An Almost Singularly Optimal Asynchronous
Distributed MST Algorithm

Fabien Dufoulon &
Department of Computer Science, University of Houston, Houston, TX, USA

Shay Kutten =
Faculty of Industrial Engineering and Management,
Technion — Israel Institute of Technology, Haifa, Israel

William K. Moses Jr. &
Department of Computer Science, University of Houston, Houston, TX, USA

Gopal Pandurangan &
Department of Computer Science, University of Houston, Houston, TX, USA

David Peleg =
Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

—— Abstract

A singularly (near) optimal distributed algorithm is one that is (near) optimal in two criteria, namely,
its time and message complexities. For synchronous CONGEST networks, such algorithms are
known for fundamental distributed computing problems such as leader election [Kutten et al., JACM
2015] and Minimum Spanning Tree (MST) construction [Pandurangan et al., STOC 2017, Elkin,
PODC 2017]. However, it is open whether a singularly (near) optimal bound can be obtained for
the MST construction problem in general asynchronous CONGEST networks.

In this paper, we present a randomized distributed MST algorithm that, with high probability,
computes an MST in asynchronous CONGEST networks and takes O(D'*¢ + /n) time and O(m)
messages’, where n is the number of nodes, m the number of edges, D is the diameter of the network,
and ¢ > 0 is an arbitrarily small constant (both time and message bounds hold with high probability).
Since Q(D + y/n) and Q(m) are respective time and message lower bounds for distributed MST
construction in the standard KT, model, our algorithm is message optimal (up to a polylog(n)
factor) and almost time optimal (except for a D factor). Our result answers an open question
raised in Mashregi and King [DISC 2019] by giving the first known asynchronous MST algorithm
that has sublinear time (for all D = O(n'~¢)) and uses O(m) messages. Using a result of Mashregi
and King [DISC 2019], this also yields the first asynchronous MST algorithm that is sublinear in
both time and messages in the KT) CONGEST model.

A key tool in our algorithm is the construction of a low diameter rooted spanning tree in
asynchronous CONGEST that has depth O(D'*¢) (for an arbitrarily small constant & > 0) in
O(D'*¢) time and O(m) messages. To the best of our knowledge, this is the first such construction
that is almost singularly optimal in the asynchronous setting. This tree construction may be of
independent interest as it can also be used for efficiently performing basic tasks such as verified
broadcast and convergecast in asynchronous networks.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Mathematics
of computing — Probabilistic algorithms; Mathematics of computing — Discrete mathematics

Keywords and phrases Asynchronous networks, Minimum Spanning Tree, Distributed Algorithm,
Singularly Optimal

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.19

Related Version Full Version: https://arxiv.org/abs/2210.01173

L The O notation hides a polylog(n) factor and the Q notation hides a 1/ polylog(n) factor.

© Fabien Dufoulon, Shay Kutten, William K. Moses Jr., Gopal Pandurangan, and David Peleg;
37 licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).

Editor: Christian Scheideler; Article No. 19; pp. 19:1-19:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:fabien.dufoulon.cs@gmail.com
https://orcid.org/0000-0003-2977-4109
mailto:kutten@technion.ac.il
https://orcid.org/0000-0003-2062-6855
mailto:wkmjr3@gmail.com
https://orcid.org/0000-0002-4533-7593
mailto:gopal@cs.uh.edu
https://orcid.org/0000-0001-5833-6592
mailto:david.peleg@weizmann.ac.il
https://orcid.org/0000-0003-1590-0506
https://doi.org/10.4230/LIPIcs.DISC.2022.19
https://arxiv.org/abs/2210.01173
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Funding Fabien Dufoulon: This work was supported in part by NSF grants CCF-1717075, CCF-
1540512, 11S-1633720, and BSF grant 2016419.

Shay Kutten: This work was supported in part by the Bi-national Science Foundation (BSF) grant
2016419 and supported in part by ISF grant 1346/22.

William K. Moses Jr.: This work was supported in part by NSF grants CCF1540512, 11S-1633720,
CCF-1717075, and BSF grant 2016419.

Gopal Pandurangan: This work was supported in part by NSF grants CCF-1717075, CCF-1540512,
11S-1633720, and BSF grant 2016419.

David Peleg: This work was supported in part by the US-Israel Binational Science Foundation grant
2018043.

1 Introduction

1.1 Background and Motivation

Singularly (near) optimal distributed algorithms are those that are (near) optimal both in
their message complexity and in their time complexity.? The current paper is intended as a
step in expanding the study of “which problems admit singularly optimal algorithms” from
the realm of synchronous CONGEST networks to that of asynchronous ones.

An important example of a problem that has been studied in the context of singularly
(near) optimal algorithms is minimum-weight spanning tree (MST) construction. This has
become a rather canonical problem in the sub area of distributed graph algorithms and was
used to demonstrate and study various concepts such as the congested clique model (Lotker
et al. [40]), proof labeling schemes (Korman et al. [36]), networks with latency and capacity
(Augustine et al. [3]), cognitive radio networks (Rohilla et al. [52]), distributed applications
of graph sketches (King et al. [33]), distributed computing with advice (Fraigniaud et
al. [21]), distributed verification and hardness of approximation (Kor et al. [34], Korman and
Kutten [35] and Das Sarma et al. [14]), self-stabilizing algorithms (Gupta and Srimani [29)
and many other papers), distributed quantum computing (Elkin et al. [19]) and more. The
study of the MST problem in what we now call the CONGEST model started more than
forty years ago, see Dalal, and also Spira [12, 13, 56].

The seminal paper of Gallager, Humblet, and Spira (GHS) [22] presented a distributed
algorithm for an asynchronous network that constructs an MST in O(nlogn) time using
O(m + nlogn) messages, where n and m denote the number of nodes and the number of
edges of the network, respectively. The time complexity was later improved by Awerbuch and
by Faloutsos and Moelle to O(n) [5, 20], while keeping the same order of message complexity.

The message complexity of GHS algorithm is (essentially) optimal, since it can be shown
that for any 1 < m < n?, there exists a graph with ©(m) edges such that Q(m) is a lower
bound on the message complexity of constructing even a spanning tree (even for randomized
algorithms) [38].> Moreover, the time complexity bound of O(n) bound is ezistentially
optimal (in the sense that there exist graphs (of high diameter) for which this is the best
possible). However, the time bound is not optimal if one parameterizes the running time
in terms of the network diameter D, which can be much smaller than n. In a synchronous
network, Garay, Kutten, and Peleg [23] gave the first such distributed algorithm for the MST

2 In this paper, henceforth, when we say “near optimal” we mean “optimal up to a polylog(n) factor”,
where n is the network size.

3 This message lower bound holds in the so-called KTy model, which is assumed in this paper. See Section
1.4 for more details.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

problem with running time O(D+n0‘614), which was later improved by Kutten and Peleg [39]
to O(D + y/n) (again for a synchronous network).However, both these algorithms are not
message-optimal as they exchange O(m + n!-5') and O(m + n'-5) messages, respectively.

Conversely, it was established by Peleg and Rubinovich [51] that Q(D 4 /n) is a lower
bound on the time complexity of distributed MST construction that applies even to low-
diameter networks (D = Q(logn)), and to the synchronous setting. The lower bound of
Peleg and Rubinovich applies to exact, deterministic algorithms. This lower bound was
further extended to randomized (Monte Carlo) algorithms, approximate constructions, MST
verification, and more (see [41, 40, 17, 14]).

Pandurangan, Robinson and Scquizzato [47, 49] showed that MST admits a randomized
singularly near optimal algorithm in synchronous CONGEST networks; their algorithm
uses O(m) messages and O(D + y/n) rounds. Subsequently, Elkin [18] presented a simpler,
singularly optimal deterministic MST algorithm, again for synchronous networks.

For asynchronous networks, one can obtain algorithms that are separately time optimal
(by combining [39] with a synchronizer, see Awerbuch [4]) or message optimal [22] for the
MST problem, but it is open whether one can obtain an asynchronous distributed MST
algorithm that is singularly (near) optimal. This is one of the main motivations for this work.
An additional motivation is to design tools that can be useful for constructing singularly
optimal algorithms for other fundamental problems in asynchronous networks.

In general, designing singularly optimal algorithms for asynchronous networks seems
harder compared to synchronous networks. In synchronous networks, besides MST con-
struction, singularly (near) optimal algorithms have been shown in recent years for leader
election, (approximate) shortest paths, and several other problems [38, 30]. However, all
these results do not apply to asynchronous networks. Converting synchronous algorithms
to work on asynchronous networks generally incur heavy cost overhead, increasing either
time or message complexity or both substantially. In particular, using synchronizers [4] to
convert a singularly optimal algorithm to work in an asynchronous network generally renders
the asynchronous algorithm not singularly optimal. Using a synchronizer can significantly
increase either the time or the message complexity or both far beyond the complexities of
the algorithm presented here. Furthermore, there can be a non-trivial cost associated with
constructing such a synchronizer in the first place.

For example, applying the simple o« synchronizer [4] (which does not require the a
priori existence of a leader or a spanning tree) to the singularly optimal synchronous MST
algorithm of [47, 49] or [18] yields an asynchronous algorithm with message complexity of
O(m(D + y/n)) and time complexity of O(D + y/n); this algorithm is time optimal, but
not message optimal. Some other synchronizers (see, e.g., Awerbuch and Peleg [9]), do
construct efficient synchronizers that can achieve near optimal conversion from synchronous
to asynchronous algorithms with respect to both time and messages, but constructing the
synchronizer itself requires a substantial preprocessing or initialization cost. For example,
the message cost of the synchronizer setup protocol of [9] can be as high as O(mn).

Another rather tempting idea to derive an MST algorithm that would be efficient both in
time and in messages would be to convert a result of Mashreghi and King [44] (see also [43] and
discussion in Section 1.4), originally designed in the asynchronous KT} CONGEST model*
to the more common KTy model assumed here. In particular, they give an asynchronous
MST algorithm that takes O(n) time and O(n'®) messages. Note that one can convert an

4 In KT) model it is assumed that nodes know the identities of their neighbors (cf. Section 1.4), unlike
the KTy model, where nodes don’t have that knowledge.

19:3

DISC 2022

19:4

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

algorithm in the K77 model to work in the KTy model by allowing each node to communicate
with all its neighbors in one round; this takes an additional O(m) messages. Hence, with such
a conversion the message complexity of the above algorithm would be essentially optimal
(i.e., O(m)), but the time complexity would be O(n) which is only existentially optimal, and
can be significantly higher than the lower bound of O(D + y/n). In fact, as we will discuss
later, our result answers an open question posed in [44] and gives MST algorithms with
improved bounds in asynchronous K77 model (cf. Section 1.3).

Instead of using a synchronizer, a better approach might be to design an algorithm
directly for an asynchronous network. As an example, consider the fundamental leader
election problem, which is simpler than the MST construction problem. Till recently, a
singularly optimal asynchronous leader election algorithm was not known. Applying a
synchronizer to known synchronous singularly optimal leader election algorithms does not
yield singularly optimal asynchronous algorithms. For example, applying the simple «
synchronizer to the singularly optimal synchronous leader election algorithm of [38] yields an
asynchronous algorithm with message complexity of O(mD logn) and time complexity of
O(D); this algorithm is not message optimal, especially for large diameter networks. Other
synchronizers such as 8 and v of [4] and that of [9], require the a priori existence of a leader
or a spanning tree and hence cannot be used for leader election. The work of Kutten et
al. [37] presented a singularly (near) optimal leader election for asynchronous networks that
takes O(m) messages and O(D) time.> That algorithm did not use a synchronizer and was
directly designed for an asynchronous network. The leader election algorithm of [37] is a
useful subroutine in our MST algorithm.

1.2 The Distributed Computing Model

The distributed network is modeled as an arbitrary undirected connected weighted graph
G = (V,E,w), where the node set V represent the processors, the edge set F represents
the communication links between them, and w(e) is the weight of edge e € E. D denotes
the hop-diameter (that is, the unweighted diameter) of G, in this paper, diameter always
means hop-diameter. We also assume that the weights of the edges of the graph are all
distinct. This implies that the MST of the graph is unique. (The definitions and the results
generalize readily to the case where the weights are not necessarily distinct.) We make
the common assumption that each node has a unique identity (this is not essential, but
simplifies presentation), and at the beginning of computation, each node v accepts as input
its own identity number (ID) and the weights of the edges incident to it. Thus, a node has
only local knowledge. We assume that each node has ports (each port having a unique port
number); each incident edge is connected to one distinct port. A node does not have any
initial knowledge of the other endpoint of its incident edge (the identity of the node it is
connected to or the port number that it is connected to). This model is referred to as the
clean network model in [50] and is also sometimes referred to as the KTy model, i.e., the initial
(K)nowledge of all nodes is restricted (T)ill radius 0 (i.e., just the local knowledge) [50]. The
KT,y model is extensively used in distributed computing literature including MST algorithms
(see e.g., [50, 48] and the references therein). While we design an algorithm for the KT
model, our algorithm also yields an improvement in the K77 model [7, 50] where each node
has an initial knowledge of the identities of its neighbors.

5 This algorithm is singularly near optimal, since Q(m) and (D) are message and lower bounds for
leader election even for randomized Monte Carlo algorithms [38].

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

We assume that nodes have knowledge of n (in fact a constant factor approximation of n
is sufficient), the network size. We note that quite a few prior distributed algorithms require
knowledge of n, see e.g. [6, 53, 2, 37]. We assume that processors can access private unbiased
random bits.

We assume the standard asynchronous CONGEST communication model [50], where
messages (each message is of O(logn) bits) sent over an edge incur unpredictable but finite
delays, in an error-free and FIFO manner (i.e., messages will arrive in sequence). As is
standard, it is assumed that a message takes at most one time unit to be delivered across
an edge. Note that this is just for the sake of the analysis of time complexity, and does
not imply that nodes know an upper bound on the delay of any message. As usual, local
computation within a node is assumed to be instantaneous and free; however, our algorithm
will involve only lightweight local computations.

We assume an adversarial wake-up model, where node wake-up times are scheduled by
an adversary (who may decide to keep some nodes dormant) which is standard in prior
asynchronous protocols (see [1, 22, 55]). Nodes are initially asleep, and a node enters the
execution when it is woken up by the environment or upon receiving messages from other
nodes.%

The time complexity is measured from the moment the first node wakes up. The adversary
wakes up nodes and delays each message in an adaptive fashion, i.e., when the adversary
makes a decision to wake up a node or delay a message, it has access to the results of all
previous coin flips. In the asynchronous setting, once a node enters execution, it performs
all the computations required of it by the algorithm, and sends out messages to neighbors
as specified by the algorithm. At the end of the computation, we require each node to
know which of its incident edges belong to the MST. When we say that an algorithm has
termination detection, we mean that all nodes detect termination, i.e., each node detects
that its own participation in the algorithm is over.

1.3 OQOur Contributions

Almost Singularly Optimal Asynchronous MST Algorithm. Our main contribution is
a randomized distributed MST algorithm that, with high probability, computes an MST
in asynchronous CONGEST networks and takes O(D'*¢ + /n) time and O(m) messages,
where n is the number of nodes, m the number of edges, D is the diameter of the network,
and € > 0 is an arbitrarily small constant (both time and message bounds hold with high
probability) (cf. Theorem 9). Since Q(D + /n) and Q(m) are respective time and message
lower bounds for distributed MST construction in the K7T{ model, our algorithm is message
optimal (up to a polylog(n) factor) and almost time optimal (except for a O(D?) factor).

Asynchronous MST in KTj in Sublinear Messages and Time. Our result answers an
open problem raised in Mashregi and King [44] (see also [45, 43]). They ask if there exists
an asynchronous MST algorithm that takes sublinear time if the diameter of the network

is low, and has O(m) message complexity. They remark that if such an algorithm exists,
then it would improve their result giving better bounds for asynchronous MST in KTj

6 Although standard, the adversarial wake up model, in our setting, is not more difficult compared to the
alternative simultaneous wake up model where all nodes are assumed to be awake at the beginning of
the computation. Indeed, in the adversarial wake up model, awake nodes can broadcast (by simply
flooding) a “wake up” message which can wake up all nodes; this takes only O(m) messages and O(D)
time and hence within the singularly optimal bounds.

19:5

DISC 2022

19:6

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

CONGEST. Our result answers their question in the affirmative by giving the first known
asynchronous MST algorithm that has sublinear time (for all D = O(n!'~?), where § > 0 is an
arbitrarily small constant) and uses O(m) messages. Furthermore, as indicated in Mashregi
and King [44], this also yields the first asynchronous MST algorithm that is sublinear in both
time and messages in the KT} CONGEST model. More precisely, plugging our asynchronous
MST algorithm in the result of [44]([Theorem 1.2]) gives an asynchronous MST algorithm
that takes O(D't¢ 4+ n'=2%) time and O(n?/?*?9) messages for any small constant £ > 0
and for any 6 € [0,0.25] (cf. Theorem 10). This gives a tradeoff result between time and
messages. In particular, setting § = 0.25 yields an asynchronous MST algorithm that has
(almost optimal) time complexity O(D'** + /n) and message complexity O(n7/*).

Low Diameter Spanning Tree Construction. A key tool in our algorithm is the construction
of a low diameter rooted spanning tree in asynchronous CON'GEST that has depth O(D'*¢)
(for an arbitrarily small constant & > 0) in time O(D'*¢) time and O(m) messages. To the
best of our knowledge, this is the first such construction that is almost singularly optimal in
the asynchronous setting. This tree construction is of independent interest as it can also
be used for efficiently (under both time and messages) performing tasks such as upcast and
downcast which are very common tools in distributed algorithms (these are described, for
completeness, in Appendix A). Informally, an upcast (using the tree) provides a feedback
(i.e., verification) to the broadcast (downcast) initiator such that (1) the broadcast initiator
knows when the broadcast terminates (based on acknowledgements from all nodes) and (2)
the initiator can get compute a value based on the inputs of all the nodes (e.g., their sum).
This verified broadcast is crucial in the asynchronous setting that allows the initiator to
know when the broadcast has reached all nodes and thereafter proceed to the next step of
the computation.

We note that one could have used a BFS tree instead of a low-diameter tree. However,
the best known BFS tree construction in the asynchronous setting is due to Awerbuch [6]
which takes O(D'"¢) time and O(m!'"¢) messages (for arbitrarily small constant € > 0).
This algorithm (which is deterministic) is not message optimal, unlike ours, and hence will
only yield an MST algorithm with O(m!*¢) message complexity. Furthermore, though our
algorithm does not compute a BFS (but it is sufficient for MST purposes) and is randomized, it
is significantly simpler to understand and prove correctness for when compared to Awerbuch’s
algorithm. We also note that apart from the leader election and spanning tree primitives,
the rest of the MST algorithm is deterministic.

1.4 Additional Related Work

The distributed MST problem has been studied intensively for the last four decades and
there are several results known in the literature, including several recent results, both for
synchronous and asynchronous networks (including the ones mentioned in Section 1), see
e.g., [18, 16, 48, 24, 30, 32, 45, 42, 47, 49] and the references therein.

We note that the results of this paper and that of leader election of [37] (for asynchronous
networks) as well as those of [47, 49] and [18] (for synchronous networks) assume the so-called
clean network model, a.k.a. KTy [50] (see Section 1.2), where nodes do not have initial
knowledge of the identity of their neighbors. But the optimality of above results does not in
general apply to the K77 model, where nodes have initial knowledge of the identities of their
neighbors. It is clear that for time complexity by itself, the distinction between KTy and
KT, does not matter (as one can simulate KT in KTj in one round/time unit by each node
sending its ID to all its neighbors) but it is significant when considering message complexity

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

(as the just mentioned simulation costs ©(m) messages). Awerbuch et al. [7] show that Q(m)
is a message lower bound for broadcast (and hence for construction of a spanning tree as well)
in the KT} model, if one allows only (possibly randomized Monte Carlo) comparison-based
algorithms, i.e., algorithms that can operate on IDs only by comparing them. (We note that
all algorithms mentioned earlier in this subsection are comparison-based, including ours.)

On the other hand, for randomized non-comparison-based algorithms, the message lower
bound of Q(m) does not apply in the KT} model. King et al. [33] presented a randomized,
non-comparison-based Monte Carlo algorithm in the KT} model for MST construction in
O(n) messages (Q(n) is a message lower bound) (see also [42]). While this algorithm achieves
o(m) message complexity (when m = w(npolylogn)), it is not time-optimal, as it takes
time O(n) rather than O(D 4 y/n). Algorithms with improved round complexity but worse
message complexity, and more generally, trade-offs between time and messages, are shown
in [26, 27]. We note that all these results are for synchronous networks. As discussed in
Section 1, the works of [44, 43, 45] address asynchronous MST construction in K7; model
and present algorithms that take o(m) messages.

2 Low Diameter Spanning Tree Algorithm

Let us now describe a novel algorithm for constructing a low diameter spanning tree in a
time-efficient and (near) message-optimal manner in an asynchronous network. This serves
as a crucial ingredient for our MST algorithm of Section 3.

2.1 Randomized Low Diameter Decomposition (MPX)

Let G = (V,E) be any (undirected, unweighted) graph with @ < n nodes and m < m
edges; in particular, G can be different from the communication graph. A probabilistic
(B8,7) low diameter decomposition of G is a partition of V into disjoint node sets V1, ...,V
called clusters. The partition satisfies (1) each cluster V; has strong diameter 7, i.e.,
dz’st@[vi](u, v) < r for any two nodes u,v € V;, and (2) the probability that an edge e € F is
an inter-cluster edge (that is, the endpoints of e are in different clusters) is at most 3.

MPX Decomposition in Synchronous CONGEST. Let us describe a simple distributed
variant of the MPX decomposition algorithm of Miller et al. [46] — Procedure MPX —
executed in a synchronous setting with simultaneous wakeup on graph G. In Subsect. 2.2, we
execute the algorithm on virtual cluster graphs (where each node is in fact a set of nodes in
the communication graph G) and also describe the distributed simulation required to do so.

Let Opmaz = |2+ IHT"J Initially, each node v € V draws a random variable §, from the
exponential random distribution with parameter 8 and sets its start-time variable S, to
max{1, dmaz — [0,]}. Procedure MPX guarantees the following through simple flooding:
(1) each node v € V is assigned to the cluster of the node u = argmin, +{(distz(v, w) +
Sw,idyw)} and (2) each cluster has a spanning tree of depth at most d,,q,. (Each node locally
keeps information about the edge to its parent in the spanning tree. In other words, the
spanning tree is oriented towards the root.)

More precisely, the “simple flooding” is done in d,,4, + 1 rounds. Initially, all nodes are
unassigned. In round 4, each newly-assigned node v (i.e., assigned in round ¢ — 1) sends to
its neighbors a message containing the ID of the cluster leader. Other assigned nodes do
nothing. Finally, for each unassigned node v, let M;4 be the set containing all received IDs,
as well as id, if S, =i. If M;4 is the empty set, v does nothing. Otherwise, v assigns itself
to the cluster of the node u with the lexicographically smallest ID in M;4. If u # v, v keeps

19:7

DISC 2022

19:8

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

the edge (an arbitrary one if there are multiple such edges) along which it receives id, as the
edge to its parent. (Note that this spanning tree guarantees that the cluster is connected

and has strong diameter at most 41%)

Analysis. The following lemmas are known results from [46, 31, 10, 11]. For completeness,
proofs are given in Appendix B.

» Lemma 1. Procedure MPX computes a (20, 41;") low-diameter decomposition of G

w.h.p. in 0(1“7”) time and O(mlr‘Tn) messages in the synchronous setting.

From the low diameter decomposition computed by Procedure MPX (or in fact, from
any partition P of V into disjoint node sets V1,...,V}), one can define a cluster graph
G = (V',E"), as follows. Its node set V' = {Vy,...,V,} consists of cluster nodes, one for
each cluster V; of the decomposition, and two cluster nodes V; and Vj are adjacent in G if
there exist two nodes w,w’ in V such that w € V;, w’ € V; and (w,w’) € E. We call G
the cluster graph induced by P.

» Lemma 2. For any positive integer k > 1, if the diameter of G satisfies D > klr;;”, then

the diameter of the cluster graph G is at most 28D, with probability at least 1 — nk%

2.2 Rooted Spanning Tree

Let us now describe an asynchronous distributed algorithm to construct a low diameter
rooted spanning tree, given a pre-specified root, in a time-efficient and (near) message-optimal
manner — see Theorem 3. We assume that each node knows whether it is the pre-specified
root prior to the start of the algorithm. We also assume initially that the diameter of the
original graph, D, is known to the nodes. We explain how to remove this assumption at the
end of the section.

» Theorem 3. Given a graph G with n nodes, m edges and diameter D, as well as a
distinguished node R, and a constant parameter 1 > e > 0, the asynchronous distributed
Procedure ST-Cons(e) computes an O(D'*t)-diameter spanning tree rooted in R with
termination detection, using O(D'*¢) time with high probability and O(m) messages with
high probability.

Brief Description. We construct the low diameter spanning tree in a two stage process.
The first stage consists of building a sequence of increasingly coarser partitions of G = (V, E).
Each partition decomposes V into disjoint node sets, called clusters, with strong diameter
O(D*+¢); in fact, each cluster C' is spanned by a tree T(C) of depth O(D'*¢). (Unlike
in Subsect. 2.1, this spanning tree is oriented away from the root.) The unique cluster
containing the root node R will be denoted C'r. The cluster graph induced by the final
partition (defined in Subsect. 2.1) has diameter O(1). These partitions are obtained by
simulating the synchronous MPX decomposition algorithm (see Subsect. 2.1) on G, then
on the obtained cluster graph, and so on, for i,, = Dog1/(35) D] times (where = In"* n
and ¢ < 1 is to be derived in the analysis). In the second stage, we construct a breadth
first search (BFS) tree T2 over the final cluster graph of phase 1, where the cluster Cr
containing the pre-specified root R serves as the root of the BFS tree. We then use T2 to
decide which edges of the original graph should be kept to obtain the desired rooted spanning
tree T of G with depth O(D'*¢).

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg 19:9

Detailed Description. Consider the initial graph G(V, E) = Go(Vy, Eo) and the initial
trivial partition Py in which each node v € V' is its own cluster.

Stage 1: The first stage consists of i, = [logy /34 D] phases, where 3 = In~ n
and we assume Inlnn > 2¢/In3. (If Inlnn < 2¢'In3 < 21n 3, then constructing a low
diameter spanning tree efficiently is trivial.) Phase ¢ starts with a partition P;_; of V
and the cluster graph induced by P;_; is denoted by G;_1(V;—1, E;—1). We simulate one
instance of Procedure MPX (with parameter §) on G;_; in an asynchronous setting
by running an a-synchronizer between clusters, and within each cluster C, using the
spanning tree T'(C) to simulate the behavior of each cluster node of V;_;. (Note that
this well-known synchronizer is described in more detail in Appendix A.) More precisely,
the root of the spanning tree T(C) simulate the behavior of cluster C' (in the simulated
Procedure MPX). To send a (same) message to its adjacent clusters, C' broadcasts along
T(C). To receive the message with the minimum ID (which is sufficient information for
Procedure MPX), C convergecasts along T'(C).

The output is a partition P} of V;_; into disjoint (cluster node) sets Uy, ..., U; such that

Inn

each Uj has a spanning tree 77" of depth O(5"). We transform P} into a partition

P; of V', the node set of the original graph, into disjoint node sets W7, ..., Wy, such that
each W; has a spanning tree T'(W;) of depth O((l“T")’) (In fact, we only show how to

compute the spanning trees T'(W;), which induces the node sets W;.)

To transform P} to P;, we use a simple Procedure Transform, sketched next. Recall that
each cluster node in U; keeps information about its parent in the spanning tree 77“"".

Procedure Transform consists of 212

iterations. Each cluster node keeps an iteration
counter and these counters are kept locally synchronized by running an a-synchronizer
between cluster nodes. In the first iteration, the root cluster node Cg sends its ID to
each adjacent cluster node C' (which is its child in 7;*"") over the edges of the set
Einter = {(u,w) € E(G) | u € Cr,w € C}, namely, all (original) inter-cluster edges
between Cr and C. (Note that in fact, Cr sends its ID to all adjacent cluster nodes, but
cluster nodes which are not children of Cr simply ignore that message.) Among these
inter-cluster edges, every child cluster node C' keeps (u*, w*) = argmin ., w)e ., 11w}
i.e., the edge whose endpoint w in C has the minimum ID. Cluster node C' then reorients
its tree T(C) to be rooted in w (and the inter-cluster edge is oriented towards w, i.e.,
from parent to child). In the next iteration, each C sends the ID of R to its children
cluster nodes, if they exist, which in turn reorient their tree in the same fashion. After
all iterations are done, the “combined” spanning tree T(WJ) is completed, and a simple
broadcast allows all nodes in the newly computed cluster W; to move on to the next
phase. (Note that T'(W;) is oriented from the root outwards.)

Stage 2: At the end of stage 1, the final partition decomposes V into clusters with strong
diameter O(D'*¢) and induces a cluster graph G;(V}, Ef) of diameter O(log2+4/€, n);
in fact, each cluster C' is spanned by a tree T(C) of depth O(D1+5). During stage 2,
the naive synchronous BFS tree construction algorithm (based on flooding, see [50]) is

simulated on G for O(log?**/¢ n)

rounds, where the designated root in V; is the cluster
Cr that contains the pre-specified root in V. Once again, this is done by running an
a-synchronizer between clusters, and within each cluster, using the spanning tree 7’ (@)
to simulate the behavior of each cluster node C. After computing the BFS tree T2 on
G¢, we use Procedure Transform — but this time for O(log®**/ ¢ n)
a spanning tree T' of G, similarly to stage 1. This final output 7" is a O(D*+*) diameter
spanning tree of G.

rounds — to compute

DISC 2022

19:10

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Analysis. Lemma 4 upper bounds, for each phase, the diameter of the cluster graph as well
as that of the partition’s clusters. Corollary 5 is obtained from Lemma 4 by considering the
last phase. After which, we prove Theorem 3 using Lemma 4 and Corollary 5. The proofs of
Lemma 4 and Corollary 5 are deferred to Appendix B.

» Lemma 4. For each phase 1 <i < i, (1) diam(G;_1) = max{(38)~1D, O(log2+4/€/ n)}
w.h.p., and (2) each cluster C of the partition P;—_1 is spanned (in the original graph G) by a
tree T(C) with diam(T(C)) = (3%2)~1.

» Corollary 5. At the end of phase in,, (1) diam(G;,,) = O(log2+4/€/ n) w.h.p., and (2)
each cluster C of the partition P;_, is spanned (in the original graph G) by a tree T(C’) with
diam(T(C)) = O(D'*e).

Proof of Theorem 3. The correctness of the first stage follows from that of the simulation
(using an a-synchronizer between clusters), Procedure MPX and Procedure Transform.
Next, let us show the time and message complexity of the first stage. During each phase
1 <4 < 4y, Procedure MPX is simulated on G;_; for O(lo%) = O(1) rounds. Hence, each

cluster C simulates O(1) rounds. In each round, the cluster broadcasts once over the cluster’s
spanning tree T (C), sends one message per inter-cluster edge over to adjacent clusters, and
convergecasts once over 7(C)). By Lemma 4, T(C) has depth O(D'*¢). Hence, each round
of Procedure MPX is simulated in at most O(D'*¢) time and using O(m). Adding up over
all phases results in O(D'**) time and O(m) messages. Note that running an a-synchronizer
(between the clusters) induces only an O(1) message overhead per (inter-cluster) edge over
all rounds, but no time overhead. Thus Procedure MPX is simulated in O(D'*) time
and using O(m) messages. Similarly, in Procedure Transform, each cluster C' simulates
O(l) rounds. In each round, the cluster broadcasts twice over the cluster’s spanning tree
T(C), sends one message per inter-cluster edge over to adjacent clusters, and convergecasts
twice over T'(C') (where the additional broadcast and convergecast allows to reorient 7/(C)).
Therefore, it can be seen that Procedure Transform also takes O(D'+¢) time and uses O(m)
messages. Finally, the first stage has at most i,, = O(1) phases, and thus takes O(D**)
time and uses O(m) messages.

By Corollary 5, the final cluster graph has a diameter of O(log?**/ ¢ n). Given that, the
correctness of the second stage follows from that of the simulation (using an a-synchronizer
between clusters), the naive synchronous BFS tree construction algorithm and Proce-
dure Transform. As for the time and message complexity, the same approach (used for
stage 1 above) shows that the second stage takes O(D'*¢) time and uses O(m) messages. <«

Removing the Requirement of the Knowledge of D. In the previously described algorithm,
we assumed that each node knew the value of D, the diameter of the original graph. This
assumption can be removed by having each node guess the value of D = 2',22, ... until we
arrive at the correct guess (an at most 2-approximation of D).

An issue that must be addressed, however, is that nodes need some way to determine
whether they have correctly guessed the value of D or not. This can be done at the end of
the second stage. Recall that the naive synchronous BFS tree construction is simulated for
O(log®>t*/¢" n) = O(1) rounds. If the estimate of D is too small, the cluster graph obtained

at the end of the first stage, Gy, may have diameter strictly greater than O(log?+*/ ¢ n)

, in
which case TBFS may not cover the whole graph G #. As a result, once T is constructed
from TBFS using Procedure Transform, some nodes may exist outside the spanning tree 7.

This condition can be detected by the leaves of T" and a simple convergecast can be used to

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

check if this condition holds true. In case it does, the root of T' can initiate a broadcast over
the entire original graph to update the guess of D and run the algorithm with this updated
guess. (Note that if the estimate of D is too small, it may still happen that 75
whole graph G, in which case we correctly compute a low diameter spanning tree T of G

covers the

and the algorithm terminates.)
This modification increases the time complexity of the algorithm by at most a constant
factor, and its message complexity by a factor of at most O(log D).

3 The Asynchronous MST Algorithm

In this section, we develop a randomized algorithm to construct an MST with high probability
for a given graph in O(D*¢ + /n) time with high probability and O(m) messages with high
probability (for any constant £ > 0).

3.1 High-level Overview of the Algorithm

We implement on an asynchronous network a variant of the singularly near optimal syn-
chronous MST algorithms of [18, 47]. The algorithm can be divided into three stages. In
stage I, we pre-process the network so that subsequent processes are fast and message efficient.
Stages II and III correspond to the actual MST algorithm.

In order to ensure that nodes participate in this multi-stage algorithm in the proper
sequence, we append a constant number of bits to each message to indicate the stage number
that message corresponds to. A node u knows which stage number it is currently in and can
queue received messages that belong to a later stage. These messages will be processed later,
once u reaches to the corresponding stage.

Stage I: Pre-Processing the Graph. In this stage, we run a few preparatory procedures on
the graph. Specifically, we first elect a leader, then construct a low diameter spanning tree
T, and finally estimate the diameter of 7. In more detail, for the first stage we utilize the
singularly (near) optimal algorithm of [37] to elect a unique leader £ in O(D 4 log® n) time
and O(mlog® n) messages. Subsequently, we run the ST-Cons(e) algorithm of Section 2 (for
a constant parameter 1 > € > 0) to construct a low diameter spanning tree 7 on G rooted
at L. Then, we use a known application of the Wave&Echo technique (see, e.g., [54, 58]) to
have the root calculate the diameter of the constructed spanning tree D', which we know is
an O(D*?) approximation of the diameter D of the original graph G, in O(D’) time and O(n)
messages. Finally, all nodes in the tree participate in a simple broadcast on the spanning tree
T to send this knowledge of D’ to all nodes in the graph in O(D’) time and O(n) messages.

Stage Il: Controlled-GHS. The Controlled-GHS algorithm, introduced in [23, 39], is a
synchronous version of the classical Gallager-Humblet-Spira (GHS) algorithm [22, 50] with
some modifications, aiming to balance the size and diameter of the resulting fragments. Here,
we convert to the asynchronous setting a variant of the (synchronous) Controlled-GHS as
described in [47, 49].

Recall that the synchronous GHS algorithm (see, e.g., [50]) consists of O(logn) phases. In
the initial phase, each node is an MST fragment, by which we mean a connected subgraph of
the MST. In each subsequent phase, every MST fragment finds a minimum-weight outgoing
edge (MOE) — these edges are guaranteed to be in the MST [57]. The MST fragments
are merged via the MOEs to form larger fragments. The number of phases is O(logn),
since the number of MST fragments gets at least halved in each phase. The message

19:11

DISC 2022

19:12

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

complexity is O(m + nlogn), which is essentially optimal, and the time complexity is
O(nlogn). Unfortunately, the time complexity of the GHS algorithm is not optimal, because
much of the communication during a phase uses only the MST fragment edges, and the
diameter of an MST fragment can be significantly larger than the graph diameter D (possibly
as large as Q(n)).

In order to obtain a time-optimal algorithm, the Controlled-GHS algorithm controls
the growth of the diameter of the MST fragments during merging. This is achieved by
computing, in each phase, a maximal matching on the fragment forest with additional edges
being carefully chosen to ensure enough fragments merge together, and merging fragments
accordingly. Each phase essentially reduces the number of fragments by a factor of two, while
not increasing the diameter of any fragment by more than a factor of two. Since the number
of phases of Controlled-GHS is capped at max{[log, /1], [logy D']}, it produces at most
min{y/n,n/D’} fragments, each of which has diameter O(D’ + y/n). These are called base
fragments. Controlled-GHS up to phase max{[log, /1|, [log, D]} can be implemented
using O(m) messages in O(D’ + y/n) rounds in a synchronous network.

Stage II executes the Controlled-GHS algorithm in an asynchronous network. We
postpone the discussion of the technical details involved in efficiently implementing the
asynchronous algorithm to Section 3.2. The main challenge, however, is that the synchronous
version heavily relies on the phases being synchronized. Here, we cannot naively use
a synchronizer (such as «) for synchronization, as it would have increased the message
complexity substantially. Instead we use a light-weight synchronization that incurs only
O(m) overhead in messages.

Finally, we ensure that all nodes know the exact number of fragments that were constructed
at the end of this phase. The root of each fragment T calculates the number of nodes present
in T and forms a tuple consisting of this value and the ID of T'. Subsequently, each fragment
root participates in the upcast of its tuple in the low diameter spanning tree 7 on G’. All
tuples are accumulated at £ in O(min{+/n,n/D’}+ D’) time and O(n) messages. £ continues
to listen for messages until the total number of nodes in all fragments it has heard from
is equal to n, i.e., all fragments have been heard from. Now L broadcasts the number of
fragments over T to all nodes in the graph in O(D’) time and O(n) messages.

Stage Ill: Merging the Remaining Fragments. This stage completes the fragment merging
process. However, the merging is done in a “soft” manner. The at most min{+/n,n/D’} base
fragments (constructed at the end of Stage II) are still retained, but each base fragments
takes on an additional ID—a cluster ID, initially set to the base fragment ID. (A cluster is a
collection of base fragments; at the beginning of this stage, each base fragment forms its own
cluster.) Each base fragment finds an MOE to a different cluster, if such an MOE exists,
and merging consists of base fragments modifying their associated cluster IDs and marking
the corresponding MOE connecting clusters. All nodes participate in a simple upcast over
T, where the root of each base fragment is responsible to send up a tuple consisting of its
fragment & cluster IDs, a possible MOE and the associated fragment & cluster IDs the MOE
leads to.” Tt is similar to the approach of [18, 47], which uses a BFS tree to upcast these
values to the root of tree; here, instead of BFS, we use the low-diameter spanning tree of

7 It is required that each base fragment’s root sends up this tuple even if it does not have an MOE (in
which case the tuple only has info on the fragment ID and cluster ID of the base fragment). This is to
ensure that the nodes detect termination as the root of 7, £, already knows the fragment and cluster
IDs of the base fragments so it knows how many such messages to wait for.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

Section 2. Subsequently, the root calculates the appropriate MOEs (and the fragments they
connect and the clusters they lead to) for each cluster and downcast these values. Each
fragment then performs a broadcast of its (possibly new) cluster ID over the fragment tree
(to all nodes within the fragment). This process is repeated for O(logn) phases until only
one cluster remains, which represents the MST of the original graph.

Let us examine each phase i in more detail. Each base fragment finds its respective
MOE, if any, and sends it to £ via an upcast.® All fragment leaders can find their MOEs
in O(D’ + v/n) time and O(m) messages. Upcasting these values to £ using tree 7 takes
O(min{+/n,n/D'} + D') time and O(n) messages. L locally computes the overall MOEs of
the (soft-merged) base fragments and then merges them (locally). Subsequently, all nodes
of T participate in a downcast of these MOEs and modified cluster IDs (that £ previously
calculated) in O(D’+ +/n) time and O(n) messages. Each base fragment performs a broadcast
of its (possibly new) cluster ID to all nodes in its base fragment utilizing the base fragment
tree. For all base fragments to do this, it takes a total of O(D’ ++/n) time and O(n) messages.

3.2 Detailed Algorithm Description

We now look at each stage in more detail.

Stage I. In this stage, the nodes first run Procedure LE on G to elect a unique leader £ with
high probability. As a side benefit, the procedure also wakes up all nodes. Next, the nodes
participate in Procedure ST-Cons(e) to construct an O(D'*¢) diameter spanning tree 7 of
G with £ as its root. Subsequently, all nodes participate in Procedure Diam-Calc so that £
is now aware of the diameter D’ of 7. Finally, all nodes participate in Frag-Bcast over T
to transmit this information of D’ to all nodes in the graph. (Procedures LE, Diam-Calc
and Frag-Bcast are described in Appendix A.)

Stage Il. In this stage, the nodes execute an asynchronous version of the Controlled-GHS
algorithm [23, 47, 49]. Let us first recall the original (synchronous) Controlled-GHS
algorithm. This algorithm merges fragments (subtrees of the MST) in phases, similarly to
GHS. However, it guarantees two additional properties to hold at the end of each phase
i (a) there are at most n/2' fragments, and (b) each fragment has diameter O(2%). These
guarantees are ensured through two measures. First, at the beginning of phase 4, only
fragments with diameter < 2° will participate in this phase and find MOEs. Second, in a
phase i, consider the fragment graph whose “nodes” are the fragments (including those that
do not participate) and whose edges are all the MOEs found. The algorithm first performs a
maximal matching on this fragment graph and removes from the fragment graph edges that
do not participate in this matching. Then, those fragments who participate in this phase
and remain unmatched add their MOEs back to the fragment graph. Connected components
of fragments in this final fragment graph then merge together. The algorithm is run from
phase i = 0 to phase i = max{[log, v/n], [log, D']}. Due to a lack of space, the details of
the adaptation of the Controlled-GHS algorithm to the asynchronous setting can be found
in the full version of the paper.

8 Note that as the algorithm progresses, two adjacent base fragments may belong to the same overall
cluster, possibly resulting in one of those base fragments having no MOE to a different cluster.

19:13

DISC 2022

19:14

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

After completing the last phase of the above process, we are almost ready to move to
stage III of the algorithm.® Some final cleanup is first needed. We need two things in order
to ensure our subsequent upcasts and downcasts over 7 have termination detection: (i) £
needs to be made aware of how many base fragments are present and their IDs and (ii) each
node in 7 needs routing information related to any fragment roots located in the subtree
rooted at that node in 7.1°

We need each fragment F' to inform L of its existence and fragment ID. Now, the root of
each fragment F', with ID ID g, initiates Tree-Count to determine the number of nodes in
the fragment, sizep. (Procedure Tree-Count is described in Appendix A.) Subsequently, all
nodes in the graph participate in Procedure Upcast over 7 where each base fragment’s root
sends up the tuple (IDp, sizer).!! £ accumulates these messages until Y psizep =n, at
which point £ knows the exact number of base fragments, say NUM-OF-BASE-FRAGMENTS,
and their IDs. Once £ recognizes that it has received all the messages, it initiates a broadcast
of NUM-OF-BASE-FRAGMENTS over 7. Now all nodes are aware of the number of base
fragments.

Stage Ill. In this stage, each node u maintains two sets of variables. One set of variables
relates to the base fragment B node u it belongs to at the end of phase two. These variables
store information about the base fragment such as the base fragment ID ID g, u’s parents in
B, and u’s children in B. The second set of variables relates to what we term a cluster, a
connected subgraph in H consisting of base fragments and MOEs between them, and they
store information that includes a cluster ID and cluster edges. Each node belonging to base
fragment B initially sets its cluster ID CLUSTER-ID g to be the same as its base fragment ID.
Each node u also stores a set of cluster edges adjacent to it in the set CLUSTER-EDGES,,,
which is initially empty. Edges are added to CLUSTER-EDGES,, in the course of stage III.
At the end of stage III, for a given node u, the set of edges in the MST is the union of the
set of edges in CLUSTER-EDGES,, and its children and parent in B. Node £ maintains, in
addition, information on the supergraph H formed by the base fragments (including the
updated cluster IDs of those base fragments) and any MOE edges that £ computes in the
phases of stage III, to be described below.

In stage I1I, each node participates in the following process for [log, n| phases until it
terminates. Once again, nodes use a [-synchronizer over 7 to keep track of the phase number
in stage III. In each phase, each base fragment B with root Rpg, fragment ID IDp, and
cluster ID CLUSTER-ID g runs Procedure Find-MOE to find its minimum outgoing edge,
say MOE-VALUEg, to a node with a different cluster 1D, if there is any. All nodes in the
graph then participate in Procedure Upcast over T to send informatino on the fragments up
to L. Specifically, each base fragment B’s root sends up the tuple consisting of information
on B as well as the computed MOE, if any.

Once L receives this tuple from all base fragments, it locally computes the MOE edges
for each cluster in the supergraph H. Recall that a cluster is a connected subgraph of base
fragments in 4. Thus, the MOE from a cluster is really an MOE from one of the base

9 As we use a [B-synchronizer to keep track of which phase a node is in, it is possible to know when
max{[log, v/n], [logy D]} phases are over.
Consider a node u and let node v be the root of a fragment located in the subtree rooted at w in 7. We
say node u has routing information on v when u knows which of its children in 7 to send a message
destined for v

1t is important to note that during Procedure Upcast, each node u in 7 learns about which of its
children in 7 lead to which fragment roots. In other words, u learns routing information related to any
fragments roots located in the subtree in 7 rooted at u, satisfying our second requirement from the
previous paragraph.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

fragments that constitutes it. Define FINAL-MOE-VALUEg as the MOE, if any, for base
fragment B. For each base fragment B, £ computes its new cluster ID CLUSTER-IDp (if
multiple clusters merge, the smallest cluster ID becomes the ID of the new merged cluster),
and its FINAL-MOE-VALUE s (if the original value of FINAL-MOE-VALUE; broadcast by B
was selected as a new edge in H, FINAL-MOE-VALUE3 is set to MOE-VALUEg, else it is set
to a null value).

All nodes participate in Procedure Downcast so that £ may inform each base fragment’s
root about its possibly new cluster ID and MOE edge. (Procedure Downcast is described
in Appendix A.) Subsequently each base fragment participates in Procedure Frag-Bcast to
send these values to all nodes in the fragment. Each node updates its cluster ID if needed. If
there is information on a new MOE edge out of one of the nodes u, then u adds this edge to
CLUSTER-EDGES,,. Once the final phase of stage III is complete, all nodes terminate the
algorithm.

4 Analysis of the MST Algorithm

We argue that Algorithm Sing-MST correctly outputs the MST with high probability and
subsequently analyze its running time and message complexity.

It is easy to see that the algorithm faithfully simulates Controlled-GHS in the asyn-
chronous setting. Recall that Controlled-GHS requires us to maintain two properties in
each phase of the algorithm: (i) at the end of phase 4, there are at most n/2 fragments
and (ii) at the end of phase i, each fragment has diameter O(2¢). Since the algorithm
faithfully simulates Controlled-GHS, it follows from the analysis of Controlled-GHS
(see e.g., [18, 47]) that these properties are maintained in stage II. In stage III, they are
also maintained via the “soft merge” process in a way that is time and message efficient.
Note that in stage III, we ensure that those properties hold now on clusters instead of on
fragments. These two properties guarantee that after the algorithm is over, there exists
one cluster such that all nodes belong to the cluster and the only edges in the cluster are
MST edges of the original graph. The high probability guarantee comes from the usage of
(randomized) Procedures LE and ST-Cons.

We now bound the running time and message complexity in each stage of the algorithm.
Due to a lack of space, the proofs of the following lemmas are deferred to the full version.

» Lemma 6. Stage I of Algorithm Sing-MST takes O(D'"¢) time with high probability and
O(m) messages with high probability, for any constant € > 0.

» Lemma 7. Stage II takes O(D'*° + \/n) time and O(m) messages.
» Lemma 8. Stage IIT takes O(D't¢ + \/n) time and O(m) messages to complete.

By Lemmas 6, 7, and 8 and our initial discussion about correctness, we get the following
theorem.

» Theorem 9. Algorithm Sing-MST computes the minimum spanning tree of an arbitrary
graph with high probability in the asynchronous KTy CONGEST model in O(D'*e + \/n)
time with high probability and O(m) messages with high probability. Furthermore, nodes know
their edges in the MST and terminate when the algorithm is over.

As a consequence of the above theorem and a theorem due to Mashregi and King [44,
Theorem 1.2] we also get the following result in the KT} model.

19:15

DISC 2022

19:16

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

» Theorem 10. There is an asynchronous algorithm that computes the minimum spanning
tree of an arbitrary graph with high probability in the asynchronous KTy CONGEST model
in O(D' 4 n'=2%) time and O(n3/?T%) messages for any small constant € > 0 and for any
d €10,0.25].

The above theorem gives the first asynchronous MST algorithm in the KTy CONGEST
model that has sublinear time (for all D = O(n'~¢") for any arbitrarily small constant &’ > 0)
and sublinear messages complexity.

5 Conclusion and Open Problems

Recall that while most of the paper deals with the common K7T{ model, Theorem 10 includes
a contribution also under the KT} model. This model has grown in popularity in recent years
first because one can claim it is a more natural model [8] and second because it allows reducing
the communication to o(m). Initially, it looked as if this reduction carries a significant cost
in time complexity, trading off the attempt to go below Q(n) when the diameter is smaller
[33]. This went against the direction for the KTy model, where algorithms managed to be
efficient both in time complexity and message complexity [18, 47, 28, 26]. Those results,
however, were in the synchronous model. Theorem 10 (together with [44][Theorem 1.2]) is
the first result that approaches optimal time while keeping message complexity o(m). It
would be interesting to see whether this is the best that can be obtained in this direction.
Results showing that other tasks can be obtained with o(m) messages but time efficiently in
KT, would also be interesting.

The asynchronous distributed MST algorithm for KTy presented here continues a long
line of work in distributed MST algorithms. Our algorithm essentially (up to a polylog(n)
factor) matches the respective time and message lower bounds, but for an arbitrarily small
constant factor € in the exponent of D (with respect to time). Yet, several open problems
remain. Is it possible to achieve near singular optimality? That is, can we achieve optimality
within a polylog(n) factor in both time and messages? This seems related to constructing
a O(D) diameter spanning tree in a singularly optimal fashion which is also open. Our
low-diameter spanning tree construction comes close to achieving this, but for a O(D¢) factor
in the diameter and run time. This is also closely related to constructing a BFS (or nearly
BFS) tree in a singularly optimal fashion.

The tools and techniques used in this paper for accomplishing various tasks in a (almost)
singularly optimal fashion in an asynchronous setting can also be useful in solving other
fundamental problems such as shortest paths, minimum cut etc. In particular, the techniques
of this paper can be useful in showing that the partwise aggregation operation of Ghaffari and
Haeupler [25] can be implemented in the asynchronous setting in O(D'*¢ + \/n) and O(m)
messages. This would imply that problems such as exact minimum cut and (1 + €)-single
source shortest path can be solved almost singularly optimally. We will elaborate on these in
more detail in the full version of the paper.

For our singularly optimal algorithms we focused on being (existentially) optimal in
time with respect to parameters n and D (i.e., with respect to the (D + y/n) bound). An
interesting direction of future work is obtaining asynchronous algorithms that are “universally
optimal” (Haeupler, Wajc, and Zuzic [32]) (with respect to time) and also optimal with
respect to messages.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

—— References

1

10

11

12

13

14

15

16

17

18

19

Yehuda Afek and Eli Gafni. Time and message bounds for election in synchronous and
asynchronous complete networks. SICOMP, 20(2):376-394, 1991.

Yehuda Afek and Yossi Matias. Elections in anonymous networks. Information and Computa-
tion, 113(2):312-330, 1994.

John Augustine, Seth Gilbert, Fabian Kuhn, Peter Robinson, and Suman Sourav. Latency,
capacity, and distributed minimum spanning tree. In 2020 IEEFE 40th International Conference
on Distributed Computing Systems (ICDCS), pages 157-167. IEEE, 2020.

Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),
32(4):804-823, 1985.

Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems. In Proceedings of the 19th ACM Symposium on Theory
of Computing (STOC), pages 230-240, 1987.

Baruch Awerbuch. Distributed shortest paths algorithms (extended abstract). In Proceedings
of the twenty-first annual ACM symposium on Theory of computing, pages 490-500, 1989.
Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. J. ACM, 37:238-256, 1990.

Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. Journal of the ACM (JACM), 37(2):238—
256, 1990.

Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead.
In 81st Annual Symposium on Foundations of Computer Science (FOCS), pages 514-522,
1990.

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
The energy complexity of broadcast. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’18, pages 95-104, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3212734.3212774.

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie. The energy complexity of
bfs in radio networks. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, PODC 20, pages 273-282, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3382734.3405713.

Yogen K Dalal. A Distributed Algorithm for Constructing Minimal Spanning Trees in Computer-
Communication Networks. Stanford University, 1976.

Yogen K. Dalal. A distributed algorithm for constructing minimal spanning trees. IEEFE
Trans. Software Eng., 13(3):398-405, 1987.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM J. Comput., 41(5):1235-1265, 2012.

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.
org/gb/knowledge/isbn/item2327542/.

Michael Elkin. A faster distributed protocol for constructing minimum spanning tree. Journal
of Computer and System Sciences, 72(8):1282-1308, 2006.

Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM J. Comput., 36(2):433-456, 2006.
Michael Elkin. A simple deterministic distributed MST algorithm, with near-optimal time and
message complexities. In Proceedings of the 2017 ACM Symposium on Principles of Distributed
Computing (PODC), pages 157163, 2017.

Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum
communication speed up distributed computation? In ACM Symposium on Principles of
Distributed Computing, PODC, pages 166-175. ACM, 2014.

19:17

DISC 2022

https://doi.org/10.1145/3212734.3212774
https://doi.org/10.1145/3382734.3405713
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/

19:18

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Michalis Faloutsos and Mart Molle. A linear-time optimal-message distributed algorithm for
minimum spanning trees. Distributed Computing, 17(2):151-170, 2004.

Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Local mst computation with
short advice. Theory of Computing Systems, 47(4):920-933, 2010.

Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66-77, 1983.

Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J. Comput., 27(1):302-316, 1998.

Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 202-219. STAM, 2016.
Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, MST, and min-cut. In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 202-219, 2016.

Mohsen Ghaffari and Fabian Kuhn. Distributed MST and broadcast with fewer messages,
and faster gossiping. In Proceedings of the 32nd International Symposium on Distributed
Computing (DISC), pages 30:1-30:12, 2018.

Robert Gmyr and Gopal Pandurangan. Time-message trade-offs in distributed algorithms.
In 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA,
USA, October 15-19, 2018, pages 32:1-32:18, 2018.

Robert Gmyr and Gopal Pandurangan. Time-message trade-offs in distributed algorithms. In
Proceedings of the 32nd International Symposium on Distributed Computing (DISC), pages
32:1-32:18, 2018.

Sandeep KS Gupta and Pradip K Srimani. Self-stabilizing multicast protocols for ad hoc
networks. Journal of Parallel and Distributed Computing, 63(1):87-96, 2003.

Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. Round-and message-optimal
distributed graph algorithms. In PODC, pages 119-128, 2018.

Bernhard Haeupler and David Wajc. A faster distributed radio broadcast primitive: Extended
abstract. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 16, pages 361-370, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2933057.2933121.

Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1166-1179. ACM, 2021.

Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
MST in a distributed network with o(m) communication. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing (PODC), pages 71-80, 2015.

Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed MST verification. In
Proc. 28th Symp. on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs,
pages 69-80. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2011.

Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Dis-
tributed Computing, 20(4):253-266, 2007.

Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In Proc.24th ACM
Symp. on Principles of Distributed Computing (PODC), pages 9-18, 2005.

Shay Kutten, William K. Moses Jr., Gopal Pandurangan, and David Peleg. Singularly
near optimal leader election in asynchronous networks. In 85th International Symposium on
Distributed Computing (DISC), pages 27:1-27:18, 2021.

Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the complexity of universal leader election. J. ACM, 62(1), 2015.

Shay Kutten and David Peleg. Fast distributed construction of small k-dominating sets and
applications. J. Algorithms, 28(1):40-66, 1998.

https://doi.org/10.1145/2933057.2933121

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

58

Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput., 35:120-131, 2005.
Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter
graphs. In Proc. 20th ACM Symp. on Principles of Distributed Computing (PODC), pages
63-71, 2001.

Ali Mashreghi and Valerie King. Time-communication trade-offs for minimum spanning tree
construction. In Proceedings of the 18th International Conference on Distributed Computing
and Networking (ICDCN), 2017.

Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous CONGEST model. In 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs,
pages 37:1-37:17, 2018.

Ali Mashreghi and Valerie King. Brief announcement: Faster asynchronous MST and low
diameter tree construction with sublinear communication. In Jukka Suomela, editor, 33rd In-
ternational Symposium on Distributed Computing, DISC 2019, October 14-18, 2019, Budapest,
Hungary, volume 146 of LIPIcs, pages 49:1-49:3, 2019.

Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous CONGEST model. Distributed Computing, pages 1-17, 2021.

Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 13, pages 196—203, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2486159.2486180.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
Symposium on the Theory of Computing (STOC), pages 743-756, 2017.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. The distributed minimum
spanning tree problem. Bulletin of the EATCS, 125, 2018.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal
distributed algorithm for minimum spanning trees. ACM Transactions on Algorithms (TALG),
16(1):1-27, 2019.

David Peleg. Distributed Computing: A Locality Sensitive Approach. STAM, 2000.

David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427-1442,
2000.

Deepak Rohilla, Mahendra Kumar Murmu, and Shashidhar Kulkarni. An efficient distributed
approach to construct a minimum spanning tree in cognitive radio network. In First Interna-
tional Conference on Sustainable Technologies for Computational Intelligence, pages 397-407.
Springer, 2020.

Baruch Schieber and Marc Snir. Calling names on nameless networks. Information and
Computation, 113(1):80-101, 1994.

Adrian Segall. Distributed network protocols. IEEFE transactions on Information Theory,
29(1):23-35, 1983.

Gurdip Singh. Efficient leader election using sense of direction. Distributed Computing,
10(3):159-165, 1997. doi:10.1007/s004460050033.

Philip Spira. Communication complexity of distributed minimum spanning tree algorithms. In
Proceedings of the second Berkeley conference on distributed data management and computer
networks, 1977.

Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983.

Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

19:19

DISC 2022

https://doi.org/10.1145/2486159.2486180
https://doi.org/10.1007/s004460050033

19:20

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

A Toolbox

In this section, we present several procedures that are used as blackboxes in the current
paper. As these procedures are either from other papers or minor variations of those in other
papers, we merely mention what they do and their guarantees here.

Synchronization

Synchronizers are mechanisms that allow nodes to run synchronous algorithms in an asyn-
chronous network with some overhead, either in time or messages.

a-synchronizer. An alpha-synchronizer, presented by Awerbuch [4], is a well known mech-
anism for nodes to run synchronous algorithms in an asynchronous network in the same
running time (with a diameter overhead to time) while suffering a message overhead equiv-
alent to the product of the run time of the synchronous algorithm and O(m). Informally,
when simulating some synchronous algorithm Alg, each node v sends a “pulse” message to all
its neighbors after all of v’s messages in the current round of Alg were acknowledged. Thus,
v’s neighbors can keep track of which pulse, or “clock tick”, v has simulated. Additionally,
note that it takes O(D) time to initialize the a-synchronizer. A good description appears
also in [50]. We know the following about an a-synchronizer.

» Lemma 11 (Adapted from [50]). Consider a graph G with n nodes, m edges, and diameter
D in an asynchronous setting. The nodes of the graph may simulate a synchronous algorithm
that takes O(T) rounds and O(M) messages in the synchronous setting by utilizing an o-
synchronizer. The resulting simulated algorithm takes O(T + D) time and O(M + Tm)
messages and has termination detection.

B-synchronizer. A S-synchronizer is another type of synchronizer that reduces the message
overhead at the expense of time. An assumption is made that there exists a spanning tree
T, rooted at some node L, of depth d overlaid on top of the original graph and that each
node knows its parent and children in the tree, if any. Now, as with the a-synchronizer, a
synchronous algorithm that takes O(T) rounds and O(M) messages may be simulated in an
asychronous network with the help of pulses. However, here each node sends a pulse to its
parent once the current round is done and it has received pulses from each of its children in
the tree. Once the root receives the pulse and finishes the current round, it broadcasts a
message to move to the next round along the tree. The resulting simulated algorithm takes
O(T - d) time and O(M + T'n) messages.

» Lemma 12 (Adapted from [50]). Consider a graph G with n nodes in an asynchronous
setting. Assume that there exists a rooted spanning tree T of depth d overlaid on G such
that each node knows its parent and children, if any, in the tree. The nodes of the graph
may simulate a synchronous algorithm that takes O(T) rounds and O(M) messages in the
synchronous setting by utilizing a B-synchronizer over T. The resulting simulated algorithm
takes O(T - d) time and O(M + Tn) messages and has termination detection.

Notice that both a- and S-synchronizers can be used by nodes to enact a type of global
round counter up to any number that can be encoded using O(logn) bits.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

Leader Election

We make use of the leader election procedure, call it Procedure LE, of Kutten et al. [37]
to elect a leader with high probability. Adapting Theorem 11 to this setting, we have the
following lemma. Note that in the course of the procedure, all nodes are woken up but such
information was not mentioned in the theorem statement in [37], so we add it here.

» Lemma 13 (Theorem 11 in [37]). Procedure LE solves leader election with termination
detection with high probability in any arbitrary graph with n nodes, m edges, and diameter D
in O(D + log?n) time with high probability using O(mlog?® n) messages with high probability
in an asynchronous system with adversarial node wake-up. At the end of the procedure, all
nodes are awake.

Operations on a Fragment

In the course of our algorithm, we reach a situation where the graph G is partitioned into a
set of disjoint trees (called fragments), each with a distinct root, an associated fragment ID,
and an associated cluster ID (which may be different from its fragment ID). Each node knows
its parent and children in the fragment, if any. We now describe some common operations
that are to be performed on such trees.

Consider a tree T spanning a subset of the nodes of G, oriented towards a distinct root
R. Let the tree have fragment ID F', known to all nodes in 7. Furthermore, all nodes of
T have the same cluster ID, say C, which may or may not be equal to F. Let size(T) and
depth(T) denote the number of vertices and the depth of T', respectively.

Broadcast on a Fragment. Suppose a message M, originating at the root R, must be
distributed to all nodes of the tree. Procedure Frag-Bcast performs this operation in a
straightforward manner. The root R sends M to all its neighbors. Intermediate nodes
receiving M on some round forward it to all their children in 7" in the next round.

To ensure termination detection, the procedure then performs a convergecast of acknowl-
edgements on T as follows. Each leaf, upon receiving M, sends back an “ack” message. Each
intermediate node waits until it receives an “ack” from all its children, and then sends an
“ack” to its parent. The operation terminates once the root receives an “ack” from all its
children.

» Lemma 14. Procedure Frag-Bcast, run by nodes in the tree T, performs broadcast of a
message originating at the root of T with termination detection in O(depth(T)) time and
O(size(T')) messages.

Upcast on a Fragment. Suppose m distinct and uncombinable messages, originating at
arbitrary locations in the tree, must be gathered to the root R. Procedure Upcast performs
this operation in a straightforward manner. Each node in the tree pipelines the messages it
has seen upwards in the tree (towards R), in some arbitrary order.

We assume that R knows the number m of such messages it expects to receive and ensure
this is true everywhere the procedure is called. Thus, R knows when it has received all m
messages. To ensure termination detection, the procedure then performs Frag-Bcast.

» Lemma 15. Procedure Upcast, run by nodes in the tree T, performs upcasting of m
distinct messages with termination detection in O(m + depth(T')) time and O(m - depth(T))
messages.

19:21

DISC 2022

19:22

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Downcast on a Fragment. Suppose m distinct and uncombinable messages My, ..., My,
originating at the root R, must be distributed to arbitrary destinations ws,...,w,, in the
tree, respectively. Procedure Downcast performs this operation in a straightforward manner.
In each round 4, R sends the pair (M;, w;) to its neighbor on the unique R-w; path in T.
Intermediate nodes receiving a pair (M;,w;) on some round forward it towards w; in the
next round. (Note that tie-breaking is not required.)

To ensure termination detection, the procedure then performs a convergecast of acknowl-
edgements, backtracking on the subtree 7’ marked by the downcast messages; namely, each
intermediate node that received ¢ messages from its parent and forwarded ¢; messages to its
child z; expects “ack - £;” from z;. After receiving all such “ack” messages from its children,
it sends “ack - £” to its parent. The root detects termination upon receiving “ack” messages
from all relevant children.

» Lemma 16. Procedure Downcast, run by nodes in the tree T', performs downcasting of m
distinct messages with termination detection in O(m + depth(T)) time and O(m - depth(T) +
size(T)) messages.

Finding MOE of a Fragment. Informally, minimum outgoing edge (MOE) out of T is the
least weight edge out of T' to a node with a different cluster ID (i.e, # C). Formally, it is
a tuple (u, v, C,C’) such that edge (u,v) is the MOE from T where u € T with cluster ID
C and v ¢ T with cluster ID C’(# C). Note that nodes not belonging to 7" but adjacent
to T may have the same cluster ID C' as the nodes of T', and as such it is possible for T to
not have any MOE. Yet another application of Wave&Echo, taken from the algorithm of
[22], results in R being made aware of the MOE of T if such exists. Let us call this module
procedure Find-MOE.

» Lemma 17. Procedure Find-MOE, when run by the nodes of a tree T with distinct root
R, and cluster ID C, results in R knowing the minimum outgoing edge from T, if one exists,
where only edges to nodes with a cluster ID # C are considered outgoing edges, in O(depth(T))
time and O()_,,cp deg(u)) messages, where depth(T') is the depth of T and deg(u) is the
degree of node u. Furthermore, every node participating in procedure Find-MOE can detect
termination.

Size Calculation of a Fragment. We make use of a known tool (essentially a known
application of Wave&Echo, see PIF in [54]), to be run by the nodes of the tree and result
in R being made aware of how many nodes (including itself) belong to T'. Let us call this
Procedure Tree-Count.

» Observation 18. Procedure Tree-Count, when run by the nodes of a tree T with distinct
root R, results in R knowing the total number of nodes in T in O(depth(T)) time and
O(size(T)) messages, where depth(T) is the depth of T and size(T) is the number of nodes
in T. Furthermore, nodes participating in procedure Tree-Count can detect termination.

Diameter Calculation of a Fragment. Another known application of Wave&Echo allows R
to calculate the diameter of the tree T, let us call that Procedure Diam-Calc.

» Observation 19. Procedure Diam-Calc, when run by the nodes of a tree T with distinct
root R, results in R knowing the diameter of T in O(depth(T)) time and O(size(T)) messages,
where depth(T) is the depth of T and size(T) is the number of nodes in T. Furthermore,
nodes participating in procedure Diam-Calc can detect termination.

F. Dufoulon, S. Kutten, W. K. Moses Jr., G. Pandurangan, and D. Peleg

B Low Diameter Spanning Tree - Relegated Proofs

We first provide definitions and an auxiliary lemma (see Lemma 20) followed by proofs of
Lemmas 1 and 2, stated in Section 2.1. After which, we provide the proofs of Lemma 4 and
Corollary 5, stated in Section 2.2.

Consider some fixed execution of the algorithm and node v € V. Then D, = S, +
dist(u,v) — 1 = Sz — | 0] + dist(u,v) — 1 denotes the (arrival) round of u, that is, the
first round in which v can receive a message from u’s cluster. For every integer 1 < j < n,
let z; be the node with the jth smallest arrival round in the execution. For every integer

1<k<n,let Sg ={z,...,2,}. Building upon these definitions, for a node v € V, positive
integers 1 < k,r < n, let &, ., denote the event that after the execution of the algorithm,
DZ,CJr1 - D, <r.

» Lemma 20. For any node v € V and positive integers 1 < k,r < n,

Pr(€ykr) < (1 —exp(—(r+ 1)3))k

Proof. We condition on Sy and D* =D, .
upper bound on the probability of &, j , conditioned on S, and D*, and then applying the

The proof is based on first showing the stated

law of total probability to derive the lemma statement. We next describe the first half of the
proof in more detail.
For any integer i > 1, let ¢, = 0pmas + dist(z;,v) — 1. We have Pr(E, ., | Sk, D*) < p for

k k k
p = Pr </\[D* - D, <’I‘]> = Pr (/\[JZZ <r+1l+ec, —Dﬂ) = HPr((Szi <r+l4c.;,—D"),

=1 =1 1=1
where the last equality holds since the random variables §,, are independent. Next, note
that D* > D, for any integer 1 < ¢ < k, and thus Pr([d,,] > ¢,; — D*) = 1. Hence,
Pr(d,, > ¢, — D*) =1 and

k
p = HPr(ézi <r+4+14c¢,, —D*|6, >c,, —D").
i=1

Finally,
k k
p < [[Pr(6., <r+1) = [—exp(=(r+1)8)) = (1 —exp(—(r+1)B))*
i=1 i=1
where the inequality holds by the memorylessness of the exponential distribution. |

Proof of Lemma 1. We first note for any node v € V, Pr[|8,]| > Smaz] = Pr[d, > %] =
exp(—2Inn) = ;. Hence, by union bound, [§,] < 6qs for every node v € V with high
probability. We hereafter exclude this unlikely event and assume 6,0, > max, -{[d,]}-
This implies that all nodes belong to a cluster.

Next, note that by the algorithm description, each cluster is spanned by a tree of depth
at most 21% Hence, all clusters have strong diameter at most 182 Finally, an edge is cut
if its two endpoints u and v are in different clusters. This implies that for node v (without
loss of generality), the two smallest arrival rounds differ by at most 1, which corresponds to
event £, 1,1. By Lemma 20, Pr(&,1,1) < (1 —exp(—28)) < 23. The lemma follows. <

Proof of Lemma 2. Again, we assume 0,4, > max, 7{0, }, which holds with high proba-
bility. For any node v € V, let C, denote the cluster containing v after the execution of the
algorithm.

19:23

DISC 2022

19:24

An Almost Singularly Optimal Asynchronous Distributed MST Algorithm

Consider any two nodes u,v € V such that | = distz(u,v) > 38D. (Note that if | < 33D,
then distg-(Cy,Cy) < 38D.) Let (wi,...,wi41) be the shortest path between u and v
in G (where w; = w and w41 = v). Moreover, for any integer ¢ € [1,1], let X; be the
indicator random variable of w; and w;; being in the same cluster. Then, the random
variable X = 2221 X; is an upper bound on distg+(Cy,C,). By Lemma 1, each edge is
an inter-cluster edge with probability at most 2. Hence, by the linearity of expectation,
E[X] < 2p1.

Next, let us provide a concentration bound for X by showing that the random variables X;
are only locally dependent. First, for any two integers 4, j € [1,!] such that |i — j| > L4h‘7”j,
X, and X are independent (since the same node cannot affect w; and w; with our choice of
dmaz)- Then, we can color the random variables {X;};=1, . ; using x = L4IHTHJ — by coloring
X; with ¢ mod (x 4 1) — such that variables with the same color are independent. In other
words, the random variables X; are only locally dependent and thus we can apply a specific
Chernoff-Hoeffding bound (Theorem 3.2 from [15]): Pr(X > E[X] +t) < exp(—2t%/(x - 1)).
Hence, Pr(X > 381) < exp(—2(81)?/(x - 1)) < exp(—23%/x). Since | > 33D > Sklr;;”,
Pr(X > 3pl) < exp(—3kInn) < . By taking a union bound over all n? possible pairs of
nodes u,v € V, the lemma statement follows. |

Proof of Lemma 4. By induction on i. The base case, i = 1, holds trivially.

Next, consider some i > 1 for which the inductive hypothesis holds, i.e., diam(G;_1) =
max{(Sﬁ)i_lD,O(logH‘l/sl n)} w.h.p. and each cluster node C of the partition P;_; is
spanned (in the original graph G) by a tree T'(C) with diam(T(C)) = (51%)"_1. Running
Procedure MPX on G;_; yields a (24, 41;") low-diameter decomposition of G;_;. In fact,
each super cluster C’ of this decomposition on G;_; is spanned (in the cluster graph G;_;)
by a tree T (C") of diameter dlnn - Hence, the “combined” spanning tree computed by
Procedure Transform for the “analog” C” of cluster C’ on G, which is a cluster of the
newly constructed G;, has diameter diam(T(C")) = (% +1)- (51%)1'_1 < (51%)1 Next,
the diameter of G; is the same as that of the cluster graph H induced by partition P;. By
Lemma 2, the diameter of H is max{(33)'D, O(log2+4/€l n)} w.h.p., and thus the lemma
statement holds. <

Proof of Corollary 5. By Lemma 4 (and applying one extra induction step), the diameter
of Gy, is Dy = max{(38)™ D, 0(log®* "¢ n)} and each cluster C' of the partition P;, is
spanned in G by a tree T(C) of depth ,df = (51%)"’". Since i,, = [log; (35 D], we have
that (38)'= < 1/D, so Dy = O(log?*/¢" n). Moreover, by going through the computations,
we get:

’ , InD1 1 1+1/¢’
df = exp(im 1n(51n1+1/5 n)) < (5lnl+1/E n) exp (nDIn(5In n)

In($ In'/%" n)

/
— BV) exp (lnD- In5+ (1+1/¢)lnlnn>

élnlnn —In3

_ (5ln1+1/5/ n) exp (lnD' (1+ 1n5+1n3—|—ln1nn>>

élnlnn—lni&

< 6"V p)exp(In D - (1426 In15)) < (5In'+Y/< n) Dlte |

where, in order to make the last inequality hold, Procedure ST-Cons(e) selects &/ <
e/(2In15). <

	1 Introduction
	1.1 Background and Motivation
	1.2 The Distributed Computing Model
	1.3 Our Contributions
	1.4 Additional Related Work

	2 Low Diameter Spanning Tree Algorithm
	2.1 Randomized Low Diameter Decomposition (MPX)
	2.2 Rooted Spanning Tree

	3 The Asynchronous MST Algorithm
	3.1 High-level Overview of the Algorithm
	3.2 Detailed Algorithm Description

	4 Analysis of the MST Algorithm
	5 Conclusion and Open Problems
	A Toolbox
	B Low Diameter Spanning Tree - Relegated Proofs

