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Abstract

We consider a personalized pricing problem in

which we have data consisting of feature infor-

mation, historical pricing decisions, and binary

realized demand. The goal is to perform off-

policy evaluation for a new personalized pric-

ing policy that maps features to prices. Methods

based on inverse propensity weighting (includ-

ing doubly robust methods) for off-policy evalua-

tion may perform poorly when the logging policy

has little exploration or is deterministic, which is

common in pricing applications. Building on the

balanced policy evaluation framework of Kallus

(2018), we propose a new approach tailored to

pricing applications. The key idea is to com-

pute an estimate that minimizes the worst-case

mean squared error or maximizes a worst-case

lower bound on policy performance, where in

both cases the worst-case is taken with respect to

a set of possible revenue functions. We establish

theoretical convergence guarantees and empiri-

cally demonstrate the advantage of our approach

using a real-world pricing dataset.

1 INTRODUCTION

Data-driven and personalized pricing has received consid-

erable attention over the past two decades (Cohen et al.,

2017; Besbes et al., 2010; Ferreira et al., 2016; Bu et al.,

2022; Baardman et al., 2019; Wang and Zheng, 2021;

Qi et al., 2022; Biggs, 2022). Utilizing contextual informa-

tion in pricing is especially popular due to applications in

online shopping (Nambiar et al., 2019; Elmachtoub et al.,

2021), auto lending (Phillips et al., 2015; Ban and Keskin,

2021), air travel (Kolbeinsson et al., 2022) and beyond

(Chen et al., 2022; Wang et al., 2021; Aouad et al., 2019).

The increasing availability of customer data enables per-

sonalized pricing strategies. However, experimenting with
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a new personalized pricing policy that is potentially more

profitable or fairer (Cohen et al., 2022) can be costly

and difficult, motivating the use of off-policy evaluation.

Specifically, we study the problem of off-policy evaluation

for personalized pricing where feature information such as

customer order history, demographics, and market condi-

tions are observed alongside the offered prices and binary

purchase decisions.

There is an extensive literature on off-policy evalua-

tion. Inverse propensity weighting (IPW) and doubly ro-

bust (DR) methods are especially popular (Dudı́k et al.,

2011; Hanna et al., 2017; Swaminathan and Joachims,

2015a; Thomas and Brunskill, 2016; Wang et al., 2017;

Bottou et al., 2013; Athey and Wager, 2021). Both ap-

proaches reweight historical data to make the data look as

if they were generated by the target policy that we wish

to evaluate. While initial research in the area focused on

finite, discrete action spaces, more recently Sondhi et al.

(2020); Kallus and Zhou (2018); Cai et al. (2021) propose

extensions to more general, potentially infinite, action

spaces. Biggs et al. (2021) recasts IPW methods as opti-

mizing a particular loss function and uses this insight to

propose suitable generalizations.

Each of the aforementioned methods leverages an approxi-

mation of the inverse propensity score to form weights. As

noted by Kallus (2018), an inherent shortcoming of such

approaches is that when the overlap between the target

and logging policy is limited, these methods assign large

weights to a small number of data points in the overlap

and assign zero weight elsewhere. This weighting scheme

yields high variance estimates, especially on small datasets.

In the worst-case when there is zero overlap, IPW methods

are not even well-defined.

While such cases might seem pathological, they are com-

mon in pricing applications. Many real-world firms are ret-

icent to engage in extensive randomized pricing, making

limited overlap fairly prevalent. When firms price deter-

ministically, even simple policy adjustments such as rais-

ing all prices 2% yield zero overlap. These features make

the aforementioned methods less attractive.

Many authors have proposed general purpose modifica-

tions of traditional methods to address these shortcomings.

http://arxiv.org/abs/2302.12736v1
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Elliott (2008); Ionides (2008); Swaminathan and Joachims

(2015a,b) each propose various ways to regularize the naive

IPW weights, e.g. by clipping large values, to reduce vari-

ance. These methods introduce additional bias into esti-

mates, often in ways that are instance dependent and diffi-

cult to quantify.

Other authors attempt to circumvent the issue with IPW by

focusing on policy learning – i.e., identifying a good pol-

icy – rather than policy evaluation. In cases of zero overlap,

Sachdeva et al. (2020) compares three different approaches

– restricting the action space, extrapolating reward, and re-

stricting policy spaces – and argues in favor of restricting

policy spaces. Kallus (2021) proposes a retargeting ap-

proach which reframes the optimal policy as the solution to

an alternate off-policy problem with better overlap proper-

ties and near-optimal asymptotic variance. As stated, how-

ever, neither approach directly addresses policy evaluation.

Insofar as firms are often interested in the performance of

a specific, target pricing policy that may have been chosen

for qualitative, business-specific reasons, there remains a

need for effective policy evaluation methods that balance

bias and variance and provide provable performance guar-

antees.

Inspired by the balanced policy evaluation method of

Kallus (2018), we propose an alternate approach to off-

policy evaluation for pricing applications. Like IPW and

DR methods, we estimate the performance of the policy by

a weighted average of the historical data points. However,

unlike these methods, we use weights that either (i) min-

imize the worst-case mean squared error of our estimated

revenue or (ii) maximize a worst-case lower bound on the

unknown target revenue. In both cases, the worst-case is

taken over a set of plausible revenue functions.

Our work differs from Kallus (2018) in three critical as-

pects: (i) We focus on a binary demand response vari-

able rather than a continuous one with a homoscedastic

variance. Binary demand induces a more complex form

for the variance of our estimator and consequently com-

plicates the worst-case optimization problem defining our

weights. By contrast, the corresponding optimization in

Kallus (2018) is an unconstrained, convex quadratic pro-

gram with a closed-form solution. (ii) Although we treat

worst-case mean squared error (MSE) (similar to Kallus

(2018)), firms are also concerned with operational criteria

such as a guaranteed lower bound on revenue. We show

how our approach can be modified to compute such a lower

bound (via Bernstein’s inequality) and contrast the behav-

ior of the resulting estimator with the MSE approach. (iii)

Kallus (2018) focuses primarily on the case of a small num-

ber of discrete actions, while typical pricing problems in-

volve continuous action spaces. In particular, one cannot

apply Kallus (2018) “out-of-the-box” to continuous action

spaces, since the approach assumes no structure across ac-

tions (prices) and would thus yields overly conservative es-

timates (Kallus (2020) suggests a way to address this). By

contrast, we enforce smoothness of the demand function

across prices by assuming this revenue function belongs to

a particular reproducing kernel Hilbert space (RKHS).

Paper Outline: We start in Section 2 with the notation and

setup, followed by an analysis of weighted revenue estima-

tors in Section 3. We present our off-policy evaluation ap-

proach in Section 4. In Section 5, we establish theoretical

guarantees for our approaches. We present experimental

results on both synthetic datasets and a real world pricing

dataset in Section 6. We describe heuristics for estimating

parameters in Section 7 and conclude in Section 8.

2 NOTATION AND MODEL

We assume the following (fixed-design) data generation

mechanism: We are given a set features xi ∈ X for

i = 1 . . . , n. Price-demand pairs are distributed as

Pi ∼ g0(·,xi), i = 1, . . . , n,

Di | Pi ∼ Bernoulli(d(xi, Pi)), i = 1, . . . , n,

for some unknown demand function d(·, ·) that maps fea-

tures and prices to [0, 1]. Here the density g0(·, ·) en-

codes our logging pricing policy, i.e. we draw a random

price from density g0(·,x) when presented with a feature

x. When the logging policy is deterministic, we interpret

g0(·,x) as a Dirac delta function.

Our dataset {(xi, pi, di) ⊆ X × R+ × {0, 1} : i ∈ [n]}
consists of single a realization of this process.

Loosely, our goal is to evaluate a target policy that draws

a random price from the density g1(·,x) when presented

with feature x. Formally, let

Pn+i ∼ g1(·,xi) i = 1, . . . , n,

and let pn+i ∈ R for i ∈ [n] be a corresponding realization.

Then, if we define the expected revenue function r(x, p) :=
pd(x, p), the expected revenue under the target policy is

R := 1
n

∑n
i=1 pn+id(xi, pn+i) (Target Revenue)

= 1
n

∑n
i=1 r(xi, pn+i),

which we emphasize is a constant. Our goal is to estimate

and provide high confidence bounds on this constant.

We stress that, in what follows, our method does not require

explicit knowledge of g0(·, ·) or g1(·, ·).
In keeping with the literature on doubly-robust estimators,

we define a reference revenue function:

Definition 1 (Reference Revenue Function). The revenue

function can be written as r(·, ·) = r̂(·, ·) + ∆(·, ·), for a

known reference revenue r̂(·, ·), and a perturbation func-

tion ∆(·, ·).
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This decomposition is without loss of generality (take

r̂(·, ·) = 0). In practice, we may have a good reference

model r̂(·, ·) that we believe reasonably captures the rev-

enue curve. Thus, the estimators are best thought of as a

perturbation to this reference.

To streamline notation, we define p ∈ R
2n to be the vec-

tor of prices p1, ..., p2n. Similarly, we define the vectors

r, r̂,∆ ∈ R
2n such that for for i ∈ [2n],

ri = r(xi, pi), r̂i = r̂(xi, pi), ∆i = ∆(xi, pi).

We focus on the doubly robust weighted revenue estimator

R̂(w) :=
1

n

n
∑

i=1

wi(piDi− r̂i)+
1

n

2n
∑

i=n+1

r̂i, (Estimator)

for some weights w that we will specify.

3 PROPERTIES OF WEIGHTED

REVENUE ESTIMATORS

We first introduce general properties of weighted revenue

estimators with honest weights, i.e., the weights are inde-

pendent of demand realizations. These properties depend

on the vector r which in practice is unknown. Nonetheless,

these properties serve as a building block for our approach

later on where we take a worst-case perspective on r.

3.1 Mean Squared Error

Define

MSE(w, r) := E

[

(R− R̂(w))2
]

=E





(

R−
1

n

2n
∑

i=n+1

r̂i −
1

n

n
∑

i=1

wi(piDi − r̂i)

)2


 . (1)

Note R and E [pjDj ] depend on the unknown revenue r.

In Lemma 1 below, we provide a more explicit expression

for the MSE, which takes into account the binary nature of

demand. (See Appendix A for proofs.)

Lemma 1 (Bias and Variance Decomposition). Let

b(w) :=
1

n
(w1, . . . , wn,−1, . . . ,−1)

⊤ ∈ R
2n

v(w) :=
1

n2

(

w2
1p1, . . . , w

2
npn, 0, . . . , 0

)⊤ ∈ R
2n

Then, we have

Bias(w, r) := E

[

R̂(w)−R
]

= b(w)⊤ (r − r̂) ,

V ar(w, r) := E

[

(

R̂(w)− E

[

R̂(w)
])2

]

= v(w)⊤r − 1

n2
r⊤

(

diag(w2
1 , . . . , w

2
n) 0

0 0

)

r,

and, of course, MSE(w, r) = Bias(w, r)2 + V ar(w, r).

3.2 High-Probability Bound

We next provide a high-confidence lower bound on the true

revenue R in terms of the estimate R̂(w). From an opera-

tional perspective, lower bounds provide “safe” guarantees

on potential revenue. Although similar techniques could be

used to form upper bounds, they are less useful in practice.

Define

Bern(w, r) := b(w)⊤(r − r̂) +
√

2V ar(w; r) log(1/ǫ)

+
1

3n
max
1≤i≤n

|wi|pi log(1/ǫ). (2)

Lemma 2 (Revenue Lower Bound). With probability at

least 1 − ǫ over the realization of (D1, . . . , Dn), we have

that R ≥ R̂(w) − Bern(w, r).

The lemma is a direct application of Bernstein’s inequality.

Remark 1 (Convexity in w). Since the expectation of a

convex function is convex, Eq. (1) shows the map w 7→
MSE(w, r) is convex in w for a fixed r. Similarly, the

function Bern(w, r) is convex in w for a fixed r since
√

V ar(w; r) =
√

1
n2

∑n
i=1 w

2
i ri(pi − ri) is a weighted

ℓ2-norm, and, hence, w 7→ Bern(w, r) is a sum of convex

functions. We will leverage these convexity properties when

formulating optimization problems to compute our weights.

4 A BALANCED APPROACH FOR

OFF-POLICY EVALUATION IN

PRICING

The expression for mean squared error and the lower bound

in Eq. (2) depend on the unknown revenue vector r. Our

approach will be to compute weights w that optimize these

metrics over “plausible” worst case realizations of r. To

define “plausible,” we make the following assumption for

the remainder of the paper:

Assumption 1 (Perturbation Function is in RKHS). There

exists an RKHS H with kernel K(·, ·) and norm ‖ · ‖H such

that ∆(·, ·) ∈ H and ‖∆(·, ·)‖H < ∞.

Assumption 1 asserts that the unknown perturbation func-

tion is “smooth” in the sense that it has a bounded RKHS

norm. By suitably choosing the kernel K(·, ·), we can en-

force structural constraints on ∆(·, ·), e.g., that ∆(·, ·) is

linear in price or Sobolev smooth in the covariates. See

(Smola and Schölkopf, 2004) for details.

For notational convenience, we let Γ := ‖∆(·, ·)‖H. Define

the Graham matrix G ∈ R
2n×2n by

Gij := K ((xi, pi), (xj , pj)) 1 ≤ i, j ≤ 2n.
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Under Assumption 1, the Representer Theorem (Wahba,

1990) implies that there exists α ∈ R
2n such that

∆ = Gα and α⊤Gα = Γ2.

We further make the following common assumption.

Assumption 2. The Graham matrix G is invertible.

From Assumptions 1 and 2,

∆
⊤G−1

∆ = Γ2. (3)

Since d(x, p) ∈ [0, 1] for any x, p, we have

0 ≤ r ≤ p. (4)

Combining (3) and (4), we seek weights that minimize a

worst-case metrics φ(w, r) over plausible revenue func-

tions:

w∗ ∈ argmin
w

max
r

φ(w, r) (5)

s.t. 0 ≤ r ≤ p , (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

Here φ(w, r) can be MSE(w, r) or Bern(w, r). We de-

note the corresponding solutions by wMSE and wB , re-

spectively.

Since in practice, we do not know the ground truth Γ, we

proxy Γ by user-specified constant Γ̂ in Problem 5. (We

discuss heuristics for estimating Γ̂ in Section 7.)

Remark 2 (Unconstrained Weights). In contrast to Kallus

(2018), we do not impose an additional simplex constraint

on the weights. Indeed, the value of the target policy need

not be on the same order of magnitude as the logging pol-

icy, e.g., when we raise price significantly. Thus, an ideal

set of weights might not satisfy such a constraint. That said,

our Bernstein variant (wB) does regularize away from

overly large weights via the weighted ℓ∞ norm in Eq. (2).

This regularization emerges naturally via the probabilistic

analysis rather than being imposed via an artificial sim-

plex, or normalizing, constraint.

Remark 3 (Honest vs. Dishonest Weights). When r̂, Γ̂,

and the kernel K(·, ·) are specified exogenously, i.e., in-

dependently of the demand realizations, both wMSE and

wB are honest. We study the corresponding estimators

R̂(wMSE) and R̂(wB) theoretically in Section 5.

In practice, we suggest fitting these parameters to the data

via the heuristics in Section 7. The resulting weights are

“dishonest.” While it might be possible to extend our theo-

retical results to this setting by assuming that (r̂, Γ̂,K(·, ·))
are chosen from a suitably low-complexity class, we do not

pursue this theoretical analysis here. Rather, we present

numerical evidence in Sec. 6 that even with dishonest

weights, our estimator performs well.

4.1 Solution Approach

We next discuss how to solve (5).

For a fixed w, consider the inner problem of finding the

worst case (WC) revenue:

rWC(w) := argmax
r

φ(w, r)

s.t. 0 ≤ r ≤ p , (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

Let h(w) = φ(w, rWC(w)). Since w 7→ φ(w, r)
is convex for each r by Remark 1, Danskin’s Theorem

(Bertsekas, 1997) shows that h(w)is in fact convex in w,

and, when rWC(w) is the unique optimizer,

∇h(w) = ∇wφ(w, r)|r=rWC(w).

Thus, we can minimize h(w) using any number of

gradient-based algorithms. (In our numerical experi-

ments, we use the a first order trust-region method from

scipy.optimize.) Evaluating a gradient requires determin-

ing rWC(w), i.e., solving the inner problem.

That said, for large n, computing gradients in the Bernstein

objective is perhaps easier than for the MSE objective. For

the Bernstein objective, the inner maximization problem

can be reformulated as a concave quadratic maximization

problem in r (see Appendix B). By contrast, for the MSE

objective, the inner problem is an in-definite quadratic pro-

gramming problem. Such problems can, in the worst-case,

be NP-Hard, but are often practically solvable with modern

solvers for moderate sized instances. In our experiments,

we use Gurobi for both computations.

5 THEORETICAL RESULTS

Recall our approach to off-policy evaluation for pricing ap-

plications is partially motivated by the observation that in

typical pricing applications, the overlap between the log-

ging and evaluation policies may be small since both poli-

cies may entail little randomization. This feature precludes

the use of methods based on inverse propensity scores that

require sufficient overlap, including doubly-robust meth-

ods.

In this section we establish a “sanity-check” result, i.e., that

when sufficient overlap does exist, our method achieves

convergence rates similar to the doubly-robust methods.

Assumption 3 (Overlap). For all (p,x) ∈ R+ × X , if

g0(p,x) = 0 then g1(p,x) = 0.

From Assumption 3, the inverse propensity (IP) weights

W IP
i :=

g1(Pi,xi)

g0(Pi,xi)
(6)

are well-defined for all i = 1, . . . , n.
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5.1 Mean Squared Error

We first consider wMSE and the corresponding estimator

R̂(wMSE). Theorem 1 shows that true (unknown) MSE of

this estimator converges to zero at a rate of 1
n , despite not

knowing g0(·, ·), g1(·, ·) or Γ. (See Appendix C for proof.)

For convenience, let Zi = (xi, Pi) for i = 1, . . . , 2n.

Theorem 1 (Convergence of MSE). Suppose that

i) 1
n

∑n
i=1 E

[(

W IP
i − 1

)

K(Zn+i, Zn+i)
]

= O(1)

ii) 1
n

∑n
i=1 E

[

(W IP
i Pi)

2
]

= O(1)

Then, under Assumptions 1, 2, and 3, we have

MSE(wMSE , r) = Op

(

1
n

)

.

For clarity, the “probability” in Theorem 1 is taken over the

randomness in both {Di : i ∈ [n]} and {Pi : i ∈ [2n]}.
To help develop intuition around the assumptions of the

above theorem, consider the case where K(·, ·) is the gaus-

sian kernel, so that K(Zn+i, Zn+i) is almost surely a

constant. Then the first condition i) holds trivially since

E
[

W IP
i

]

= 1 by construction. The second condition

ii) essentially requires that for a typical point, the in-

verse propensity score weights are not too large – they are

O(1). This requirement is analogous to requiring sufficient

overlap between the logging and evaluation policies, since

W IP explodes as the overlap shrinks. In this sense, Theo-

rem 1 is a “sanity-check” result.

5.2 Bernstein Bound

We next consider wB and corresponding estimator

R̂(wB). Recall Lemma 2 shows that, with high proba-

bility, R̂(wB) − Bern(wB, r) lower bounds the true (un-

known) revenue. We will next show that this lower bound is

not too loose, specifically, that Bern(wB , r) = Op(1/
√
n).

(See Appendix D for proof.)

Theorem 2 (Safe Guarantee). Suppose that

i) 1
n

∑n
i=1 E

[(

W IP
i − 1

)

K(Zn+i, Zn+i)
]

= O(1)

ii) 1
n

∑n
i=1 E

[

(W IP
i Pi)

2
]

= O(1)

Then, under Assumptions 1, 2, and 3, we have

max
(

0,Bern(wB , r)
)

= Op

(

1√
n

)

.

In other words, the unknown true revenue cannot exceed

our estimate by more than Op(1/
√
n). In this sense, our

estimate provides a “safe” guarantee that is not too loose.

Remark 4 (One-Sided vs. Two-Sided Bounds). In The-

orem 2, we obtain a one-sided convergence result be-

cause we used a one-sided probability bound to define

Bern(w, r). If one sought a stronger two-sided conver-

gence, one could instead introduce an absolute value in

Eq. (2) and define the corresponding estimator.

In our numerical experiments, we found this “two-sided”

estimator performs worse than our proposed one-sided es-

timator. Hence we have chosen to only present theoretical

results for the one-sided estimator.

6 NUMERICAL RESULTS

We describe our numerical results, but please see our

GitHub for for reproducibility code and documentation. 1

6.1 Mean Squared Error

We first study wMSE and corresponding estimator

R̂(wMSE). We denote our corresponding method as

BOPE-B for “Balanced Off-Policy Evaluation for Binary

response.”

We compare the performance of the following methods on

synethetic and real-world datasets:

• (LASSO) A “direct” regression estimator correspond-

ing to R̂(0). This linear regression method with ℓ1
penalty predict the demand d(·, ·), and revenue is ob-

tained from multiplying it by the price. This serves as

a baseline.

• (SPPE) Semi-parametric policy evaluation

(Chernozhukov et al., 2019) which is an exten-

sion of the classical DR method to a setting where

the dependence of the policy value on the treatment

is known. In pricing applications, this amounts to

specifying a priori how demand depends on price.

In our experiments, we apply the method assuming

demand is linear in price.

• (BOPE) The Balanced Off-Policy Evaluation method

of Kallus (2018). This method can be seen as an in-

stance of Problem 5 with φ(w, r) = Bias2(w, r) +
1
n2σ

2
∑n

i=1 w
2
i for some user-defined σ2. Loosely,

this objective is the worst-case mean squared error if

piDi were homoscedastic random variables with vari-

ance σ2 and mean r(pi,xi). Thus, this method does

not exploit the binary structure of demand. We select

hyperparameters according to the heuristic proposed

in Kallus (2018) (see Section 7).

• (BOPE-B) Our proposed Balanced Off-Policy Evalu-

ation estimator for Binary response, R̂(wMSE), with

hyper-parameters chosen according to heuristics de-

scribed in Section 7.

1
https://github.com/yzhao3685/pricing-evaluation

https://github.com/yzhao3685/pricing-evaluation
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For each of BOPE-B, BOPE, and LASSO, we use a

LASSO linear regression to estimate r̂(·, ·).
Before delving into the details of the experiments, we sum-

marize our main findings:

• By exploiting the binary nature of demand, the BOPE-

B estimator generally has an advantage over the BOPE

estimator, and substantive advantage of the SPPE es-

timator.

• When the baseline LASSO, itself, has small MSE,

there is little room for improvement and both BOPE

and BOPE-B perform comparably. When the base-

line estimate is poor, both BOPE and BOPE-B peform

substantively better than baseline.

• Generally, the improvements in the BOPE-B estimator

over the BOPE estimator are driven by improvements

in both bias and variance, but in many cases, the im-

provement in variance is the dominant factor.

• The SPPE method can perform quite poorly when the

assumption on the apriori structure of demand does

not hold.

6.1.1 Synthetic Datasets

We present results for two different demand functions.

(a) A Simple Demand Function

The features xi are generated uniformly random from the

square [−1, 1]2. The logging pricing policy is Pi =
1
2x

⊤
i [1,−1] + 7 + ǫi, where ǫi ∼ N (0, 2) are i.i.d. noise.

The target pricing policy is Pi = 1
2x

⊤
i [1,−1] + b + ǫi,

where b is chosen from {2, 3, 4} and then fixed throughout

each experiment. We present results for each value of b.

The demand function is

d(x, p) =
1

4
+

3

4
σ

(

5− 1

2
p− x⊤[−1, 1]

)

,

where σ(y) =
1

1 + e−y
.

The sigmoid function σ(y) is used to ensure (i) demand is

within [0,1] (ii) demand decreases while price increases.

We fix the sample size to be n = 50 throughout the exper-

iment. We use the ground truth to simulate realizations of

the binary demand vector corresponding to these 50 sam-

ple points. We repeat the procedure 100 times to obtain the

bias, variance, and MSE of the four estimators. We perform

the experiment for 30 different random seeds and report the

average results in Table 1. Notice for each random seed, we

sample a different set of features and prices.

(b) A Different Demand Function

Metrics BOPE-B BOPE LASSO SPPE

Target Policy has b = 2.

MSE 1.63 1.83 1.71 1.08

Bias2 0.22 0.27 0.25 0.17

Variance 1.41 1.56 1.46 0.91

Target Policy has b = 3.

MSE 1.73 1.95 1.80 1.92

Bias2 0.33 0.40 0.35 0.17

Variance 1.40 1.55 1.45 1.75

Target Policy has b = 4.

MSE 1.50 1.81 1.57 1.60

Bias2 0.31 0.38 0.33 0.16

Variance 1.19 1.43 1.24 1.44

Table 1: Decomposition of the mean squared error. Syn-

thetic dataset setting (a).

We consider a different demand function

d(x, p) =
1

4
+

3

4
σ

(

5− 1

2
p− arctan(x1/x2)

)

.

Notice this demand function is more complicated than that

in setting (a). In the sigmoid function, we now have a non-

linear function arctan(x1/x2) instead of the linear func-

tion x⊤[−1, 1].

The rest of the set up is the same as in part (a). We repeat

the experiment for 30 different random seeds and report the

average results in Table 2.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy has b = 2.

MSE 1.18 1.47 1.21 1.43

Bias2 0.20 0.25 0.22 0.14

Variance 0.98 1.22 0.99 1.29

Target Policy has b = 3.

MSE 2.09 2.30 2.13 2.22

Bias2 0.52 0.57 0.54 0.46

Variance 1.57 1.73 1.59 1.76

Target Policy has b = 4.

MSE 1.99 2.18 2.05 2.42

Bias2 0.38 0.45 0.41 0.27

Variance 1.61 1.73 1.64 2.15

Table 2: Decomposition of the mean squared error. Syn-

thetic dataset setting (b).
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6.1.2 A Real World Dataset

We conduct experiments on a real world dataset of auto

loan applications collected by a major auto lender in North

America. The dataset was first studied by Phillips et al.

(2015) and later used to evaluate personalized pricing al-

gorithms by Ban and Keskin (2021). The dataset includes

data collected over a period of several years. We present

results for 5 different subsets of the Nomis dataset. To

train the models, we use two covariates: FICO score and

requested loan amount. We use the offered interest rate as

price. We consider four target policies that take the original

prices and increase/decrease them by 5 or 10%.

We impute counterfactuals, including the expected de-

mand, using XGBoost trained on the entire subset to repre-

sent the ground truth model. We choose n = 50 and sample

these points randomly from the dataset. We use the ground

truth to simulation 100 realizations of the demand vector

corresponding to these 50 sample points, which we use to

obtain the bias and variance of the different estimators. We

repeat the experiment 30 times (with a different training set

each time) and report the average results.

In Table 3 and 4, we present results obtained from 2 dif-

ferent subsets of the Nomis dataset. In Appendix E, we

provide results obtained from 3 other subsets of the Nomis

dataset.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.11 0.13 0.17 0.80

Bias2 0.03 0.04 0.06 0.34

Variance 0.08 0.09 0.11 0.46

Target Policy is 5% decrease.

MSE 0.03 0.05 0.10 0.20

Bias2 0.01 0.02 0.05 0.10

Variance 0.02 0.03 0.05 0.10

Target Policy is 10% increase.

MSE 0.37 0.41 0.44 1.23

Bias2 0.12 0.13 0.15 0.49

Variance 0.25 0.28 0.29 0.74

Target Policy is 10% decrease.

MSE 0.009 0.007 0.018 0.034

Bias2 0.003 0.003 0.008 0.012

Variance 0.006 0.004 0.010 0.022

Table 3: For each target policy and for each method, we

present the MSE, bias squared, and variance. Results ob-

tained from a subset of the Nomis dataset with Year = 2003,

Tier = 1, Car Type = Used, Term = 60, and Partner Bin = 1.

There are 1,065 datapoints in the subset.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.39 0.46 0.45 0.80

Bias2 0.09 0.11 0.11 0.15

Variance 0.30 0.35 0.34 0.65

Target Policy is 5% decrease.

MSE 0.69 0.75 0.77 0.58

Bias2 0.25 0.29 0.30 0.14

Variance 0.44 0.46 0.47 0.44

Target Policy is 10% increase.

MSE 0.78 0.92 0.86 0.80

Bias2 0.26 0.30 0.30 0.13

Variance 0.52 0.62 0.56 0.67

Target Policy is 10% decrease.

MSE 0.38 0.56 0.36 0.38

Bias2 0.10 0.10 0.10 0.10

Variance 0.28 0.46 0.26 0.28

Table 4: For each target policy and for each method, we

present the MSE, bias squared, and variance. Results ob-

tained from a subset of the Nomis dataset with Year from

2002 to 2004, Tier = 3, Car Type = Used, Term = 48, and

Partner Bin = 3. There are 578 datapoints in the subset.

6.2 Bernstein Bounds

We next consider wB and the corresponding estimator

R̂(wB). We denote the corresponding method BOPE-

Bern. Since the primary motivation of BOPE-Bern was

to provide high-quality safe guarantees on the revenue, we

focus our experiments on such safe guarantees, and specif-

ically comparisons to BOPE.

Recall Lemma 2 provides a safe guarantee for any set of

honest weights. Hence, to form a safe guarantee for BOPE,

we take the weights computed by BOPE, and then solve

the inner maximization problem in (5) with the Bernstein

bound objective for those weights. Since the revenue must

be non-negative, we take the positive part of the optimal

value. If weights computed by BOPE were honest, this

procedure would yield a theoretically valid safe guaran-

tee. Insofar as we specify hyperparameters in BOPE in

a “dishonest” fashion, the resulting safe guarantee is only

heuristically valid. (The same criticism holds for our own

method, BOPE-B, making it a fair comparison.)

Our experiments suggest BOPE-B yields much better safe

guarantees than BOPE, while providing comparably good

estimates of the actual revenue.

In Tables 5 and 6, we present results on the two synthetic

datasets described in Section 6.1.1. In Tables 7 and 8,

we present results on subsets of the Nomis dataset. The
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Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

b = 2 3.51 1.07 ± 0.050 3.03 ± 0.054 0.10 ± 0.016 3.08 ± 0.053

b = 3 5.10 1.97 ± 0.098 4.51 ± 0.102 0.10 ± 0.024 4.53 ± 0.099

b = 4 4.95 1.81 ± 0.064 4.91 ± 0.048 0.04 ± 0.014 4.75 ± 0.054

Table 5: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in

BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from synthetic dataset (a) described

in Section 6.1.1.

Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

b = 2 3.86 1.29 ± 0.051 3.29 ± 0.054 0.08 ± 0.017 3.36 ± 0.054

b = 3 4.59 1.76 ± 0.082 4.30 ± 0.073 0.05 ± 0.021 4.29 ± 0.075

b = 4 5.23 1.57 ± 0.081 4.86 ± 0.072 0.01 ± 0.008 4.85 ± 0.075

Table 6: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in

BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from synthetic dataset (b) described

in Section 6.1.1.

Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

+5% 4.22 1.99 ± 0.020 4.13 ± 0.017 1.52 ± 0.031 4.24 ± 0.014

-5% 4.16 1.72 ± 0.007 3.87 ± 0.005 1.17 ± 0.009 4.05 ± 0.004

+10% 3.85 1.55 ± 0.034 3.70 ± 0.031 1.06 ± 0.043 3.84 ± 0.028

-10% 4.05 1.97 ± 0.003 3.82 ± 0.004 1.46 ± 0.005 4.08 ± 0.003

Table 7: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in

BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from a subset of the Nomis dataset

with year = 2003, Tier = 1, Car Type = Used, Term = 60, and Partner Bin = 1. There are 1,065 datapoints in the subset.

Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

+5% 2.77 0.45 ± 0.021 2.42 ± 0.031 0.00 ± 0.000 2.52 ± 0.032

-5% 3.35 0.53 ± 0.028 2.64 ± 0.033 0.00 ± 0.000 2.75 ± 0.030

+10% 2.87 0.21 ± 0.018 2.45 ± 0.042 0.00 ± 0.000 2.48 ± 0.045

-10% 3.67 0.55 ± 0.027 2.81 ± 0.034 0.00 ± 0.000 2.93 ± 0.034

Table 8: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in

BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from a subset of the Nomis dataset

with year from 2002 to 2004, Tier = 3, Car Type = Used, Term = 48, and Partner Bin = 3. There are 578 datapoints in the

subset.

experiment details are the same as described in Section 6.

For each method, we present the one-sided 90% confidence

lower bound on revenue (i.e. we choose ǫ = 0.1). For all

experiments in this subsection, we use sample size n = 50.

7 HYPER-PARAMETER HEURISTICS

Our heuristics for fitting hyper-parameters are inspired by

the heuristics of Kallus (2018) for BOPE.

Define the revenue random variable Ri := piDi. Loosely,

Kallus (2018) assumes that the Ri are homoscedastic with
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variance σ2 and mean r(pi,xi) for each i ∈ [n]. They

then compute the worst-case MSE of the weighted doubly

robust estimator over a suitable RKHS ball. It turns out the

resulting expression is identical to the expected MSE of this

same estimator assuming the unknown expected revenue

function was drawn from the following Gaussian Process

Prior:

r(·, ·) ∼ GP(r̂(·, ·), Γ̂2K(·, ·)). (7)

Said differently, the worst-case MSE is equal to an ex-

pected MSE under a suitable prior.

Thus, Kallus (2018) proposes to fit any hyperparameters

needed for BOPE by using standard marginal likelihood

techniques (Williams and Rasmussen, 2006, Chapt. 5) to

instead fit the above Gaussian Process prior and then “read

off” the parameters needed for BOPE.

We follow this same strategy in our experiments. For the

kernel, we adopt a Gaussian kernel but standardize each

component by its variance. Specifically, we take

K(z, z) := exp
(

−(z − z)⊤Σ−1(z − z)
)

,

where z = (p,x) ∈ R+ ×X and Σ is a diagonal matrix.

We then optimize the choice of Σ, σ2 and Γ̂2 to maximize

the marginal likelihood of the data under the prior Eq. (7)

assuming the likelihood Ri | r(·, ·) ∼ N (r(pi,xi), σ
2).

Because the Gaussian process prior and Gaussian like-

lihood are conjugate, the resulting marginal likelihood

has a nice closed-form expression and the entire op-

timization can be represented tractably. (Again, see

Williams and Rasmussen (2006) for details.)

Unfortunately, for the case of BOPE-B, our expression

for the worst-case MSE does not seem to match the ex-

pected MSE under a simple prior. Hence, we heuristically

seek parameters that maximize the marginal likelihood of

the data under the model Eq. (7), but now assuming that

Di|Pi = pi ∼ Bernoulli(d(pi,xi)) and Ri = piDi. In

other words, we adjust the previous heuristic to account for

the binary nature of demand. For this binary likelihood, we

do not have conjugacy, and so there is no simple closed-

form expression for the marginal likelihood. Instead, we

follow Flaxman et al. (2015) and employ a Laplace approx-

imation to the marginal likelihood. The resulting approxi-

mate likelihood does admit a simple form and the resulting

maximal marginal likelihood optimization is tractable.

For our BOPE-B method, we optimize this approximate

marginal likelihood to fit Eq. (7), and read off the neces-

sary hyper-parameters.

8 CONCLUSION

In this paper, we have proposed a new approach for policy

evaluation tailored to pricing applications. Our approach-

ing uses special structures of pricing problems, including:

(i) demand observations are binary; (ii) revenue per cus-

tomer is nonnegative and no greater than the price offered;

(iii) revenue equals demand times price; (iv) the value of

the target policy can be very different from that of the log-

ging policy, and thus weights do not need to sum to n. We

compute weights to optimize either (i) the worst-case mean

squared error of our estimate or (ii) a worst-case lower

bound on the unknown revenue of the target policy. In both

cases, the worst-case is taken over a set of plausible revenue

functions described by an RKHS ball. We establish theo-

retical guarantees showing our weighted revenue estima-

tor converges under overlap assumptions and empirically

demonstrate the advantage of our approach using a real-

world pricing dataset where there is little overlap. Future

work might consider specialized algorithms for computing

the weights in our method given its special structure, e.g.,

adapting the Mirror Prox algorithm of (Nemirovski, 2004),

the primal-dual method in (Nesterov, 2007), or various al-

gorithms for saddle point problems (Juditsky et al., 2011;

Mertikopoulos et al., 2019).
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A Proof of Properties of Weighted Revenue Estimators

Proof of Lemma 1. By definition of R and rj , we have that R = 1
n

∑n
i=1 rn+i. Since E [piDi] = ri, it follows from the

definitions of R̂(w) that Bias(w, r) = E

[

R̂(w)−R
]

= b(w)⊤ (r − r̂).

For the variance, we see that

V ar(w, r) = Var(R̂(w)) = Var

(

1

n

n
∑

i=1

wipiDi

)

=
1

n2

n
∑

i=1

w2
i p

2
i Var (Di)

=
1

n2

n
∑

i=1

w2
i p

2
i d(xi, pi)(1 − d(xi, pi)) =

1

n2

n
∑

i=1

w2
i ri(pi − ri) =

1

n2

n
∑

i=1

w2
i piri −

1

n2

n
∑

i=1

w2
i (ri)

2

= v(w)⊤r − 1

n2
r⊤

(

diag(w2
1 , . . . , w

2
n) 0

0 0

)

r.

The expression for MSE follows from the usual bias-variance decomposition.

Proof of Lemma 2. Write

R̂(w) −R = b(w)⊤ (r − r̂) +
n
∑

i=1

wi (piDi − ri)

The first term is the bias of our estimator, evaluated in Lemma 1. The second term is a sum of mean-zero independent

random variables. From (Boucheron et al., 2013, Thm. 2.10) and surrounding discussion (i.e. Bernstein’s inequality), we

have that with probability at least 1− ǫ,

1

n

n
∑

i=1

wi(piDi − ri) ≤
√

2V ar(w; r) log(1/ǫ)− max1≤i≤n |wi|pi log(1/ǫ)
3n

.

Combining completes the proof.

B Reformulation of the Worst-Case Bernstein Inner Problem

For the Bernstein objective, the inner maximization problem can be reformulated as follows:

rWC(w) ∈ argmax
r,t

w⊤ (r − r̂) +
√

2 log(1/ǫ) · t

s.t. 0 ≤ r ≤ p

t2 ≤ v(w)⊤r − r⊤Q(w)r,

(r − r̂)
⊤
G−1 (r − r̂) ≤ Γ2,

where Q(w) := diag
(

w2
1, . . . ,w

2
n, 0, . . . , 0

)

∈ R
2n×2n.

C Proof of Theorem 1

Recall the following classical fact about inverse propensity score weights:

Lemma 3. For any function f : R 7→ R and any i = 1, . . . , n such that the expectations exist, we have the following

identity:

E
[

W IP
i f(Pi)

]

= E [f(Pn+i)] .

Proof. Simply write the integrals:

E
[

W IP
i f(Pi)

]

=

∫

p∈R

f(p)
g1(p,xi)

g0(p,xi)
g0(p,xi)dp =

∫

p∈R

f(p)g1(p,xi)dp = E [f(Pn+i)] .
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In particular, the lemma implies that E
[

R(wIP /n)
]

= E [R] , i.e., using the (scaled) IP weights yields an unbiased

estimator.

Finally, for convenience, define the function

WCMSE(w; Γ̂) := max
r

∆
⊤b(w)b(w)⊤∆+ Var(w; r̂ +∆).

s.t. 0 ≤ r ≤ π, (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

A challenge in our analysis that Γ̂ might be misspecified, i.e., it might be much smaller than Γ. Hence, WCMSE(w; Γ̂)
may not upper bound MSE(w, r).

The next lemma shows we can cover such misspecification by inflating the worst-case MSE by a constant.

Lemma 4. For any w, MSE(w, r) ≤ max
(

1, Γ
2

Γ̂2

)

· WCMSE(w; Γ̂).

Proof. If Γ ≤ Γ̂, then the unknown revenue function r = r̂+∆ is feasible in the inner maximization defining wMSE(Γ̂),
so that MSE(wMSE(Γ̂); r̂ +∆) ≤ WCMSE(wMSE(Γ̂); Γ̂). We thus focus on the case when Γ > Γ̂ . Then,

MSE(w, r̂ +∆) = ∆
⊤b(w)b(w)⊤∆+ Var(w; r̂ +∆)

=
Γ2

Γ̂2

(

Γ̂

Γ
∆

⊤b(w)b(w)⊤∆
Γ̂

Γ

)

+ Var(w; r̂ +∆).

Now consider the variance term. From the proof of Lemma 1,

Var(w, r̂ +∆) =
1

n2

n
∑

i=1

w2
i (r̂i +∆i)(pi − r̂i −∆i).

Since r̂i ≥ 0, and r̂i ≤ pi,

r̂i +∆i ≤
Γ

Γ̂

(

r̂i +
Γ̂

Γ
∆i

)

, and pi − r̂i −∆i ≤ Γ

Γ̂

(

pi − r̂i −
Γ̂

Γ
∆i

)

.

Substituting above shows that Var(w, r̂ +∆) ≤ Γ2

Γ̂2
Var(w, r̂ + Γ̂

Γ∆). In summary, we have shown that

MSE(w; r̂ +∆) ≤ Γ2

Γ̂2
MSE(w; r̂ +

Γ̂

Γ
∆).

To complete the proof, note that r̂ + Γ̂
Γ∆ is feasible in the optimization defining WCMSE(w; Γ̂).

Proof of Theorem 1. From Lemma 4, it suffices to show that WCMSE(wMSE(Γ̂); Γ̂) = Op(1/n). We show this latter

claim by relating wMSE(Γ̂) with the scaled inverse propensity weights W IP /n.

Specifically, since W IP /n is feasible in the outer optimization problem defining wMSE(Γ̂) we have that

WCMSE(wMSE(Γ̂); Γ̂)

≤ WCMSE(W IP /n; Γ̂)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

MSE(W IP /n; r)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

(r − r̂)⊤b(W IP /n)b(W IP /n)⊤(r − r̂) +
1

4n2

n
∑

i=1

(W IP
i Pi)

2,

where the second to last inequality follows by expanding the feasible region and the last by upper bounding the variance

since di(1− di) ≤ 1
4 . We evaluate the maximization in closed form and round the constants up to 1 yielding
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WCMSE(wMSE(Γ̂); Γ̂) ≤ Γ̂2b(W IP )⊤Gb(W IP ) +
1

n2

n
∑

i=1

(W IP
i Pi)

2. (8)

We tackle the first term by upper bounding its expectation and applying Markov’s inequality. Using the definition of G

and b(W IP ), write

E
[

b(W IP )⊤Gb(W IP )
]

=
1

n2

n
∑

i=1

n
∑

j=1

E
[

W IP
i W IP

j K(Zi, Zj)
]

+
1

n2

n
∑

i=1

n
∑

j=1

E [K(Zn+i, Zn+j)]

− 2

n2

n
∑

i=1

n
∑

j=1

E
[

W IP
i K(Zi, Zn+j)

]

,

where for convenience Zi = (xi, Pi) for i = 1, . . . , 2n.

Next fix some (i, j) with i 6= j. By Lemma 3,

E
[

W IP
i W IP

j K(Zi, Zj)
]

= E
[

W IP
j K(Zn+i, Zj)

]

= E [K(Zn+i, Zn+j)] .

Similarly,

E
[

W IP
i K(Zi, Zn+i)

]

= E [K(Zn+i, Zn+i)] .

Hence, substituting above, we see that all terms with i 6= j drop out and we have that

E
[

b(W IP )⊤Gb(W IP )
]

=
1

n2

n
∑

i=1

E
[

(W IP
i )2K(Zi, Zi)

]

+
1

n2

n
∑

i=1

E [K(Zn+i, Zn+i)]−
2

n2

n
∑

i=1

E
[

W IP
i K(Zi, Zn+i)

]

=
1

n2

n
∑

i=1

E
[

wIP
i K(Zn+i, Zn+i)

]

+
1

n2

n
∑

i=1

E [K(Zn+i, Zn+i)]−
2

n2

n
∑

i=1

E [K(Zn+i, Zn+i)]

=
1

n2

n
∑

i=1

E
[

(W IP
i − 1)K(Zn+i, Zn+i)

]

,

by applying Lemma 3 again.

By assumption i), this last term is O(1/n). Thus, by Markov’s inequality, the first term of Eq. (8) is Op(1/n).

For the second term of Eq. (8), observe that

E

[

1

n2

n
∑

i=1

(

W IP
i Pj

)2

]

=
1

n

(

1

n

n
∑

i=1

E

[

(

W IP
i Pi

)2
]

)

= O(1/n),

by assumption ii). Thus, by Markov’s inequality, the second term of Eq. (8) is also Op(1/n).

Combining these two pieces completes the proof.

D Proof of Theorem 2

For convenience, define the functions

qmax(w) :=
1

n
max
1≤i≤n

|wi| pi

WCBern(w; Γ̂) := max
r

b(w)⊤(r − r̂) +
√

2Var(w; r) log(1/ǫ) +
qmax(w) log(1/ǫ)

3
.

s.t. 0 ≤ r ≤ π, (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

Our proof technique follows Theorem 1 closely.
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Lemma 5. For any w, max(Bern(w, r̂ +∆), 0) ≤ max
(

1, Γ
Γ̂

)

· WCBern(w; Γ̂).

Proof. Notice by considering the feasible solution r = r̂ that WCBern(w, Γ̂) ≥
√

2 log(1/ǫ)Var(w, r̂) +
qmax(w) log(1/ǫ)

3 ≥ 0. Hence, when Bern(w, r̂ +∆) ≤ 0, the inequality is trivially satisfied.

Similarly, when Γ ≤ Γ̂, r feasible in the inner maximization defining wB(Γ̂), so that Bern(wB(Γ̂); r) ≤
WCBern(wB(Γ̂); Γ̂).

We thus focus on the case when Γ > Γ̂ and Bern(w, r̂ +∆) ≥ 0. Then,

Bern(w, r̂ +∆) = b(w)⊤∆+
√

2 log(1/ǫ)Var(w; r̂ +∆) +
qmax(w) log(1/ǫ)

3

≤ Γ

Γ̂

(

b(w)⊤∆
Γ̂

Γ
+

qmax(w) log(1/ǫ)

3

)

+
√

2 log(1/ǫ)Var(w; r̂ +∆),

since Γ/Γ̂ > 1 and qmax ≥ 0 by construction.

Now consider the variance term. From the proof of Lemma 1,

Var(w, r̂ +∆) =
1

n2

n
∑

i=1

w2
i (r̂i +∆i)(pi − r̂i −∆i).

Since r̂i ≥ 0, and r̂i ≤ pi,

r̂i +∆i ≤
Γ

Γ̂

(

r̂i +
Γ̂

Γ
∆i

)

, and pi − r̂i −∆i ≤ Γ

Γ̂

(

pi − r̂i −
Γ̂

Γ
∆i

)

.

Substituting above shows that Var(w, r̂ +∆) ≤ Γ2

Γ̂2
Var(w, r̂ + Γ̂

Γ∆). In summary, we have shown that

Bern(w; r̂ +∆) ≤ Γ

Γ̂
Bern(w; r̂ +

Γ̂

Γ
∆).

To complete the proof, note that r̂ + Γ̂
Γ∆ is feasible in the optimization defining WCBern(w; Γ̂).

We can now prove our main result.

Proof of Theorem 2. From Lemma 5, it suffices to show that WCBern(wB(Γ̂); Γ̂) = Op(1/
√
n). We show this latter claim

by relating wB(Γ̂) with the scaled inverse propensity weights W IP /n.

Specifically, since W IP /n is feasible in the outer optimization problem defining wB(Γ̂) we have that

WCBern(wB(Γ̂); Γ̂)

≤ WCBern(W IP /n; Γ̂)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

Bern(W IP /n; r)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

b(W IP /n)⊤(r − r̂) +

√

2 log(1/ǫ)

4

√

√

√

√

1

n2

n
∑

i=1

(W IP
i Pi)2 +

qmax(W
IP /n) log(1/ǫ)

3
,

where the second to last inequality follows by expanding the feasible region and the last by upper bounding the variance

since dj(1− dj) ≤ 1
4 . We evaluate the maximization in closed form and round the constants up to 1 yielding

WCBern(wB(Γ̂); Γ̂) ≤ Γ̂
√

b(W IP )⊤Gb(W IP ) +
√

log(1/ǫ)

√

√

√

√

1

n2

n
∑

i=1

(W IP
i Pi)2 + qmax(W

IP /n) log(1/ǫ). (9)
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We tackle the first term by upper bounding its expectation and applying Markov’s inequality. Specifically,

E

[

√

b(W IP )⊤Gb(W IP )
]

≤
√

E [b(W IP )⊤Gb(W IP )] by Jensen’s inequality.

Following an identical argument to that in Theorem 1 which uses assumption i), we have that E
[

b(W IP )⊤Gb(W IP )
]

=
O(1/n). Thus, by Markov’s inequality, the first term of Eq. (9) is Op(1/

√
n).

For the second term of Eq. (9), observe again by Jensen’s inequality that

E





√

√

√

√

1

n2

n
∑

i=1

(

W IP
i Pi

)2



 ≤ 1√
n

√

√

√

√

1

n

n
∑

i=1

E

[

(

W IP
i Pi

)2
]

= O(1/
√
n),

again by assumption ii). Thus, by Markov’s inequality, the second term of Eq. (9) is also Op(1/
√
n).

Finally, for the last term, observe that

qmax(W
IP /n) =

1

n
max

i

∣

∣W IP
i Pi

∣

∣ ≤ 1

n

√

√

√

√

n
∑

i=1

(

W IP
i Pi

)2
,

since the ℓ2-norm bounds the ℓ∞-norm. Taking expectations and applying the above inequality with Markov’s inequality

shows the last term is also Op(1/
√
n).

Combining these three pieces completes the proof.

E Additional Experiments

We present results for 3 more subsets of the Nomis dataset. Apart from the subset of data used, the experiment set up are

same as that in Table 3.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.60 0.69 0.90 3.15

Bias2 0.28 0.32 0.43 1.51

Variance 0.32 0.37 0.47 1.64

Target Policy is 5% decrease.

MSE 0.09 0.09 0.18 0.71

Bias2 0.04 0.04 0.09 0.34

Variance 0.05 0.05 0.09 0.37

Target Policy is 10% increase.

MSE 1.77 1.94 2.22 5.78

Bias2 0.84 0.92 1.06 2.79

Variance 0.93 1.02 1.16 2.99

Target Policy is 10% decrease.

MSE 0.02 0.02 0.03 0.08

Bias2 0.01 0.01 0.01 0.03

Variance 0.01 0.01 0.02 0.05

Table 9: Decomposition of the mean squared error. Tier = 2, Car Type = Used, Term = 60, Partner Bin = 1, and year 2003.

There are 609 datapoints in the subset.
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Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.54 0.62 0.61 0.64

Bias2 0.12 0.14 0.15 0.06

Variance 0.42 0.48 0.46 0.59

Target Policy is 5% decrease.

MSE 0.47 0.54 0.48 0.47

Bias2 0.10 0.10 0.11 0.08

Variance 0.37 0.44 0.37 0.39

Target Policy is 10% increase.

MSE 0.98 1.13 1.10 1.23

Bias2 0.31 0.37 0.37 0.22

Variance 0.67 0.76 0.73 1.01

Target Policy is 10% decrease.

MSE 0.55 0.58 0.51 0.90

Bias2 0.11 0.09 0.10 0.25

Variance 0.44 0.49 0.41 0.65

Table 10: Decomposition of the mean squared error. Tier = 3, Car Type = Used, Term = 72, Partner Bin = 3, and year

2002-2004. There are 667 datapoints in the subset.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.39 0.52 0.49 1.11

Bias2 0.08 0.12 0.12 0.24

Variance 0.31 0.40 0.37 0.87

Target Policy is 5% decrease.

MSE 0.66 0.81 0.78 0.38

Bias2 0.24 0.29 0.30 0.06

Variance 0.42 0.52 0.48 0.32

Target Policy is 10% increase.

MSE 0.64 0.88 0.75 1.08

Bias2 0.20 0.25 0.25 0.17

Variance 0.44 0.63 0.50 0.91

Target Policy is 10% decrease.

MSE 0.50 0.56 0.50 0.46

Bias2 0.14 0.15 0.15 0.10

Variance 0.36 0.41 0.35 0.36

Table 11: Decomposition of the mean squared error. Tier = 3, Car Type = Used, Term = 60, Partner Bin = 3, and year

2002-2004. There are 1851 datapoints in the subset.
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