Reinforcement Learning-based Multi-domain
Network Slice Provisioning

Zhouxiang Wwu!, Genya Ishigakiz, Riti Gour?, Congzhou Li!, Feng Mi!, Subhash Talluri*, and Jason P. Jue!
1. Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
2. Department of Computer Science, San Jose State University, San Jose, CA 95192, USA
3. Department of Computer Electronics and Graphic Technology,
Central Connecticut State University, New Britain, Connecticut 06050, USA
4. Amazon Web Services, Seattle, WA, 98108, USA

Abstract—We address the problem of establishing an end-
to-end network slice across multiple domains and propose a
Reinforcement Learning-based framework that enables multiple
domains to collaborate on end-to-end network slicing admission
and allocation. The objective is to maximize the long-term
revenue of the network operator. We employ a Graph Neural
Network (GNN) to capture the topology features as the encoder.
The simulation results show that our framework improves the
profit of the network operator by up to 15% compared to a
greedy algorithm.

Index Terms—Network Slice, Resource Allocation, Machine
Learning, Reinforcement Learning, Graph Neural Network

I. INTRODUCTION

With the diversification of service requirements, users’
expectations for the network are not limited to homogeneous
services. Network slicing, which enables the virtual parti-
tioning of network and computing resources, is a promising
approach to fulfill the tailored service requirements of dif-
ferent applications. Network Function Virtualization (NFV)
and Software Defined Network (SDN) are two enablers for
network slicing. NFV allows virtual network functions (VNFs)
to be implemented in commodity hardware, which increases
deployment flexibility, while SDN provides flexible resource
management and collects network data. Network slices share
the same network infrastructure while meeting different ser-
vice requirements. Each network slice contains required VNFs,
computation resources, RAM, storage resources, and network
links between VNFs.

There are many types of network slice [1], including multi-
ple core networks sharing a common radio access network
(RAN), common spectrum sharing, multiple RANs sharing
a common core network, etc. We consider the end-to-end
network slice crossing over multiple domains. When a slice
needs support from multiple domains, the growing time com-
plexity will make related problems intractable if we treat
multiple domains as a single network. The network operator
must collect information from each node to obtain the optimal
global solution. The overhead of transmitting network device
state information is also non-negligible. Furthermore, each
domain may belong to different entities, and the willingness
to share network information is uncertain. We propose a
distributed encoder to resolve scalability and privacy problems.

Each domain maintains a Graph Neural Network (GNN) based
encoder, and the encoder outputs a representation vector of the
domain’s network state. The global network operator makes
admission and allocation decisions based on the domains’
representation vectors and gives feedback to the encoders.
The size of the representation vector is much smaller than
the size of the actual topology, which alleviates the pressure
of network state collection. Furthermore, it is difficult to infer
the network state based on the representation vector. Thus,
privacy is guaranteed to a certain degree.

In this paper, we focus on resource management for net-
work slice requests (NSRs), and we assume that there is an
intelligent agent to take the responsibility of the management.
Resource management for network slicing consists of four
stages: NSR admission control, resource allocation, resource
orchestration, and resource scheduling. In the admission con-
trol stage, the intelligent agent must decide whether to accept
the current NSR. Once the NSR is accepted, the agent needs to
locate the resources required by the NSR in the network infras-
tructure. Resource orchestration coordinates multi-domains to
generate an end-to-end network slice. Resources required by
the network slice are reserved for the duration of the network
slice holding time. In this paper, we employ a Reinforcement
Learning (RL) agent that organically combines the admission
control stage and the resource allocation stage to maximize
the long-term revenue of the network provider.

The remainder of this paper is organized as follows. Section
II introduces related papers of applying RL in network slicing
admission and allocation. We formulate the problem in Section
I, including network slice design, feature selection, GNN
encoder design, and RL training algorithm. In Section V, we
design experiments to prove the effectiveness of the proposed
algorithm. Finally, we conclude the paper in Section VI.

II. RELATED WORK

This paper extends our previous work [2], [3], in which
we consider the admission control problem and resource
allocation strategy for elastic slice requests within a single
domain.

In [4], the authors assume that network slices exist over
a long period of time and that the network operator needs
to rearrange resources among slices at a specific frequency.

For the radio access network, RL is applied to allocate radio
resources among slices to achieve a higher spectrum efficiency
and quality of experience ratio. For the core network, the
authors apply RL to schedule VNFs based on their priority
in order to achieve a lower average waiting time.

n [5], the authors propose a framework for a network
broker that includes slice traffic prediction, slice admission
control, and slice scheduling. The slice admission control
strategy is based on the computer network constraints and
prediction results. The slice scheduling algorithm employs the
RL methods to provide feedback to the prediction algorithm.

In this work, we consider a topology representation of the
network slice, which is more flexible compared with previous
works. We assume that the network slice tenants generate the
network slice requests based on their prediction of their users.
Once the network slice request is generated and accepted by
the network operator, we assume that the QoS is fulfilled. Our
network operator has a single objective to maximize the long-
term profit based on the network condition, the price, and the
cost of the slice request.

III. PROBLEM FORMULATION
A. Multi-domain Network Infrastructure

We assume that multiple domains exist in the system,
which work together to provide network slice services. Each
domain is represented as a graph G with a node set V' and
an link set E. Each node n € V accommodates a set of
VNFs and the computational resource capacity C'M P, RAM
capacity RAM, and disk storage capacity DISK, which
supports VNFs located in the node. Each link has a given
bandwidth capacity, which supports data transmission between
computational nodes. The nodes and links do not have to be
physical nodes and links, but could be virtual nodes and virtual
links from a hierarchical virtualization network structure. We
assume there is a link with unlimited bandwidth between each
domain and its neighbors. With this assumption, we can focus
on resource allocation and constraints within a domain.

B. Network Slice

The network service request is translated to a Network
Slice Instance (NSI) by the Service Management Function.
Translating the service request to a tightly matched network
slice request is an open problem beyond the scope of this
paper. Rather, we focus on the strategy of the network slice
allocation to maximize the network operator’s profit. The
NSI includes the end-to-end requirement of VNFs and related
resources. The End-to-end (E2E) network slice instance is split
into multiple network slice subnet instances (NSSIs) [6] by the
global coordinator, which are distributed to every domain’s
orchestrator. How to split the NSI into multiple NSSIs is
another open question. In this paper, we assume there is a pre-
defined strategy to create NSSIs. According to the NSSIs, the
domain orchestrators propose several allocation plans or the
decision of rejection to the global coordinator. Each allocation
plan indicates a set of potential resources that would be
allocated to the NSSI. The allocation plans are encoded by

Service Request Service Trdnbldtor Global Coordmator

¢ I I /%
NSSI1 NSSI2 NSSI3 NSSI4

l | | |

~~ RAN ~~ Edge Cloud

528 B32B 228
\ J J
e

idate Allbcation Pl
W cation Plan R Selected Allocation Plan
Global ordinator
[Y

X

Core [«

Fig. 1. Procedure of obtaining NSI

considering the network state in the domain after the allocation
and passing this information through a GNN encoder to avoid
leaking the network state information. The global coordinator
evaluates every combination, which consists of one plan from
each domain, and selects the most promising combination. If
the combination contains one rejection plan from any domain,
then the E2E NSR is rejected by the global coordinator. If the
combination is valid, then the selected plans are handed back
to each domain’s orchestrator, and the orchestrator implements
the plan accordingly. We summarize the procedure described
above in Fig. 1.

C. Network Slice Resource Allocation

Ideally, the intelligent agent in each domain could choose a
subset of nodes and a subset of links to support its NSSIL
However, the number of combinations of nodes and links
could make the selection space almost infinite. Usually, there
is a sequencing requirement among VNFs to form a Service
Function Chain (SFC). Instead of choosing a random node
subset and a link subset, the intelligent agent chooses an
allocation strategy from certain number of shortest possible
paths which meet the SFC requirements. We use the following
data structure to represent a SFC:

VNF =[VNF,,VNF,,..,VNF,]
CMP = [CMP,,CMP;,....CMP,]
RAM = [RAM,, RAM,, ..., RAM,]
DISK = [DISKy, DISK,, ..., DISK,]
= [BWi.9, BWys, ..., BWy_1.,]

where the VV N F list denotes VNFs and their sequence in SFC;
CMP;, RAM;, and DISK; denotes the computer resource
requirement, RAM requirement, and disk storage requirement
for VNF; respectively; and BW; ; denotes the bandwidth
requirement between VNF; and VN F}.

We formalize the path calculation problem as follows. Given
(1) a graph G with node set N and edge set E, each node

(b) result path

(a) given graph

Fig. 2. Example of shortest candidate path

maintains a certain number of VNFs, and each edge has a
certain level of bandwidth, (2) SFC, and (3) number K, the
problem is to find K shortest disjoint paths in G to implement
the SFC. For example, given (1) the graph shown in Fig. 2(a),
(2) the SFC (VNF = [a,d,e], BW = [10,10]), and (3) K =
2, the outputs are 1 -3 —+ 5 —6and 1 — 2 — 4 — 6. Path
1 —+ 2 — 5 — 6 is not valid since the bandwidth between
Node 2 and Node 5 is 5 units which is below the required 10
units. We show the candidate paths and residual network in
Fig. 2 (b).

We design the algorithm to calculate the shortest path based
on Breadth First Search. Domain orchestrators call Algorithm
1 K times to obtain K shortest paths.

D. Reward

The reward function gives feedback on the RL agent’s reac-
tion based on the current environment. The RL agent attempts
to maximize the accumulated reward over a long period of time
instead of maximizing the instant reward. We assume that the
network operator gains reward through accepting network slice
requests. We assume the profit equals the resource occupied
multiplied by the network slice holding time. To formalize
the reward function definition, we assume that an end-to-end
network slice goes through m domains. Each domain ¢ needs
to provide support for SF'C; by allocating SFC; to PATH,.
We use CM P;, DISK;, RAM;, and BW; to represent the
total units of computational resource, disk storage resource,
ram resource, and bandwidth resource, which are occupied by
PATH;, respectively. Each type of resource has its price per
unit. We use pi, p}, pi, pi to denote the price per unit of
computational resource, disk storage resource, ram resource,
and bandwidth resource in domain i,respectively. The holding
time of the network slice is denoted by t.

Reward([SFCy,...,SFCy]) =

no . . . 1
> (piCMP; + p)DISK; + p,RAM; + py BW;) - t o

i=1

However, different resource allocation plans lead to addi-
tional infrastructure cost. For simplicity, we use the following
equation to represent the reward after considering the infras-
tructure cost:

Rewardeost([SFCh, ..., SFC,]) =
Reward([SFCY, ..., SFC,,]) - p",

where p € [0, 1], and [; is the number of hops in PAT H;.

2)

Algorithm 1 Search the Shortest SFC Path
Input:
Graph G in adjacent list format, SFC
QOutput: The shortest path to support SFC
1: Initialize heap h which sorts according to the length of
the third item in each entry in decreasing order.
If length of third items in multiple entries have same
length, then these entries is sorted according to the length
of second item in increasing order.
2: for node n in V do

while £ is not empty do
current node n, current path [node;,nodes,..node,],
current VNF list: [VNFY, .., VNF;] + h.pop()

9: if length of current VNF list is equal to length of

SFC[VNF] then

10 return current path

11: end if

12: for node m in neighbors of n do

13: required bandwidth = SFC[BW; ;41]

3: if n contains VN F; then

4: h.push((n, [n,], [VNFL,])
5. end if

6: end for

7:

8:

14: if bandwidth on edge,, ,, > required bandwidth then

15: bandwidth on edge,, ,, = bandwidth on edge,, ,, -
required bandwidth

16: if m contains VNF;;; and CMP in m >=

CMP;; and RAM in m >= RAM;; and DISK
inm >= DISK;; then

17: h.push((m,[node1, ..,node,,],
[VNFy, .. ,VNF 1))
18: CMP in m— = CMP,;;; RAM in m— =

RAMi+1; DISK in m— = DISK1+1
19: else

20: h.push((m, [nodey, ..,node,,],
21: [VNFy,..,VNE))

22: end if

23: end if

24: end for
25: end while
26: return None

The network operator will obtain the above reward if the
network slice request is accepted. If it is rejected, then the
reward is 0. In our assumption, the network slice requests
arrive randomly. Long-term revenue is the sum of rewards for
an extended period.

E. Problem Description

We formulate this problem in the infinite horizon discrete-
time deterministic dynamic system [7]. We first introduce
finite-horizon discrete-time deterministic dynamic program-
ming problems.

1) Finite Horizon Problem Formulation: Assume there are
N of time stages, and the system makes a control decision for

each stage. Since we only consider the deterministic problems,
the state of the next step is determined only by the state and
the determination of the current stage. This process can be
formalized in the following equation:

Th+41 :fk(xkvuk),k:()ala"'aNfla (3)

where k is the index of time, xj is the state of the system
at time step k, uy indicates the decision at time step k, and fx
is a function describe the state transition from zj to zpi1
based on decision ug. At each step k, the system obtains
a reward based on the state x; and decision u, which is
denoted by gx (x, ux). The total reward of a control sequence

{uo, ..;un—1} is
N-1
J(wo; o, -, tN—1;UN-1) = gn(TN) + Z gk (@n, ur), (4)
k=0

where gn (2) is the final reward. We want to maximize J.

2) Infinite Horizon Problem Formulation: We replace N
with co and introduce the discount factor « to avoid unlimited
rewards for states. The total reward for xj, is

Z Py u). 6

i=k-+1

J(xr) = gr (@, ur)

The goal is maximize J(xy) for each state x.

3) Network Slice Admission and Allocation Problem: We
treat this problem as an infinite horizon problem. The slice
request arrives at time step k. The request itself with network
state is the state z;. The reinforcement learning agent makes
decision uy based on xg. wpy1 = fr(zk,ur) and reward
gk (zk, ur) will be obtained after the action is applied.

At time step k, the state zj, contains m domain topologies:
[G1,Ga,...,Gy] with their usage condition and a network
slice request which is represented by m SFCs for m domains:
[SFCy,SFC,,...,SFC,,], where domain ¢ needs to support
SFEC;.

Assuming each domain ¢ provides K; paths to accommodate
SFEC;, the action uy is to choose one path from each domain
and stitch them together to provide end-to-end network slice
service or to reject the request.

For each (zj,uy) pair, we can calculate g(xg,ur) as
follows:

9(xp, ur) = {

0 if uy, = reject
if up = reject ©)

Rewardeost(ug) else

For state zpy;, the request part always updates to the
k + 1'* request. If the wy is to reject, then the = + 1’s
domain topologies and usage condition remain the same as
x . Otherwise, the domain topologies with the usage condition
changes to the residual graph after the resources of wuy are
occupied. We show the z11 = fi(x, ux) as follows:

graph from z;, and request £ + 1 if reject
fr(@r, ug) =

residual graph and request K+ 1 else

(7

CMP: 10 CMP:10 CMP:2 CMP:0 CMP:8 CMP: 10
RAM: 10 RAM:10 RAM:2 RAM:0 RAM:8 RAM: 10
. . K- . DISK: 8 DISK: 1
DISK:10 oo 1o DISK:10 DISK:2 DISK: 0 K:8 pw.g DISK:10
B :10 BW:2 BW| :8
O BW:10
omp:10 BWH10 ovp:10 CMP:4 cmp:10 PV onp:6
RAM:10 RAM: 10 RAM:4 RAM:10 RAM:6
DISK: 10 DISK: 10 DISK: 4 DISK: 10 DISK: 6
i Ui [E)

Fig. 3. Residual graph example

IV. REINFORCEMENT LEARNING AGENT DESIGN

We use J* to denote the optimal total reward function.

Z o Pg(zi,u)}, (®)

i=k+1

J (Ik) = max {gk zk,uk
ur €U
where U}, is the action space at time step k. We use uj,
to denote the optimal action take at time step k to achieve
J*(xk.).
o0
i—k
uj, = argmax,, <y {gx (T, ur)+ Z TR g (2 us)}. (9)
i=k+1

Then, we can rewrite the J* function as follow:

J*(wg) = mef%({9k (xr, ur) + aJ " (Tp41)}, (10)
u €Uk

We use Q*(xx,uy) to represent the optimal total reward after

the agent chooses action uy, at time step k, which is calculated

as follows:

Q" (xp, ur) = gr(Tp, ur) + J* (vp41). (11)
Thus, we can rewrite the J* function as follows:
J*(xk) = max Q" (zy,ur). (12)
ur €U

Then we get the new Q* function as follows:

max
Uk+1E€UR 1

Q" (xk + 1, ux + 1).

13)
Since the state space size for xj, is enormous, it’s impossible to
maintain a lookup table to log all the optimal () values for each
(zk,ur) pair. Thus, we use a Deep Neural Network (DNN)
with a Graph Neural Network (GNN) encoder to calculate the
approximate () value, since our input is a graph.

Q" (vr, ur) = g (Tr, up) +

A. Multi-domain Encoder

We use the residual graph which is obtained after the action
uy is applied to represent the input (xj,u). We give an
example in Fig. 3.

The agent takes the residual network state and outputs the)
value. We can naively concatenate all the elements’ numerical
values in the topology to a vector, which is treated as the
encoding vector. However, the result vector of this method
can be affected by the permutation of nodes and edges. To

Domain 1
GNN1
Residual Graph
D in 2
omain GNND @ @ 0
Residual Graph
Domain 3
GNN3 Q value
Residual Graph

Representation Vector

Fig. 4. Encoding Procedure

Fig. 5. Topology Transformation

make the result vector more robust to different permutations,
we choose a Graph Neural Network (GNN) to process the
residual graph information. The encoding procedure is shown
in Fig. 4.

We employ NN4G [8] as the online GNN encoder. The
output of NN4G is the input of the DNN. The gradient of loss
of the Q value’s difference back propagates to the NN4G, and
the parameter is updated based on the gradient.

For each domain ¢ € (1, ...,m), there is a N N4G; model to
encode the residual network in domain ¢. There are four types
of resources: computational resources, disk storage, RAM, and
bandwidth. Computational resources, disk storage, and RAM
are located in the node, and bandwidth is located in the link.
To make the representation more uniform, we split each node
into three virtual nodes, where each virtual node holds only
one type of resource. We also create a virtual node for the
edge to hold the bandwidth resource. We give an example of
the topology transformation in Fig. 5.

The scale of value on each node should be similar. We use
the ratio of the remaining resource to the total resource as
the value on each node. For example, if the total resource is
10 units, the current remaining resource is 8 units, and the
required resource for this strategy is 5 units, then the value
of the node should be (8 — 5)/10 = 0.3. Thus, all values on
nodes are from 0 to 1.

B. Action Space

Each domain can choose a path from K candidate paths, or
reject the NSR. Thus, each domain has K + 1 choices, and the
action space for m domains is (K 41)™. If any domain rejects
the network slice request, then the network slice request will
be rejected by the global coordinator.

C. Agent Optimization

Our RL agent concatenates the GNN encoder with a DNN
and output a scalar which indicates the Q(xy,u). We need

N <>

Domain 1 Domain 2 Domain 3

Fig. 6. Experiment Domains

an algorithm to train the agent to predict the () value more
accurately. We choose the Double Deep Q Network (DDQN)
algorithm to optimize the RL agent, shown in Algorithm 2.

D. Time Complexity

The overall time complexity for inference includes time to
find K shortest paths and time for calculating () values. The
time complexity of the first part is O(K N log N), where K is
the number of candidate paths, and N is the number of nodes.
The time complexity of the second part is O(W N L), where
W is the time complexity for parameter matrix multiplication
with the node features, and L is the number of representation
layers. The total time complexity is O(KNlog N + WNL).

Algorithm 2 DDQN

1: Initialize Q model @, and target Q model Q
2: for each episode do
3: for each time step £ do

4: Given state x; and action space Uy, choose uy € Uy,
based on @) value (epsilon greedy)

5: Obtain reward 7, = g(x, ux) and new state x4 =
Jr(wr, ug)

Store (xg, uk, Tk, Trps1) in to buffer
Sample (x;,u;, 14, x;+1) from buffer

Target y = r; + aQ(x;41,ui+1), Where w11 =
argmax ., . cu,,, Q(Tit1, Uiv1)
9: Update parameters of @ to minimize (Q(s;, a;) —y)?
10: Every C step reset Q=0Q
11: end for
12: end for

V. EXPERIMENTS

A. Environment Setup

We select the network topology as shown in Fig. 6, which
contains three domains and links with unlimited bandwidth
between domains 1 and 2, and domains 2 and 3. We assign
four service functions to each domain, and each node in the
domain are randomly assigned two of the four functions to
maintain. The links within a domain are randomly assigned
a bandwidth level from (10 GB/s, 15 GB/s, 20GB/s). The
computation resource level of each node is randomly selected
from (2 cores, 4 cores, 8 cores), the RAM resource level is
selected randomly from (2 GB, 4 GB, 8 GB), and the disk
resource level is selected randomly from (64 GB, 128 GB,
256 GB).

3000 A T R
= I
2000 i
R —

1000 A ;I;‘
'__(I)f

Total reward

GNN 1 GNN 2 Concatenate 1 Concatenate 2

Fig. 7. Comparison between GNN and Concatenation

B. Network Slice Request Generation

A network slice request contains three parts for three
domains, respectively. We generate random network resource
requests for each domain and stitch them together as the
network slice request. Specifically, for domain 1, the net-
work resource request randomly contains two of four service
functions supported by domain 1. The request contains three
service functions for domains 2 and 3. The support resource
for the function is selected from (0.5 core, 1 core, 2 cores)
for computational resource, (1 GB, 2 GB, 4 GB) for RAM
resource, and (8 GB, 16 GB, 32 GB) for disk resource. The
request arrival event follows Poisson distribution with A = 6.
The holding time of request follows an exponential distribution
with © = 8.

C. Performance evaluation

We compared the RL algorithm with the greedy algorithm.
In the greedy algorithm, the agent always chooses the shortest
path in each domain. If there is no such path, then the agent
rejects the request. We evaluated different discount factors
and found that a discount factor of 0.4 achieved the best
performance.

We compared the performance of the GNN encoder with
a method which naively concatenates the numbers in the
residual graph into a vector of a fixed size. We show the
results in Fig. 7'. GNNI and Concatel are tested on the
topology that is the same as the topology used for training.
The topology for GNN2 and Concate? is the topology obtained
by randomly removing one edge from the topology used for
training. When the topology is the same for training and
testing, the performance of concatenation is better than the
GNN. However, even if the topology changes slightly, the
performance of the concatenation drops heavily. The GNN
encoder drives the RL agent to be more robust when the
topology varies.

We compare the accept ratio between the RL agent and the
greedy approach in Fig. 8(a). The RL’s accpet ratio is higher
than the greedy approach. We also calculated the probability
of the RL agent choosing the shortest path, shown in Fig. 8(b),
and this probability is around 82%.

! All of the boxplots in this paper are drawn based on 50 experiments.
The circles denote the outlier. The upper bound of the vertical line, the upper
bound of the box, the middle horizontal line within the box, the lower bound
of the box, and the lower bound of the vertical line represent the minimum,
the first quartile, the median, the third quartile and maximum, respectively.

1.00 4 —

0.95 4

0.90 4

Ratio
o
~
(=]
o
|
Shortest Path Selection Ratio

= 0.675
U
$ 0.650 0.85 1 %

0.625 -

0.80 -
0.600 -
RL GREEDY RL GREEDY
(a) (b)

Fig. 8. Comparison of RL vs. Greedy algorithm with respect to (a) slice
acceptance ratio, and (b) the probability of selecting the shortest path.

VI. CONCLUSION

In this paper, we provide an RL algorithm to automatically
allocate a multi-domain slice request to achieve a higher long-
term reward compared with a greedy algorithm. We also
include a GNN encoder to transform the topology infor-
mation into a representation vector. Compared with vanilla
concatenation representation, the GNN encoder makes the
agent more robust when the topology changes. Furthermore,
each domain has its own encoder. Thus, there is no leak of the
domain’s structure information. If the topology is large, then
the overhead associated with the transfer of topology informa-
tion is expensive. By only sharing the representation vector,
the bandwidth requirement can be reduced. Furthermore, we
provide a topology transformation to unify the representation
of nodes and edges and reduce the numerical influence in
inference and training.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant No. CNS-2008856.

REFERENCES

[1] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5g network slice broker,” IEEE Communi-
cations Magazine, vol. 54, no. 7, pp. 32-39, 2016.

Z. Wu and J. P. Jue, “A reinforcement learning-based routing strategy for

elastic network slices,” in ICC 2022 - IEEE International Conference on

Communications, pp. 5505-5510, 2022.

[3] Z. Wu, G. Ishigaki, R. Gour, and J. P. Jue, “A reinforcement learning-
based admission control strategy for elastic network slices,” in 2027/ IEEE
Global Communications Conference (GLOBECOM), pp. 01-06, 2021.

[4] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and

H. Zhang, “Deep reinforcement learning for resource management in

network slicing,” IEEE Access, vol. 6, pp. 74429-74441, 2018.

V. Sciancalepore, X. Costa-Perez, and A. Banchs, “RI-nsb: Reinforcement

learning-based 5g network slice broker,” IEEE/ACM Transactions on

Networking, vol. 27, no. 4, pp. 1543-1557, 2019.

[6] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, “On multi-domain

network slicing orchestration architecture and federated resource control,”

IEEE Network, vol. 33, no. 5, pp. 242-252, 2019.

S. Keerthi and E. Gilbert, “An existence theorem for discrete-time infinite-

horizon optimal control problems,” IEEE Transactions on Automatic

Control, vol. 30, no. 9, pp. 907-909, 1985.

A. Micheli, “Neural network for graphs: A contextual constructive ap-

proach,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 498—

511, 2009.

[2

—

[5

—

[7

—

[8

—

