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Abstract

We propose a sampling algorithm that achieves superior complexity bounds in all the classical settings
(strongly log-concave, log-concave, Logarithmic-Sobolev inequality (LSI), Poincaré inequality)
as well as more general settings with semi-smooth or composite potentials. Our algorithm is
based on the proximal sampler introduced in Lee et al. (2021). The performance of this proximal
sampler is determined by that of the restricted Gaussian oracle (RGO), a key step in the proximal
sampler. The main contribution of this work is an inexact realization of RGO based on approximate
rejection sampling. To bound the inexactness of RGO, we establish a new concentration inequality
for semi-smooth functions over Gaussian distributions, extending the well-known concentration
inequality for Lipschitz functions. Applying our RGO implementation to the proximal sampler,
we achieve state-of-the-art complexity bounds in almost all settings. For instance, for strongly
log-concave distributions, our method has complexity bound (’)(/@'dl/ 2) without warm start, better
than the minimax bound for MALA. For distributions satisfying the LSI, our bound is @(kdl/ 2)
where £ is the ratio between smoothness and the LSI constant, better than all existing bounds.

Keywords: Sampling, MCMC, non-asymptotic analysis, concentration inequality, proximal algo-
rithm, semi-smooth functions

1. Introduction

The task of sampling from a target distribution v oc exp(—f) on R¢ plays an instrumental role
in Bayesian inference (Ghosal and Van der Vaart, 2017), scientific computing (Pulido and van
Leeuwen, 2019), and machine learning (Murphy, 2012; Liu and Wang, 2016; Fan et al., 2021).
Myriad works have been devoted to the theoretical analysis of sampling, ranging from the smooth
strongly log-concave setting (Dalalyan, 2017; Vempala and Wibisono, 2019; Durmus et al., 2019)
to non-log-concave (Chewi et al., 2022a) or non-smooth settings (Durmus et al., 2018; Salim and
Richtarik, 2020; Fan et al., 2022).

In this work we make inroads towards better non-asymptotic complexity bound for sampling
by focusing on the proximal sampler (Lee et al., 2021). The proximal sampler is essentially a
Gibbs sampler over an augmented distribution based on the target distribution. The difficulty of
implementing the proximal sampler comes from restricted Gaussian oracle (RGO) — a task of
sampling from exp(—f(-) — %Hx — y||?) for some given step size > 0 and y € R%. Given that
RGO is implementable and exact, the proximal sampler can converge exponentially fast to the target
distribution exponentially under mild assumptions (Lee et al., 2021; Chen et al., 2022). However, the
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total complexity of the algorithm heavily depends on the implementation of RGO. Except for some
special settings (Gopi et al., 2022), the best-known dimension dependence of the proximal sampler is
O(d) (Chen et al., 2022; Liang and Chen, 2022¢). This is worse than the best-known bounds of other
sampling methods such as underdamped Langevin Monte Carlo (ULMC) (Shen and Lee, 2019) or
Metropolis-Adjusted Langevin Algorithm (MALA) (Wu et al., 2021).

In this paper, we aim to improve the dimension dependence of the RGO and thus the proximal
sampler. We first introduce an inexact RGO algorithm based on approximate rejection sampling. The
underpinning of our analysis for this RGO algorithm is a novel Gaussian concentration inequality
for semi-smooth functions, which extends the Gaussian concentration inequality for Lipschitz
functions (Boucheron et al., 2013, Theorem 5.6). Our proof is based on the argument of Maurey and
Pisier. Our RGO algorithm is an inexact algorithm, and the crux is to bound the step size such that
the output of our RGO is close enough to the exact RGO. The RGO step size is then processed to
only depend on the order of the aforementioned concentration inequality.

Contribution First, we propose a novel realization of RGO. Our RGO implementation is inexact but
can achieve a better step size pertaining to the dimension. Next, we prove a Gaussian concentration
inequality for semi-smooth functions, which could be of independent interest. It can recover the order
of the well-known Gaussian concentration inequality for Lipschitz functions. This concentration
inequality is the underpinning of our RGO analysis. Third, we control the accumulated error from
our inexact RGO algorithm in terms of both total variation and Wasserstein metric. This, combined
with the existing proximal sampler convergence results, gives state-of-the-art sampling convergence
results under various conditions (see Table 1). Finally, we extend all the results for semi-smooth
potential (1) to composite potential (4) (see Table 2).

Table 1: Complexity bounds for sampling from semi-smooth potentials satisfying (1). Here
L1, 6, Crst, Cpr, Ma, My denote the smoothness constant, accuracy, LSI constant, Poincaré
inequality constant, second moment, and fourth moment of the target distribution.

Assumption Source Complexity Metric
Chen et al. (2022) O(L1d/p) Rényi
B-strongly Wu et al. (2021) Q(Ll Vd/B) (Warm start) TV
log-concave Shen and Lee (2019) O <(%)7/6(%\/g)1/3 + %(%\/g)%’*) Wo
Proposition 10, 30 O(L1Vd/p) TV/Walx?
- 7
Liang and Chen (2022c¢) O(VMyL5d)d) vV
log-concave — ———
Proposition 11 O(MoLs dat1 /6) TV
Chen et al. (2022) O(Lyd/Cs;) Rényi
log-Sobolev =
Proposition 13, 31 O(Ly \/&/ Cvsi) TV/x?
R
.| Liang and Chen (2022a) O(L&™ d*/Chr) Rényi
Poincaré —— 7
Proposition 14, 31 O(L§ de+1 /Chy) TV/x?
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Related works Our RGO algorithm is inspired by a rejection sampling-based RGO (Gopi et al.,
2022) for distributions with Lipschitz potentials. Compared to their algorithm, we add a linear
function to the potential to have a delicate stationary point, and we simplify the rejection rule
by eliminating part of the randomness. The convergence of the proximal sampler is established
for strongly log-concave distributions in Lee et al. (2021). Chen et al. (2022) then extended the
class of target distributions to a much wilder range, including Poincaré inequality. Some other
works (Liang and Chen, 2022b,c,a; Gopi et al., 2022) consider the convergence under weaker
smoothness conditions, e.g. semi-smooth potential or composite potential. We also mention a
concurrent work (Altschuler and Chewi, 2023) that achieves similar complexity bounds as ours for
smooth potentials with a very different RGO implementation based on MALA and ULMC. Other
than the analysis for the proximal sampler, there exist numerous works for other sampling methods.
To name a few, Wu et al. (2021); Shen and Lee (2019) study strongly-log-concave and smooth
potential, Chewi et al. (2022a); Erdogdu and Hosseinzadeh (2021); Erdogdu et al. (2022) study
the non-log-concave potential, and Nguyen et al. (2021); Durmus et al. (2018, 2019); Salim and
Richtarik (2020); Bernton (2018) study the composite potential. More detailed discussions appear in
§4.

Comparison to the cocurrent work (Altschuler and Chewi, 2023) Algorithm: We both use the
proximal sampler but with different implementations of RGO. Our RGO is based on approximate
rejection sampling and has complexity O(1). In contrast, their RGO is based on MALA with a
ULMC warm start and has complexity (7)(\/&) Our RGO is easier in implementation and parameter
tuning. Results: For log-smooth distribution, we share the same high-accuracy complexity results in
x2. Our results cover the semi-smooth and composite potentials, but they only cover log-smooth
distributions. Thus, our complexity results are more general and include theirs as a special case.
Contributions: The main contribution of our work includes a new RGO implementation and a new
concentration inequality. The main contribution of Altschuler and Chewi (2023) is a warm start
result using ULMC. One disadvantage of our result is that it is not clear how our method can be
used outside the proximal sampler framework, but their warm start method is applicable in various
algorithms.

Table 2: Complexity bounds for sampling from composite potentials satisfying (4).

Assumption Source Complexity Metric
Nguyen et al. 2021) | O(n max{L3, }d/é)max{l/o‘f}/CHmax{l/aj}) KL
log-Sobolev | Liang and Chen (2022a) O, Ll Va/Csy) KL
fee 2 n 1/(a]+1 o /(2(a5+1)) 2
Proposition 19 O (2= La d /ClLst 8%
bo | Liang and Chen (20222) O, L\ Va2 Coy) Rényi
oincaré — - - 1/(%“ e
Proposition 19 @ (Z i L d%i j ) /Chpr TV

Organization The paper is organized as follows. In §2, we review the proximal sampler. We then
introduce our RGO implementation and present the improved dimension dependence of RGO in §3.
We establish the sampling convergence under different conditions in §4. In §5, we extend all the
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analysis (§3-4) for semi-smooth potentials to the composite potentials. We conclude in §6 with a
discussion of future research directions.

2. Background: the proximal sampler

We consider sampling from the distribution v o< exp(— f(x)) where the potential f is bounded from
below and is L -a-semi-smooth, i.e., f satisfies

1 () = f'()]| < Lallu 0], Yu,v € R (D

for L, > 0 and « € [0, 1]. Here f’ represents a subgradient of f. When o > 0, this subgradient can
be replaced by the gradient. The condition (1) implies f is Lj-smooth when o« = 1 and a Lipschitz
function satisfies (1) with o = 0.

Algorithm 1: The proximal Sampler (Lee et al., 2021)

Input: Target distribution exp(—f(z)), step size n > 0, initial point
fort=1,...,Tdo

Sample g1 ~ X (ylz1) o exp(— 2 211 — )
Sample z; ~ 7% (z[y,) oc exp(—f(x) - ﬁ”x —uil?)
end

Return z

The algorithm we adopt is the proximal sampler (or the alternating sampler) proposed by
Lee et al. (2021), shown in Algorithm 1. It is essentially a Gibbs sampling method for the joint

distribution 7XY (2, y) o exp <— f(z) — ﬁ |z — y||2) . The target distribution v is the X -marginal

distribution of 7%Y. The proximal sampler alternates between two sampling steps. The first
one is to sample from the conditional distribution of Y given z;_1; it is a Gaussian distribution
71X (y|lzi_1) = N(2¢_1,nT) and thus trivial to implement. The paramount part of this method is
the second sub-step, which is the restricted Gaussian oracle for f to sample from the conditional
distribution

1Y (alyr) ox exp <—f(x) - ol - yt\lz) ,

which is not always easy to implement. To simplify the notation, we often use 7X " to represent
X |Y(w\y). If line 4 can be implemented exactly, then the proximal sampler is unbiased because the

iterates {(z¢, y¢) }ten form a reversible Markov chain with the stationary distribution 7%

2.1. Convergence of proximal sampler given exact RGO

Next we briefly discuss the convergence property of Algorithm 1. Recall that a probability distribution
v satisfies log-Sobolev inequality (LSI) with constant C g1 > 0 (Cpsi-LSI) if for all smooth functions
u : RY — R, the following holds:

E, [u? log u?] — By [u?] log By [u?] < CLEV[HWHQ]. (LSI)
LSI
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Denote Wasserstein-2 distance as Wa (v, p) := infery,,) [ |z — yl[*dy(z,y), where II(v, p) is
the set of joint distributions of marginal distributions v and p. For a probability measure p < v, we
define the KL divergence H, (u) := [ plog £, and the chi-squared divergence x2(u) := “—: -1

A distribution v satisfies (LSI) implies that it also satisfies Talagrand inequality (Otto and Villani,
2000), i.e., Wa(v, ) < /%Hy(u) for any probability distribution y < v with finite second

moment. A probability distribution v satisfies the Poincaré inequality (PT) with constant Cpy > 0 if
for any smooth bounded function u : R — R, it holds that

1
Var, (u) < C—E[HWHQ]. (PI)
PI
The (LSI) implies the (PI) with the same constant. In the following theorem, we assume zg is
sampled from some initialization distribution .

Theorem 1 (Convergence of proximal sampler (Chen et al., 2022)) Assuming the RGO is exact,
we denote the corresponding iterates yy ~ Y, and xy ~ L.

1) If v is log-concave (i.e. f is convex), H, () < W (uo,v)/(tn);

2) If v satisfies Csi-LSI, H, () < H,(po)/ (1 + Cisin)®;

3) If v satisfies Cpr-PL x2 (1) < x2(po)/(1 + Cprn)?.

Note that if v is S-strongly-log-concave, then v satisfies 3-LSI. So the convergence of strongly-
log-concave v is also implicitly contained in Theorem 1.

2.2. Existing RGO implementations

Except for a few special cases with closed-form realizations (Lee et al., 2021; Mou et al., 2022),
most of the existing implementations of RGO are based on rejection sampling. Denote the function
I = f(z) + ﬁ |z — y||2. I 7% is strongly-log-concave, i.e., f,/ is strongly-convex and smooth,
one can naturally use a Gaussian with variance being the convexity of f,/ and mean being the
minimizer of f, as the proposal distribution. In this case, with the step size n = ©(1/(L1d)), the
expected number of iterations for rejection sampling is O(1) (Liang and Chen, 2022b; Chewi et al.,
2022b). When the potential f is not smooth but Ly-Lipschitz, Liang and Chen (2022b) shows that a
similar proposal gives O(1) complexity for rejection sampling when the step size is 7 = ©(1/(L3d)).
In fact, it can be shown that, at least for quadratic potentials, the dependence = ©(1/d) is inevitable
to ensure O(1) complexity for rejection sampling-based RGO. On the other hand, Gopi et al. (2022)
proposes an approximate rejection sampling scheme for an inexact RGO for Lipschitz f which uses
a larger step size n = O(1/L3) to ensure O(1) complexity of RGO, rendering better dimension
dependence of the proximal sampler. On a different route, one can apply any MCMC algorithm to
implement RGO with dimension-free step size 7, but the complexity of each RGO step is dimension
dependent, thus, the overall complexity of this strategy is not necessarily better (Lee et al., 2021).

3. Improved dimension dependence of RGO for semi-smooth potential

The step size 1 of the proximal sampler is pivotal to the total complexity. As can be seen from
Theorem 1 a larger step size points to a faster convergence rate. However, larger n also means higher
2

complexity for each RGO step. In Liang and Chen (2022a), it is shown that, with n = ©(1 L&),
p y p g n
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it is possible to use rejection sampling to realize RGO with O(1) complexity. In this section, we
2

improve the step size ton = O(1/(L&*" da+t )) while maintaining the same O(1) complexity by
designing a new RGO implementation based on approximate rejection sampling.

Algorithm 2: Approximate rejection sampling implementation of RGO

Input: L,-a-semi-smooth function f(z), step size n > 0, current point y
Compute z,, such that f'(x,) + %(xy —y) = 0. Denote g(z) = f(z) — (f'(xy), z).
repeat
Sample z, z from the distribution ¢(-) o< exp(—% |- —zy|I3)
p = exp(g(z) — g())
Sample v uniformly from [0, 1].
until v < %p;
Return z

Our proposed RGO implementation is in Algorithm 2. This is a variant of Gopi et al. (2022,
Algorithm 2). Compared to Gopi et al. (2022), we eliminate the randomness in the inner loop of
rejection sampling. More importantly, we modify the proposal distribution to ensure that the mean
of the proposal Gaussian distribution ¢ is the same as the stationary point of the function f;/. This
modification is justified by the following lemma. This modification is crucial to control the accuracy
and complexity of our RGO algorithm via concentration inequality as will be seen in Theorem 4.

X|Y(

Lemma 2 Sampling from 7 z|y) o< exp(—f(x) — %Hx — y||?) is equivalent to sampling from

distribution x exp(—g(x) — ﬁHx — zy||?), where g(z) = f(z) — (f'(zy),z) and z, satisfies
F(ay) + Sy —y) =0.

Thanks to Lemma 2, sampling from distribution o< exp(—g(z) — % |z — x,||?) is equivalent
to the original RGO. Note that g(x) shares the same semi-smooth constant as f(x). Algorithm 2
requires the calculation of the stationary point x,, of f(z) + % |z — y||?. This could be challenging
when f is non-convex. In that case, we can get an approximate stationary point instead. We can
control the error introduced by approximate x,, and achieve the same complexity bound; the detailed
discussions are postponed to §D. In the main paper, we assume the stationary point is solved exactly
to make the analysis more comprehensible. To facilitate the analysis of Algorithm 2, we introduce
another threshold p := min(p, 2). As we will see, the acceptance probability in our RGO algorithm
is directly related to p.

Lemma 3 Denote #5VY as the distribution of the output of Algorithm 2. Let ¢ be defined as in
Algorithm 2. Define the random variables p := min (p,2), V = E[p|z], and V := E|[p|z]. Then

dr¥ d¢  exp(—g(z)) _ d¢ E[plz] _d¢ V

dz  dz Epegexp(—g(z)) dz  E] dz E[V])
d#*lY" d¢ Elplz] d¢ V
dz ~ dz E[p] de E[V]

Moreover, the acceptance probability of rejection sampling is SE[p] = E[V].
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Xy X[y

Lemma 3 shows that the gap between ground truth 7 and our return 7 is caused by the
discrepancy between p and p. At a high level, we need to control the probability that p and p are
different by choosing a small enough step size. If 7 is sufficiently small, then the proposal distribution
¢ has a small variance and so that p is concentrated around 1 with high probability, which means
p and p are equal with high probability. To give such a probabilistic bound, we establish a novel
concentration inequality bound for a semi-smooth function over the Gaussian random variable.

Theorem 4 (Gaussian concentration inequality for semi-smooth functions) Ler X ~ N (m,nI)
be a Gaussian random variable in RY, and let { be an L-o-semi-smooth function. Assume ¢'(m) = 0.
Then for anyr > 0, 0 < o < 1, one has

Pr(U(X) ~ E(e(x)) 2 ) < (1- &) e | -C0

> y , Ve e (0,d) 2)

2
P <
Lit*dTren

1 H—La 1 1—0—% 1—a
where C=(1+a) () <2> 27%a, 3)
7r

a

Sketch of proof for Theorem 4: By Maurey and Pisier argument (Pisier, 2006) and Young’s
inequality ||G|>* < a||G|?/w + (1 — a)wT=a for V w > 0, we have

2
Eg exp(fg LinA?(|G|13*)

0TS0 exp(Ar)
Egexp (% L2n\2(al|GI2w + (1 = a)wT™s) )
<
- exp(Ar)

Invoking the closed-form second moment of Gaussian distribution and choosing proper A and w, we
can establish the result. The full proof is in §B.1.

In Theorem 4, € is a tunable parameter, and we leave its choice to the user. It causes a trade-off
between the coefficients (1 — §) 4/ ?, which is in front of exp(), and eTra, which is inside exp(). We
remark that the assumption #'(m) = 0 can be relaxed at the cost of an additional penalty coefficient
(see Proposition 25). We also note that when r is in a small range, we can always get sub-Gaussian

tail no matter what the « value is (see Proposition 22).

Remark 5 One term in the coefficient (3) in Theorem 4 is not well-defined when o = 0, but
C—Cy= 2/71'2 as o — 0 and C' is monotone w.r.t. o. Thus, for any 0 < a < 1, we have
e 2
€ 2e¢1T+arita

Pr(e(x) ~ E((X)) > 1) < (1- ) e | -

g , Vee (0,d).

_2 -
m2LIre dTiay

Our concentration bound (2) can recover the known bounds in two extreme cases. When
a = 0, ¢ is Lipschitz, the RHS of (2) is &< exp(—72/(L2n)). This recovers the sub-Gaussian
tail for Lipschitz functions (Ledoux, 1999; Boucheron et al., 2013). When a = 1, the RHS
of (2) is o< exp(—r/(L1v/dn)), which recovers the sub-exponential tail in the Laurent-Massart
bound (Laurent and Massart, 2000) for x? distribution and Hanson-Wright inequality (Hanson and
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Wright, 1971; Wright, 1973; Rudelson and Vershynin, 2013) for large enough r. A more detailed
discussion is in §B.3.
With this concentration inequality, we are able to find a small enough 7 such that p and p are the

same with high probability, and thus the difference between 7% ¥ and X" is small.

Theorem 6 (RGO complexity in total variation) Assume f satisfies (1). For V¢ > 0, if

2, -1
n < (49Lg:+1da+1(1 + log(1 + 12/4))) :

then Algorithm 2 returns a random point x that has ( total variation distance to the distribution
proportional to 7™V (-|y). Furthermore, if 0 < { < 1, then the algorithm access O(1) many f(x)
in expectation.

Theorem 7 (RGO complexity in Wasserstein distance) Assume f satisfies (1). For V¢ > 0, if

2, -1
n < min ((49Lg+1da+1(2 +log(1 + 192(d? + 2d)/g4))> ,1) ,

then Algorithm 2 returns a random point x that has ¢ Wasserstein-2 distance to the distribution
7Y (.|y). Furthermore, if 0 < ¢ < 2v/2d, then the algorithm access O(1) many f(z) in
expectation.

Sketch of proof for Theorem 6 and Theorem 7: By definition and some elementary inequalities,

the error || 7X1Y" — #X1¥|| 1y can be bounded by 2E[p1,52] < 235, exp((i + 1) log 2) Pr((g(z) —

g(x))/log2 > i), which is then bounded by applying our concentration inequality and choosing
2

n = O(1/(L5T d=+1)). Specifically, we apply our concentration inequality to £(z) = g(z) =
f(x) = (f'(zy), ). Wasserstein distance bound follows similarly. The full proofs are in §C.

Both step sizes have better dimension dependence than existing methods O(1/d) for non-convex
semi-smooth potential (Liang and Chen, 2022a). In addition, Theorem 6 can recover Lemma 5.5 in
Gopi et al. (2022). We further extend the results in Theorem 6, 7 to the x2-divergence in §E.1.

4. Improved complexity bounds of proximal sampling for semi-smooth potential

Our overall algorithm uses the RGO implementation in Algorithm 2 to implement line 4 in the
proximal sampler (Algorithm 1). Combining the theoretical properties of our RGO implementation
in §3, and the existing convergence results for the exact proximal sampler in Theorem 1, we establish
superior sampling complexity bounds under various conditions.

Denote the distributions of the iterations y; and x; of the ideal proximal sampler by v; and
u¢ respectively. Our RGO implementation is not exact, rendering different distributions along the
iterations of the proximal sampler, denoted by y; ~ 1@ and xy ~ fi;. To establish the final complexity
bounds, we need to quantify the difference between @Z;t (or fi) and ¢, (or ;) caused by the inexact
RGO. We first present the following lemmas to control the accumulated error of the inexact RGO.
Lemma 8 is also informally mentioned in Lee et al. (2021, §A). Lemma 9 is proved based on
formulating the RGO as a backward diffusion, and then adopting a coupling argument, which is
introduced in Chen et al. (2022, §A). The detailed proofs are in Appendix A.
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Lemma 8 Assume the output of Algorithm 2 follows #5\Y (|y) that can achieve
7 Cly) =P || <¢

™v
for Yy, then ||fir — pr|[rv < (T

Lemma 9 Assume the output of Algorithm 2 follows 75V (|y) that can achieve

Wa (51 (), 71 () < ¢
for Yy, and suppose the target distribution v x exp(—f) is log-concave, then W (fir, ur) < ¢T.

We next establish the complexity bounds of our algorithm in three settings, with strongly convex,
convex, and non-convex potentials. The idea of proof is simple. Assume we iterate 7' times in
Algorithm 1. If the desired final error is ¢, then we choose the RGO accuracy ( = ©(6/T") by the
above lemmas to ensure the accumulated error is small. Plugging the corresponding step size 1 by
Theorem 6 or 7 into Theorem 1 gives the final results. The detailed proofs are in §C. Although our
results in this section are with respect to TV / W, we extend them to the 2-divergence setting in
§E.2.

4.1. Strongly convex and smooth potential

Proposition 10 Suppose f is 3-strongly convex and L1 -smooth. Let§ € (0,1),n = O (1 /(L1 \/&))
Then Algorithm I, with Algorithm 2 as RGO step and initialization xo ~ Lo, can find a random point
a7 that has 6 total variation distance to the distribution v x exp(—f(z)) in

B Ld LWd H,(0)
BNENES

steps. And we can find x7 that has 6 Wasserstein-2 distance to the distribution v in

. Ll\/a Lid 1 | Hy(uo)
T(’)( 3 log(ﬂ1(5>log<5 5 ))

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.

In this most classical setting, we compare our results with others in the literature. Denote x :=
L1/ as the condition number. By Lemma 20 and Chewi et al. (2022a, §A), we assume H, (up) =
O(d). Our total complexity becomes O(x+/d) for both total variance and Wasserstein distance, which
is better than @(Hd) in Chen et al. (2022, Corollary 7) also for the proximal sampler. Considering
other sampling methods, our result (’N)(m/g) surpasses most of the existing bounds, including
randomized midpoint Unadjusted Langevin Monte Carlo (LMC) (He et al., 2020), ULMC (Cheng
et al., 2018; Dalalyan and Riou-Durand, 2020; Ganesh and Talwar, 2020), MALA with a warm
start (Chewi et al., 2021; Wu et al., 2021). In particular, Wu et al. (2021) shows Q(/{\/&) is the lower

bound for MALA to mix. Shen and Lee (2019) can achieve O <m7/6(%\/%)1/3 + ﬁ(%\/g)w?’)

in terms of Wasserstein distance. Their bound is better in dimension dependence but depends
polynomially on 4, and is therefore not a high-accuracy guarantee.
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4.2. Convex and semi-smooth potential

. 2,
Proposition 11 Suppose f is convex and L -a-semi-smooth. Let§ € (0,1),n = O (1 / (L{;“drwrl))
Then we can find a random point xp that has ¢ total variation distance to v < exp(— f(z)) in

2, 2
W2 (o, v) LT da+t log W2 (uo,v) LT da+t

T=0 52 53

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.

Assume W3 (pg,v) = O(Mz) where My is the second moment of . Then our bound becomes
2

O(MyL§ ™ da+1 /6%). When f is smooth and o = 1, our result O(MyL1v/d/§%) improves the

bound @(Mng d/6?%) in Chen et al. (2022, Corollary 6), which is the state-of-art (in dimension) com-

plexity for log-concave smooth sampling. When f is Lipschitz, our result O(My L2 /%) improves

the bound @(MgL%d/ %) in Lehec (2021, Theorem 1). When f is semi-smooth, we also improve
2

the bound C’N)(\/M4L§‘F d/é) in Liang and Chen (2022c, Theorem 4.2) in terms of dimension. Here
My is the fourth central moment of v.

Remark 12 An alternative approach to sample from a log-concave distribution is to first construct a

regularized strongly convex potential f(z) := f(x)+wl||z—2x*||?/2 with x* being an (approximated)

minimizer of f. Following Liang and Chen (2022b), Algorithm 2 can be modified so that the proximal
2

sampler can sample from exp(—f) with complexity O(L&+" da%l/w). With a proper choice of w,
2

we arrive at an algorithm to sample from v o exp(— f) with complexity O(v/MyLE™ d%ﬂ/é).

4.3. Sampling from non-log-concave distributions satisfying isoperimetric inequalities

Since (LSI) implies that the distribution has a sub-Gaussian tail, we only present the result for smooth
potentials (o« = 1) when LSI is satisfied.

Proposition 13 Suppose v < exp(—f) satisfies Crsi-LSI and f is Li-smooth. Let 6 € (0,1),n =
O (1 /(L1 \/&)) . Then we can find a random point x that has 6 total variation distance to v in

. Ll\/g Ll\/g H, (o)
r=0 ( CLsi tog (CLSI5> tog (5>>

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.

We can also define a “condition number” 4 = L;/Cygy, and assume H,(ug) = O(d). Then
our result becomes O (/%\/@, whereas Chen et al. (2022, Corollary 7) and Liang and Chen (2022a,

Theorem 3.1) give O(&d). Our bound is also better than the order O(42d/52) in Chewi et al. (2022a);
Erdogdu and Hosseinzadeh (2021, Theorem 7).

10
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Proposition 14 Suppose v o exp(—f) satisfies Cp1-PI and f is L,-a-semi-smooth. Let § €
- 2,
0,1),n =0 <1/(Lo°j+1 da+1)> Then we can find a random point x that has § total variation

distance to v in

2 2
L5t datt Lgtdat X2 (po)
T=0| ——1 — |1 v

Cor ° Cp1d © ( 52 )

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.

By Lemma 20 and Chewi et al. (2022a, §A), we assume 2 (j10) = O(exp(d)). Then our result
_ %H 2a+11 2
becomes O (W

O ) . This improves the result O <ngplld2> in Liang and Chen (2022a) and

~ 2/ 241/ . .
O (%) in Chewi et al. (2022a).

5. Proximal sampling for composite potentials

In this section, we consider the composite potential f = 2?21 f; that satisfies
Hf]'(u) — f]’(v)H < Logllu —v||*, Vu,ve R V1<j<n ()

with o € [0, 1] for all j. When n = 1, this can recover the assumption (1). When n = 2, it can
also recover the popular “smooth+non-smooth” function assumption. In this section we extend the
analysis in the previous sections for semi-smooth f to composite f.

5.1. RGO complexity

Again, to simplify the argument, we assume that the stationary point of f,] can be computed exactly.
Otherwise, we can adopt the same argument in §D to obtain the same complexity order.

Since f is composite, we naturally let g = > 7, g;, where g;(z) := f;(2)—(f}(xy), 7). Clearly,
Ty 1s the stationary point of all g;, namely, g} (xy) = 0. It is easy to check that Lemma 2 and 3 still
hold for the composite potential. Thus, the RGO step aims to sample from exp(—g(z) —1/2n[|z —y/||?)
for a fixed y. Next, for the complexity analysis, the crux is also to develop a concentration inequality
for composite function g. The proof is naturally based on the probabilistic uniform bound.

Corollary 15 (Gaussian concentration inequality for composite functions) Let X ~ N (m,nI)
be a Gaussian random variable in RY, and let { be a composite function satisfying (4). Assume
t;(m) =0 for Y1 <j<n.Thenforanyr >0, 0<a; <land} 7 w;=1,w; >0, one has

aj 9

e\ 4 & C.eraj(w‘r) T+a;
Pr(e(X) = BEX0) 2 ) < (1= 5) e | - , Vee (0,d),
= Lo, d™in
= 1 lzey
Where C] = (1 + O[]) (071]) 14aj (ﬂ%) T+aj 21+O,j )

11
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With this concentration inequality, in view of the fact that () = 0, we obtain similar RGO
complexity results. Our step size in the following theorems can recover the n = 1 case in §3.
Theorem 16 (RGO complexity in total variation) Assume f satisfies (4). If the step size

2 —1
n< |49 [ DL T | (1 l0g(14+120/0) |
j=1

then for any ( > 0, Algorithm 2 returns a random point x that has ( total variation distance to the
distribution proportional to 7Y (-|y). Furthermore, if 0 < ¢ < 1, then the algorithm access O(1)
many f(x) in expectation.

Theorem 17 (RGO complexity in Wasserstein distance) Assume f satisfies (4). If the step size

2 —1
n<min | [49 [ > Lal" d*™0 | (24 log(1+192n(d* +2d)/¢*) |, 1],

=1

then Algorithm 2 returns a random point x that has ( Wasserstein-2 distance to the distribution
7 X (|y). If 0 < ¢ < 2V/2d, then the algorithm access O(1) many f(z) in expectation.

5.2. Complexity bounds of proximal sampling

Next we provide the total complexity under several conditions for composite potential. As in §4, the
results in this section are obtained by plugging the RGO step size (Theorem 16, 17) into proximal
sampler convergence results in Theorem 1. Due to the high similarity to §4, we omit the proofs for

1 ay 2
the results in this section. Throughout this section, we denote M, 4 := (Z;L1 Laj.H dQ(%'“’)
and assume that ) = O(1/Mf, q).

Proposition 18 Suppose f is 3-strongly convex and satisfies (4) and § € (0, 1). Then Algorithm I,
with Algorithm 2 as RGO step, can find a random point x7 that has ¢ total variation distance to the
distribution v x exp(—f(x)) in

M M H,
T=0 ( g’d log <BL(5d> log (5(%)))

steps. And we can find x7 that has 6 Wasserstein-2 distance to the distribution v in

B Mr g My, \Vd 1 [H,(10)
e )

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.

We again assume H, (19) = O(d) (Chewi et al., 2022a, §A). If f = f1 + fo, where fi is strongly
convex and L;-smooth, and f is Lo-Lipschitz, then we have O((Lo + Li/ q1/ 4)2/B), whereas
Bernton (2018) gives O(L2d/(35*)), Salim and Richtarik (2020) gives O((LZ + L1d)/(5%52)), and
Liang and Chen (2022¢, Theorem 5.5) gives O(max (L2, L1) d/f).

12
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Proposition 19 Suppose we can find a random point x that has § total variation distance to v in
T steps. Let 6 € (0,1), and v < exp(—f), where f satisfies (4).

1) If v is log-concave, then T = O (ML,dW22(/"‘07V) log (ML,dWQQ(HO,V))) :

52 93
2) If v satisfies Cys1-LSI, then T = O (Aéféd log (]\CJLLSI§> log (HV(MO)>) ;

3) If v satisfies Cp-PI, then T = O (ML < Jog (ML d) log (X”(“O))) ;

Furthermore, each step accesses only O(1) many f(x) queries in expectation.

Consider log-concave v and the potential f is a "smooth + semi-smooth" function. Our result becomes
O(My(L 1/2d1/4 + LY/ go/ @(a+1)))2 /52) which improves O(v/My max(Ly, LY T™))d/5)
in Liang and Chen (2022c, Theorem 5.4) in terms of dimension. Our result for non-log-concave v
also improves the bounds in Nguyen et al. (2021); Liang and Chen (2022a) (see Table 2).

6. Concluding remark

We propose and analyze a novel RGO realization of the proximal sampler. The core of our analysis
is a new Gaussian concentration inequality for semi-smooth functions, which is itself of independent
interest. With this concentration inequality, we significantly improve the dimension dependence of
RGO. We then analyze the accumulated error caused by our inexact RGO, which is combined with
proximal sampler convergence results to give the total complexity. Our complexity bounds are better
than almost all existing results in all the classical settings (strongly log-concave, log-concave, LSI,
PI) as well as more general settings with semi-smooth potentials or composite potentials.

We leave a few directions for future study: 1) How to generalize our RGO algorithm to settings
where the target potential f is an empirical risk or population risk? This should be achievable by
merging Algorithm 2 and Gopi et al. (2022, Algorithm 2). This will be useful for private optimization
in differential privacy. 2) Is there any other RGO algorithm that has even better dimension dependence
than Algorithm 2? 3) Our proof techniques make our concentration inequality only applicable to
Gaussian distributions. Is there a similar concentration inequality as in Theorem 4 but for more
general distributions satisfying LSI?
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Appendix A. Proof of technical lemmas
A.1. Proof of Lemma 2
Proof Since f'(x,) + %(xy —y) =0, we have z, = y — nf’(z,). This implies

1 1
9(x) + %Hﬂ? —ay|* = g(x) + %Hﬂf —y+nf(zy)l?

oz =yl + (o £ ) — s @) + 27 (o) P

= g(x) + o

1
= g(z) + %Hff —y|I> + (@, f'(x,)) + constant
1
= f(x) + — ||z — y||* + constant.
2n
We use f(z) = g(x) + (f'(zy), z) in the last equality. [ |

A.2. Proof of Lemma 3

Proof Following the definition and Lemma 2, we have

dnXlYexp(—f(2) = grlle —yll®)  exp(—g(z) - 55llz — 2y )
dz [exp(—f(x) = gllz —yl?)de  [exp(—g(x) = 55llz — zy[?)de
_exp(—g(x)) exp(—g; ]|z — 2y %)/ [ exp(—g; & — zy[*)dz
 Jexp(=g(@))(exp(=g5llz — 2ylI2)/ [ exp(—3;llx — zy[?)dz)dz
_ exp(—ﬁHx — ay?) _exp(—g(x)) _do exp(—g(z))
fexp(—%Hac —z,)|2)dz  Elexp(—g(z))] dz Eswgexp(—g(z))

Next, since

=

i)

B
I

Elexp(g(z) — g(z))|z] = Elexp(g(2))] exp(—g(z)),
E[p] = Elexp(g(2))|Elexp(—g(z))],

we get exp(—g(x))/Eexp(—g(x)) = E[p|z]/E[p]. Finally, since Algorithm 2 is rejection sampling,

dxXlY d¢ Pr(u < 3plz)
dr  dz  Pr(u< %p) '

By tower property and the fact that u follows the uniform distribution over [0. 1], the acceptance
probability is

Similarly, Pr(u < 3p|z) = 3E[p|z]. These conclude that dﬁd);‘y — d¢  Elpla] -

8
=
S
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A.3. Proof of Lemma 8

Proof Indeed, by triangular inequality and Jensen inequality,
liute) = (ol = | [ ) Gty — [t Gl
TV

H [ o) (7 Gl = 7 (el o H [ ) = ) Gl |

<[] \er'me) —wX*Y<a:|y>HWdy+ / (]v,z?xw —m)\ = alas ) ay

<+ [dew) —vetw)|

Moreover, denote G as the density of the distribution N(0, nI),

Jét) = ], = | f s = st 10 - 1

<||frt—1 — pe—1||TV-
TV

Thus, || — pel|tv < ¢+ ||fte—1 — pe—1]|Tv- Finally, because 12)1 = 11, there is ||ir — pr||Tv < CT.
[ |

A.4. Proof of Lemma 9

Proof Denote the marginal distribution of Y in the ¢-th iteration of the idea proximal sampler and
approximate proximal sampler by )y, 1, respectively. It is well known the Gaussian convolution is
contractive with respect to the Wasserstein-2 metric. Thus

Wa (e, ) < Walptr—1, fie—1)- Q)

Following the Doob’s h-transform, the RGO 7% Y can be realized by simulating the backward
diffusion (see (Chen et al., 2022, §A))

dZs = —Vlogns(Zs)dt + dBs,

over the time interval [0, 7], where Bg is a standard Wiener process and s = v * N (0, sI). Let
Zs, Z, be two copies of the above process initialized at Z,, ~ ), Zn ~ 12),5 respectively. We then use
a coupling argument to show the RGO for log-concave distribution is also contractive with respect to
W. In particular, let Z,, Z, be driven by a common Wiener process B and Z,;, Zn be coupled in
such a way that E|| Z,, — Z W12 = W3 (i, V), then

d N
N2, — 2| = 2=V logn,(Z,) + Viogn,(Z,), Z, — Zs) 2 0.

The last inequality is due to the fact that v and thus 75 is log-concave. It follows that

w3 ( [ iy, [ WX'Y@\y)zz?t(y)dy)
<E|Zo — Zo|* < B Zy — Zy|1*> = W3 (v, y). (6)
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Moreover, by definition of Wasserstein distance, we have

Wy (/ 7ATXY(ﬂfly)ﬂ?t(y)dy,/7TX'Y(€U|y)?ﬁt(y)dy> < \// Gi(y) W (FXY 2XV)dy < ¢ (7)
By triangular inequality, we have
Wi, ) =W ([ # alydinddn, [ =50 alyyinti)ay
< ([ &Y iy, [ 7 @l
w0 ([ 7 it [ 60 el

(6),(7) 9, n (5) R
< CH+ Wy (e, ) < C+ Walfie—1, pe—1).

Finally, because ¢); = 11, there is Wo(pur, pur) < CT. [ ]

A.5. Supportive lemmas

In this section, we list the lemmas pertaining to our analysis.

Lemma 20 Under PI, Liu (2020) together with standard comparison inequalities implies that

2
max {””;”TV log (1 + %Wf(u, V)) ,HV(M)} < Ry, (p),

where Ry, (1) :=log [(u?/v) is Rényi divergence of order 2.

Lemma 21 (Proposition 7.10 in Villani (2003)) Let  and v be two probability measures on R<,
Then for any m € R,

W3 (p,v) < 2/ lm = @|l3d]e = vl(2) = 2 ||lm — 30 = )|l y -

Appendix B. Gaussian concentration inequality
B.1. Proof of Theorem 4

Proof Without loss of generality, we assume m = 0. To see this, define g(z) := ¢(x + m) which
is also an L,-a-semi-smooth function and satisfy ¢’(0) = 0, and notice that E(/(X)) = E(g(Y))
where Y ~ N (0, nI). It follows that

_ 1
Pr(U(X) (X)) 27) = 2~ [ oxp (=g = mlE) Lo sort

- 1
= (2mn) "2 / exp (—2\!y!§) Ly(y)-E(g(y))>rdy
R4 n

= Pr(g(Y) —E(g(Y)) = 7).
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Hence in what follows, m = 0. The following proof is based on the elegant argument of Maurey and
Pisier (Pisier, 2006, Theorem 2.1). Let G and H be two independent Gaussian variables following
N (0,n1), then for any A > 0, by independence and Jensen’s inequality, one has

Eexp(A(U(G) — €(H))) = Eexp(A(U(G) — E€(G)))Eexp(AEL(H) — ((H)))
> Eexp(A(U(G) — EA(G))) exp E(ANEL(H) — ((H)))
= Eexp(AU(G) — E(Q))).

Let Gy = Gsinf + H cos 6, 6 € [0, 7/2]. Using the fundamental theorem of calculus along 6, one
obtains

UG — 6(H) = /2 VU(Gy) - (G cos — H sin 6)do.
0
It follows that

Eexp(Al(G) —¢(H))) = Eexp ()\/07r V{(Gp) - (Gcosf — H sin 9)d9>

Since Gg and G cos 6 — H sin 0 are two independent Gaussian variables, V/(Gy)- (G cos § — H sin 0)
is equidistributed as Z||V{(Gy)||2 where Z ~ N (0, n) for any 6. This implies

Eexp (gwe(ag) (G cos§ — Hsin 9)) — Eexp (g)\ZHVE(Gg)HQ)
s
= Eq,Ez (exp (5AZ1VA(Go)ll2) | Go)
™ 2
=Eg, exp gn)\ IVU(Go)ll5 | -
As the distribution of GGy does not depend on 6, in the rest of the proof, we drop 6. Then,
2
Eexp(A(U(G) — BU(G))) < Eexp(A(K(G) — {(H))) < Eg exp (Snvnwwm%) C®
Combining with Markov inequality yields

Pr(¢(X) — E(¢(X)) > 1) < inf Eexp(A(((X) — E((X))))

>0 exp(\r)
2
o EepEVIVHG))
A>0 exp(Ar)

2
Eg exp(T-nA\?(|VA(G)13)
exp(Ar)

To study the properties of the optimization problem infy~g , we consider three

cases based on different .

22



IMPROVED DIMENSION DEPENDENCE OF A PROXIMAL ALGORITHM FOR SAMPLING

1. a=0

In this case, £ is an Lo-Lipschitz function, which means ||V/(G)||3 < L3. Hence, our result
coincides with the classical Gaussian concentration inequality for Lipschitz functions. Taking
A= yields

_4r
m2L2n

2

Pr(((X) — E((X)) > 1) < exp(—fgfgn

)- ©)

2. a=1
In this case, one could simplify the optimization function in an explicit way. Assume —% +
2 .. . .
%L%nAQ < 0 (the condition that ensures E is finite), then

Ec exp(5n\ [ VAG)[3) _ Egexp( LinX’|GI3)

exp(Ar) - exp(Ar)
/2
1 ()
=| ——— exp(—Ar).
1-— %L%n”\?
Let A\ = —~— where k is a positive parameter. Here k is chosen such that the condition

Lidn?
— 5+ S L3nA? < 0 holds. Then,

w2k2 d kr

Pr({(X) —E(((X)) >7r) < (1 - W)_5 eXP(*W

).

In the last step, let 4227’;22 = ¢, leading to
Pr(6(X) — E(U(X)) > ) < (1 - 5)7% e T v d 10
r(£(X) — E(¢( )>_7")_(—&)2€XP(— pm)a e € (0,d). (10)
Note that given the value of ¢, (1 — 5)—% is bounded for d.

3.0<ax1

By Young’s inequality, for any w > 0, one obtains ||G||3* < a||G|3/w+ (1 — a)wTa. Hence,
with the assumption 1 — %Lan%\zg >0,

2 2
Eq exp(FnN’(IVAGIE) _ Eqexp(F LanX[|G13*)

exp(Ar) - exp(Ar)
Egexp (L2 (]| G2 /w + (1 - a)wT™s))
<
- exp(Ar)
2 2
=(1- %Linz)\zg)fg exp(%Lin)?(l — a)wT-a) exp(—Ar).
w

1D
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Denote F(\,w) = (1 — %2L§772/\2%)_g exp(%gLin)\Q(l — a)wT-a ) exp(—Ar). Since the
exact optimal solution of inf ., F'(\, w) is not a closed-form expression, one can seek for the
suboptimal values instead.

To this end, let

11—«
. krite . 20-0) 1 41—
)\:W’ Ww=cr Ha n %" "% forsomek >0, ¢>0
It follows that
5 o 9 2
<y ok —d/2 ™. 9 _a rati
F\o)=(1- W) exp <—(k - g k- a)cl*a)W :
Similarly, let % =€ € (0,d), and plugging k = % into F'(\, ) yields

d L?x danaJrl

e /46Lacl2a77a+1 61/2 B (1 _ a)eLgdana+1 Cﬁ'
T o 2a

Directly optimizing D as a function of c gives

1 ﬁ 1 ﬁ l—« e 2o a2
maxD = (1+a) | — — 21Fa eat1 LG datin®,
(6% ™

_2
FO,&) =1 - S92 exp <—D”“>

with

This implies

a2
CE at+lyratl

> , Ve € (0,d), (12)

€.
Pr(f(X) —E(f(X)) 2 r) < (1= )" Pexp | ———
g™ datn
_a _1 —a
with C being (1 + a) (L) T (L) 2170
It is noteworthy that (12) can recover the results for both smooth functions and Lipschitz
functions. More precisely, plugging o = 1 into (12) leads to (10). Moreover, if a = 0, by

choosing € — 0, (12) coincides with (9).

|
B.2. Proof of Corollary 15
Proof By Theorem 4 and a probabilistic uniform bound, we have for any Z?Zl wj =1, w; >0
_an TR (1.0 ) T707
Pr(U(X) — E(((X)) > 1) < (1 - 2) Y exp _Gie : 2]'(1”{3;) " |, vee(0,d).
j=1 Laj._a] d iy
|
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B.3. Relations to existing concentration inequalities

We now compare Theorem 4 with other existing concentration inequalities. In this section, we
assume X ~ N (0,nI).

Lipschitz function o = 0. Taking ¢ — 0, our concentration can be simplified to

7,2
Pr(¢(X) — E((X)) > 1) < exp (—jLon) .

Obviously, it has a sub-optimal coefficient because based on the entropy argument (Boucheron et al.,
2013), one can obtain

7“2
Pr(0(X) — E({(X)) > 1) < exp (—QL(QW) |

Smooth function o = 1. Taking € = 0.5, our concentration bound is simplified to

Pr({(X) —E({(X)) >r) < L5exp <_L01.L\1/5dfn> : (13)

Suppose Y = Z?Zl Y2, Y; ~ N(0,1), then Y ~ x?(d) follows the chi-squared distribution, and

E[Y] = d. Thus, taking /(X ) = || X%, the Laurent-Massart bound (Laurent and Massart, 2000)
can be equivalently written as

Pr(|[X |2 = E(IX[[2) > 2(/E(E(X))r + 2r) < exp(—r).

This further implies, if X ~ N(0,nI), it holds that

Pr(| X2 — E(IX[2) > r) < exp (—d”/ n= v+ 2 7”) , (14)

2

Take L1 = 2,7 = 1, we compare (13) and (14) in terms of d. Since (d+r — +/d(d + 2r))V/d/r — 0
for a fixed r, our bound is even tighter on dimension when d is large enough.

On the other hand, we compare with Hanson-Wright inequality (Rudelson and Vershynin,
2013): Let A be an d x d matrix,

4r2 2r
Pr(XTAX —E(XTAX) > r) < exp (—cmin ( , >> . (15)
( (X 4X) > ) PIATE Al

Take £(X) = X " AX, and suppose A is positive semi-definite, then L; = \pqz(24) = 2||A||, thus
our bound becomes

Pr(XTAX —E(XTAX) >r) < L.5exp (- 0225 > .

1AV dn

When r is large enough, 2r/n would dominate, and Hanson-Wright is tighter than our bound in
terms of d. When r is in a small range, % /dn? dominates, and our bound is tighter on dimension.
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B.4. Low range concentration inequality has sub-Gaussian tail

In this part, we show that no matter what 0 < o < 1 is, we can always get a sub-Gaussian
concentration when r is in a low range.

Proposition 22 Let X ~ N (m, nl) be a Gaussian random variable in RY, and let £ be an L-o-
semi-smooth function. Assume ¢'(m) = 0. Then for any 0 < o < 1,

0crmhad Z0E a6
o2¢
we have
7.2
Pr(f(X) —E({(X)) = 7) < exp <_7T2L§da771+0‘> . a7

Proof It suffices to prove the case n = 1 because we can define / (X) = £(\/nX) and correspond-
ingly Lo = Lo +®)/2_ Similar to the proof of Theorem 4, we use Maurey and Pisier argument and
apply Young’s inequality, and obtain

Pr({(X)—E({(X))>r)< inf F(\w) (18)

- >0, w>0

IR

7T2 2,2% 7T2 212 _a
where F'(\,w) := <1 - ZLO‘)\ w) exp <8La)\ (1-a)w 1a> exp(—Ar).

We define H = %2)\2[/2. Firstly, we assume that (will prove in the end)

2H
TO‘ € [0,0.5], (19

which suffices to conclude

d
2 T2 2Ha\ ~ 2Had
(1_%926}) :(1_fv> gexp( A@).
4 w w w

Plugging this inequality, and the value & = (2d)'~® into F(\,w), we obtain

vl

F(\w) <exp (ég?da + H(1 — «)(2d)* — )\r>

2
<exp(2Hd® — \r) = exp <1A2L§da - /\r> .

2L
(17). Finally, to make (19) hold, we need to insure

We then take A = 27%&, and obtain F(\, &) = exp (—%) . This together with (18) gives

2Ha 71N L2« r’a
— = — = < 0.5,
w 40 w2 [221-adlta
which is equivalent to the constraint (16). |
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Proposition 22 can recover the Hanson-Wright inequality (15) in the low range. If we take A = 1,
then (15) becomes

472 2
Pr(|X[12 ~ E(IX|?) > r) < exp (_cmm <d772 n)) |
This implies that, when r < O(dn),
2 9 or2
Pr(|X|* - B(IX?) 2 ) < exp (-5 ).

It is easy to check that Proposition 22 shows exactly the same result when o = 1.

Appendix C. Proof of main results

C.1. Proof of Theorem 6

Proof Recall that the return of Algorithm 2 follows the distribution #<X1*", and the target distribution
of RGO is 7%V o exp(—g(z) — %Hx — xy||*). According to Lemma 3, we have

7

vV Vv vV Vv Vv Vv
w5 ’ =FEv TEV|TCEV BV

EV EV
E|V -V|  EVIEV -V]| _2E|V -V
= BV EV|EV| ~  [EV]

Then by Cauchy-Schwartz inequality on the Hilbert space L?(¢), we have
[EV| = EV = Eyng exp(—g(2))Eung exp(g(@)) = || exp(—g(x)/2)[ 724l exp(g(2)/2)I[72(4)
>(exp(—g(x)/2), exp(g(2)/2))* = [Eo(exp(—g(z)/2) exp(g(x)/2))]2 = 1. (20)
Since p = exp(g(z) — g(x)) is always non-negative, there is
EIV - V| = E[E[pla] - Elple]] = El(p — 2)1,52] < Elp1,50].
Denote A = g(z) — g(x) and A = A/log2, we have
E[p1,>2] = Elexp(A)1,>2] = Elexp(A)1axlog2] = Elexp(Alog2)1554]

<> exp((i+ 1)log 2) Pr(A > ).
=1

Note that g(z) = f(z) — (f'(zy), ) satisfies that ¢'(x,) = 0, and E[z] = x,. Moreover, g(z) is
also L,-a-semi-smooth because ¢'(z1) — ¢'(x2) = f'(z1) — f'(x2) for any z1, x2. We also have
the inequality (1 — 0.5/ a)*a/ 2 < 1.5 when a > 1. We plug € = 0.5 into Theorem 4, and obtain that,
for Vr > 0,

3 (1+a) ()™ (L) 2'e pris
Prlg(z) —Eg(z) >r] < —exp | — o T 20
: L3 g
a n
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This further implies that

Prlg(z) — g(x) > r] = Pr[g(z) — Eg(2) + Eg(z) — g

( (

<Pr [ (z2) —Eg(z) > g] + Pr []Eg(x) —g(x) > g}

= Pr[ (2) —Eg(2) > g] +Pr [—g(x) — E[—g(z)] > g}

1) 1is (L) T o (r)Tia

<3exp | — 1+a) (a) (27r2) T2 (2)1+

Ly da+iy
a) (L 1% 1 H’% 172&1 ilog2\T+a
Thus Pr[A > i] < 3exp _ @)™ ("22) 2T (78 Denote

2
Since log2 < 1 and iT+« > ¢ forany ¢ > 1, 0 < o < 1, we have that
2

(1+«) ( )1+a ( 1 )1+o< o <1102g2> Tra

7.(2

Zexp (i +1)log2) Pr(A > )§6Zexp i —
i=1

—_— (o]
i=1 Lg""l da+177

6 ¢
2

SG Z exXp (—077’1/) = W

=1

(22)

by the choice
_(1+a) ( )T ()T 2R (log2) T
L““dw1 (1+log(1+12/¢))

Since

1\Tra /1 \TFa 12 2
0.024 < (1+a) (- =] 27 (log2) T < 0.16 (23)

when 0 < a < 1, the bound
1

S R,
A9L5HT da 1 (1 + log(1 + 12/¢))

suffices. When o = 0, it can recover the bound in Gopi et al. (2022).
Finally, by Lemma 3, the acceptance probability is %E[V] Since ¢ < 1, we have
— — 1
E[V] > E[V] - E|V — V| 21—325. (24)

Thus, the expected number of the iterations for the rejection sampling step is O(1). |
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C.2. Proof of Theorem 7

Proof It suffices to prove the claim: If the step size

1

7 < min L (25

2
49L& dw 1T (2 + log(1 + H2L 2D
then Algorithm 2 returns a random point x that has ( squared Wasserstein-2 distance to the
distribution 7. Furthermore, if 0 < ( < 8d, then the algorithm access O(1) many f(z) in
expectation.

Recall that the return of Algorithm 2 follows the distribution 7% Y and the target distribution of

RGO is 7% o exp(—g(z) — ﬁ”m — x,]|?). By Lemma 21 (Villani (2003, Proposition 7.10)) and
triangular inequality,
. . V 1%
WY ) < 2o B - )| =28 (e - ol | g7 - g
V 1% v v
< 2Bllz =2yl <‘EV EV|TIEV T EV >
< Blle —z|PV =V | 2E[le —a,|PVIE[V — V]|
- EV EVEV
20) RV —V|-E[|z — 2,2V
2 9Bz — o PV - 7)) + ZEV VI Elle Z2[V] (26)
EV
Firstly, by Cauchy-Schwartz inequality,
— ol
Ell|lz — 2y |*|V = V|] < (Elle — z,[|'E[V = V?)2. 27

Denote G ~ N (0,I). Since x ~ N (zy, nI) and the constraint n < 1, we have

Elz —zy|* = n’EIG|* =7* | Y EIG{] + Y [EG}[EG]]
i i#j
= n*(3d + d* — d) = n*(d* + 2d) < d* + 2d. (28)
On the other hand, following the same logic of bounding E[V — V] in Theorem 6, we have
E|V - V[* = E[E[p - plz]|* < EE[lp — p*|2] < Elp — p* < E[p*1,>0]
o0
< exp(2(i + 1) log 2) Pr(A > i). (29)
i=1
Denote
_a 1 —1-2a 2
(1 + Oé) (é) 1+ (%) 1+a 21+7a(10g 2)m

s

Cy = -2

2
—T %
L&t da+ip
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Since the bound (23), we can verify that the assumption (25) satisfies

1+ a) (L) (L) Te 275 (log 2) s
(0% s

n< (30)

=z
L& da (2 + log(1 + 224224

By the concentration inequality (21), following the same proof of bounding (22), we have

o0
> " exp(2(i + 1) log 2) Pr(A > i)
i=1
NI 1\ T ol=28 (102 Tia
ey & (L+a) (3) 7 () 7 2w (T)
§12Zexp 27 — 3
i=1 LS datin

2 @
exp(Cp) —1 — 16(d? + 2d)

o0
<12 Z exp (—Cyi) =
i=1
This, together with the inequalities (27) (28), gives that

Elllz — oy |||V - V]| < 2. (31)

NG PN

Now we bound the second term in (26). By the assumption (25), we have

1

NS ——= :
49L& d=+T (1 + log(1 + 96d/¢))

Thus, following the same steps in bounding (22) and (24), we obtain

_ ¢ 1
E — < — E > —,
[V —-V]< T6d and E[V] > 5

(32)
Next, since 0 < V := E[p|z] < 2, there is

E[[le — zy|*V] < 2E[[|x — %] = 2nd. (33)
By the choice < 1 and the bounds (32) and (33), we have

E[V - V] -E[|z — z,[*V]
EV

<$
— 4

This, together with (26) and (31), gives that W22(7TX|Y, Iy < ¢
Finally, because of the cﬁoice ¢ < 8d, and the b(lmd (32), we have E|V — V| < % Thus, the
acceptance probability sE[V] > L(E[V] — E|V — V|) > 1. So the expectation of iterations in

rejection sampling follows as O(1). |
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C.3. Proof of Proposition 10

1
49L1Vd(1+1og(14+24T/9))’
we can guarantee HerW(-]y) - 7TX|Y(-|y)HTV < 0/(2T) for V y. Then by Lemma 8, we have
i — prllrv < 5.

By Pinsker’s inequality, there is ||u7r — v||tv < v/2H, (pr). Then by Theorem 1 (Chen et al.,
2022, Theorem 3), Algorithm 1 returns a random point x7 that satisfies

HV(HO) < 572
(1+nB)*T — 8

Proof (For TV distance) According to Theorem 6, if choosing n <

HV(MT) S

inT > log (%\/2H,,(,u0)>/log(1 + n) steps. Thus ||ur — v|| < 6/2.
Putting two together, we have

T — vty < |lar — prlley + lpr — vy < 6.

Since 8 = O(1), we have log(1 + n3) = O(np). Thus, plugging in the value of 7, we need

_ L \/8 L \/8 HV(MO)
(e ()

steps. Each step accesses only O(1) many f(x) in expectation because of Theorem 6.
(For Wasserstein distance) Since v is [$-strongly-log-concave, it satisfies Talagrand inequality

Wa(pr,v) < ZHV(MT)'

Next, Theorem 1 (Chen et al., 2022, Theorem 3) guarantees that if 7" > log <§\ / 2H”B(“O)> /log(1 + Bn)
then )
H, (ko) < B

A = e =5

Thus, Wo(ur,v) < g. On the other hand, according to Theorem 7, if choosing

7 < min 7 ! 1,
49L1d2 (2 + log(1 + 3100(d? + 2d)T4/%))

we can guarantee Wo (7 XY (-]y), 7XIY'(-|y)) < 6/2T for V 3. Then Lemma 9 guarantees that
Wapr, fir) < g. Putting two pieces together, we get

Wa(fir,v) < Wa(jir, pr) + Wa(ur,v) < 6.

Since fn = O(1), we have log(1 + 8n) = O(pBn). So, plugging in the value of 7, we only
H, H,
need 7 = O <Blnlog <§ 26(“0)>> =0 <L1[;/8 log (Lﬁ—lg) log <(1$ éuo))) steps. Each step

accesses only O(1) many f(z) in expectation because of Theorem 7. [
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C.4. Proof of Proposition 11
Proof According to Theorem 6, if choosing 1 < ——— 1
49LE T dotT (1+1og(14-24T/6))
{ XY (y) — 7rX|Y(-]y)HTV < 60/(2T) for V y. Then by Lemma 8, we have ||fip — pr|tv < %.
By Pinsker’s inequality, there is ||ur — v|tv < /2H,(ur). Since f(z) is convex and L;-
smooth, by Theorem 1 (Chen et al., 2022, Theorem 2), Algorithm 1 returns a random point z7 that
satisfies

, We can guarantee

W3 (1o, v)

52
<
Tn -8

HV(UT) S

inT = O (W§(uo,v)/(6°n)) steps. Thus ||ur — v| < §/2.
Putting two together, we have

i —viltv < |lar — prllrv + lpr — viTv < 6.

Thus, plugging in the value of 1, we need

2 4 2 o
W3 (0, LG 451 | (W (o, 1) LG 4o

T=0 52 g 53

steps. Each step accesses only O(1) many f(z) in expectation because of Theorem 6. [ |

C.5. Proof of Proposition 13

1
49L1Vd(1+1og(1+24T/9))’

HﬁX|Y(-|y) - 7rX|Y(-]y)HTV < 6/(2T) for V y. Then by Lemma 8, we have ||fip — pr|tv < %.

By Pinsker’s inequality, there is ||ur — v||tv < v/2H, (pr). Then by Theorem 1 (Chen et al.,
2022, Theorem 3), Algorithm 1 returns a random point z7 that satisfies

Proof According to Theorem 6, if choosing 1 < we can guarantee

H, < — 7
(MT) - (1 + T]CLSI)QT - 8

inT > log (%\/QHZ,(MO)>/10g(1 + Crsin) steps. Thus ||ur — v|| < 6/2.
Putting two together, we have

i — viltv < |lar — prlltv + lpr — viTv < 6.

Since nCrs; = O(1), we have log(1 + nCrsi) = O(nCrsi). Thus, plugging in the value of 1, we

need
Lyvd LivVd H
T=0 1vd log 1vd log M
CLst CLsid §
steps. Each step accesses only O(1) many f(z) in expectation because of Theorem 6. |
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C.6. Proof of Proposition 14
Proof According to Theorem 6, if choosing 1 < ——— L
49L& T datT (141og(14-24T/6))
| XY (|y) — 7rX|Y(-]y)HTV < 0/(2T) for V y. Then by Lemma 8, we have ||ir — pr|tv < g.
Together with Pinsker’s inequality, Nishiyama and Sason (2020) implies that ||y — v||Tv <
v/21og((1 + x2(ur))). Then by Chen et al. (2022, Theorem 4), Algorithm 1 returns a random point
7 that satisfies

, W€ can guarantee

2
Xy \H
X2(pur) < At Com)2T C(’PIOW))QT < exp(62/8) — 1

inT > llog (%) Nlog(1 + Cppy) = O (log (@) Nlog(1 + cpm)) steps. Thus |7 —
v|| <§/2.
Putting two together, we have

loar — vty < |lar — prlley + lpr — v|v < 6.

Since nCpr = O(1), we have log(1 + nCpr) = O(nCpy). Thus, plugging in the value of 7, we need

2, 2 a
Lg+1 dm L3+1 daiﬁ»l XQ(//JO)
T=0|—7—1 — |1 s
o U A
steps. Each step accesses only O(1) many f(z) in expectation because of Theorem 6. |

C.7. Proof of Theorem 16

Proof Recall that the return of Algorithm 2 follows the distribution 7% ¥, and the target distribution
of RGO is %Y o exp(—g(z) — % |z — z||?). Following the same proof of Theorem 6, we have

X0 = X vy < B [EV] > 1L and B[V ~ V] < E[p1,>o).

Denote A = g(z) — g(x) and A = A/log 2, we have

E[p1,>2] = E[exp(A)1,>2] = Elexp(A)1a>i0g2] = Elexp(Alog 2)155,]

[e.e]
<) exp((i+1)log 2) Pr(A > ).
i=1
Note that g(z) = f(x) — (f'(zy),z) satisfies that ¢'(z,) = > I (fi(zy) — fi(zy)) = 0, and
E[z] = z,. Moreover, g(z) also satisfies (4) because ¢’ (x1) — g}(z2) = fj(21) — fj(x2) for any
x1,T2. We also have the inequality (1 — 0.5/@)*‘1/2 < 1.5 whena > 1. We plug e = 0.5 in
Corollary 15, and obtain that, for Vr > 0,

bk} 1 1—2a; 9
n (1 + Oz~) (i) T4aj; % I4aj 2 I+aj (w‘r) I4a;
Prlg(z) — Eg(z) > r] < ;ZQXP _ AT (72) . j
Jj=1 ng“dwn
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This further implies that
Prlg(z) — g(z) > r] = Prlg(2) — Eg(2) + Eg(x) — g(z) > r]

T T
< Pr [g(2) ~Eg(2) > 5| +Pr [Eg(2) - g(a) = ]
T
= Pr [g(2) ~Eg(2) = 5| +Pr |~g(2) - E[g(a)] = § |
lij 1 1—2a; 5
o Tra; o Ifa, (WiT\Ifa;
n e ()T @) 2T ()
<3 exp | — p) a;
=1 Lol ds Ty
lii] 1 1_,'_1& 11:_2; w]zlogQ 1+2a
. n (”af)( J> ) T2 T () T
Thus Pr[A >4 <3377 jexp [ — N . We choose
LSJTIdO‘j+1

Q

_1 j
L@j+1d2<a T
J+1 2(a; 1) +1)
Z] lLO‘J d

Since ZH'% >iforany i > 1,0 < a < 1, and the bound (23), we have that

Z exp((i + 1) log2) Pr(A > i)

i=1
oy 1 1-2a; o2 2
N[ LYY (A Tra; 9 1F wjrlog2 ) 1t+a;
S [, 0o () o (e
<6 exp | i — 3
— — FEyEs)
=1 j=1 La; d®i +177

gL w3 (4) . i
§6ZZexp i—z—jaj ':6nZeXp 71— -

1 o 2
Bl A ) 19 (S 28T )

=6n/ | exp -1]1-1<

1 aj 2
49 <Z ng“d2<aj+l>) "

p—
DO [

(35)

by the choice

1
n <

o

1 2 )
49 (2?1 L;’;+1d2<aj+l>) (1 + log(1 + 12n/¢))
Finally, by Lemma 3, the acceptance probability is %E[V] Since ¢ < 1, we have
1

EV]>EV]-EV -V|>1-5> .

I
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Thus, the expected number of the iterations for the rejection sampling step is O(1). |

C.8. Proof of Theorem 17

Proof It suffices to prove the claim: If the step size

1

7 < min

L, (36)

1 g 2
49 (z;;l Lot de >> (2 4 log(1 4 192n(d2? + 2d) /¢2))

then Algorithm 2 returns a random point x that has ( squared Wasserstein-2 distance to the
distribution 7. Furthermore, if 0 < ¢ < 8d, then the algorithm access O(1) many f(x) in
expectation.

Recall that the return of Algorithm 2 follows the distribution 7% Y and the target distribution of
RGO is 7Y o exp(—g(z) — ﬁ |z — 2||?). Following the same proof of Theorem 7, we have

2E|V — V| Bz — zy|*V]

— 1
Wi (r XY 72Xy <2 (E||lz — | *ElV - V*)2 + — . 37
Ellz — 2, ||* < d* + 2d, (38)
E[V —V[> <) exp(2(i + 1) log 2) Pr(A > i), (39)
=1
Ell|lz — ay[|*V] < 2nd. (40)

Applying the same concentration inequality and weight (34) in the proof of Theorem 16, we have

> " exp(2(i + 1) log 2) Pr(A > i)
=1

1 (36) ¢?
<12n/ | exp o o 2 —2 -1 = 16(d2 + 2d)°
(S5 )

This, together with the inequalities (38), (39), gives that

4 =12\ &
2 (Ellz — z,|'E|[V - V]?)2 <

NG PN

Now we bound the second term in (37). By the assumption (36), we have

n= !

aj 2 ’
- 7
49 <Z;‘:1 L;]J.HdQ(aJ‘“)) (1 +1log(1+96nd/¢))
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Thus, follow the same steps in bounding (35) and (24), we obtain

_ C _
E|lV — < = E >
[V -V|< T6d and E[V] >

N =

By the choice n < 1, the above bounds, and the inequalities (37), (40), we reach the result
W22(7TX‘Y,7ATX|Y) < C
The expectation of iterations in rejection sampling also follows the proof of Theorem 7. |

Appendix D. RGO with approximate proximal optimization error

In Algorithm 2 of Section 3, we assume that we can solve the step 2 exactly, which is to solve the
stationary point of f/ (z) = f(x) + ﬁ |z — y||2. However, it could be challenging to solve this
optimization problem exactly when f is non-convex. In this section, we tackle this issue and present
the complexity analysis when we can only obtain an approximate stationary point of it.

D.1. Algorithm

Algorithm 3: Rejection sampling implementation of RGO with proximal optimization error

Input: L,-a-semi-smooth function f(z), step size n > 0, current point y
Compute an approximation solution z,, satisfying (42) by using Algorithm 3 in Liang and Chen
(2022a). Denote g(x) = f(x) — (f'(x,)), 2), w =y — nf'(z,).
repeat
Sample x, z from the distribution ¢(-) o exp(—% |- —w||?)
p =exp(g(z) — g(x))
Sample v uniformly from [0, 1].
until v < % 0
Return z

We will use Algorithm 3 as the RGO algorithm, and Lemma 3 still holds for this algorithm. We
resort to Nesterov’s accelerated gradient descent method to compute w that is an s-approximation
to xy, i.e., ||z, — w| < s, see (Liang and Chen, 2022a, Algorithm 3). And we have the following
lemma to guarantee a similar equivalence as in Lemma 2.

X|Y(

Lemma 23 For any x,, sampling from z|y) < exp(—f(z) — %Hm — y||?) is equivalent to

sampling from distribution x exp(—g(z) — %Hm —w||?), where g(x) = f(z) — (f'(zy),z) and
2

>

w =y —nf'(zy). If we further assume x, is an approximate stationary point to f(zx) + ﬁ |z —y
ie.,

; 4D

, 1
fmw+¢%—ng;

then we have ||z, — wl|| < s.
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Proof We first show the potentials of two distributions are the same up to a constant.

1 1
9(x) + 5, llr = wl® = g(z) + e~y nf'(zy)”

1 7

=g(z) + %Hx —yl*+ (@, f(2y)) = (y, () + §Hf/($y)\|2
1

= g(x) + %Hx —y||* + (z, f'(x,)) + constant
1

= f(x) + —||z — y||* + constant.
2n

We use f(z) = g(x) + (f'(zy),z) in the last equality. By the definition of g(x), we have that

g'(xy) = 0, thus

41
< s.

lzy = wll = llzy =y + nf'(zy) =n

, 1
fmw+¢%—w]

D.2. Complexity analysis

We first investigate the complexity of the optimization algorithm to reach a small enough tolerance.
Later, it turns out that the tolerance in (42) will be enough.

2,
Lemma 24 Assume 1 = 1/(98L&"" d=+7 (1 + log(1 + 12/())). Let x, € R? be an approximate
stationary point of f,), i.e.,

1
d20+a)

1
f@w+@@—mHs S )
N TLA™ n

Then, the iteration complexity to find x, by Liang and Chen (2022a, Algorithm 3) is O(1).

Proof According to Liang and Chen (2022a, Lemma A.2), f,] := f(x) + ﬁ”w — y|? satisfies that

B L
S llu— ol =0 < f(w) = f(v) = () (0),u—v) < Fllu— vl +6, Vu,veR?
with
2
Lite 1 1 1-—
M=—"%  B=--M, L=-+M, §=-—"2.
(14 )i e n n 2
1 —
Denote the upper bound in (42) as p := dz(lil) . Since (1 + a)iTa > 1, by simple calculation, we
7LIToy

can verify that
2v/2(1 — )
L o
L& J98da51 (1 + log(1 +12/C)) — 1

235+ L)) y/F = 22—

/s —M

< <p.
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Then by Liang and Chen (2022a, Lemma B.4), the number of iterations to obtain (42) is at most

2\F+\F (B+ L2z — \\22\F+\F o

where (%) is the initialization point in the optimization algorithm and z* is a ground truth stationary
point of f,]. [ |

Considering the error in solving the stationary point of f,/, we will need another concentration
bound for the sampling complexity proof. Compared with Theorem 4, this concentration inequality

only has an additional coefficient exp Wi—l)) with all other terms intact.

Proposition 25 Let X ~ N'(mg,nl) be a Gaussian random variable in R%, and let ¢ be an L-a-
semi-smooth function. Assume '(m1) = 0, and ||mg — my|| < s. Then foranyr >0, 0 < a <1,
one has Ve € (0,d),

2

S € —d/2 Ce 1+aprlta
Pr(((X) —E(£(X)) > r) < exp () 1-5) exp | ],
2n(d/e —1) ( d) L r

e} 1
1\ I+ 1 1+a —a
C=(1+a) <a> (ﬁ) 917e

Proof With the same procedure in the proof of Theorem 4, one can obtain

exp(®2nA2 2
Pr(0(X) —E(((X)) = r) < inf Ez exp( SXZA(AL)W(Z)!Q)

where

where Z ~ N (0,nI) and V{(m1 — mg) = 0. In what follows, we denote m; — mg by ¢. Again, we
proceed by considering three cases.

1. a=0

Notice that | V4(Z)||3 < L2. By taking A = one could get

2 L2’

22

Pr(6(X) —E(((X)) > 7) < exp(—m

).
Note that for the case that o« = 0, the result is the same as the one in Theorem 4.

2.a=1
Assume — + L 2n\2 < 0, then

2
Ez exp(% /\277HW (D) _ Bzexp(LinA*Z — ¢[)3)

exp(Ar)

) d/2 o
= | ——— exp [ —2——|el2 ) exp(—Ar).
(1 - ’sz%nW) (L =1
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_ k w2 k2
Let A\ = Zap and denote TPL2d by €. Then,

Pr(f(X) —E(f(X)) 27) < (1 - 5) % exp (d/t/ — HLH%) exp<-ﬁ%jdm>, Ve € (0,d)

Note that given the value of ¢, (1 — 5)_% is bounded for d. One can also observe that compared

with the result in Theorem 4, the only difference is the additional term exp ( dZ — ”LH%) .

0<axl

1
By Young’s inequality, for any w > 0, one obtains ||Z — ¢[|**w < af|Z — t||? + (1 — a)wT-=.
Hence, with the assumption 1 — 721—2L3772)\2% >0,

7T2 Tl'2
Ez exp(En\ | VUZ)3) _ Bz exp(Lan¥*[1Z — dlI3*)

exp(Ar)

Y2n|ell3

2
Y(zna2r2e

exp(Ar)

72 a, _d w2 o
<(1— =n*N2L2—=)"2 exp ( ) exp(—=nA2LA(1 — a)wi-a) exp(—Ar).
4 w ) -1 8

(43)

One can notice that compared with the case « € (0, 1) in the proof of Theorem 4, the only

1/2,,7
NETNIDE

proof of Theorem 4, we have Ve € (0, d),

additional term is exp

: ||LH§> . With the same suboptimal \ and & as in the

(3 2

—d/2 L atipatl
Pr(é(X)—E(E(X))w)g(l_,) 2 o (L2 12 exp [~ 5

dfe — 1 Lfdaiﬂn

Following the same procedures in Section 3, with the concentration inequality at our disposal,

we can probabilistically bound the difference of p and p, which determines the discrepancy between

and 7X1Y,

Theorem 26 (RGO complexity in total variation) [f the step size

1

n=< =
98L& dat1 (1 + log(1 +12/¢))

)

then for any ( > 0, Algorithm 3 returns a random point x that has ( total variation distance to the
distribution proportional to 7Y (-|y). Furthermore, if 0 < ¢ < 1, then the algorithm access O(1)
many f(x) in expectation.
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Proof Following the same proof as Theorem 6, we obtain

o
[P — &Y Iy <2 " exp((i + 1) log 2) Pr(A > ).
i=1
Note that g(x) = f(z) — (V f(xy), z) satisfies that Vg(z,) = 0, and E[z] = w. Moreover, g(x) is
also L,-a-semi-smooth because Vg(x1) — Vg(x2) = Vf(x1) — Vf(x2) for any z1, x2. We also
have the inequality (1 — 0.5/a)~*? < 1.5and 0 < 1/(2a — 1) < 1/a when a > 1. Since (42) in
Lemma 24 is satisfied, further by Lemma 23, we have

d= =
2(14+«
|2y —w| < 5:= - (44)
TLLT™
Thus, we plug in € = 0.5 in Proposition 25, and obtain that, for Vr > 0,
_a 1 1-2a 2
3 82 (1 + a) 1\1¥a (L \1¥a 21+a pita
Prlg(a) ~ Eg(o) > 1] < Soxp | - - LFO )™ Ga) 3)
77 Lg+1 drﬂn
This further implies that
Prlg(z) — g(z) = r] = Prlg(2) — Eg(2) + Eg(z) — g(z) = r
< Pr[g(2) ~Eg(2) > 1] + Pr [Bg(e) — g(2) > 7]
T r
—Pr [9(2) ~ Eg(2) 2 7] + Pr [~g(2) — E[-g(2)] = ]
1 — 1 % 1—2a N
<3exp [ — (1+a)(3) 7 ()72 (5)™ 21
p 2 d
Lot datt 2d |'n
1l 1_2q 2
B 1+ A\Tta (L 1+a21+a ilog2\T+a
Thus Pr[A >i] < 3exp [ — (1+)(3) <’T2)2 ) _ 21 1| Denote
Le¥aatt )
_a 1
o (L+a) ()7 () F 2% (log2)Te 52 1oy
e 2o o 2d
L& dat K
Since log2 < 1 andil%a >iforany i > 1,0 < a < 1, we have that
o
> exp((i+1)log 2) Pr(A > i)
i=1
_2
o (1) ()7 () 7250 (92) 77 )
«
SGZeXp 7 — ﬂi ik
i=1 Lt datt K
<6§:ex (=Cyi) = 6 < < (46)
- P T exp(Cy) —1 T 2



IMPROVED DIMENSION DEPENDENCE OF A PROXIMAL ALGORITHM FOR SAMPLING

by the choice

(1+0) (1)75 (L) 7 200" (log2) e 42 .

™

Lﬁdﬁl C2d ) (1+1log(1+12/¢))

n<

Since the bound (23) and the value of s in (44), the bound

1
n<

= 2 o
98LE T da+1 (1 + log(1 + 12/¢))

suffices. This finishes the proof. o
Finally, by Lemma 3, the acceptance probability is %E[V] Since ¢ < 1, we have

374 = 1
E[V] > E[V] - E|V — V| 21_g2 :
Thus, the expected number of iterations for the rejection sampling step is O(1). H

Theorem 27 (RGO complexity in Wasserstein distance) If the step size

1
7 < min

1
2 4 , ’
98 LS da+i (2 + log(1 + 192(d2 + 2d)/<4))

then Algorithm 3 returns a random point x that has ¢ Wasserstein-2 distance to the distribution
W (.|y). Furthermore, if 0 < ¢ < 2v/2d, then the algorithm access O(1) many f(z) in
expectation.

Proof It suffices to prove the claim: If the step size

1
7 < min

—5 1, 47)
98L& dat (2 + log(1 + 192(d2 + 2d) /¢2))

then Algorithm 2 returns a random point x that has ( squared Wasserstein-2 distance to the
distribution 7Y, Furthermore, if 0 < ¢ < 8d, then the algorithm access O(1) many f(x) in
expectation.

By Lemma 21 (Villani (2003, Proposition 7.10)) and triangular inequality,

; : v o7
WY ) < 2 el - ) =28 (e - wlf | - EVD
1% % % i
<E|z —w|i(|l— - — |+ |— - —
<28l i} (|57 - 57| + | 5 ~ 3
< 2E(lz —wlPlV = V]| | 2E[|z —w|*VIE[V — V]|
N EV EVEV

(20) — . 2BV —=V]|-E[|z — w|?V]
< 2E[||lz — w|?*|V - V] + i )
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Firstly, by Cauchy-Schwartz inequality,
— — ol

Elz = wl*[V = V] < (Ellz — w['E[V - V[*)2.
Similar to (28) and (33), we have

E|lz — w||* < d* 4+ 2d and E[||lz —w|*V] < 2nd. (48)
On the other hand, following the same logic of bounding E[V — V] in Theorem 6,

. o0
E[V - V<Y exp(2(i + 1) log 2) Pr(A > i) (49)

=1

Note that the s value in (44) still holds. By the concentration (45), and the bound (23), we have

Zexp(Q(i +1)log2) Pr(A > 1)

=1

< 1 1-2a /. %
(49 o [+ ) (3)T () e 2 (Zng?) A
<12) exp | 2i - 2 2\
' o1 g5 2d | n
=1 La das
o] ) ) 2 |
1 1
<12 exp <2i - (f - ;d> ) < 12exp (22' ~ ( - ;d> Z)
i=1 49L5H dott 7 491G d=T U
12 (44 12 @

72 (a3
98L& T datTy

= 16(d? + 2d)"
1 52
exp (| —=——— — n—2>—1 S S
<(49L3‘ifda+l 2d> / exp ( 2) 1

This gives E[||lz — w|]?|V — V][] < %. Next, following the same steps to bound (46) and (24), we
obtain
E|V - V| < - and B[V] > -. (50)
— 16d -2
The above three inequalities, together with (48), gives that W3 (7% Y aX |Y) <.
Finally, because of the choice ( < 8d, and the bound (50), we have E|V — V| < % Thus, the
acceptance probability 3 E[V] > Z(E[V] — E|V — V]|) > 1. So the expectation of iterations in
rejection sampling follows as O(1). |

These two theorems show that the step size will have the same order as in Section 3. Thus all the
results in Section 4 also follow if the RGO is realized by Algorithm 3.

Appendix E. Extension to the convergence in y>-divergence

We now extend our results in §3, §4, §D to the strong notion of x2-divergence. We do not modify the
the concentration inequalities nor the RGO algorithm, but only the proof of RGO step size. The new
RGO results in y? with both accurate and inaccurate optimization step are shown in §E.1. Then in
§E.2, we combine our RGO result with the techniques in Altschuler and Chewi (2023) to get the
final convergence results in 2.
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E.1. RGO for semi-smooth potential

We first consider we can solve optimization step 2 accurately in Algorithm 2. This theorem is more
general than Theorem 6 and 7, which are presented under the weaker metric TV or Ws.

Theorem 28 (RGO complexity in y2-divergence with accurate optimization step 2) Assume f
satisfies (1). For V¢ > 0, if
2, -1
n < (49L§+1 do+1(2 + log(1 + 522/())) ,

then Algorithm 2 returns a random point x that has  x*-divergence to the distribution proportional
to XY (-|y). Furthermore, if 0 < ¢ < 0.5, then the algorithm access O(1) many f(z) in
expectation.

Proof Recall that the return of Algorithm 2 follows the distribution 7% Y and the target distribution
of RGO is X1V o exp(—g(x) — 2%7||:E — xy||*). According to Lemma 3, we have

) EV'V_UEV] | _ E[(V - V)V EV] - E[V - V)

X2X|Y( = — — 1= —
4 (EV)? (EV)?
E[(V — V)ZV_I}IE[V]
= (EV)?

We first bound the two expectations in the numerator. Denote A = g(z) — g(x). Following (8) in the
proof of concentration inequality in Theorem 4, we have

E[V] = Eq.[p] = Eq:[exp(A)] < Ex[exp(nn]| Vg(2)[|*/8)]

d
(11) 2L2 2 ) 2 o
< <1 - 774?17Q> exp <7T8L(2177(1 - a)wl—a>

11—«

for Vw > 0. By choosing w = (1 — a)~ "= (nd)!~%, the above term becomes
- m2L2pttaq(l —a)a |
4dl—«

1
We further choose n < Ll — < (87:20 %(21&2)) e , so the above term is smaller than
2Lt gT+a o

[NJisH

2
exp <8L3n1+ado‘> .

[lisH

1—

l1—a -
2a(1 — a) 5" log(1.2 o
1.2 (1 _ 2a{l=a) 7= log( )> < 1.2exp(2a(l — @) a" log(1.2)) < 1.2 x 1.5 = 2.

d

We use the inequality (1/(1 — z))Y/* < exp(2) if 0 < z < 0.5 above. So we obtain E[V] < 2.
When V' = El[p[x] is small, p is likely to be small and thus V' — V =E[(p — 2)1,>2] is also
small. We bound the term E[(V — V)2V ~!] by splitting it into

(V=VP _ (V-7 (v -7y

_1/)\2
v < v 1V§1+E 1 1§Eu

Lyc1+eRB(V - V)2
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Following the same logic of (29) in the proof of Theorem 7, we can get that if
1

)

NS ——=
49L57TdaHT (2 4 log(1 + 222))

then eE(V — V)2 < (/(16). We then notice that when V' < 1/e, by the definition of V and Jensen
inequality, it holds that g(x) — E[g] > 1. To bound the term IE(V;/V)Z

— — 2 ==\ 2
(V —7)2 | (V=T | (V=T
ET]'VS% S EE e 1V§% S EE Ty 19(55)7]}5[9]21'

1V§é’ we write

Moreover, since g(x) — E[g] is always no less than 1, with ¢ = 0.2, we have

(9(z) — E[g] + 7)o+t g(z) —Elg] +r

Pr(A > rjz) <1lb5exp | —c 5 <1lb5exp | —c———— | (5]
L&t datip L& datip
for Vr > 0. )
Denote A = A/log2 = (g(2) — g(z))/log 2, and S = L& datin. We can write
V-V _Ellp—2)150le] _ Elexp(A)Lpmal] _ i
4 Elexp(A)fz] = Elexp(A)|z] Elexp(A)1p<ale]/Elexp(A)1psole] + 1

Elexp(A)1,>2|2] 23 2 exp(ilog2) Pr(i < A <i+ 1z)

exp(
Elexp(A)1,<2|] exp(_lHlECE?Q_g(x))Pr(_1+IIE(£§2_g(x) <A <llz)

23, exp(ilog2) Pr(A > i|x)

<

IN

< (52)
exp(ZHHLE) 1 — Pr(A > log2|a) — Pr(g(2) — Elg] < —1)]
0 - _ 9(z)—E[g]+ilog2 9(z)—E[g]
(5<1)3 Yoy exp(ilog2) exp(—c & )exp(Fyz7 )

" exp(—gorg) (1 — L5[exp(—cZD=EHIB2) 4 oy (—g)))
15502, exp(i(log2 - SE2)) exp(—(§ — og)(9(x) — Elg]))
1-1 B[exp(fcwé‘fm_logz) + exp(—g)]

_ 15exp(—(5 — or3) (9(x) — E[g]))/ (exp(<2 — log 2) — 1)
1— 1.5[exp(—cw) + exp(—5)]
_1oexp(=(5 - 1ox3))/ (exp(S%2 —log2) — 1)

1 — 1.5[exp(— 1+10g2) +exp(—35)]

)

where we use the condition g(z) — E[g] > 1 in the last inequality. By choosing

< (8LT =51 max{L5 + log(1 + 7/1/0), log(30)})) .

under the condition g(x) — E[g] > 1, we guarantee that 1 — 1.5[exp(— 1+10g2) +exp(—¢) > 0.8

and 15 exp(—(§ — 1022))/(e p(clog2 log2) — 1) < ¢, thus (%) < ig So we obtain that
Ewlvsé < 1%, and thus E% < %_
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To bound EV, we notice that if xfrxw(er'Y) < 0.5, then [|#X1Y — 7XIY|py < 1, thus by
(24), we get EV > 1. Combining it with the bounds E[V] < 2 and Ew < %,
XiX\Y(ﬁX‘Y) <¢

The expected number of the iterations for the rejection sampling step is O(1) because the
acceptance probability is $E[V] (Lemma 3). [ |

we get

We then consider the case where we can only solve the optimization step 2 inaccurately. The
corresponding algorithm and analysis have been discussed in §D. The following theorem extends the
results of Theorem 26 and 27 in §D.

Theorem 29 (RGO complexity in y2-divergence) Assume f satisfies (1). For V¢ > 0, if
2, -1
n < (98L5§+1 do+1(2 + log(1 + 522/4‘))) ,

then Algorithm 3 returns a random point x that has ( x*-divergence to the distribution proportional
to XY (-|y). Furthermore, if 0 < ¢ < 0.5, then the algorithm access O(1) many f(z) in
expectation.

Proof Following the proof with accurate optimization, we get

E[(V - V)V IE[V]
(EV)?

Xixw <7ATX|Y) <

When bounding EV, without loss of generality, we assume w is 0, i.e., the mean of x and z is 0O,
and ¢'(zy, — w) = 0. Denote A = g(z) — g(x), and ¢ = z,, — w. Following (8) in the proof of
concentration inequality in Theorem 4, we have

E[V] = Eq..[p] = Eq.z[exp(A)] < Ex[exp(nn]| Vg(2)[|*/8)]

_d

el 1_772L(217]204 2 [1¢ll5/(2n)

> 4w 2 2L204 —1 1
(Tn a@) -

for Vw > 0. The only additional term compared to proof of Theorem 28 is the right-most term above.
l1-a

By choosing w = (1 — a)~ "= (nd)'~, and denote b = (1 — oz)_l_Ta, the above equation becomes

w2 o
exp <8Lin(1 - a)wl—a) exp

_4d
2

272, 1+a 1o 2 2
Lin'* a(l - o) ) <w > 1 13
1-— & exp | —L2n*Td* | exp | = e——
11—« o 8b2dl—«a
( 4d 8 TanaLz 21
1
Recall that (44) still holds, i.e. [|¢]|? < 5 := dmi) , since we use the same Algorithm 3. We further
7Lt
1
choose n < —+—— < (ilg %Qgﬁ?) '™ so the above equation is bounded by
2La T dTFe «

an?||e|*n* L3
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So we obtain E[V] < 3. Next, we bound the term E[(V — V)2V 1]

V-TP _V-TR (VTP

(v - V)
v sy e Ryl s B

E
|4

1 <E Lyc1+eE(V - V)2

Following the same logic of (49) in the proof of Theorem 27, we can get that if

1
n <

)

98L‘*“ d=+1 (2 4 log(1 + 22))

then eE(V — V)2 < (/(24).
We then notice that since V' < 1/e, by the definition of V' and Jensen inequality, it holds that

V-V)? : V-V)? 7\?
g(x) — E[g] > 1. The term E! v ) 1\/3% satisfies E v ) 1V§é <1E <u> 1g()—E[g]>1-

v
Moreover, since g(x) — E[g] is always no less than 1, we can apply the inequality (45). With ¢ = 0.2
and ||z, — w|| < s, we have

2
~E
Pr(A > r|z) < 1.5exp ;Tn . 9@ —Elgltr (53)

L{}Fda%ln

for Vr > 0. )
Denote A = A/log?2 = (g(z) — g(x))/log?2, and S = L& da+Ty. We can write

V-V G2 252, exp(ilog2) Pr(A > i|x)
Vo T exp(—H9E) 1 — Pr(A > log 2lw) — Pr(g(2) — Elg] < —1)]
(53) 3> 2 exp(ilog2) exp(Qd —c (m)_E[g]+ilog2)exp(g(ﬁ());g:[g])
= (= ohg) (1 — LbJexp( gy — cZO=EUIHO82) 4 e (2 — 2)))
15358, exp(iflog2 — <%82)) exp(y; — (& — 1es)(9(z) — Elg])
- 1 — 1.5[exp(5y — cUE=EGHBZ) | exp( s — 2]
:15exp(2%,7 — (& — ) (9(x) —Elg])/(exp(“%¥2 —log 2) — 1)

1~ L[exp(g, — cAELIH0R2) o ( 22 o))

2
_1oexp(oa; — (5 — os2))/ (exp(4E2 —log2) — 1)
1-— 1.5[exp(% — clthoa?y 4 ex p(2dn $)]

i

where we use the condition g(x) — E[g] > 1 in the last inequality. By by the choice s in (44) and

0 < (16137 d=5T max{1.5 + log(1 + 7/1/0), log(30)}) ",

1+10g2) 0.8

under the condition g(x) — E[g] > 1, we guarantee that 1 — 1.5[exp(—
1 <
i

and 15 exp(—(g

+ exp(— %)
" log <
and thus E(V V) < %

>
))/(exp(dog? log2) — 1) < ¢. Sowe obtamthatE(v v)? 1,1 <

>
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To bound EV/, we notice that if 2, (A¥1"") < 0.5, then [|#¥1Y — 7% |lry < 1, thus by
(24), we get EV > % Combining it with the bounds E[V] < 3 and E% < %, we get
XiX\Y(ﬁX‘Y) <¢

The expected number of the iterations for the rejection sampling step is O(1) because the
acceptance probability is $E[V] (Lemma 3). [ |

E.2. Complexity bounds of proximal sampling for semi-smooth potentials

The following Proposition 30, 31 extend the results in Proposition 10, 13, 14 to y2-divergence notion.
Moreover, they only assume we have inaccurate optimization step 2. Our proofs in this section use
the same techniques from Altschuler and Chewi (2023, Theorem 5.1-5.4).

Proposition 30 (Convergence in \? for well-conditioned targets) Suppose f is 3-strongly con-
vex and Ly-smooth. Let § € (0,1),n = O (1/(L1 \/&)) Then Algorithm 1, with Algorithm 3 as

RGO step and initialization xo ~ o, can find a random point v ~ fir such that x*(jir) < § in

L \/ﬁ L \/a R2,I/(M0)
()

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.

Proof Recall that the distributions of the iterations y; and x; of the ideal proximal sampler are ),
and 1; respectively (see the discussion at the beginning of §4). Denote the Y -marginal of 7% as
7Y, By analyzing the simultaneous heat flow, Chen et al. (2022, §A.4) shows that the forwards step
of the proximal algorithm is a contraction in Rényi divergence, i.e.

RQ,V(Mt)

R277rY (d’t) < W

(54)

We assume that for Vy € R?, we have
XiX\Y(,‘y)(ﬁX‘Y("y)) <(

using O(1) many f(x) queries in expectation. Then according to the data-processing inequality for
Rényi divergence (Altschuler and Chewi, 2023, Lemma 2.3), strong composition rule for Rényi
differential privacy (Altschuler and Talwar, 2022, Lemma 2.9), we have

Roy(fus1) < Ry pxv (law(Xy41, V7))

< Ry v (1) + sup R2,WX\Y(.\yt)(ﬁX‘Y(‘|yt))
ytERY

< Ry v (1) +log(1+¢) (55)
Combining (54) and (55) gives

R2,V(ﬂt)

7(1 B + log(1 + ().

RQ,V (/lt+1) <
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Iterating this bound for 7" times gives

T—-1
X Ry (o) Rau(po) | log(1+¢)
Roy(fr) < — =5 +1og(l+ ) < :
(i) (1+nB)T/2 =0 1+775t/2 (1+np)T/2 1‘@
This error is at most ¢ if
1 R (o) ))
T=0 1 : , C=0(ns).
<log(1 +nB) ¢ < 0 ¢ = o)
According to Theorem 29, plugging in the necessary step size n = O( T valos( L11 Va6 B))) finishes

the proof.

Proposition 31 (Convergence in \? for non-log-concave targets) We use Algorithm 1 with Algo-
rithm 3 as RGO step. Let 6 € (0,1), and v x exp(—f).
1) If v satisfies Cys1-LSI and L1-smooth, then we need

T=0 (Llflog(cg{;) log (M>> to have x2(fir) < 0.
2)Ifv sansﬁes Cp1-PI and f is L,-a-semi-smooth, then we need

2
T—0 <La+édla+1 log <L§-2P?5a+l ) log ()@(Mo))) t0 have x2(jur) < 6.

Furthermore, each step accesses only O(1) many f(x) queries in expectation.

Proof 1) The proof is the same as of Proposition 30 since (54) also holds under LSI:

Ro o (p1t)
R < —
Q,WY(wt) —= (1 +770LSI)1/2

2) Chen et al. (2022, §A.4) shows

Xa ()

A LA LA 56
{1+ nCr) 0)

XiY (T/Jt) <

In the same time, (55) still holds as it does not use the LSI assumption. Recall that Ry, = log(1+x2).
Combining (56) and (55) gives

N 1+¢ .
2 < 2
i) < (o) Wi + ¢

Iterating this bound for 7" times gives

2 L+¢ ([ 1+¢ 1+¢\" ¢
XV(MT)S <1+77/8> XV Ho +CZ <1+770PI> < <1+776> XV(M0)+1_71+C

1+nCp

This error is at most ¢ if we choose

_ X2 (10) onCpr
r= >>’<§2u

1
@) lo .
<10g((1+77(7pl)/(1+<>) g< 0 +nCpr1 +6/2)
Plugging in the choice of 77 in Theorem 29 finishes the proof.
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Remark 32 (Convergence stability) In the convergence analysis, an interesting question is whether
we can allow the number of iterations to go to infinity. Lemma 8, 9 do not guarantee stability since
the RGO accumulation error linearly depends on the iterations T'. However, the proof of Lemma 9
can be easily strengthened when T is strongly-log-concave to bound accumulation error. Moreover,
with the techniques in Theorem 5.1-5.4 of Altschuler and Chewi (2023), our Proposition 30, 31 now
ensure stable convergence.
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