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Abstract. What is really needed to make an existing 2D GAN 3D-
aware? To answer this question, we modify a classical GAN, i.e., Style-
GANvV2, as little as possible. We find that only two modifications are ab-
solutely necessary: 1) a multiplane image style generator branch which
produces a set of alpha maps conditioned on their depth; 2) a pose-
conditioned discriminator. We refer to the generated output as a ‘gener-
ative multiplane image’ (GMPI) and emphasize that its renderings are
not only high-quality but also guaranteed to be view-consistent, which
makes GMPIs different from many prior works. Importantly, the number
of alpha maps can be dynamically adjusted and can differ between train-
ing and inference, alleviating memory concerns and enabling fast training
of GMPIs in less than half a day at a resolution of 1024, Our findings are
consistent across three challenging and common high-resolution datasets,
including FFHQ, AFHQv2 and MetFaces.
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1 Introduction

Generative adversarial networks (GANSs) [22] have been remarkably successful at
sampling novel images which look ‘similar’ to those from a given training dataset.
Notably, impressive advances have been reported in recent years which improve
quality and resolution of the generated images. Most of these advances focus on
the setting where the output space of the generator and the given dataset are
identical and, often, these outputs are either images or occasionally 3D volumes.

The latest literature, however, has focused on generating novel outputs that
differ from the available training data. This includes methods that generate 3D
geometry and the corresponding texture for one class of objects, e.g., faces, while
the given dataset only contains widely available single-view images [58, 53, 10,
55, 16, 9, 67, 66]. No multi-view images or 3D geometry are used to supervise
the training of these 3D-aware GANs. To learn the 3D geometry from such a
limited form of supervision, prior work typically combines 3D-aware inductive

* Work done as part of an internship at Apple.
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Fig. 1: Making a 2D GAN 3D-aware with a minimal set of changes: on three datasets
(FFHQ, AFHQv2 and MetFaces) we observe that it suffices to augment StyleGANv2
with an additional branch that generates alpha maps conditioned on depths, and to
modify training by using a discriminator conditioned on pose.

biases such as a 3D voxel grid or an implicit representation with a rendering
engine [58, 53, 10, 55, 16, 9, 67, 66].

Nevertheless, improving the quality of the results of these methods remains
challenging: 3D-aware inductive biases are often memory-intensive explicit or im-
plicit 3D volumes, and/or rendering is often computationally demanding, e.g., in-
volving a two-pass importance sampling in a 3D volume and a subsequent de-
coding of the obtained features. Moreover, lessons learned from 2D GANs are
often not directly transferable because the generator output or even its entire
structure has to be adjusted. This poses the question:

“What is really needed to make an existing 2D GAN 3D-aware?”

To answer this question, we aim to modify an existing 2D GAN as little as
possible. Further, we aim for an efficient inference and training procedure. As a
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starting point, we chose the widely used StyleGANv2 [35], which has the added
benefit that many training checkpoints are publicly available.

More specifically, we develop a new generator branch for StyleGANv2 which
yields a set of fronto-parallel alpha maps, in spirit similar to multiplane images
(MPIs) [68]. As far as we know, we are the first to demonstrate that MPIs can
be used as a scene representation for unconditional 3D-aware generative models.
This new alpha branch is trained from scratch while the regular StyleGANv2
generator and discriminator are simultaneously fine-tuned. Combining the gen-
erated alpha maps with the single standard image output of StyleGANv2 in
an end-to-end differentiable multiplane style rendering, we obtain a 3D-aware
generation from different views while guaranteeing view-consistency. Although
alpha maps have limited ability to handle occlusions, rendering is very efficient.
Moreover, the number of alpha maps can be dynamically adjusted and can even
differ between training and inference, alleviating memory concerns. We refer to
the generated output of this method as a ‘generative multiplane image’ (GMPI).

To obtain alpha maps that exhibit an expected 3D structure, we find that
only two adjustments of StyleGANv2 are really necessary: (a) the alpha map
prediction of any plane in the MPI has to be conditioned on the plane’s depth or
a learnable token; (b) the discriminator has to be conditioned on camera poses.
While these two adjustments seem intuitive in hindsight, it is still surprising that
an alpha map with planes conditioned on their depth and use of camera pose
information in the discriminator are sufficient inductive biases for 3D-awareness.

An additional inductive bias that improves the alpha maps is a 3D rendering
that incorporates shading. Albeit useful, we didn’t find this inductive bias to be
necessary to obtain 3D-awareness. Moreover, we find that metrics designed for
classic 2D GAN evaluation, e.g., the Fréchet Inception Distance (FID) [28] and
the Kernel Inception Distance (KID) [6] may lead to misleading results since
they do not consider geometry.

In summary, our contribution is two-fold: 1) We are the first to study an
MPI-like 3D-aware generative model trained with standard single-view 2D image
datasets; 2) We find that conditioning the alpha planes on depth or a learnable
token and the discriminator on camera pose are sufficient to make a 2D GAN 3D-
aware. Other information provides improvements but is not strictly necessary.
We study the aforementioned ways to encode 3D-aware inductive biases on three
high-resolution datasets: FFHQ [34], AFHQv2 [12], and MetFaces [32]. Across
all three datasets, as illustrated in Fig. 1, our findings are consistent.

2 Related Work and Background

In the following, we briefly review recent advances in classical and neural scene
rendering, as well as the generation of 2D and 3D data with generative models.
We then discuss the generation of 3D data using only 2D supervision. We also
provide a brief review of single image reconstruction techniques before we review
StyleGANvV2 in greater detail.
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Scene Rendering. Image-Based Rendering (IBR) is well-studied [11]. IBR 1)
models a scene given a set of images; and 2) uses the scene model to render novel
views. Methods can be grouped based on their use of scene geometry: explicit,
implicit, or not using geometry. Texture-mapping methods use explicit geometry,
whereas layered depth images (LDIs) [60], flow-based [11], lumigraphs [8], and
tensor-based methods [1] use geometry implicitly. In contrast, light-field meth-
ods [40] do not rely on geometry. Hybrid methods [14] have also been studied.
More recently, neural representations have been used in IBR, for instance, neural
radiance fields (NeRFs) [17] and multiplane images (MPIs) [68, 62, 64, 21, 42].
In common to both is the goal to extract from a given set of images a volumet-
ric representation of the observed scene. The volumetric representation in MPIs
is discrete and permits fast rendering, whereas NeRF's use a continuous spatial
representation.

These works differ from the proposed method in two main aspects. 1) The
proposed method is unconditionally generative, i.e., novel, never-before-seen
scenes can be synthesized without requiring any color [(4], depth, or seman-
tic images [25]. In contrast, IBR methods and related recent advances focus on
reconstructing a scene representation from a set of images. 2) The proposed
method uses a collection of ‘single-view images’ from different scenes during
training. In contrast, IBR methods use multiple viewpoints of a single scene for
highly accurate reconstruction.

2D Generative Models. Generative adversarial networks (GANs) [22] and
variational auto-encoders (VAEs) [37] significantly advanced modeling of prob-
ability distributions. In the early days, GANs were notably difficult to train
whereas VAEs often produced blurry images. However, in the last decade, theo-
retical and practical understanding of these methods has significantly improved.
New loss functions and other techniques have been proposed [11, 24, 38, 18,

, 50, 5,49, 44, 29, 57, 46, 3, 19, 2, 43, 63] to improve the stability of GAN
optimization and to address mode-collapse, some theoretically founded and oth-
ers empirically motivated. We follow the architectural design and techniques in
StyleGANv2 [35], including exponential moving average (EMA), gradient penal-
ties [46], and minibatch standard deviation [31].

3D Generative Models from 2D Data. 3D-aware image synthesis has gained
attention recently. Sparse volume representations are used to generate photore-
alistic images based on given geometry input [26]. Many early approaches use
voxel-based representations [69, 65, 52, 51, 27, 20], where scaling to higher res-
olutions is prohibitive due to the high memory footprint. Rendering at low-res
followed by 2D CNN-based upsampling [54] has been proposed as a workaround,
but it leads to view inconsistency. As an alternative, methods built on implicit
functions, e.g., NeRF, have been proposed [10, 58, 56]. However, their costly
querying and sampling operations limit training efficiency and image resolutions.
To generate high-resolution images, concurrently, EG3D [9], StyleNeRF [23],
CIPS-3D [(7], VolumeGAN [(6], and StyleSDF [55] have been developed. Our
work differs primarily in the choice of scene representation: EG3D uses a hybrid
tri-plane representation while the others follow a NeRF-style implicit representa-



Generative Multiplane Images 5

tion. In contrast, we study an MPI-like representation. In our experience, MPIs
provide extremely fast rendering speed without incurring quality degradation.
Most related to our work are GRAM [16] and LiftedGAN [61]. GRAM uses a
NeRF-style scene representation and learns scene-specific isosurfaces. Queries of
RGB and density happen on those isosurfaces. Although isosurfaces are concep-
tually similar to MPIs, the queries of this NeRF-style representation are expen-
sive, limiting the image synthesis to low resolution at 256 x 256. Lifted GAN
reconstructs the geometry of an image by distilling intermediate representations
from a fixed StyleGANv2 to a separate 3D generator which produces a depth
map and a transformation map in addition to an image. Different from our pro-
posed approach, because of the transformation map, LiftedGAN is not strictly
view-consistent. Moreover, the use of a single depth-map is less flexible.

StyleGANv2 Revisited. Since our method is built on StyleGANv2, we provide
some background on its architecture. StyleGANv2 generates a square 2D image
C € REXHX3 by ypsampling and accumulating intermediate GAN generation
results from various resolutions. Formally, the image C £ CH is obtained via

oh _ C:'h + UpSample%%h(C%)7 if he R\ {4}, 1)
Cc4, if h = 4,

where C" € R"*h>3 i the GAN image generation at resolution h and C" is
the generated residual at the same resolution. R = {4,8,..., H} is the set of
available resolutions whose values are powers of 2. UpSampley ) refers to the

operation that upsamples from R3 %353 o Rh*"X3 The residual generation C"
at resolution h is generated with a single convolutional layer ff .., i.e.,

ch = ThoRGB(]:h)v (2)

where F € R*hxdim js the intermediate GAN feature representation at res-
olution h with dim; channels. These intermediate GAN feature representations
at all resolutions R are computed with a synthesis network fsyn, i.e.,

{F':h e R} = foyn(w), (3)

where w is the style embedding. w is computed via the mapping network fuapping
which operates on the latent variable z, i.e., W = fuapping(2)-

3 Generative Multiplane Images (GMPI)

Our goal is to adjust an existing GAN such that it generates images which
are 3D-aware and view-consistent, i.e., the image I, can illustrate the ex-
actly identical generated object from different camera poses vig:. In order to
achieve 3D-awareness and guaranteed view-consistency, different from existing
prior work, we aim to augment an existing generative adversarial network, in
our case StyleGANv2, as little as possible. For this, we modify the classical
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Fig. 2: Overview of the developed 3D-aware generative multiplane images (GMPI). We
find that two components are necessary to make a 2D StyleGANv2 3D-aware: accompa-
nying StyleGANv2 with an MPI branch (Sec. 3.2) and conditioning the discriminator
on pose during training (Sec. 3.4). We find adding shading during training (Sec. 3.5)
improves the generated geometry. Please also refer to Sec. 3.3 for details about the
employed MPI rendering. Green blocks denote trainable components.

generator by adding an ‘alpha branch’ and incorporate a simple and efficient al-
pha composition rendering. Specifically, the ‘alpha branch’ produces alpha maps
of a multiplane image while the alpha composition rendering step transforms
generated alpha maps and generated image into the target view I, given a
user-specified pose vigt. We refer to the output of the generator and the ren-
derer as a ‘generative multiplane image’ (GMPI). To achieve 3D-awareness, we
also find the pose conditioning of the discriminator to be absolutely necessary.
Moreover, additional miscellaneous adjustments like the use of shading help to
improve results. We first discuss the generator, specifically our alpha branch
(Sec. 3.2) and our rendering (Sec. 3.3). Subsequently we detail the discriminator
pose conditioning (Sec. 3.4) and the miscellaneous adjustments (Sec. 3.5).

3.1 Overview

An overview of our method to generate GMPIs is shown in Fig. 2. Its generator
and the subsequent alpha-composition renderer produce an image I,,,, illustrat-
ing the generated object from a user-specified pose vig:. Images produced for
different poses are guaranteed to be view-consistent. The generator and render-
ing achieve 3D-awareness and guaranteed view consistency in two steps. First, a
novel ‘alpha branch’ uses intermediate representations to produce a multiplane
image representation M which contains alpha maps at various depths in addi-
tion to a single image. Importantly, to obtain proper 3D-awareness we find that
it is necessary to condition alpha maps on their depth. We discuss the architec-
ture of this alpha branch and its use of the plane depth in Sec. 3.2. Second, to
guarantee view consistency, we employ a rendering step (Sec. 3.3). It converts
the representation M obtained from the alpha branch into the view I,,,,, which
shows the generated object from a user-specified pose v¢gt. During training, the
generated image I, is compared to real images from a single-view dataset via a
pose conditioned discriminator. We discuss the discriminator details in Sec. 3.4.
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Fig. 3: The alpha branch proposed in Sec. 3.2. Here we show the generation of the alpha
map of plane i. At each intermediate resolution h € Ro = {4,8, ..., Ha}, we utilize the
plane’s depth d; to transform the feature from F" (Eq. (3)) to F4, (Eq. (8)). The final
alpha map «; is obtained by accumulating all intermediate results, which are generated
by the single convolutional layer fof,Alpha.

Finally, in Sec. 3.5, we highlight some miscellaneous adjustments which we found
to help improve 3D-awareness while not being strictly necessary.

3.2 GMPI: StyleGANv2 with an Alpha Branch

Given an input latent code z, our goal is to synthesize a multiplane image
inspired representation M from which realistic and view-consistent 2D images
can be rendered at different viewing angles. A classical multiplane image refers
to a set of tuples (C;, a;,d;) for L fronto-parallel planes i € {1,...,L}. Within
each tuple, C; € RT*H*3 denotes the color texture for the it" plane and is
assumed to be a square image of size H x H, where H is independent of the
plane index 4. Similarly, a; € [0, 1]7*#>*! and d; € R denote the alpha map and
the depth of the corresponding plane, i.e., its distance from a camera. i = 1 and
i = L denote the planes closest and farthest from the camera.

As a significant simplification, we choose to reuse the same color texture
image C; £ C'V1i across all planes. C' is synthesized by the original StyleGANv2
structure as specified in Eq. (1). Consequently, the task of the generator fg
has been reduced from predicting an entire multiplane image representation to
predicting a single color image and a set of alpha planes, i.e.,

M & {C, {051,062, “o ,(XL}} = fg(z, {dl,dg, .. -7dL})- (4)

For this, we propose a simple modification of the original StyleGANv2 net-
work by adding an additional alpha branch, as illustrated in Fig. 3. For con-
sistency we follow StyleGANv2’s design: the alpha map «; = aff of plane i is
obtained by upsampling and accumulating alpha maps at different resolutions.
Notably, we do not generate all the way up to the highest resolution H, but
instead use the final upsampling step

a; 2 ol =upsampley _,y(al’), (5)



8 X. Zhao, F. Ma, D. Giiera, Z. Ren, A. G. Schwing, A. Colburn

if H, < H. Here H, < H refers to a possibly lower resolution. We will explain
the reason for this design below. Following Eq. (1), we have

h
" {a;z + UpSamples , (a)}), if h € Ra\ {4},
4

if h=4. ©)

jo)t

)

Here, ol € [0,1]"*h>*1 and G” are the alpha map and the residual at resolution
h respectively. Ry = {4,8,...,H,} C R denotes the set of alpha maps’ inter-
h is generated from an intermediate

mediate resolutions. Inspired by Eq. (2), &}
feature representation .7-'21_ through a single convolutional layer f{gAlpha:

d? = f'IZ-LoAlpha (‘Fc}ul,) (7)
Note, ffypna is shared across all planes i, while the input feature F7, is plane-
specific. Inspired by Adaln [30], we construct this plane-aware feature as follows:
F* — w(F")
ho_ .
Fa, = TP + fenbed(di, w), (8)

where p(F") € R%™ and o(F") € RY™ are mean and standard deviation of
the feature F" € RM>*hxdim from Eq. (3). Meanwhile, femeq uses the depth d;
of plane i and the style embedding w from Eq. (3) to compute a plane-specific
embedding in the space of R%™ . Note, our design of ;. disentangles alpha map
generation from a pre-determined number of planes as fT}gAlpha operates on each
plane individually. This provides the ability to use an arbitrary number of planes
which helps to reduce artifacts during inference as we will show later.

Note, the plane specific feature F, g Vi will in total occupy L times the memory
used by the feature F". This might be prohibitive if we were to generate these
intermediate features up to a resolution of H. Therefore, we only use this feature
until some lower resolution H, in Eq. (5). We will show later that this design
choice works well on real-world data.

3.3 Differentiable Rendering in GMPI

We obtain the desired image I,,,, which illustrates the generated MPI represen-
tation M = {C,{aq,...,ar}} from the user-specified target view vige with an
MPT renderer in two steps: 1) a warping step transforms the representation M
from its canonical pose vcano to the target pose vigt; 2) a compositing step com-
bines the planes into the desired image I,,,.. Importantly, both steps entail easy
computations which are end-to-end differentiable such that they can be included
into any generator. Please see Appendix A for details.

3.4 Discriminator Pose Conditioning

For the discriminator fp to encourage 3D-awareness of the generator, we find
the conditioning of the discriminator on camera poses to be essential. Formally,
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inspired by Miyato and Koyama [18], the final prediction of the discriminator is

)L (9)

where P(y = real|l,,,v:) denotes the probability that image I, from the
camera pose Uit iS real. vy € R0 denotes the flattened extrinsic matrix of
the camera pose. fo, .4 @ R® — R denotes an embedding function, while
Normalize(-) results in a zero-mean, unit-variance embedding. fp(-) € R16 de-
notes the feature computed by the discriminator D. For real images of faces, e.g., hu-
mans and cats, vige can be estimated via off-the-shelf tools [17, 1].?

log P(y = real|l,,,, vigt) o< Normalize( fonpeq(vegt)) = fo(I

Vtgt

3.5 Miscellaneous Adjustment: Shading-guided Training

Inspired by [56], we incorporate shading into the rendering process introduced
in Sec. 3.3. Conceptually, shading will amplify artifacts of the generated geom-
etry that might be hidden by texture, encouraging the alpha branch to produce
better results. To achieve this, we adjust the RGB component C' € RT*XWx3 yig

C=C-(ka+kal -N(Dy,.)), (10)

where k, and k, are coefficients for ambient and diffuse shading, I € R? indicates
lighting direction, and N(D,,,,) € R¥*W>3 denotes the normal map computed
from the depth map D,__ (obtained by using the canonical alpha maps «,
see Eq. (S4) in Appendix A). We find shading to slightly improve results while
not being required for 3D-awareness. Implementation details are in Appendix C.

3.6 Training

Model structure. The trainable components of GMPI are ff .. (Eq. (2)),
fsyn and fuspping (Ed. (3)), fompha (Ed- (7)), fembed (Eq. (8)), and fo and fRpeq
(Eq. (9)). Please check the appendix for implementation details. Our alpha maps
(Eq. (4)) are equally placed in the disparity (inverse depth) space during training
and we set H, = 256 (Eq. (5)).

Initialization. For any training, we initialize weights from the officially-released
StyleGANvV2 checkpoints.* This enables a much faster training as we will show.
Loss. We use 0 to subsume all trainable parameters. Our training loss consists
of a non-saturating GAN loss with R1 penalties [10], i.e.,

£9 = ]EI'v[gt;'Utgt [f(log P(y = rea1|IUtgt7 'Utgt))]
+Ef vy [f(log P(y = real|l,vg)) + AV log P(y = real|l, ve)|?] . (11)

Here f(x)= —log(l1+exp(—z)), A=10.0 in all studies, I refers to real images
and vt denotes the corresponding observer’s pose information.

3 Concurrently, EG3D [9] also finds that pose conditioning of the discriminator is
required for their tri-plane representation to produce 3D-aware results, corroborating
that this form of inductive bias is indeed necessary.

4 https://github.com/NVlabs/stylegan2-ada-pytorch
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4 Experiments

We analyze GMPI on three datasets (FFHQ, AFHQv2 and MetFaces) and across
a variety of resolutions. We first provide details regarding the three datasets be-
fore discussing evaluation metrics and quantitative as well as qualitative results.

4.1 Datasets

FFHQ. The FFHQ dataset [34] consists of 70,000 high-quality images showing
real-world human faces from different angles at a resolution of 1024 x 1024. To
obtain the pose of a face we use an off-the-shelf pose estimator [17].
AFHQv2. The AFHQv2-Cats dataset [12, 33] consists of 5,065 images showing
faces of cats from different views at a resolution of 512 x 512. We augment the
dataset by horizontal flips and obtain the pose of a cat’s face via an off-the-shelf
cat face landmark predictor [1] and OpenCV’s perspective-n-point algorithm.
MetFaces. The MetFaces dataset [32] consists of 1,336 images showing high-
quality faces extracted from the collection of the Metropolitan Museum of Art.?
To augment the dataset we again use horizontal flips. To obtain the pose of a
face we use an off-the-shelf pose estimator [17].

4.2 Evaluation Metrics

We follow prior work and assess the obtained results using common metrics:
2D GAN metrics. We report Fréchet Inception Distance (FID) [28] and Ker-
nel Inception Distance (KID) [6], computed by using 50k artificially generated
images that were rendered from random poses and 1) 50k real images for FFHQ;
2) all 10,130 real images in the z-flip-augmented dataset for AFHQv2-Cat [12].
Identity similarity (ID). Following EG3D [9], we also evaluate the level of fa-
cial identity preservation. Concretely, we first generate 1024 MPI-like representa-
tions M. For each representation we then compute the identity cosine similarity
between two views rendered from random poses using ArcFace [15, 59].

Depth accuracy (Depth). Similar to [9, (1], we also assess geometry and
depth accuracy. For this we utilize a pre-trained face reconstruction model [17]

to provide facial area mask and pseudo ground-truth depth map IA)vtgt. We report

the MSE error between our rendered depth D, (Eq. (S4)) and ﬁv[gt on areas
constrained by the face mask. Note, following prior work, we normalize both
depth maps to zero-mean and unit-variance. The result is obtained by averaging
over 1024 representations M.

Pose accuracy (Pose). Following [9, (1], we also study the 3D geometry’s pose
accuracy. Specifically, for each MPI, we utilize a pose predictor [17] to estimate
the yaw, pitch, and roll of a rendered image. The predicted pose is then compared
to the pose used for rendering via the MSE. The reported result is averaged over
1024 representations M. Notably but in hindsight expected, 2D metrics, as well
as ID, lack the ability to capture 3D errors which we will show next.

5 https://metmuseum.github.io/
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Table 1: Speed comparison. ‘' indicates that corresponding papers do not report this
result. 1) Training: EG3D, GRAM, StyleNeRF and GMPI report training time when
using 8 Tesla V100 GPUs. pi-GAN uses two RTX 6000 GPUs or a single RTX 8000
GPU. For GMPI, the results reported in this paper come from 3/5/11-hour training for
a resolution of 2562 /5122 /10242 with initialization from official pretrained-checkpoints.
2) Inference: we measure frames-per-second (FPS) for each model. GMPI uses 96
planes. GRAM reports speed by utilizing a specified mesh rasterizer [39] while the
others use pure forward passes. EG3D uses an RTX 3090 GPU. GRAM and StyleNeRF
use a Tesla V100 GPU, which we also utilize to run GIRAFFE, pi-GAN, LiftedGAN,
and our GMPIL. We observe: GMPI is quick to train and renders the fastest among all
approaches.

Res. Unit |GIRAFFE [54] pi-GAN [10] LiftedGAN [61] EG3D' [0] GRAMT [16] StyleNeRFT [23] GMPI
Train - Timel 56h 8.5d 3-7d 3d|3/5/11h
§ 2562 FPSt 250 1.63 25 36 180 16 328"
= 5122 FPS?T — 0.41 35 — 14 83.5"
£ 1024% FPST - 0.10 - B 11 19.4*

T We quote results from their papers.

* We report the rendering speed. GMPI, different from StyleNeRF, pi-GAN, and Lifted GAN, only
needs a single forward pass to generate the scene representation. Further rendering doesn’t involve
the generator. We hence follow EG3D to report inference FPS without forward pass time that is 82.34
ms, 99.97 ms, and 115.10 ms for 96 planes at 2562, 5122, and 1024* on a V100 GPU.

4.3 Results

We provide speed comparison in Tab. 1 and a quantitative evaluation in Tab. 2.
With faster training, GMPI achieves on-par or better performance than start-of-
the-art when evaluating on 2562 images and can generate high-resolution results
up to 10242 which most baselines fail to produce. Specifically, GMPI results on
resolutions 2562, 5122, and 10242 are reported after 3/5/11-hours of training.
Note, the pretrained StyleGANv2 initialization for FFHQ (see Sec. 3.6) requires
training for 1d 11h (2562), 2d 22h (5122), and 6d 03h (1024?) with 8 Tesla V100
GPUs respectively, as reported in the official repo.* In contrast, EG3D, GRAM,
and StyleNeRF require training of at least three days. At a resolution of 2562, 1)
GMPI outperforms GIRAFFE, pi-GAN, LiftedGAN, and GRAM on FID/KID
while outperforming StyleSDF on FID; 2) GMPI demonstrates better identity
similarity (ID) than GIRAFFE, pi-GAN;, and Lifted GAN; 3) GMPI outperforms
GIRAFFE regarding depth; 4) GMPI performs best among all baselines on pose
accuracy. Overall, GMPI demonstrates that it is a flexible architecture which
achieves 3D-awareness with an affordable training time.

4.4 Ablation Studies

In order to show the effects of various design choices, we run ablation stud-
ies and selectively drop out the discriminator conditioned on pose (DPC), the
plane-specific feature .7:21_, and shading. The following quantitative (Tab. 3) and
qualitative (Fig. 4 and Fig. 5) studies were run using a resolution of 5122 to set
baseline metrics, and answer the following questions:
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Table 2: Quantitative results. GMPI uses 96 planes and no truncation trick [34, 7]
is applied. ‘-’ indicates that the corresponding paper does not report this result. KID
is reported in KIDx100. For GIRAFFE, pi-GAN, and LiftedGAN, we quote results
from [9]. Compared to baselines, GMPI achieves on-par or even better performance
despite much faster training as reported in Tab. 1. Moreover, GMPI can produce high-
resolution images which most baselines fail to achieve, demonstrating the flexibility.

FFHQ AFHQv2-Cat
FID| KID] IDT Depth] Pose] FID| KID]

1 GIRAFFE [1] 315 1.992 0.64 0.94 0.089 16.1 2.723

2 pi-GAN 1282 [10] 29.9 3.573 0.67  0.44 0.021 16.0  1.492

3 LiftedGAN [61]  29.8 ~ 0.58 040 0.023 - -
4 GRAM' [I¢] 20.8 1.160  — - - - -
25 StyleSDF' [55] 115 0.265 - — 12.8%  0.447"
6 StyleNeRF' [23] 8.00 0.370  — - ~ 14.0*  0.350"

7 CIPS-3D' [67] 6.97 0.287 - - - - -
8 EG3D' [9] 4.80 0.149 0.76  0.31 0.005 3.88  0.091

9 GMPI 114 0.738 0.70  0.53 0.004 n/a®  n/al
10 EG3DT [9] 470 0.132 0.77  0.39 0.005 2.77  0.041
D11 StyleNeRFT [23]  7.80 0.220 - - - 13.2*  0.360"
12 GMPI 829 0.454 0.74  0.46 0.006 7.79  0.474

. 13 CIPS-3D' [67] 12.3 0.774 - - - - -
S 14 StyleNeRF' [23] 810 0.240 - - - - -
~ 15 GMPI 7.50 0.407 0.75  0.54 0.007 n/a®  n/al

T We quote results from their papers.

* Performance is reported on the whole AFHQv2 dataset instead of only cats.

8 No GMPI results on AFHQv2 for Row 9 and 13 since there are no available pre-
trained StyleGANv2 checkpoints for AFHQv2 with a resolution of 2562 or 10242.

Baseline condition (Tab. 3 row a) — a pre-trained StyleGANv2 texture without
transparency (Vi is set to 1). This representation is not truly 3D, as it is
rendered as a textured block in space. It is important to note that the commonly
used metrics for 2D GAN evaluation, i.e., FID, KID, as well as ID yield good
results. They are hence not sensitive to 3D structure. In contrast, the depth and
pose metrics do capture the lack of 3D structure in the scene.

Can a naive MPI generator learn 3D? (Tab. 3 row b) — a generator which
only uses F" (Eq. (2)) without being trained with pose-conditioned discrimina-
tor, plane-specific features, or a shading loss. The Depth (2.190 vs. 2.043) and
Pose (0.062 vs. 0.060) metrics show that this design fails, yielding results similar
to the baseline (row a).

Does DPC alone enable 3D-awareness? (Tab. 3 row ¢) — we now use dis-
criminator pose conditioning (DPC) while ignoring plane-specific features F .
This design improves the Depth (0.501 vs. 2.190) and Pose (0.006 vs. 0.062)
metrics. However upon closer inspection of the alpha maps shown in Fig. 5a we
observe that the generator fails to produce realistic structures. The reason that
this design performs well on Depth and Pose metrics is primarily due to these
two metrics only evaluating the surface while not considering the whole volume.
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Table 3: Ablation studies. We evaluate at a resolution of 5122. DPC refers to discrim-
inator pose conditioning (Sec. 3.4), .7-'21. refers to the plane-specific feature introduced
in Eq. (8), and Shading indicates the shading-guided training discussed in Sec. 3.5.
#planes denotes the number of planes we used during evaluation. Note, rows (b) and
(c) can only use 32 planes during training and inference. Therefore, to make the com-
parison fair, all ablations use 32 planes. We provide an additional 96-plane result for
our full model, which is used in Tab. 2. Please check Sec. 4.4 and Fig. 4 for a detailed
discussion regarding this table as we find that 2D metrics, e.g., FID/KID as well as
ID can be misleading when evaluating 3D generative models.

N . FFHQ AFHQv2-Cat
#planes DPC Fo, Shading wrmqh DT Depth] Pose] FID| KID]
@) 32 6.64 0368 0.91 2043 0.060 4.29 0.199
(b) 32 161 0.167 089 2190 0.062 4.00 0.166
© 32 v 7.98 0.347 0.75 0501 0.006 7.13 0.385
d) 32 v 4.35 0.150 0.89 2.140 0.061 3.70 0.132
e 32 v 710 0.313 0.73 0462 0.006 7.54 0.433
() 32  ~ 7/ 740 0.337 074 0.457 0.006 7.93 0.489
(g 96 v v /829 0454 0.74 0.457 0.006 7.79 0.474

Fig.4: The images in this figure correspond the the ablation studies in Tab. 3. Panels
(a)-(g) correspond to Tab. 3’s rows (a)-(g). All results are generated from the same
latent code z. The face is rendered with a camera positioned to the right of the subject,
i.e., the rendered face should look to the left of the viewer. (a) is the 2D image pro-
duced by the pre-trained StyleGANv2. Note how GMPI becomes 3D-aware in (e), and
generates geometry and texture that is occluded in the pre-trained StyleGANv2 im-
age. (e) vs. (f): shading-guided training (Sec. 3.5) alleviates geometric artifacts such as
concavities in the forehead. (f) vs. (g): the ability to use more planes during inference
(Sec. 3.2) reduces “stair step” artifacts, visible on the cheek and the ear.

Does F! alone enable 3D-awareness? (Tab. 3 row d) — we use only the
plane-specific feature ]-"gi without DPC. Geometry related metrics (Depth and
Pose) perform poorly, which is corroborated by Fig. 4 (d), indicating an inability
to model 3D information.

Do DPC and }'gi enable 3D-awareness? (Tab. 3 row e¢) — we combine both
plane-specific features .7-'21_ and DPC. This produce good values for Depth and Pose
metrics. Visualizations in Fig. 4e, and Fig. 5b verify that GMPI successfully
generates 3D-aware content. However, the FID/KID, as well as ID values are
generally worse than non-3D-aware generators (row a-e).
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‘-A—J‘ ik et e ©
(a) Generated alpha maps for Tab. 3 row c. The network fails to produce realistic struc—
tures.

\
! ¥ ( b
(b) Generated alpha maps for Tab. 3 row g. Note how the alpha maps are more structured
and more closely correspond to a human’s face structure.

Fig. 5: Qualitative results accompanying Tab. 3. For alpha maps, from top to
bottom, left to right, we show a1 to ar respectively (Eq. (4)): the whiter, the denser
the occupancy. Grey boundaries are added for illustration.

Does shading improve 3D-awareness? (Tab. 3 row f) — we use plane- bpeciﬁc
features ]-'h DPC and shading loss. As discussed in Sec. 3.1, DPC and fh
sufficient to make a 2D GAN 3D-aware. However, inspecting the geometry reveals
artifacts such as the concave forehead in Fig. 4e. Shading-guided rendering tends
to alleviate these issues (Fig. 4e vs. f) while not harming the quantitative results
(Tab. 3’s row e vs. f).

Can we reduce aliasing artifacts? (Tab. 3 row g) — we use plane-specific
features }"Z:i, DPC, shading loss and 96 planes. Due to the formulation of ]—'&, we
can generate an arbitrary number of planes during inference, which helps avoid
“stair step” artifacts that can be observed in Fig. 4f vs. g.

Qualitative results are shown in Fig. 1. Please see the appendix for more.

5 Conclusion

To identify what is really needed to make a 2D GAN 3D-aware we develop gen-
erative multiplane images (GMPIs) which guarantee view-consistency. GMPIs
show that a StyleGANv2 can be made 3D-aware by 1) adding a multiplane im-
age style branch which generates a set of alpha maps conditioned on their depth
in addition to a single image, both of which are used for rendering via an end-to-
end differentiable warping and alpha compositing; and by 2) ensuring that the
discriminator is conditioned on the pose. We also identify shortcomings of classi-
cal evaluation metrics used for 2D image generation. We hope that the simplicity
of GMPIs inspires future work to fix limitations such as occlusion reasoning.

Acknowledgements: We thank Eric Ryan Chan for discussion and providing
processed AFHQv2-Cats dataset. Supported in part by NSF grants 1718221,
2008387, 2045586, 2106825, MRI #1725729, NIFA award 2020-67021-32799.
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Supplementary Material:
Generative Multiplane Images:
Making a 2D GAN 3D-Aware

This supplementary is structured as follows:

— Sec. A: Details of the differentiable rendering in GMPI;
— Sec. B: Additional quantitative results;

— Sec. C: Implementation details;

— Sec. D: More qualitative results.

A Differentiable Rendering in GMPI

In Sec. 3.3, we obtain the desired image I,,,, which illustrates the generated MPI
representation M = {C, {aq,...,ar}} from the user-specified target view vigt in
two steps: 1) a warping step transforms the representation M from its canonical
POSE Vcano t0 the target pose vige; 2) a compositing step combines the planes into
the desired image I,.,.. Importantly, both steps entail easy computations which
are end-to-end differentiable such that they can be included into any generator.
Here we provide details.

Warping. We warp the RGB image and the alpha map of the i*" plane from
the canonical view to the target view via

(Oz(’ O‘;) = /Hivvcano_”)tgt (07 (e79) di)' (Sl)

Here, H; veuno—sve Tepresents the homography operation. Essentially, the homog-
raphy Hi v,y SPecifies a mapping: for each pixel coordinate (p),pj,) in the
image C; and in the alpha map o of the target view vigt, we obtain correspond-
ing coordinates (pz, py) in the image C' and in the alpha map «; of the canonical
VieW Ucano- Bilinear sampling is applied on (pg,py) to obtain values for the pixel
locations (p,, p; ). Concretely,

T
T t tgt canon -_— T
[pm py 1] = K7)cano (R7)tgt—>7)cano — e Hg > Kvtglt [p; pg/ 1] ) (82)
i

where n € R? is the normal of the plane defined in target camera coordinate
system wvig, which is identical for all planes. b; is the depth of the plane from
the target camera vige. We let K, € R**? and K, € R3*3 refer to the
intrinsic matrices of the canonical view vcano and the target view wvig. Further,
Ry veme € R¥3 and t,, 0., € R**! are the rotation and the translation
from vigt tO Veano-

Alpha Compositing. Given the warped image C} and the warped alpha map

o, for each plane ¢, we compute the final rendered 2D image I, , via

tgt

i—1

Ly =Y _(Cl-af- JJ =) ] (S3)
J

=1 j=1
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Table S1: Comparing representations on FFHQ. 1% and 3™ rows are copied
from Tab. 2’s 3'¢ and 9*" rows in the main text. Row 2 and 3 infer with 96 planes.
Row 1: depth to renderer; Row 2: depth to MPI to renderer; Row 3: MPI to renderer.

Row FID} KIDx100, IDT Depth] Posel
1 LiftedGAN [58] 29.8 — 058 0.40 0.023
21 D2A (c=1/64) 134 0.920 0.69  0.60 0.004
9,22 D2A (e=1/128) 13.5 0.867 0.70  0.60 0.004
823 D2A (e=1/256) 11.7 0.644 0.70  0.63 0.005
24 D2A (e=1/512) 12.6 0.684 0.69  0.62 0.005
3  GMPI 11.4 0.738 0.70  0.53 0.004

Similarly, we approximate depth D, via

L i1
Dy, = Z b; - al; - H(l —aj) |, (S4)
i=1 j=1

where b; is the distance mentioned in Eq. (S2). Notably, the combination of
Eq. (4), Eq. (S1) and Eq. (S3) is end-to-end differentiable and hence straight-
forward to integrate into a generator. Importantly, the computations are also
extremely efficient as only simple matrix multiplications are involved. It is hence
easy to augment an existing generator like the one in StyleGANv2.

B Additional Quantitative Results

B.1 Comparisons of Representations

We provide additional ablations of the plane representation. Specifically, we con-
sider the following three ablations:

Depth map to renderer: We let the generator predict a single channel depth
map (instead of multiple-channel alpha maps) and use a differentiable renderer
to supervise the transformed image. LiftedGAN [(1] serves as this ablation.
Depth maps to alpha maps to renderer: We compute multiple alpha maps
from a predicted single-channel depth map in two steps: 1) we predict a depth
map Depth € R¥*W in normalized coordinates; 2) we generate L alpha maps
from Depth by computing the alpha value for a pixel [z, y] on the i-th alpha map
«; via:

@[z, y] = min <l,max <0, di — (Depthiz, y] — 6)>) ,

2€

where d; is «;’s depth. Essentially, alpha values linearly increase from 0 to 1
within the range [Depth[z, y]—e, Depth[z, y]+e€]. Any depth closer than Depth|x, y]—
€ is set to 0. Any depth further than Depth[z, y] + € is set to 1. We call this rep-
resentation D2A.



Generative Multiplane Images 21

Table S2: Ablation studies on truncation level ¢ during inference on FFHQ.
All results use the same checkpoint trained with DPC, plane-specific features ]-'gi, and
shading-guided training. We evaluate with 96 planes. We show more digits for ‘Depth’
and ‘Pose’ than we use in Tab. 2 to emphasize differences. With lower v, GMPI pro-

duces geometries with fewer artifacts (Depth) at the cost of less variety (FID/KID).
2567 5127 1024
FID| KID] IDt Depth| Posel FID| KID] IDt Depth| Posel FID| KID] IDt Depth| Posel
a) 1.0 11.4 0.738 0.70 0.533 0.0042 8.29 0.454 0.74 0.455 0.0056 7.50 0.407 0.75 0535 0.0068
b) 0.9 126 0.837 0.70 0.515 00037 10.1 0.588 0.74 0.421 0.0047 8.83 0.496 0.75 0.490 0.0058
¢) 0.8 154 1.079 0.70 0497 00033 13.7 0.885 0.73 0.386 0.0039 11.5 0.691 0.74 0.449 0.0049
d) 0.7 203 1.510 0.70 0477 00029 19.8 1.391 0.73 0.354 0.0032 16.0 1.024 0.73  0.408 0.0040
€) 0.6 27.8 2172 0.70 0459 00026 288 2160 0.73 0.326 0.0025 22.8 1510 0.73 0.368 0.0031
f) 0.5 385 3.12 0.70 0.445 0.0023 41.1 3.249 0.72 0.304 0.0020 32.0 2.145 0.72 0.333 0.0024

Alpha maps to renderer: We directly predict multiple-channel alpha maps.
Our GMPI serves as this ablation.

In Tab. S1 we report the results. For D2A, we ablate several values of € and
find that GMPI always outperforms on FID and depth metrics, verifying the
fidelity of th texture and the high-quality of the geometry.

B.2 Depth Score Analysis

We inspect GMPI-synthesized images and find two main reasons for our sub-
optimal ‘Depth’ scores in Tab. 2: 1) artifacts produced by StyleGANv2; 2) spec-
ular reflections on images deteriorate geometry generation. We discuss both in
detail below.

1) Artifacts in StyleGANv2. Truncation was introduced in [34, 7] to balance
between variety and fidelity. Specifically, using a truncation level ¢ € [0, 1], we
replace the style embedding w in Eq. (3) with

W=+ (w—w), (S5)

where @ = E, [ fuapping(2)] represents the style embedding space’s center of mass.
In practice, w is approximated by computing the moving average of all w en-
countered during training. Without truncation, i.e., for ¥» = 1.0, we find Style-
GANv2 can produce results with significant artifacts as shown in Fig. Sla. This
demonstrates that the generator fails to convert the corresponding w properly.
Although these artifacts are not being reflected in our 2D GAN metrics, i.e., FID
and KID, they do affect the alpha map generation adversely. Specifically, the al-
pha maps are produced based on feature }"gi, which is largely determined by the
style embedding w through Eq. (3) and Eq. (8). Consequently, artifacts cause an
inferior ‘Depth’ score. To understand the effect of the truncation level 1) during
inference, we evaluate GMPI using various truncation levels ¢ in Tab. S2. As
can be seen clearly, with smaller 1, we consistently perform better on geometry
metrics, i.e., lower ‘Depth’ and ‘Pose’ error, while trading in variety, i.e., higher
FID/KID. We provide a qualitative example in Fig. S2. Note, we do not ap-
ply truncation for any other quantitative results reported in this paper. Le., we
always use ¢ = 1.0 for quantitative evaluation results except in Tab. S2.
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2) Specular reflections. Our rendering model is not designed to handle spec-
ular reflections. Strong specular reflections in the training data tend to degrade
geometry generation, producing artifacts such as concave foreheads. We provide
a qualitative example in Fig. S3. Specular reflections are a common failure mode
of geometry generation. For instance, see Sec. 5 and Fig. 8 in StyleSDF [55]. We
leave addressing of this issue to future work.

(¢) ¥ = 0.5.

Fig.S1: Effects of truncation level ¢ for StyleGANv2. Images are gen-
erated with the officially-released code and checkpoints.® Without trunca-
tion, i.e., for ¢p = 1.0, StyleGANv2 generates images with significant artifacts.
This degrades alpha map generation. The images can be generated by running
the command python generate.py --outdir=out --trunc=1.0 --seeds=10,56,88
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/
pretrained/ffhq.pkl while setting --trunc to 1.0, 0.7, and 0.5 respectively.
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0 0

-2 -2
(b) ¥ = 0.5, Depth score = 0.83. The large difference in depth predic-
tion appearing on the cheek is primarily due to hair. The parametric
facial model does not reconstruct hair and accessories such as glasses
(see Fig. 2 in [17]).

Fig. S2: Truncation level ¢ affects geometry generation. GMPI generated scenes
with the same latent variable z using two different truncation levels. Each scene is
rendered with the same pose where the ‘Depth’ score is computed. For each subplot,
from top to bottom, left to right, we show 1) rendered image; 2) corresponding ge-
ometry; 3) predicted face model [17]; 4) normalized pseudo ground-truth depth map;
5) normalized GMPI generated depth map (the smaller value indicates closer distance
to the camera); and 6) difference between normalized depth maps 4) and 5). Smaller
truncation levels ¥ benefit ‘Depth’ scores at the cost of increased FID/KID values.
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Fig. S3: Specular reflection deteriorates geometry generation. For this example,
the depth score is 1.26. The strong lighting effect on the forehead breaks the Lambertian
assumption and degrades alpha map generation.

Table S3: Ablation studies on #planes during training. No truncation is ap-
plied. We evaluate at a resolution of 5122. DPC refers to discriminator pose conditioning
(Sec. 3.4), ]-'gi refers to the plane-specific feature introduced in Eq. (8), and Shading
indicates the shading-guided training discussed in Sec. 3.5. #planes denotes the num-
ber of planes we used during training. During inference, we use 32 planes. We observe,
the more planes we provide during training, the better the results of GMPI. Please
see Fig. S5 for qualitative examples.

h . FFHQ AFHQv2-Cat

#iplanes DPC Fo, Shading rm—in 1Dt Depth] Pose] FID] KIDJ

(a) 32 < < 7  7.40 0.337 0.74 0.457 0.006 7.93 0.489
by 16 v v / 983 0575 074 0.574 0.007 6.82 0.358
() & v v v/ 114 0657 072 0.778 0.008 7.26 0.384
d 4 v v /164 1043 065 0.992 0.007 853 0.467

B.3 More Ablations

#Planes During Training. We ablate the #planes during training in Tab. S3
and Fig. S5. We observe: the more planes we can provide during training, the
better the results of GMPI.

Robustness to inaccurate camera poses. To understand the robustness to
inaccurate camera poses, we add noise to the observer’s camera pose. Specif-
ically, we follow [9] to first compute per-element standard deviation o of the
estimated camera pose matrices for real images. During training, we add noise
of {10,20,30,40} to each element of the camera pose matrix. We report results
in Tab. S4 and Fig. S4. We want to emphasize, the estimated camera poses for
real images are not perfect. Therefore, 0o does not indicate fully-accurate camera
pose information. Fig. S4 verifies that the more noise we add, the less photo-
realistic the geometry we obtain. This is aligned with the trend of the Depth
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Table S4: Ablation study on camera pose accuracy. No truncation is applied.
We evaluate at a resolution of 512%. Noise indicates the level of noise we added to
the camera poses during training. Specifically, 1o denotes camera poses are corrupted
with one standard deviation of the estimated camera pose matrices for images from
the corresponding dataset (see Sec. B.3). All results are trained with DPC, plane-specific
features ]—"f,fi, and shading-guided training with 32 planes during training.

FFHQ AFHQv2-Cat

Nolse D] KID| IDT Depth] Pose] FID| KIDJ
(a) 0o 829 0.454 0.74 0.6 0006 7.79 0.474
(b) 1o 6.02 0269 0.81 081 0.017 595 0.296
(¢) 2 538 0221 0.8  1.00 0.027 551 0.266
(d) 30 526 0191 0.89  1.37 0.038 7.05 0.397
(&) 4o 472 0.176 0.90  1.68 0.046 6.92 0.393

‘(c) 2. (d) 30. (e) 4o.
Fig. S4: Ablate robustness to inaccurate camera poses. Panels (a)-(e) correspond
to Tab. S4’s rows (a)-(e). All results are generated from the same latent code z. Within
expectation, the more inaccurate camera poses the model is trained with, the less 3D
geometry we can obtain.

and Pose metrics in Tab. S4. Note, FID, KID, and ID metrics are misleading as
we do not observe much difference. This verifies again that 2D metrics lack the
ability to capture 3D errors.

C Implementation Details

Hyperparameters. Tab. S5 summarizes the hyperparameters we used for train-
ing GMPI. We perform all training on 8 Tesla V100 GPUs using 5000 iterations.
For all experiments except FFHQ256, we use a batch size of 32. This exposes
the discriminator to 0.16 million real images. FFHQ256 is trained on 0.32 mil-
lion real images since it uses a larger batch size of 64. We apply the minibatch

6 https://github.com/NVlabs/stylegan2-ada-pytorch
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(c) 8 planes.
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) 4 planes.

Fig.S5: Ablate #planes during training. For each subplot, from left to right, we
show two views and the 32 alpha maps that GMPI produces during inference. Each
subplot’s caption indicates the number of planes used during training. We observe: the
more planes we can provide during training, the better the results of GMPI.

standard deviation layer [31] independently on each image. We apply z-flip data
augmentation on AFHQv2 and MetFaces. To determine the channel number
dimy, of 7 (Eq. (2)) and F, (Eq. (8)), we follow [32]s official implementation”
using:

215
dimy, = min(T,512), (S6)

where 21° is the channel base number. The only exception is FFHQ256, where
we use a channel base number of 2! following the official implementation. All

experiments utilize R1 penalties [16] with weight 10.0 and learning rate 2 x 1073.
We use Adam [306] as the optimizer. In all experiments, we use 32 planes during
training.

Mixed precision. We follow StyleGANv2’s official code and use half precision
for both generator and discriminator layers corresponding to the four highest
resolutions.

Near/far depths. We set the near and far depths of MPI for each dataset as
0.95/1.12 (FFHQ and MetFaces), 2.55/2.8 (AFHQv2-Cat).

Depth normalization. The depth d; Vi is normalized to the range [0, 1] before

being used in the embedding function femed in Eq. (8). Specifically, we use d} =
di—dl

dy,—dy

SLha(iing-guided training. As mentioned in Sec. 3.5, we utilize Eq. (10) to

apply shading. For the first 1000 iterations, we set k, = 1.0 and k; = 0.0. We

7 https://github.com/NVlabs/stylegan2-ada-pytorch
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Table S5: Hyperparameters used for training GMPI.
FFHQ256 FFHQ512 FFHQ1024 AFHQv2 MetFaces

Resolution 2567 5127 10247 5127 10247
#GPUs 8 8 8 8 8
Training length (iters) 5k 5k 5k 5k 5k
Training length (#imgs) 0.32M 0.16M 0.16M 0.16M 0.16M
Batch size 64 32 32 32 32
Minibatch stddev [31] 1 1 1 1 1
Dataset x-flips X X X v v
Channel base % X 1x 1x 1x 1x
Learning rate (x107%) 2 2 2 2 2
R1 penalty weight [10] 10 10 10 10 10
Mixed-precision v v v v v

linearly reduce k, to 0.9 and linearly increase k4 to 0.1 during iteration 1001 to
2000. Starting from the 20015t iteration, we fix k, = 0.9 and kg = 0.1. Meanwhile,
lighting direction ! is randomly sampled. We follow [56] to use I, ~ N(0.0,0.2)
and [, ~ N(0.2,0.05), where l;, and [, represent horizontal and vertical angles
for lighting directions respectively.

Structure of femed (Eq. (8)). For each resolution h X h, we utilize three
modulated-convolutional layers [35] to construct fepped, whose channel numbers
are dimy, /4, dimy, /o, dim, respectively.

Alternative representation of fimped (Eq. (8)). Besides conditioning femped
on specific depth d;, we also studied use of a learnable token. Concretely, fembed
was represented using a tensor of shape h x h x dimy,. This resulted in reasonable
geometry but we find conditioning of alpha maps on depth to provide better
results. We leave further exploration of learnable tokens to future work.
Background plane. We treat the last plane of the MPI-like representation, i.e.,
the L plane, as the background plane. To color this plane, we treat the left-
most and right-most 5% pixels of the synthesized image C' as the left and right
boundary. RGB values of all remaining pixels on this plane are linearly interpo-
lated between the left and the right boundary. We find this simple procedure to
work well in our experiments.

Mesh generation. We utilize the marching cube algorithm [45] implemented
in PyMCubes for generating meshes.® We also utilize its smoothing function for
better visualization.

D Additional Qualitative Results

D.1 Uncurated Results

We provide uncurated results on FFHQ (Fig. S6), AFHQv2 (Fig. S7), and Met-
Faces (Fig. S8). We observe GMPI to generate high-quality geometry.

8 https://github.com/pmneila/PyMCubes
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corresponding geometrie;

Fos S S5 ¥

Fig.S6: Uncurated results on FFHQ. From top to bottom, left to right, we show
generations with seed 1-32. Results are generated with truncation ¢ = 0.5 [34].

D.2 Style Mixing

We illustrate style mixing [34] results on FFHQ (Fig. S9), AFHQv2 (Fig. S10),
and MetFaces (Fig. S11). GMPI successfully disentangles coarse and fine levels
of generations.

D.3 More Results

This supplementary material also includes an interactive viewer for the generated
MPI representations and an HTML page with videos to illustrate generations
from GMPI.
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for corrésponding geometries in Fig. S7b.
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Fig. S7: Uncurated results on AFHQv2. From top to bottom, left to right, we show
generations with seed 1-32. Results are generated with truncation ¢ = 0.7 [34].
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(a) Renderings for corresponding geometries in Fig. S8b.
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Fig. S8: Uncurated results on MetFaces. From top to bottom, left to right, we
show generations with seed 1-32. Results are generated with truncation ¢ = 0.7 [34].
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Fig.S9: Style mixing on FFHQ. Results don’t use truncation, i.e., ¥ = 1.0. To
obtain each cell in the bottom right grid, we replace lower-level style embeddings w
(Eq. (3)) in the Fine column with the corresponding w from the Coarse row. We
observe, GMPI enables semantic editing: lower-level w (layers 0 — 6) control the shape
while upper-level w (layers 7 and higher) determine fine-grained styles.
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Fig.S10: Style mixing on AFHQv2. Results don’t use truncation, i.e., ¢ = 1.0.
To obtain each cell in the bottom right grid, we replace lower-level style embeddings
w (Eq. (3)) in the Fine column with the corresponding w from the Coarse row. We
observe, GMPI enables semantic editing: lower-level w (layers 0 — 6) control the shape
while upper-level w (layers 7 and higher) determine fine-grained styles.
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(b) Geom .l

Fig.S11: Style mixing on MetFaces. Results don’t use truncation, i.e., ¥ = 1.0.
To obtain each cell in the bottom right grid, we replace lower-level style embeddings
w (Eq. (3)) in the Fine column with the corresponding w from the Coarse row. We
observe, GMPI enables semantic editing: lower-level w (layers 0 — 6) control the shape
while upper-level w (layers 7 and higher) determine fine-grained styles.



