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Abstract—In this article, we introduce a new mathematical
framework for the analysis and design of UAV corridors
in cellular networks, while considering a realistic network
deployment, antenna radiation pattern, and propagation channel
model. By leveraging quantization theory, we optimize the
electrical tilts of existing ground cellular base stations to
maximize the coverage of both legacy ground users and UAVs
flying along specified aerial routes. Our practical case study
shows that the optimized network results in a cell partitioning
that significantly differs from the usual hexagonal pattern, and
that it can successfully guarantee coverage all over the UAV
corridors without degrading the perceived signal strength on the
ground.

I. INTRODUCTION

Barely seen in action movies until a decade ago, the
progressive blending of uncrewed aerial vehicles (UAVs) into
our daily lives will enhance safety and greatly impact labor
and leisure activities alike. Most stakeholders regard reliable
connectivity as a must-have for the UAV ecosystem to thrive.
As a result, UAV cellular communications have witnessed a
surge of interest in terms of (i) what networks can do for UAVs
and (ii) what UAVs can do for networks [1]–[5].

As for (i)—focus of the present paper—the mobile industry
and its academic research counterpart have long joined
forces to pursue reliable connectivity up in the air by re-
engineering existing terrestrial networks, originally designed
for ground users only [6], [7]. Recent ideas for ubiquitous
aerial connectivity hinge, e.g., on network densification [8]–
[12], dedicated infrastructure for aerial services [13], [14], or
leveraging satellites to complement the ground network [15],
all requiring costly hardware or signal processing upgrades.

Fortunately, many impactful UAV use cases could
still be enabled by providing reliable connectivity along
predetermined aerial routes, i.e., UAV corridors, enforced by
the appropriate traffic authorities [16], [17]. The research
community has started contributing in this direction by
studying UAV trajectory optimization, e.g., matching the route
of a UAV to the best coverage pattern provided by the network
[18]–[21]. More recent work has targeted tuning cellular
deployments to cater for UAV corridors through system-
level simulations, large-scale optimization, or the theoretical
analysis of a simplified setup [22]–[25]. However, there is an
unmet need for a general mathematical framework allowing
the analysis and design of UAV corridors in cellular networks.
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Fig. 1: Illustration of a cellular network with downtilted and
uptilted base stations providing coverage to ground users as
well as UAVs flying along corridors (blurred green).

In this paper, we take the first step towards creating such
mathematical framework through quantization theory [26]–
[32]. Specifically, we determine the necessary conditions and
design an iterative algorithm to optimize the antenna tilts
at each base station of a cellular network for a maximum
received signal strength (RSS)—a proxy for coverage—at both
legacy ground users and UAVs flying along corridors. To
the best of our knowledge, this is the first work doing so
in a rigorous yet tractable manner, while accounting for a
realistic network deployment, antenna radiation pattern, and
propagation channel model. We further put our mathematical
framework into practice with a case study, whose main
takeaways can be summarized as follows:

• Pursuing satisfactory coverage of both ground users and
UAV corridors can result in a highly uncustumary cell
partitioning that profoundly differs from a hexagonal
pattern, commonplace in legacy ground-only systems.

• By tilting up a selected subset of base stations, one can
significantly boost the RSS along multiple UAV corridors
compared to an all-downtilt baseline, achieving levels of
aerial coverage close to an upper bound arrangement that
ignores legacy ground users altogether.

• Additionally, one can nearly preserve the quality coverage
on the ground, maintaining levels of RSS close to those
experienced in a scenario devoid of UAVs.



II. SYSTEM MODEL

The set-up under consideration is illustrated in Fig. 1 and
detailed as follows.

A. Network Topology

1) Ground cellular network: The backbone of our network
is a ground cellular deployment comprising N base stations
(BSs) that provide coverage and service for network users. For
each i ∈ {1, · · · , N}, we denote the height and 2D location
of BS i by hi,B and pi, respectively. Let θi ∈ [−90◦,+90◦]
be the vertical antenna tilt of BS i, which can be optimized by
a mobile operator, with positive and negative angles denoting
uptilts and downtilts, respectively. Let ϕi ∈ [−180◦,+180◦]
be the antenna horizontal boresight direction (azimuth) of BS
i, assumed fixed given the deployment.

2) UAV corridors and legacy ground users: Our network
entails two types of users: UAVs and ground-users (GUEs).
UAVs traverse a 2D region QU =

⋃NU

u=1 Qu consisting of
NU UAV corridors Qu, i.e., predefined 2D aerial regions. For
each corridor Qu, all UAVs are assumed to fly at the same
height hu. Ground users (GUEs) populate a 2D region QG

and have a fixed height hG. Let λ(q) be a probability density
function that reflects the distribution of users in Q = QU∪QG.
Each user in Q is associated with the BS providing the largest
received signal strength (RSS), defined in the sequel. Hence,
the region Q can be partitioned into N different subregions
V = (V1, · · · , VN ) such that users in Vi are associated with
BS i.

B. Channel Model and Performance Metric

1) Antenna gain: We assume BSs equipped with directional
antennas. The vertical and horizontal half-power beamwidths
of the directional antennas are denoted by θ3dB and ϕ3dB,
respectively. The total antenna gain of BS i in dB is given
by

Ai,q = Amax +AV
i,q +AH

i,q, (1)

where Amax denotes the maximum antenna gain at the
boresight, AV

i,q and AH
i,q denote the vertical and horizontal

antenna gains in dB, respectively, given by [33]

AV
i,q = − 12

θ23dB
[θi,q − θi]

2
, (2)

AH
i,q = − 12

ϕ2
3dB

[ϕi,q − ϕi]
2
. (3)

The vertical antenna gain AV
i,q in (2) depends on the vertical

tilt θi of BS i and on the elevation angle θi,q between BS i
and user location q ∈ Q, calculated as

θi,q = tan−1

(
hq − hi,B

∥q − pi∥

)
, (4)

where ∥ · ∥ denotes l2 norm. The horizontal antenna gain AH
i,q

in (3) depends on the difference [ϕi,q − ϕi] ∈ [−180◦,+180◦],

where ϕi is the azimuth orientation of BS i and ϕi,q is the
azimuth angle between BS i and user location q, given by

ϕi,q=

tan
−1
(

qy−pi,y

qx−pi,x

)
+180◦×2c if qx − pi,x > 0

tan−1
(

qy−pi,y

qx−pi,x

)
+180◦×(2c+1) if qx − pi,x < 0

(5)
where subscripts ·x and ·y denote the horizontal and vertical
coordinates of a point, respectively, and the integer c is chosen
in a way that −180◦ ≤ ϕi,q − ϕi ≤ +180◦.

2) Pathloss: The distance-dependent pathloss between a
user at location q and BS i is given by

Li,q = aq + bq log10
[
∥q − pi∥2 + (hq − hi,B)

2
] 1

2 , (6)

where for each user location q, the constants aq and bq depend
on the carrier frequency and on the pathloss exponent, the
latter affected by the BS deployment features, the height of
the user at q and the link’s line-of-sight (LoS) condition. In
our numerical simulations, we employ practical values for the
parameters aq and bq , obtained from [6], [33] and reported in
Section IV-B.

3) Received signal strength: The RSS in dBm from BS i
at user location q is given by1

RSS(i)(q; θi) = ρi +Ai,q − Li,q [dBm]

= ρi +Amax −
12

θ23dB
[θi,q − θi]

2 − 12

ϕ2
3dB

[ϕi,q − ϕi]
2

− aq − bq log10
[
∥q − pi∥2 + (hq − hi,B)

2
] 1

2 , [dBm]
(7)

where ρi denotes BS i’s transmit power measured in dBm.

C. Performance Function

In the remainder of the paper, we assume that all BS
locations pi and azimuth orientations ϕi are fixed while all
BS vertical antenna tilts θi are optimized. Our main goal is to
maximize the provided received signal strength averaged over
all users in the network.

Remark 1. Optimizing the vertical tilts θi entails that each
BS has a different value of θi and therefore a different
received signal strength RSS(i)(q; θi). Moreover, the latter
is not necessarily a non-increasing function of the distance
∥q− pi∥, e.g., moving away from a BS can sometimes yield a
worse pathloss Li,q but a better antenna gain Ai,q .

The overall performance function, i.e., RSS in dBm
averaged over all users in the network, is given by:

Φ(V,Θ) =
N∑
i=1

∫
Vn

RSS(i)(q; θi)λ(q)dq. (8)

Our goal is to optimize the performance function Φ(V,Θ)
over the cell partitioning V = (V1, · · · , VN ) and BS vertical
antenna tilts Θ = (θ1, · · · , θN ). Note that, while other choices
for Φ(V,Θ) are not precluded, averaging the RSS in dBm—
i.e., in logarithmic scale and thus equivalent to a max-product

1While our analysis is general and can incorporate shadow fading, we here
neglect it to focus on the role played by optimizing the vertical tilts θi.



criterion in linear units—pursues fairness among users, as it
will be shown in our case study.

III. ANALYTICAL FRAMEWORK

As shown in (8), the performance function Φ depends on
both variables V and Θ; thus, our goal is to find the optimal
cell partitioning V∗ = (V ∗

1 , · · · , V ∗
N ) and vertical antenna tilts

Θ∗ = (θ∗1 , · · · , θ∗N ) that maximize the performance function.
Note that not only the variables V and Θ are interdependent,
i.e., the optimal value for each variable depends on the value
of the other variable, but also this is an NP-hard optimization
problem. Our aim is to develop an alternating optimization
algorithm that iteratively updates the values of V and Θ. We
accomplish this goal in two optimal steps: (i) updating the
cell partitioning V for a given set of vertical antenna tilts Θ;
and (ii) updating the BS vertical antenna tilts Θ for a given
cell partitioning V. The following proposition provides the
necessary condition and update rule for Step (i):

Proposition 1. The optimal cell partitioning V∗ for a given
set of vertical antenna tilts Θ is given by:

V ∗
n (Θ) =

{
q ∈ Q|RSS(n)(q; θn) ≥ RSS(k)(q; θk), ∀k ∈ 1, . . . , N

}
,

(9)

for each n ∈ {1, · · · , N}.

Proof. Given any arbitrary cell partitioning of Q such as
W = (W1, · · · ,WN ), we have:

Φ(W,Θ) =

N∑
n=1

∫
Wn

RSS(n)(q; θn)λ(q)dq (10)

≤
N∑

n=1

∫
Wn

max
k

[
RSS(k)(q; θk)

]
λ(q)dq (11)

=

∫
Q

max
k

[
RSS(k)(q; θk)

]
λ(q)dq (12)

=
N∑

n=1

∫
V ∗
n

max
k

[
RSS(k)(q; θk)

]
λ(q)dq (13)

=
N∑

n=1

∫
V ∗
n

RSS(n)(q; θn)λ(q)dq (14)

= Φ(V∗,Θ). (15)

Thus, V∗ yields the maximum performance and is optimal.■
Now, for the second step, we aim to find the optimal

Θ∗ that maximizes the performance function Φ for a given
cell partitioning V. Our approach is to apply the gradient
ascent algorithm to find the optimal vertical antenna tilts.
Gradient ascent is a first-order iterative optimization algorithm
for finding a local maximum of a differentiable function. The
idea is to take repeated scaled steps in the direction of the
gradient since this is the direction of steepest ascent.

Proposition 2. For each n ∈ {1, · · · , N}, the partial
derivative of the performance function in (8) w.r.t. θn is given
by

∂Φ(V,Θ)

∂θn
=

24

θ23dB

{
NU∑
u=1

∫
Vn(Θ)∩Qu

(θn,q − θn)λ(q)dq

+

∫
Vn(Θ)∩QG

(θn,q − θn)λ(q)dq

}
. (16)

Proof. The derivative of (8) contains two terms: (i) the
derivative of the integrand, and (ii) the integral over the
boundaries. According to (9), for a point q on the boundary
of regions n and k, we have: RSS(n)(q; θn) = RSS(k)(q; θk).
Since the normal outward vectors at point q have opposite
directions for these two regions, the term (ii) amounts to
zero [26]. The gradient ∂Φ(Θ)

∂θn
is then given by the first term,

obtained as:

∂Φ(V,Θ)

∂θn
=

∫
Vn(Θ)

∂

∂θn
RSS(n)(q; θn)λ(q)dq

(a)
=

24

θ23dB

{
NU∑
u=1

∫
Vn(Θ)∩Qu

(θn,q − θn)λ(q)dq

+

∫
Vn(Θ)∩QG

(θn,q − θn)λ(q)dq

}
. (17)

where (a) follows from the definition of Q. ■
Propositions 1 and 2 provide the main ingredients to design

the BS vertical antenna tilt (BS-VAT) optimization algorithm
outlined in Algorithm 1.

Proposition 3. The BS-VAT algorithm is an iterative
improvement algorithm and converges.

Proof. We demonstrate that none of the two steps in the BS-
VAT algorithm decreases the performance function Φ in (8).
In the first step, the cell partitioning V is updated according to
(9) while Θ is fixed. Proposition 1 indicates that the obtained
V is optimal for the current set of antenna tilts Θ. Thus,
the first step does not decrease the performance function Φ.
In the second step, the gradient ascent algorithm is utilized
to optimize Θ while V is fixed. Note that the learning rate
at iteration t of the gradient ascent algorithm is equal to
ηt = η0 × κt. Since

∑∞
t=1 η

2
t <

∑∞
t=1 ηt = κ

1−κη0 < ∞,
the gradient ascent is guaranteed to converge [34] and does
not decrease the performance function Φ. Hence, the BS-VAT
algorithm generates a sequence of non-decreasing performance
function values. Since the performance function Φ(V,Θ) is
also upper bounded because of the limited transmission power
at each base station, the algorithm converges. ■

IV. CASE STUDY

To evaluate the performance of our theoretical framework,
we consider a case study in this section.



Algorithm 1: BS vertical antenna tilt optimization
Result: Optimal BS vertical antenna tilts Θ∗ and cell

partitioning V∗.
Input: Initial BS vertical antenna tilts Θ and cell
partitioning V, learning rate η0 ∈ (0, 1), convergence
error thresholds ϵ1, ϵ2 ∈ R+, constant κ ∈ (0, 1) ;

do
Calculate Φold = Φ(V,Θ);
# Update the cell partitioning V;
for n ∈ {1, · · · , N} do

Update the cell Vn according to Eq. (9);
end
# Start the gradient ascent algorithm;
Set η ← η0;
do

Calculate Φs = Φ(V,Θ);
# Calculate the gradient ∇ΘΦ(V,Θ);
for n ∈ {1, · · · , N} do

Calculate ∂Φ(V,Θ)
∂θn

according to Eq. (17);
end
# Update the learning rate;
η ← η × κ;
# Update the vertical antenna tilts Θ;
Θ← Θ+ η∇ΘΦ(V,Θ);
Calculate Φe = Φ(V,Θ);

while Φe−Φs
Φs
≥ ϵ1;

Calculate Φnew = Φ(V,Θ);
while Φnew−Φold

Φold
≥ ϵ2;

A. Deployment Setup

Simulations are carried out for a practical cellular network
consisting of 19 sites. Each site, say i, includes three sectors,
i.e., three cells with the corresponding BSs placed at the
exact same locations p3×i−2 = p3×i−1 = p3×i but with
different azimuth orientations ϕ3×i−2 = 0◦, ϕ3×i−1 = 120◦,
and ϕ3×i = 240◦. Thus, overall, there are N = 57 BSs
with corresponding vertical antenna tilts to optimize. The
BSs are placed on a hexagonal layout with inter-site distance
ISD = 500m as illustrated in Fig. 3. Site indices are provided
in Fig. 3b. All BSs are assumed to have the same height
and transmission power, with hi,B = 25m and ρi = 43dBm
∀i, respectively. Ground users are distributed over a square
area QG = [−750, 750]× [−750, 750] according to a uniform
density function λG(q) and are assumed to have the fixed
height hG = 1.5m. UAVs are distributed over NU = 4 vertical
aerial corridors, i.e., QU = Q1 ∪Q2 ∪Q3 ∪Q4, according to
a uniform density function λU(q). These corridors, shown in
Fig. 3b, are located at Q1 = [−320,−280] × [−400, 400],
Q2 = [−120,−80] × [−400, 400], Q3 = [80, 120] ×
[−400, 400], and Q4 = [280, 320] × [−400, 400] and their
heights are set at h1 = h4 = 150m and h2 = h3 = 120m.
The density function λ(q), which represents the distribution
of users in Q = QG ∪QU , is a mixture of λG(q) and λU(q),

TABLE I: System-level parameters for our case study.

Deployment
P Hexagonal grid with intersite distance ISD = 500 m.

Two tiers of BSs around the one at the origin, three
sectors per site, 57 BSs in total, hB = 25 m.

QU Consisting of NU = 4 aerial corridors
Qu, u = 1 Vertical [−320,−280]× [−400, 400], hu = 150 m
Qu, u = 2 Vertical [−120,−80]× [−400, 400], hu = 120 m
Qu, u = 3 Vertical [80, 120]× [−400, 400], hu = 120 m
Qu, u = 4 Vertical [280, 320]× [−400, 400], hu = 150 m
QG Square area [−750, 750]× [−750, 750], hG = 1.5 m
λG(q), λU(q) Uniform in QG and QU, respectively
λ(q) αλG(q) + (1− α)λU(q) with α = {1, 0, 0.5}
Channel
Amax, ρi 14 dBi, 43 dBm ∀i, respectively
θ3dB, ϕ3dB 10◦, 65◦, respectively
ϕi Fixed for the three sectors: ϕi ∈ {0◦, 120◦, 240◦}

aq
q ∈ QU: 34.02 dB (carrier at 2 GHz)
q ∈ QG: 38.42 dB (carrier at 2 GHz)

bq
q ∈ QU: 22 (i.e., pathloss exponent 2.2)
q ∈ QG: 30 (i.e., pathloss exponent 3.0)

Optimization
Initial tilts θi = 0 ∀i
Initial partition Each q ∈ Q assigned to a random base station
η0, κ, ϵ1, ϵ2 0.005, 0.999, 10−8, 10−9, respectively

i.e., λ(q) = αλG(q) + (1 − α)λU(q) where α is the mixing
ratio. In the sequel, we consider three values for the parameter
α, namely 1, 0, and 0.5. These three values correspond to
optimizing the cellular network for ground users only, for
UAVs only, and for both, respectively.

B. Channel Setup

As per 3GPP specifications [6], [33], for a carrier frequency
at 2GHz and LoS condition, the values of aq and bq are set
as:

aq =

{
34.02 dB, if q ∈ QU ,

38.42 dB, if q ∈ QG,
(18)

bq =

{
22 (i.e., pathloss exponent 2.2), if q ∈ QU ,

30 (i.e., pathloss exponent 3.0), if q ∈ QG.
(19)

The vertical and horizontal half-power beamwidth of the
directional antennas are set to θ3dB = 10◦ and ϕ3dB = 65◦,
respectively. The maximum antenna gain at the boresight is
set to Amax = 14dBi.

C. Vertical Antenna Tilt Optimization

The BS-VAT algorithm is initialized by a random cell
partitioning, i.e., randomly assigning each q ∈ Q to a base
station, and setting θi = 0 ∀i. The learning rate η0 and constant
κ are set to 0.005 and 0.999, respectively. The convergence
error thresholds are set to ϵ1 = 10−8 and ϵ2 = 10−9.

Fig. 2 shows the optimal values of the vertical electrical
antenna tilts θ∗i for each cell in the three cases α = {1, 0, 0.5}.
As expected, α = 1 (green) entails optimizing all antenna tilts
for only legacy ground users, and thus results in downtilted



Fig. 2: Optimized vertical tilts θ∗i for: ground users only (α =
1, green), UAVs only (α = 0, blue), and both (α = 0.5, red).
Black squares indicate cells that do not contribute to coverage.

BSs. Conversely, α = 0 (blue) only caters for the four
UAV corridors, and thus leads to uptilted BSs. As shown in
Fig. 2, not all BSs effectively contribute to optimizing the
performance function, resulting in some vertical tilts remaining
at the initial value of zero. In particular, BSs 22, 25, 28, 32,
35, 38, 51, 54, and 57, that are shown by black squares in
Fig. 2, do not contribute to the performance function in any
of the three simulated scenarios of α = 0, 0.5, and 1. Lastly,
α = 0.5 (red) seeks a coverage tradeoff between the ground
and the UAV corridors, hence resulting in a small subset of
BSs being uptilted, with the rest remaining downtilted.

Fig. 3a and Fig. 3b display the cell partitioning for ground
users and UAV corridors, respectively, when the vertical tilts
θ∗i are optimized for both populations of end-devices (see case
α = 0.5 in Fig. 2). The figures show that the optimal tilt
arrangement results in BSs 11, 15, and 19 with respective
azimuth orientations of 240◦, 0◦, and 120◦, being devoted to
covering UAV corridors, with the rest remaining downtilted.
The resulting optimal cell partitioning is highly uncustomary
and differs from a conventional hexagonal pattern.

Finally, Fig. 4 shows the cumulative distribution function
(CDF) of the RSS perceived by ground users (dash-dot line)
and UAVs (dash-dash line) when the network is optimized
for ground users only (α = 1, green), UAVs only (α =
0, blue), and both (α = 0.5, red). Note that the ground
user performance for α = 1 (green dash-dot line) and the
UAV performance for α = 0 (blue dash-dash line) can be
regarded as respective upper bounds (in mean) since they entail
optimizing all vertical tilts for ground users only and for UAVs
only, respectively. Conversely, the ground user performance
for α = 0 (blue dash-dot line) and the UAV performance for
α = 1 (green dash-dash line)2 can be regarded as respective
baselines, obtained when the vertical tilts are chosen ignoring

2Note that the green dash-dash curve exhibits a staircase behavior, explained
as follows. For α = 1, since tilts are optimized for GUEs only, no cell is
pointing its antennas upwards (Fig. 2). UAVs are then just reached by the
antenna sidelobe of the respective serving cells, with three cells in total serving
all UAVs. All UAVs served by the same cell then experience very similar
values of RSS, which are however different for each of the three cells.

(a) Resulting cell partitioning for ground users.

(b) Resulting cell partitioning for UAV corridors.

Fig. 3: Cell partitioning for (a) ground users and (b) UAVs
when the vertical tilts are optimized for both (Fig. 2, α = 0.5).

ground users and UAVs, respectively. Fig. 4 shows that for
α = 0.5 the proposed framework reaches a satisfactory
tradeoff by: (i) significantly boosting the RSS at UAVs (red
dash-dash line) compared to the baseline (green dash-dash
line) and approaching the upper bound (blue dash-dash line),
and (ii) nearly preserving the RSS at ground users (red dash-
dot line) compared to the upper bound (green dash-dot line).
While their evaluation falls beyond the scope of this work,
both (i) and (ii) may have remarkable positive implications in
terms of power control and interference mitigation, achievable
rates, and even mobility management [7].

V. CONCLUSION

In this article, we introduced a new mathematical framework
for the analysis and design of UAV corridors in cellular



Fig. 4: CDF of the RSS (dBm) at UAVs (dash-dash) and GUEs
(dash-dot) when the network is optimized for GUEs only (α =
1), UAVs only (α = 0), and both (α = 0.5).

networks, while considering a realistic network deployment,
antenna radiation pattern, and propagation channel model. Our
framework, based on quantization theory, allows to optimize
the electrical tilts of existing ground cellular base stations to
cater for both legacy ground users and UAVs flying along
specified aerial corridors. Our case study showed that the
ensuing electrical tilt arrangement may result in a highly non-
obvious cell partitioning for both ground and UAV users,
and that it can boost coverage along UAV corridors without
degrading the perceived signal strength on the ground.

Our work is amenable to extensions from at least three
standpoints: (i) Rather than focusing on RSS, a proxy for
coverage, a similar approach can be taken to optimize for
signal-to-interference-plus-noise ratio (SINR). While we found
the ensuing analysis to be tractable and insightful, it involves
longer mathematical derivations and has been omitted from
the present paper due to lack of space; (ii) Our case study
assumed LoS condition on all links and a specific antenna
arrangement. This could be modified to account for variable
(either deterministic or probabilistic) LoS link conditions and
to account for other radiation patterns, e.g., with beamformed
synchronization signal blocks for initial access; and (iii)
Instead of optimizing the antenna tilts for a given cellular
deployment, our mathematical framework could be repurposed
to optimize the locations of the BSs themselves, to identify
suitable sites for dedicated uptilted deployments or both.
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