity, 𝑉𝐺 (which changes the slope of the linear part of the dispersion). 
Note that implementing rigorous 1-phonon momentum-conserving scattering leads to zero phonon 
emission for both very heavy mass and linear dispersion (53, 54), so that a thermal distribution is 
never established. Instead, we incorporate inelastic scattering in the nonequilibrium simulation 
phenomenologically through absorption or emission of acoustic phonons at a single frequency, 
ensuring energy but not momentum conservation.  (iii) A parabolic dispersion with a thermalized 
distribution (fig. S8D). For the latter, we plot the average velocity of particles across the 
distribution.  

The contours and resulting scattering times and velocities that reproduce the experimental 
msd are plotted in the bottom row of fig. S8. We find that the scattering times and mean free paths 
extracted for the different linear and linear-parabolic models are consistent, ranging from 160–260 
ps and 0.7–1.6 µm respectively. The linear dispersion model falls in between the two linear-
parabolic models, so we report numbers for the linear model in the main text. For the thermalized 
parabolic model, the scattering time necessary to reproduce the experimental msd implies ballistic 
transport over the full experimental window. The difficulty in attaining a superdiffusive msd for 
the parabolic model arises because a large effective mass implies a very broad distribution of 
velocities for a thermal population. Thus, even if the scattering time is very long, transport appears 
mostly diffusive because of the spread in particle velocities.  
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Figure S9. Pump wavelength dependence on spectral and transport dynamics. (A) 
Comparison of transient reflectance spectra using three pump wavelengths, 515 nm (used in the 
main text data), 640 nm and 740 nm at similar carrier densities of ~1.8 x 1018/cm3. The spectral 
redshift dynamics are essentially identical. (B) Mean-square-displacement extracted from STR for 
different pump wavelengths show similar superdiffusive behavior. (C) Transient reflectance 
spectra at different pump fluences using a 740 nm excitation pulse reproduces the saturation effect 
observed with a 515 nm excitation pulse. 
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Figure S10. Distinguishing surface acoustic waves (SAW) from polarons. (A) Exciting 
Re6Se8Cl2 with high pump densities (initial exciton density ~ 1020/cm3) launches SAWs, which 
propagate ballistically (ring-like feature observed in stroboSCAT). Here, the stroboSCAT probe 
wavelength is set to 650 nm (1.91 eV) where polarons possess no spectral weight. The positive 
(white) signal in the center is due to the slow-moving excitons that persist due to saturation and 
have a spectral response at 650 nm (fig. S12). (B) A comparison of polaron effective velocity and 
the SAW velocity. Polaron transport precedes and far exceeds SAW propagation for similar time 
scales. 
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Table S2. Summary of different energy carriers in Re6Se8Cl2. Exciton diffusion can be 
measured in a saturated regime, off-resonant from the polaron energies (fig. S12). Surface acoustic 
waves at the interface of glass and crystal can be excited and measured under high fluence 
conditions (fig. S10). Thermal diffusivity, 𝐷, is calculated using 𝐷 =  𝜅/𝜌𝑐𝑝, where 𝜅 is the 
thermal conductivity, 𝜌 is the mass density and 𝑐𝑝 is the specific heat capacity at constant pressure 
(J/gK). The thermal conductivity in and out of plane of the vdW layers is measured via Frequency 
Domain Thermoreflectance (6). The heat capacity is measured to be 0.213 J/gK at 298 K as 
discussed in supplementary section 2.3 (fig. S11). 

2.3 Heat capacity measurement 

The temperature-dependent specific heat capacity of Re6Se8Cl2 was measured with a 
Quantum Design Physical Property Measurement System (PPMS) DynaCool, from 55 K to 300 
K. To prepare the sample for measurement, powder Re6Se8Cl2 was pressed into a pellet of mass 
3.014 mg. The pellet was adhered to the Heat Capacity puck using Apiezon N Grease.  

 
Figure S11. Heat capacity. The temperature-dependent specific heat capacity at constant pressure 
of Re6Se8Cl2 was measured to estimate the thermal diffusivity in Table S1. The specific heat at 
298 K is 0.213 J/gK, with no phase transition observed within the temperature range of 55 to 300 
K. A Debye model is fit to estimate a Debye temperature of 354 K (red line). The dashed line 
corresponds to the classical limit. Note, per mole refers to moles of atoms, not clusters. 
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Figure S12. Correlated spatial and spectral dynamics. (A) STR for a few characteristic time delays 
taken at above-saturation fluences. (B) stroboSCAT images taken at different probe wavelengths. 
The colored arrows in panel A correspond to the energies reported in panel B. Probe energies at 
1.55 eV (800 nm) and 1.59 eV (780 nm) show practically the same exciton and polaron density 
profiles but have opposite contrast. Using pump fluences above the polaron saturation limit allows 
us to visualize the exciton profile at energies that are spectrally isolated from the polaron, such as 
at 1.67 eV and 1.91 eV, thus providing an estimate of the bare exciton diffusivity (0.008 cm2/s). 

 

2.4 Polaron saturation densities estimated through population analysis 

The relative exciton and polaron populations for Figure 3C are obtained through double-
Gaussian fitting of the stroboSCAT population profiles as a function of pump fluence. The 
saturation trend is reproduced across a range of different experimental conditions such as pump 
area, flake location and pump wavelength. We found empirically that the evolution of the exciton 
population profile is most reliably fit when the pump excitation area is much larger than a 
diffraction-limited spot such that the polaron density profile evolution from a Gaussian (polarons 
only) to a super-Gaussian (flat-top Gaussian, representing polaron saturation in the center of the 
excitation region where the density is highest) to a double-Gaussian (polarons + unconverted 
excitons due to polaron saturation) is evident. Figure S13 displays this evolution as a function of 
initial peak excitation fluence at a pump-probe time delay of 5 ps. Using the peak fluence, we 
calculate along the y-axis an effective polaron density at each point in space. The density at which 
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the flat-top Gaussian emerges thus provides a measure of the polaron saturation density. Beyond 
the saturation limit, unconverted excitons (negative contrast) emerge.  

 
Figure S13. Selected datasets of the density profile at increasing fluences. From low to high 
fluences, the polaron amplitude increases until it reaches a maximum amplitude, generating a flat-
top Gaussian. Subsequently, the amplitude decreases due to the overlapping exciton population 
(negative contrast).  

 

To generate Figure 3C of the main text, the polaron density profile is modelled as  

𝜌𝑃(𝑟, 𝑡; 𝜆) = 𝑃0𝜀𝑃(𝜆) exp (−
(𝑟 − 𝑟0)𝑝

2𝜎2
) 

Where the only new parameter is 𝑝, which has a lower limit 𝑝 ≥ 2. When 𝑝 = 2, the profile is 
Gaussian. 𝑝 > 2 implies a flat-top Gaussian. 𝑃0 is fixed to the maximum amplitude before the 
exciton population is appreciably visible, representing the polaron saturation density. Excitons 
follow a standard Gaussian profile of  

𝜌𝑋(𝑟, 𝑡; 𝜆) = 𝑋0𝜀𝑋(𝜆) exp (−
(𝑟 − 𝑟0)2

2𝜎2
)  

The relative populations are determined via integration of the two functions in 2D polar 

coordinates. For the displayed plot, the populations are defined as 𝑃0

2.18
𝜎𝑃

2Γ (1 +
2

𝑝
) and 𝑋0𝜎𝑋

2 for 

polarons and excitons respectively. The factor of 2.18 accounts for the difference in spectral 
amplitudes between polarons and excitons (this factor is used simply for display purposes and does 
not affect the calculated polaron saturation density), and Γ is the Gamma function to account for 
radial integration of a super-Gaussian function. 
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Figure S14. Spectral evolution for spacetime transient reflection measurements as a function 
of initial carrier density. All numbers are peak carrier densities reported in /cm3. As discussed in 
the main text, polaron saturation results in a prolonged redshift associated with exciton to polaron 
conversion from a few picoseconds to tens of picoseconds. 
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2.5 STR Simulation 

2.5.1 Spectral analysis 

Figure S15 illustrates the procedure used to extract bare exciton and polaron spectra from 
STR; these spectral shapes are used as inputs in the simulations for figure 3E. The raw spacetime 
transient reflectance is sliced along two spatial axes (fig. S15A): one in the center of the excitation 
spot and another off-axis. The former shows the spectral evolution from excitons to polarons; the 
off-axis cut displays the pure polaron spectrum since only polarons can propagate over that 
distance. A 4-component sequential global analysis model of ABCD is used to model the 
central spectra as shown in figure S15B. The first spectral component “A” represents the species 
prior to both propagation and polaron conversion and is thus taken to represent the exciton 
spectrum. The polaron spectrum is extracted from an off-axis component of STR as shown in 
figure S15C. 

 
Figure S15. Determination of exciton and polaron spectra for spectral simulations. (A) A raw 
image of spacetime TR for 100 ps (taken from the main text). (B) Evolution associated spectra 
(EAS) resulting from a 4-component sequential kinetic model with lifetimes of 0.8 ps, 36 ps, 400 
ps and 4000 ps (note that these lifetimes represent both population decay and 2D propagation out 
of the excited and probed regions). (C) The off-axis pure polaron spectrum. Component “C” is the 
same as the off-axis trace and is therefore taken to represent the polaron spectrum. 
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2.5.2 Simulation of density dependent transient reflectance 

A phenomenological model is constructed to simulate the density-dependent kinetics of an 
exciton to polaron transformation as observed shown in figure 3E of the main text. To account for 
decay due to transport, a treatment beginning with the continuity equation is required. Three 
simplifying assumptions are made for the purposes of the model:  

1. The exciton to polaron transformation, 𝑋 → 𝑃, is first order and proceeds under a rate 𝑘 =

𝑘[𝑃(𝑟, 𝑡)], where the rate has an implicit dependence on radius and time through the polaron 
number, 𝑃(𝑟, 𝑡). For the simulation, the rate is phenomenologically modelled as 𝑘[𝑃(𝑟, 𝑡)] =

𝑘𝑚𝑖𝑐𝑟𝑜(1 − 𝑃(𝑟, 𝑡)/𝑁) where 𝑘𝑚𝑖𝑐𝑟𝑜 is the rate of the exciton to polaron transition at below-
saturation fluences, and 𝑁 is the number of available sites for polarons to form. Thus, 𝑘 =  0 
when the polaron sites are totally filled. 𝑁 is estimated as the ratio of the excitation area to the 
polaron area i.e. polarons cannot overlap in space. This estimate relies on the assumption that 
excitons do not diffuse substantially out of the excitation area within the first ~100 ps. This 
assumption is justified given the experimentally inferred rate of 0.008 cm2/s for bare exciton 
diffusion in Re6Se8Cl2 (Table S2, fig. S12). 

 
2. The particle flux is assumed to be diffusive and isotropic in 2-dimensions, 𝑗𝑃 = −𝐷𝑃 ∇⃗⃗⃗𝑃 which 

neglects the complexity of density-dependent scattering. The excitons are assumed to be 
motionless, 𝑗𝑋 = 0. Although we use a diffusive (rather than superdiffusive) model for 
simplicity, we note that an equivalent treatment using ballistic flux (𝑗𝑃 = 𝑣 𝑟̂) results in almost 
identical spectral evolution.  

 
3. Polaron decay is neglected due to long polaron lifetime of ~11 ns (fig. S5). 

 
With the above assumptions, the following equations are numerically solved for 𝑋(𝑟, 𝑡) and 
𝑃(𝑟, 𝑡): 

𝜕𝑋

𝜕𝑡
+ ∇ ⋅ 𝑗𝑋 =

𝜕𝑋

𝜕𝑡
= −𝑘[𝑃(𝑟, 𝑡)]𝑋(𝑟, 𝑡) 

𝜕𝑃

𝜕𝑡
+ ∇ ⋅ 𝑗𝑃 =

𝜕𝑃

𝜕𝑡
− 𝐷𝑃∇2𝑃 = 𝑘[𝑃(𝑟, 𝑡)] 𝑋(𝑟, 𝑡) 

𝑋(𝑟, 𝑡 = 0) = 𝑋0𝑒
−

𝑟2

2𝜎2 

𝑃(𝑟, 𝑡 = 0) = 0 

The simulation requires spectral traces that represent the initial excitonic state and final polaronic 
state, 𝜀𝑋(𝜆), 𝜀𝑃(𝜆) respectively, where 𝜆 is the wavelength. The simulated data is calculated as 

𝜀𝑃(𝜆)𝑃(𝑟, 𝑡) + 𝜀𝑋(𝜆)𝑋(𝑟, 𝑡) 
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Where 𝜀𝑋(𝜆) and 𝜀𝑃(𝜆) are extracted using the method detailed in section 2.5.1 and figure S15 
above. 

The simulations use empirically determined values for effective diffusion and polaron 
radius, and a microscopic rate constant 𝑘𝑚𝑖𝑐𝑟𝑜= (1.5 ps)-1 which averages over the complexity of 
the damped transition shown in Figure 2B of the main text. Using these parameters, we then vary 
the initial exciton population. The saturation trend can be reproduced as shown in Figure 3E of the 
main text. 

2.6 Theoretical and computational methods 

2.6.1 Density functional theory calculations 

We performed density functional theory (DFT) calculations of Re6Se8Cl2 with Quantum 
Espresso (55, 56), using the PBE exchange correlation functional, projector augmented wave 
pseudopotentials, a kinetic energy cutoff of 60 Ry, and a 5x5x1 k-point mesh to sample the first 
Brillouin zone. We optimized the internal geometry of the atoms while keeping the lattice 
parameters fixed to their experimental values. The calculated band structure is shown in Figure 
1B. 

2.6.2 Exciton effective mass 

We extract the electron and hole effective masses by fitting the band structure of Figure 
1B at the conduction band minimum and valence band maximum to a parabolic form. We perform 
this fit along the high-symmetry directions: R–T–Z for the electron mass 𝑚𝑒

∗  and X–Γ–Y for the 
hole mass 𝑚ℎ

∗ . The effective mass of the exciton is then calculated to be 𝑚 = 𝑚𝑒
∗ + 𝑚ℎ

∗ =

1.88 𝑚𝑒, where 𝑚𝑒 is the fundamental mass of the electron. 

2.6.3 Deformation potential 

To estimate the in-plane coupling strength between excitons and acoustic phonons, we 
calculate the uniaxial deformation potential, 𝐷 = ∆𝐸𝑔/𝜖, where ∆𝐸𝑔 is the change in the band gap 
due to a small strain 𝜖 (57–59). We simulate this strain by modifying the lattice parameter 𝑎 to be 
1% larger and smaller and relaxing the atomic positions. The band gap increases by 50.3 meV and 
decreases by 38.6 meV with 1% tensile and compressive strain which gives an average 
deformation potential of 𝐷 = 4.4 eV. This calculation neglects excitonic effects that might modify 
the deformation potential 𝐷. 

2.6.4 Speed of sound 

We estimate the in-plane speed of sound using elastic constants calculated from DFT and 
the 2D mass density 𝜌 (60, 61). We first optimize the cell parameters and then calculate the total 
energy (allowing atomic relaxation) with strain 𝜖𝑥 and 𝜖𝑦 in the x and y directions, each varying 
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from -2% to 2%. We then fit the total energy to the form 𝐸 = 𝐸0 + 𝑎𝑥𝑥𝜖𝑥
2 + 𝑎𝑦𝑦𝜖𝑦

2 + 𝑎𝑥𝑦𝜖𝑥𝜖𝑦, 
allowing the calculation of the in-plane stiffness C and Poisson’s ratio ν, 

𝐶 =
1

𝐴
(2𝑎𝑥𝑥 −

𝑎𝑥𝑦
2

2𝑎𝑥𝑥
) 

𝜈 =
𝑎𝑥𝑦

2𝑎𝑥𝑥
 

where A is the area and we assumed the material to be homogeneous and isotropic in 2D (𝑎𝑥𝑥 =

𝑎𝑦𝑦). The longitudinal speed of sound is then calculated to be 

𝑠 = √
𝐶(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
≈ 5 km/s 

2.6.5  Renormalization of the exciton transfer integral 

To calculate the exciton transfer integral (J) at room temperature, we combine the calculated zero-
temperature J0 with the experimentally-observed temperature-dependent bandwidth narrowing 
from angle-resolved photoemission spectroscopy measurements of this material (7), 

𝐽(𝑇) = 𝐽0exp[−𝑔2(𝑛𝜔 + 1/2)] 

where 𝑔 = 1.2 and the Bose-Einstein occupancy is 𝑛𝜔 = 1.9 for optical phonons of energy 10.8 
meV at 300 K. This procedure yields J(T = 300 K) = 1.5 meV. This renormalization approximately 
accounts for local coupling to high-frequency optical phonons that are otherwise neglected in our 
theory (62). 

Material Unit cell mass (amu) 
Deformation 
potential (eV) 

Speed of 
sound (km/s) 

Exciton Transfer 
Integrala (meV) 

Re6Se8Cl2 1820 4.4b 5c 1.5 

Pentacene 556d 1.74 (63) 2.8 (64) 30 

WSe2 342 7e (59) 5 (65) 480 

2D halide 
perovskitesf  

837 0.9 (66) 3 (67) 113 (68) 

a Section 2.6.5; b Section 2.6.3; c Section 2.6.4 
d Pentacene has 2 molecules per unit cell. 
e Value taken to be calculated deformation potential of conduction band minimum at K point in Brillouin zone. 
f (PEA)2PbI4 parameters are used 
 

Table S3. Comparison of values for coupling strength 𝝀.  
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2.6.6 Acoustic polaron binding energy and dispersion 

Assuming a Frenkel-like (molecular) exciton description, we calculate the quantum 
mechanical properties of the acoustic exciton-polaron using a two-dimensional Su-Schrieffer-
Heeger (SSH) Hamiltonian with periodic boundary conditions describing an exciton on a lattice 
with nonlocal coupling to acoustic phonons (69). The parameters were chosen according to the 
calculations described above (for an SSH exciton-phonon coupling of the form  
𝛼 ∑ 𝑎̂𝑛

†  𝑎̂𝑚(𝑥̂𝑛 − 𝑥̂𝑚), the SSH exciton-phonon coupling strength is related to the deformation 
potential by 𝛼 = 𝐷/2𝑎). The polaron binding energy and dispersion were calculated using the 
Davydov-like variational wavefunction 

|Ψ⟩ = |Ψ𝑒𝑥⟩|Ψ𝑝ℎ⟩ 

|Ψ𝑒𝑥⟩ = ∑ 𝑒𝑖𝑝𝑛

𝑛

𝜓𝑛𝑎̂𝑛
†  |0⟩𝑒𝑥 

|Ψ𝑝ℎ⟩ = exp [∑ 𝑑𝑛(𝑏̂𝑛 − 𝑏̂𝑛
†)

𝑛

] |0⟩𝑝ℎ 

where 𝜓𝑛 and 𝑑𝑛 are the exciton wavefunction and lattice displacement, respectively. Although 
this wavefunction is not an eigenstate of the lattice translation operator, the dispersion relation was 
obtained by minimizing the energy over the variational parameters p, 𝜓𝑛, and 𝑑𝑛, while 
constrained to have a fixed expectation value of the total exciton + phonon momentum (39). 
Calculations were performed on a periodic lattice of 16x16 sites. 

At zero momentum, this theory predicts that the polaron is unbound below the same critical 
coupling strength as the one derived in the main text. An improved wavefunction will be 
translational symmetry adapted with more variational parameters. From such a theory we expect 
a binding energy that is larger in magnitude and nonzero for all values of the coupling strength 
(70). In this light, the critical value of the coupling strength used in this work (𝜆𝑐 = 1.6) should 
be understood as an estimate of the crossover between strongly bound and weakly bound at zero 
temperature. A more detailed theoretical study will be presented elsewhere. 

2.7 Temperature-dependent stroboSCAT 

The mean squared displacements obtained from temperature-dependent stroboSCAT in fig. 
S16A show that fast and long-range transport is only observed at temperatures greater than 80 K. 
We plot the value of the msd at 800 ps to provide a model-independent handle on transport 
properties. At low temperatures, excitons exhibit slow diffusive behavior. For example, D = 0.15 
cm2/s at 10 K, displaying a msd value at 800 ps that is 2 orders of magnitude lower than at room 
temperature. The msd rises rapidly over the range 80–125 K and peaks at 200 K. We assign this 
transition from slow to fast transport to polaron binding, in good agreement with our theory which 
predicts that polarons are stable above 175 K (fig. S16B). The decrease in msd observed above 
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200 K is tentatively assigned to weak polaron–phonon scattering, which decreases the mean free 
path of polarons as temperature is increased.  

 
Figure S16. Temperature-dependent stroboSCAT experiments on Re6Se8Cl2 (A). The ratio of 
temperature dependent msd at 800 ps to the msd at room temperature at 800 ps. The value of the 
msd at 800 ps is 2 orders of magnitude lower at 10 K than at room temperature. The dashed line is 
a spline to guide the eye. All experiments are performed using 515 nm excitation. (B) Value of 𝜆 
as a function of temperature for Re6Se8Cl2. Here the temperature dependence stems from 𝜆 ∝ 1/𝐽, 
and 𝐽(𝑇) = 𝐽0exp[−𝑔2(𝑛𝜔 + 1/2)] (section 2.6.5). The crossing point 𝜆 = 𝜆𝑐 occurs at 175 K, 
below which the acoustic polaron is predicted to unbind.  
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