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Abstract

We introduce FaJITa: a translation validation tool for veri-
fying semantic equivalence after optimizations. FaJITa com-
bines symbolic execution with more traditional static analy-
sis techniques to verify functions which have passed through
Firefox’s optimizing JIT compiler. We are able to verify prac-
tically all JavaScript functions, without having to resort to
dynamic techniques or branch pruning to decrease the state
space. We additionally develop a fuzzing infrastructure to
look for bugs in the Firefox JIT, as well as debugging tools
for distinguishing true bugs from false positives.
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1 Introduction

Modern web browsers are among the most widely-used and
security-critical pieces of software today. Browsers must ac-
cept arbitrary JavaScript code from untrusted sources, then
compile and run it in a safe way, all while maintaining com-
petitive performance in the rapidly-evolving race between
the major vendors. The JavaScript engines which power
these browsers are one of the main sources of complexity,
involving several different interpreters and compilers which
make tradeoffs between startup time and execution time of
the code. A bug in any part of this engine can lead to an
exploit [3] compromising the user’s system. Despite the sig-
nificant efforts from vendors to design secure browsers, new
bugs are still regularly found [1, 4].

One of the common places in the engine that exploit bugs
are found is optimization passes[5]. A bug in an optimization
pass can remove an array bounds check, or try to access
fields of an object which no longer exist, resulting in an out
of bounds read or write. Although there has been significant
success using fuzzing to find bugs [2], these efforts have
focused on coverage of the entire engine. This casts a very
wide net for testing possible sources of bugs, but doesn’t look
over any particular part in very fine detail. To this end, we

develop FaJITa, a translation validation tool which can verify
optimizations have been correctly performed for particular
programs. This tool, in conjunction with targeted fuzzing
techniques, allows us to target a specific and dangerous part
of the engine, very precisely.

2 Design

FaJITa’s translation validation operates on Firefox’s MIR
(Middle-level Intermediate Representation). MIR is a lan-
guage which mixes the high-level operations of JavaScript
programs with lower-level engine implementation details.
MIR programs represent JavaScript functions, and are IR
most optimizations are performed.

FaJITa accepts as input 2 MIR programs which represent
the same JavaScript function before and after any number of
optimizations. It will then analyze the programs to ensure all
observable effects are the same in both versions. If FaJITa’s
analysis decides the two versions will always have the same
behavior, it declares them equivalent.

At its core, FaJITa is a symbolic execution tool. Thus, its
analysis operates on all possible inputs to the functions, and
all possible memory states. It will then symbolically execute
the program, and ensure the following effect are equivalent
in all possible executions:

input object mutations

output values

global object mutations

state updates (e.g. engine calls)

Critically, FaJITa is able to verify nearly all JavaScript-compiled
MIR programs without having to mix dynamic analysis, or
add limitations to control flow constructs. This is thanks to
several analysis simplifications we were able to make.

2.1 Analysis

Only model a subset of the MIR semantics. Tradition-
ally, if symbolic execution tools want to be fully-precise in
their analysis, they must completely model the semantics
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of their target language. However, we don’t care about the
exact behavior of any single program; we only care about
the difference in behavior between 2 programs. Thus, we
can approximate almost all MIR operations as uninterpreted
functions, and only fully implement the subset of the seman-
tics the optimizations can reason about.

For example, suppose the compiler decides to move a vari-
able declaration out of a loop. In this case, we don’t care
the specific semantics of the operation, so long as the same
operation is performed in both versions of the program. Note
that this isn’t true for side effecting operations (where the
order operations are performed matters), so we must add ad-
ditional semantics for those. This code motion optimization
is in contrast to something like constant folding, where — in
order to verify the optimization is correct — we must specify
the full semantics for arithmetic operations.

Analyze loops independently. One of the traditional stick-
ing points with symbolic execution is unbounded loops.
These are difficult for tools to reason about because each time
a loop executes, another possible symbol branch is added to
the execution trace. We again get to make a nice simplifica-
tion here, because we only want to understand when two
programs might have divergent behavior.

Instead of modelling all possible branches in a loop, we
only check that the behavior of both loops is the same, as well
as that the branch conditions are equivalent. We recursively
check nested loops, and allow for loop-invariant code-motion
thanks to an additional analysis we omit here.

Mix symbolic execution with traditional static analysis.
Even with these simplifications, doing full symbolic execu-
tion on MIR programs proved infeasible due to their size,
and the complex memory model used in JavaScript engines.

An object in Firefox is primarily comprised of its slots (the
list of values the object contains), and its shape (the mapping
from field names to indices in the object’s slots). This layout
adds several layers of symbolic indirection between look-
ing up a field of an object, and getting the corresponding
value, and slowed down the symbolic execution engine’s
underlying SMT solver to a standstill.

Rather than try to do this analysis entirely symbolically
though, we were able to take advantage of the structure of
MIR programs to track an object’s shape statically, that is, in
a separate analysis pass instead of in the SMT solver. This
optimization removed a layer of symbolic indirection from
the engine, and made verification feasible. There were several
other parts of the analysis we tracked statically rather than
symbolically, including several instances of type information,
global variable locations, live objects, and function calls.

2.2 Engine complications

Our analysis was further complicated by several complica-
tions created by JavaScript and the JIT. One of the key fea-
tures of modern JavaScript JITs that makes them so fast, is

that programs can have speculative optimizations performed
on them. Speculative optimizations are optimizations done
under certain assumptions about the types or values of pa-
rameters to future calls of a function.

For instance, if the compiler notices that a function is
always called with a string as input, it can specialize the
operations in that function to always be string operations,
rather than having to look up the more general version every
time. This comes with a caveat: functions that have had spec-
ulative optimizations performed on them must dynamically
check to ensure the assumptions they made still hold. If the
compiler performs this string optimization, but forgets to
check that the parameter is a string every time, suddenly
the function can be called with a non-string parameter, and
the behavior can change. To address this, FaJITa verifies the
subset of inputs to the program that the program is special-
ized for, but only if the check exists. If the check is missing,
FaJITa will notice that the behavior diverges, and properly
mark the 2 MIR programs as not equivalent.

There were additional complications imposed by the en-
gine thanks to features like garbage collection, the details of
which we omit here.

3 Evaluation

We see FaJITa as being useful in two ways:

e as a verification tool for verifying optimizations have
been performed correctly

e as a bug-finding tool to be used in conjunction with
fuzzers.

In both cases, the tool is most useful with a low false
positive and false negative rate. To assess the false positive
rate, we ran FaJITa on a combination of fuzzing programs,
hand-written tests, and Firefox’s JavaScript test suite. Across
more than 150,000 JavaScript programs, we have about a
0.01% false positive rate. It is more difficult to assess the false
negative rate, because there is no ground truth. To check this
as best we could, we hand-crafted pairs of MIR programs
that had different behavior in subtle ways, and recreated
previous bugs in optimizations passes, all of which FaJITa is
able to catch.

For verification, FaJITa takes advantage of a framework
we previously developed, which allows it to get access to
MIR programs while the engine is running. We can then
run verification on a separate thread whenever the engine
doesn’t need the resources.

For bug-finding, we are currently running FaJITa in con-
junction with Fuzzilli [2] to generate JavaScript programs.
We are additionally experimenting with using heuristic gleaned
from running FaJITa to guide Fuzzilli toward JavaScript pro-
grams we believe will be more likely to expose bugs in the
engine.
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