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Abstract

We propose learnable polyphase sampling (LPS), a pair of learnable down/up-
sampling layers that enable truly shift-invariant and equivariant convolutional
networks. LPS can be trained end-to-end from data and generalizes existing hand-
crafted downsampling layers. It is widely applicable as it can be integrated into
any convolutional network by replacing down/upsampling layers. We evaluate
LPS on image classification and semantic segmentation. Experiments show that
LPS is on-par with or outperforms existing methods in both performance and
shift consistency. For the first time, we achieve true shift-equivariance on se-
mantic segmentation (PASCAL VOC), i.e., 100% shift consistency, outperform-
ing baselines by an absolute 3.3%. Our project page and code are available at
https://raymondyeh07.github.io/learnable_polyphase_sampling/

1 Introduction

For tasks like image classification, shifts of an object do not change the corresponding object label,
i.e., the task is shift-invariant. This shift-invariance property has been incorporated into deep-nets
yielding convolutional neural nets (CNN). Seminal works on CNNs [15, 24] directly attribute the
model design to shift-invariance. For example, Fukushima [15] states “the network has an ability
of position-invariant pattern recognition” and LeCun et al. [24] motivate CNNs by stating that they
“ensure some degree of shift invariance.”

CNNs have evolved since their conception. Modern deep-nets contain more layers, use different
non-linearities and pooling layers. Re-examining these modern architectures, Zhang [56] surprisingly
finds that modern deep-nets are not shift-invariant. To address this, Zhang [56] and Zou et al. [57]
propose to perform anti-aliasing before each downsampling layer, and found it to improve the
degree of invariance. More recently, Chaman and Dokmanic [5] show that deep-nets can be “truly
shift-invariant,” i.e., a model’s output is identical for given shifted inputs. For this, they replace all
downsampling layers with their adaptive polyphase sampling (APS) layer.

While APS achieves true shift-invariance by selecting the max-norm polyphase component (a hand-
crafted downsampling scheme), an important question arises: are there more effective downsampling
schemes that can achieve true shift-invariance? Consider an extreme case, a handcrafted deep-net
that always outputs zeros is truly shift-invariant, but does not accomplish any task. This motivates to
study how truly shift-invariant downsampling schemes can be learned from data.

For this we propose Learnable Polyphase Sampling (LPS), a pair of down/upsampling layers that
yield truly shift-invariant/equivariant deep-nets and can be trained in an end-to-end manner. For
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Pooling layers. Many designs for better downsampling or pooling layers have been proposed. Popular
choices are Average-Pooling [23] and Max-Pooling [36]. Other generalizations also exists, e.g., LP -
Pooling [42] which generalizes pooling to use different norms. The effectiveness of different pooling
layers has also been studied by Scherer et al. [41]. More similar to our work is Stochastic-Pooling [54]
and Mixed Max-Average Pooling [25]. Stochastic-Pooling constructs a probability distribution by
normalizing activations within a window and sampling during training. In our work, we present a novel
design which learns the sampling distribution. Mixed Max-Average Pooling learns a single scalar to
permit a soft-choice between Max- and Average-Pooling. In contrast, our LPS has shift-equivariance
guarantees while being end-to-end trainable.

3 Preliminaries

We provide a brief review on equivariant and invariant functions to establish the notation. For
readability, we use one-dimensional data to illustrate these ideas. In practice, these concepts are
generalized to multiple channels and two-dimensional data.

Shift invariance and equivariance. The concept of equivariance, a generalization of invariance,
describes how a function’s output is transformed given that the input is transformed in a predefined
way. For example, shift equivariance describes how the output is shifted given that the input is also
shifted: think of image segmentation, if an object in the image is shifted then its corresponding mask
is also shifted.

A function f : RN 7→ R
M is TN , {TM , I}-equivariant (shift-equivariant) if and only if (iff)

∃ T ∈ {TM , I} s.t. f(TNx) = Tf(x) ∀x ∈ R
N , (1)

where TNx[n] , x[(n+1) mod N ] ∀n ∈ Z denotes a circular shift, [·] denotes the indexing operator,
and I denotes the identity function. This definition of equivariance handles the ambiguity that arises
when shifting by one and downsampling by two. Ideally, a shift by one at the input should result in a
0.5 shift in the downsampled signal, which is not achievable on the integer grid. Hence, this definition
considers either a shift by one or a no shift at the output as equivariant.

Following the equivariance definition, invariance can be viewed as a special case where the trans-
formation at the output is an identity function, I . Concretely, a function f : RN 7→ R

M is TN , {I}-
equivariant (shift-invariant) iff

f(TNx) = f(x) ∀x ∈ R
N . (2)

To obtain shift-invariance from shift-equivariant functions it is common to use global pooling. Observe
that

∑

m

f(Tx)[m] =
∑

m

(T f(x))[m] (3)

is shift-invariant if f is shift-equivariant, as summation is an orderless operation. Note that the
composition of shift-equivariant functions maintains shift-equivariance. Hence, f can be a stack of
equivariant layers, e.g., a composition of convolution layers.

While existing deep-nets [17, 26, 40] do use global spatial pooling, these architectures are not shift-
invariant. This is due to pooling and downsampling layers, which are not shift-equivariant as we
review next.

Downsampling and pooling layers. A downsampling-by-two layer D : RN 7→ R
bN/2c is defined as

D(x)[n] = x[2n] ∀n ∈ Z, (4)

which returns the even indices of the input x. As a shift operator makes the odd indices even, a
downsampling layer is not shift-equivariant/invariant.

Commonly used average or max pooling can be viewed as an average or max filter followed by
downsampling, hence pooling is also not shift-equivariant/invariant. To address this issue, Chaman
and Dokmanic [5] propose adaptive polyphase sampling (APS) which is an input dependent (adaptive)
selection of the odd/even indices.

Adaptive polyphase sampling. Proposed by Chaman and Dokmanic [5], adaptive polyphase sam-
pling (APS) returns whether the odd or even indices, i.e., the polyphase components, based on their
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Figure 2. Illustration of our proposed LPD design. Inspired by the polyphase permutation property, Lemma 1,
the likelihood of selecting a polyphase component is learned with a shift-permutation equivariant CNN model
pθ . This enforces components between the input and its shifted version to have consistent logits, which leads to
a shift-equivariant downsampling layer.

norms. Formally, APS : RN 7→ R
bN/2c is defined as:

APS(x) =

{

Poly(x)0 if ‖Poly(x)0‖ > ‖Poly(x)1‖

Poly(x)1 otherwise
, (5)

where x ∈ R
N is the input and Poly(x)i denotes the polyphase components, i.e.,

Poly(x)0[n] = x[2n] and Poly(x)1[n] = x[2n+ 1]. (6)

While this handcrafted selection rule achieves a consistent selection of the polyphase components, it
is not the only way to achieve it, e.g., returning the polyphase component with the smaller norm. In
this work, we study a family of shift-equivariant sampling layers and propose how to learn them in a
data-driven manner.

4 Approach

Our goal is to design a learnable down/upsampling layer that is shift-invariant/equivariant. We
formulate down/upsampling by modeling the conditional probability of selecting each polyphase
component given an input. For this we use a small neural network. This enables the sampling scheme
to be trained end-to-end from data, hence the name learnable polyphase sampling (LPS).

In Sec. 4.1, we introduce learnable polyphase downsampling (LPD), discuss how to train it end-to-end,
and show that it generalizes APS. In Sec. 4.2, we propose a practical layer design of LPD. Lastly,
in Sec. 4.3, we discuss how to perform LPS for upsampling, namely, learnable polyphase upsampling
(LPU). For readability, we present the approach using one dimensional data, i.e., a row in an image.

4.1 Learnable Polyphase Downsampling

We propose learnable polyphase downsampling (LPD) to learn a shift-equivariant downsampling
layer. Given an input feature map x ∈ R

C×N , LPD spatially downsamples the input to produce an

output in R
C×bN/2c via

LPD(x)[c, n] = x[c, 2n+ k?] , Poly(x)k? , (7)

where k? = argmaxk∈{0,1} pθ(k = k|x) and Poly(x)k? denotes the k?-th polyphase component.

We model a conditional probability pθ(k|x) for selecting polyphase components, i.e., k denotes the
random variable of the polyphase indices. For 1D data, there are only two polyphase components.

Critically, not all pθ lead to an equivariant downsampling layer. For example, pθ(k = 0|x) = 1
results in the standard down-sampling which always returns values on even indices for 1D signals.
We will next examine which family of pθ achieves a shift-equivariant downsampling layer.

Shift-permutation equivariance of pθ. Consider the example in Fig. 2. We can see that a circular
shift in the spatial domain induces a permutation in the polyphase components. Observe that the
top-row of the polyphase component containing the blue circle and orange square are permuted to the
second row when the input is circularly shifted. We now state this formally.
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Lemma 1. Polyphase shift-permutation property

Poly(TNx)k =

{

Poly(x)1 if k = 0

TMPoly(x)0 if k = 1
. (8)

Proof. By definition, Poly(TNx)k[n]

= TNx[(2n+ k) mod N ] = x[(2n+ k + 1) mod N ] (9)

=

{

x[(2n+ 1) mod N ] = Poly(x)1 if k = 0

x[(2(n+ 1)) mod N ] = TMPoly(x)0 if k = 1
(10)

From Lemma 1, we observe that to achieve an equivariant downsampling layer a spatially shifted
input should lead to a permutation of the selection probability (Claim 1). We note that pθ is said
to be shift-permutation-equivariant if

pθ(k = π(k)|TNx) = pθ(k = k|x), (11)

where π denotes a permutation on the polyphase indices, i.e., a “swap” of indices is characterized by
π(k), i.e., π(0) = 1 and π(1) = 0.

Claim 1. If pθ is shift-permutation-equivariant, defined in Eq. (11), then LPD defined in Eq. (7)
is a shift-equivariant downsampling layer.

Proof. Let x̂ , TNx be a shifted version of x ∈ R
N . Recall LPD(x) and LPD(x̂) are defined as:

LPD(x) , Poly(x)k? , k? = arg max
k∈{0,1}

pθ(k = k|x), (12)

LPD(x̂) , Poly(x̂)k̂? , k̂
? = arg max

k∈{0,1}

pθ(k = k|x̂). (13)

From Lemma 1, LPD(TNx) can be expressed as:

LPD(TNx) =

{

Poly(x)1 if k̂? = 0

TMPoly(x)0 if k̂? = 1
. (14)

As pθ is the shift-permutation-equivariant,

k̂? = π(k?) = 1− k?. (15)

Finally, combining Eq. (14) and Eq. (15),

LPD(TNx) =

{

Poly(x)1 if k? = 1

TMPoly(x)0 if k? = 0
=

(

(1− k?)TM + k?I
)

· LPD(x), (16)

showing that LPD satisfies the shift-equivariance definition reviewed in Eq. (1).

Here, we parameterize pθ with a small neural network. The exact construction of a shift-permutation
equivariant deep-net architecture is deferred to Sec. 4.2. We next discuss how to train the distribution
parameters θ in LPD.

End-to-end training of LPD. At training time, to incorporate stochasticity and compute gradients,
we parameterize pθ using Gumbel Softmax [18, 29]. To backpropagate gradients to θ, we relax the
selection of polyphase components as a convex combination, i.e.,

y =
∑

k

zk · Poly(x)k, z ∼ pθ(k|x), (17)

where z corresponds to a selection variable, i.e.,
∑

k zk = 1 and zk ∈ [0, 1]. Note the slight abuse of
notation as pθ(k|x) denotes a probability over polyphase indices represented in a one-hot format. We
further encourage the Gumbel Softmax to behave more like an argmax by decaying its temperature τ
during training as recommended by Jang et al. [18].

LPD generalizes APS. A key advantage of LPS over APS is that it can learn from data, potentially
leading to a better sampling scheme than a handcrafted one. Here, we show that APS is a special case
of LPD. Therefore, LPD should perform at least as well as APS if parameters are trained well.

5



Figure 3. Proposed shift-permutation equivariant model. By sharing weights across components and computing
logits via global pooling, this neural network is shift-permutation equivariant. To introduce stochasticity during
training, we adopt the Gumbel Softmax for sampling.

Claim 2. APS is a special case of LPD, i.e., LPD can represent APS’s selection rule.

Proof. Consider a parametrization of pθ as follows,

pθ(k = k|x) =
exp (‖Poly(x)k‖)

∑

j exp(‖Poly(x)j‖)
. (18)

As the exponential is a strictly increasing function we have

argmax
k

pθ(k = k|x) = argmax
k

‖Poly(x)k‖ . (19)

Eq. (18) is a softmax with input ‖Poly(x)k‖, as such a function exists, LPD generalizes APS.

4.2 Practical LPD Design

We aim for a conditional distribution pθ that is shift-permutation equivariant to obtain a shift-
equivariant pooling layer. Let the conditional probability be modeled as:

pθ(k = k|x) ,
exp[fθ(Poly(x)k)]

∑

j exp[fθ(Poly(x)j)]
, (20)

where fθ : RC×H′×W ′

7→ R is a small network that extracts features from polyphase component
Poly(x)k. We first show that pθ is shift-permutation equivariant if fθ is shift invariant.

Claim 3. In Eq. (20), if fθ is shift invariant then pθ is shift-permutation equivariant (Eq. (11)).

Proof. Denote a feature map x and its shifted version x̂ , TNx. By definition,

pθ(k = π(k)|TNx) =
exp(fθ(Poly(TNx)π(k)))
∑

j exp(fθ(Poly(TNx)j))
. (21)

With a shift-invariant fθ and using Lemma 1,

fθ(Poly(TNx)π(k)) = fθ(TMPoly(x)k) = fθ(Poly(x)k) (22)

∴ pθ(k = π(k)|TNx) =
exp(Poly(x)k)

∑

j exp(k = Poly(x)j)
= pθ(k = k|x)

Based on the result in Claim 3, we now present a convolution based meta-architecture that satisfies the
shift-permutation property. The general design principle: share parameters across polyphase indices,
just as convolution achieves shift equivariance by sharing parameters, plus averaging over the spatial
domain. An illustration of the proposed meta-architecture is shown in Fig. 3.

Fully convolutional model. Logits are extracted from the polyphase components via fully-
convolutional operations followed by averaging along the channel and the spatial domain. Following
this, f conv

θ is denoted as:

f conv
θ (Poly(x)k) ,

1

CM

∑

c,n

f̃ conv
θ (Poly(x)k)[c, n], (23)

where f̃ conv
θ : RC×M 7→ R

C×M is a CNN model (without pooling layers) and M = bN/2c. The

shift equivariance property of f̃ conv
θ guarantees that f conv

θ is shift-invariant due to the global pooling.

6



4.3 Learnable Polyphase Upsampling (LPU)

Beyond shift invariant models, we extend the theory from downsampling to upsampling, which
permits to design shift-equivariant models. The main idea is to place the features obtained after down-

sampling back to their original spatial location. Given a feature map y ∈ R
C×bN/2c downsampled

via LPD from x, the upsampling layer outputs u ∈ R
C×N are defined as follows:

Poly(u)k? =

{

y, k? = argmaxk∈{0,1} pθ(k = k|x)

0, otherwise.
(24)

We name this layer learnable polyphase upsampling (LPU), i.e., LPU(y, pθ) , u. We now show that
LPU and LPD achieve shift-equivariance.

Claim 4. If pθ is shift-permutation equivariant, as defined in Eq. (11), then LPU ◦ LPD is
shift-equivariant.

Proof. We prove this claim following definitions of LPU, LPD and Lemma 1. The complete proof is
deferred to Appendix Sec. A1.

End-to-end training of LPU. As in downsampling, we also incorporate stochasticity via Gumbel-
Softmax. To backpropagate gradients to pθ, we relax the hard selection into a convex combination, i.e.,

Poly(u)k = zk · y, z ∼ pθ(k|x). (25)

Anti-aliasing for upsampling. While LPU provides a shift-equivariant upsampling scheme, it intro-
duces zeros in the output which results in high-frequency components. This is known as aliasing in
a multirate system [47]. To resolve this, following the classical solution, we apply a low-pass filter
scaled by the upsampling factor after each LPU.

5 Experiments

Table 1. ResNet-18 (CIFAR10) top-1 accuracy and circular
shift consistency. LPS outperforms all alternative pooling
and anti-aliasing methods.

Method Anti-Alias Acc. ↑ C-Cons. ↑

Baseline - 91.44± 0.33 89.64± 0.39
APS - 94.07± 0.28 100± 0.0

LPS (Ours) - 94.45± 0.05 100± 0.0

LPF Rect-2 93.1± 0.17 94.75± 0.43
APS Rect-2 94.38± 0.25 100± 0.0

LPS (Ours) Rect-2 94.69± 0.06 100± 0.0

LPF Tri-3 93.97± 0.18 96.74± 0.2
APS Tri-3 94.36± 0.17 100± 0.0

LPS (Ours) Tri-3 94.8± 0.14 100± 0.0

LPF Bin-5 94.43± 0.15 98.34± 0.15
APS Bin-5 94.44± 0.19 100± 0.0

LPS (Ours) Bin-5 94.49± 0.1 100± 0.0

DDAC Adapt-3 93.17± 0.19 95.13± 0.15
APS Adapt-3 94.42± 0.13 100± 0.0

LPS (Ours) Adapt-3 94.57± 0.12 100± 0.0

We conduct experiments on image classifica-
tion following prior works. We report on the
same architectures and training setup. We re-
port both the circular shift setup in APS [5]
and the standard shift setup in LPF [56].

We also evaluate on semantic segmentation,
considering the circular shift, inspired by
APS, and the standard shift setup following
DDAC [57]. For circular shift settings, the
theory exactly matches the experiment hence
true equivariance is achieved. To our knowl-
edge, this is the first truly shift equivariant
model reported on PASCAL VOC.

5.1 Image Classification (Circular Shift)

Experiment & implementation details.

Following APS, all the evaluated pooling and anti-aliasing models use the ResNet-18 [17] architecture
with circular padding on CIFAR10 [21] and ImageNet [12]. Anti-alias filters are applied after each
downsampling layer following LPF [56] and DDAC [57]. We also replace downsampling layers with
APS [5] and our proposed LPS layer. We provide more experimental details in Appendix Sec. A4.

Evaluation metrics. We report classification accuracy to quantify the model performance on the
original dataset without any shifts. To evaluate shift-invariance, following APS, we report circular-
consistency (C-Cons.) which computes the average percentage of predicted labels that are equal under
two different circular shifts, i.e.,

ŷ(Circ. Shifth1,w1(I)) = ŷ(Circ. Shifth2,w2(I)), (26)
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where ŷ(I) denotes the predicted label for an input image I and h1, w1, h2, w2 are uniformly
sampled from 0 to 32. We report the average over five random seeds.

CIFAR10 results. Tab. 1 shows the classification accuracy and circular consistency on CIFAR10.
We report the mean and standard deviation over five runs with different random initialization of
the ResNet-18 model. We observe that the proposed LPS improves classification accuracy over all
baselines while achieving 100% circular consistency. In addition to attaining perfect shift consistency,
we observe that combining anti-aliasing with LPS further improves performance.

ImageNet results. We conduct experiments on ImageNet with circular shift using ResNet-18.
In Tab. 2, we compare with APS’s best model using a box filter (Rectangle-2), as reported by Chaman
and Dokmanic [5]. While both APS and LPS achieve 100% circular consistency, our proposed LPS
improves on classification accuracy in all scenarios, highlighting its advantages.

Table 2. ResNet-18 top-1 classification accuracy
and circular consistency on ImageNet.

Method Anti-Alias Acc. ↑ C-Cons. ↑

Baseline - 64.88 80.39
APS - 67.05 100

LPS (Ours) - 67.39 100

LPF Rect-2 67.03 84.35
APS Rect-2 67.6 100

LPS (Ours) Rect-2 68.45 100

DDAC Adapt-3 67.6 77.23
APS Adapt-3 69.02 100

LPS (Ours) Adapt-3 69.11 100

Table 3. ResNet-50/101 top-1 classification accuracy
and shift consistency on ImageNet.

Method Anti-Alias Model Acc. ↑ S-Cons. ↑

Baseline - ResNet-50 76.16 89.2
LPF Tri-3 ResNet-50 76.83 90.91

LPS (Ours) Tri-3 ResNet-50 77.14 91.43

Baseline - ResNet-101 77.7 90.6
LPF Tri-3 ResNet-101 78.4 91.6
LPS Tri-3 ResNet-101 78.51 91.69

DDAC Adapt-3 ResNet-101 79.0 91.8
DDAC∗ Adapt-3 ResNet-101 78.64 91.83

LPS (Ours) Adapt-3 ResNet-101 78.8 92.4

5.2 Image Classification (Standard Shift)

Experiment & implementation details. To directly compare with results from LPF and DDAC,
we conduct experiments on ImageNet using the ResNet-50 and ResNet-101 architectures following
their setting, i.e., training with standard shifts augmentation and using convolution layers with
zero-padding.

Evaluation metrics. Shift consistency (S-Cons.) computes the average percentage of

ŷ(Shifth1,w1(I)) = ŷ(Shifth2,w2(I)), (27)

where h1, w1, h2, w2 are uniformly sampled from the interval {0, . . . , 32}. To avoid padding at the
boundary, following LPF [56], we perform a shift on an image then crop its center 224× 224 region.
We note that, due to the change in content at the boundary, perfect shift consistency is not guaranteed.

ImageNet results. In Tab. 3, we compare to the best anti-aliasing result as reported in LPF, DDAC
and DDAC∗ which is trained from the authors’ released code using hyperparameters specified in the
repository. Note, in standard shift settings LPS no longer achieves true shift-invariance due to padding
at the boundaries. Despite this gap from the theory, LPS achieves improvements in both performance
and shift-consistency over the baselines. When compared to LPF, both ResNet-50 and ResNet-101
architecture achieved improved classification accuracy and shift-consistency. When compared to
DDAC, LPS achieves comparable accuracy with higher shift-consistency.

5.3 Trainable Parameters and Inference Time

While LPD is a data-driven downsampling layer, we show that the additional trainable parameters
introduced by it are marginal with respect to the classification architecture. Tab. 4 shows the number
of trainable parameters required by the ResNet-101 models.

For each method, we report the absolute number of trainable parameters, which includes both
classifier and learnable pooling weights. We also include the relative number of trainable parameters,
which only considers the learnable pooling weights and the percentage it represents with respect to
the default ResNet-101 architecture weights.

For comparison purposes, we also include the inference time required by each model to evaluate
their computational overhead. Mean and standard deviation of the inference time is computed for
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Table 4. Number of trainable parameters and inference time required by ResNet-101 using our proposed LPD
layer and alternative methods. Absolute corresponds to the total number of trainable parameters, including
classifier and pooling layers. Relative corresponds to the parameters of the pooling layers only. Inference time
statistics computed on 100 batches with 32 images of size 224× 224× 3 each.

Pooling Anti-alias Trainable Parameters Inference Time

Absolute Relative Mean (ms) Std (ms)

LPD LPF (Tri-3) 42, 966, 730 446, 080 (1.05%) 83.61 0.19
LPD DDAC (Adapt-3) 44, 751, 034 2, 230, 384 (5.24%) 130.69 0.2

ResNet-101 (Default) DDAC (Adapt-3) 44, 304, 954 1, 784, 304 (4.2%) 124.69 0.25
APS LPF (Tri-3) 42, 520, 650 0 77.68 0.22

ResNet-101 (Default) LPF (Tri-3) 42, 520, 650 0 68.72 0.4

Figure 4. ResNet-50 LPS activation maps (ImageNet). We show all four polyphase components of the fourth
layer (first 8 channels). The component selected by LPS is boxed in blue, while that with the largest `2-norm is
boxed in red. This indicates LPS did not learn to reproduce APS.

each method on 100 batches of size 32. Following ImageNet default settings, the image dimensions
corrrespond to 224× 224× 3.

Results show our proposed LPD method introduces approximately 1% additional trainable parameters
on the ResNet-101 architecture, and increases the inference time roughly by 14.89 ms over the LPF
anti-aliasing method (the less computationally expensive of the evaluated techniques). On the other
hand, most of the overhead comes from DDAC, which increases the number of trainable parameters
by approximately 4% and the inference time by approximately 55.97 ms. Overall, our comparison
shows that, by equipping a classifier with LPD layers, the computational overhead is almost trivial.

Despite increasing the number of trainable parameters, we empirically show that our LPD approach
outperforms classifiers with significantly more parameters. Please refer to Sec. A4.3 for additional
experiments comparing the performance of our ResNet-101 + LPD model against the much larger
ResNet-152 classifier.

LPD learns sampling schemes different from APS. To further analyze LPD, we replace all the
LPD layers with APS for a ResNet-101 model trained on ImageNet. We observe a critical drop in
top-1 classification accuracy from 78.8% to 0.1%, indicating that LPD did not learn a downsampling
scheme equivalent to APS. We also counted how many times (across all layers) LPD selects the
max-norm. On the ImageNet validation set, LPD selects the max `2-norm polyphase component only
20.57% of the time. These show LPD learned a selection rule that differs from the handcrafted APS.

Qualitative study on LPD. In Fig. 4 we show the selected activations, at the fourth layer, of a
ResNet-50 model with LPD. Each column describes the first 8 channels of the four possible polyphase
components k ∈ {0, . . . , 3}. The component selected by LPD, denoted as k?, is boxed in blue. For
comparison purposes, we also boxed the component that maximizes the `2-norm in red. We observe
that LPD is distinct from APS as they select a different set of polyphase components. However, we
did not observe a specific pattern that can explain LPD’s selection rule.

5.4 Semantic Segmentation (Circular Shift)

Experiment & implementation details. We evaluate LPS’s down/upsampling layers on semantic
segmentation. As in DDAC [57], we evaluate using the PASCAL VOC [13] dataset. Following DDAC,
we use DeepLabV3+ [6] as our baseline model. We use the ResNet-18 backbone pre-trained on the
ImageNet (circular shift) reported in Sec. 5.1. We experiment with using only the LPD backbone and
the full LPS, i.e., both LPD and LPU.
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Table 5. Semantic segmentation with circular shifts
(ResNet-18 with DeepLabV3+) on PASCAL VOC.

Method Anti-Alias mIoU↑ mASCC↑

DeepLabV3+ - 70.03 95.42
LPF Rect-2 71.02 96.03

DDAC Adapt-3 72.28 95.98
APS Adapt-3 72.37 96.70

LPD only Adapt-3 72.47 96.23
LPS (Ours) Adapt-3 72.37 100

Table 6. Semantic segmentation with standard shifts
(ResNet-101 with DeepLabV3+) on PASCAL VOC.
Results above the line are from DDAC’s paper.

Method Anti-Alias mIoU ↑ mASSC ↑

DeepLabV3+ - 78.5 95.5
LPF Tri-3 79.4 95.9

DDAC Adapt-3 80.3 96.3

DDAC* Adapt-3 80.31 97.83
LPS (Ours) Adapt-3 80.43 97.98

We also evaluate the performance using APS, which corresponds to a hand-crafted downsampling
scheme, in combination with the default bilinear interpolation strategy from DeepLabV3+. Note
that, while our LPS approach consists of both shift equivariant down and upsampling schemes (LPD
and LPU, respectively), APS only operates on the downsampling process. Thus, the latter does not
guarantee a circularly shift equivariant segmentation.

Evaluation metric. We report mean intersection over union (mIoU) to evaluate segmentation perfor-
mance. To quantify circular-equivariance, we report mean Average Segmentation Circular Consistency
(mASCC) which computes the average percentage of predicted (per-pixel) labels that remained the
same under two different circular shifts. I.e., a shifted image is passed to a model to make a segmen-
tation prediction. This prediction is then “unshifted” for comparison. We report five random shift
pairs for each image.

Results. We report the results for PASCAL VOC in Tab. 5. Overall, we observe that LPD only and
LPS achieve comparable results to DDAC and APS in mIoU. Notably, LPS achieves 100% mASCC,
matching the theory. This confirms that both the proposed LPD and LPU layers are necessary and are
able to learn effective down/up sampling schemes for semantic segmentation.

5.5 Semantic Segmentation (Standard Shift)

Experiment & implementation details. For the standard shift setting, we directly follow the ex-
perimental setup from DDAC. We use DeepLabV3+ with a ResNet-101 backbone pre-trained on
ImageNet as reported in Sec. 5.2.

Evaluation metric. To quantify the shift-equivariance, following DDAC, we report the mean Average
Semantic Segmentation Consistency (mASSC) which is a linear-shift version of mASCC described
in Sec. 5.4 except boundary pixels are ignored.

Results. In Tab. 6, we compare mIoU and mASSC of LPS to various baselines. We observe that
LPS achieves improvements in mIoU and consistency when compared to DDAC∗. We note that
DDAC [57] did not release their code for mASSC. For a fair comparison, we report the performance
of their released checkpoint using our implementation of mASSC, indicated with DDAC∗. Despite
the gap in theory and practice due to non-circular padding at the boundary, our experiments show
LPS remains an effective approach to improve both shift consistency and model performance.

6 Conclusion

We propose learnable polyphase sampling (LPS), a pair of shift-equivariant down/upsampling lay-
ers. LPS’s design theoretically guarantees circular shift-invariance and equivariance while being
end-to-end trainable. Additionally, LPS retains superior consistency on standard shifts where the-
oretical assumptions are broken at image boundaries. Finally, LPS captures a richer family of
shift-invariant/equivariant functions than APS. Through extensive experiments on image classifica-
tion and semantic segmentation, we demonstrate that LPS is on-par with/exceeds APS, LPF and
DDAC in terms of model performance and consistency.
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Appendix
The appendix is organized as follows:

• In Sec. A1, we provide the complete proof of Claim 4.

• In Sec. A2, we provide an additional ablation study and qualitative experimental results.

• In Sec. A3, we provide an overview of the attached code and showcase the ease of incorpo-
rating LPS into a deep-net to achieve a shift-invariance/equivariance network. Unit tests and
end-to-end tests empirically validating the theory are also provided.

• In Sec. A4, we provide additional experimental details, e.g., model architecture, number of
trainable parameters, hyperparameters and baseline implementations.

A1 Proof of Claim 4

Claim 4. If pθ is shift-permutation equivariant, as defined in Eq. (11), then LPU ◦ LPD is
shift-equivariant.

Proof. Let x be a feature map, x̂ , TNx its shifted version, and k? = argmaxk∈{0,1} pθ(k = k|x).

By definition, u , LPU ◦ LPD(x) can be seen as masking out the components beside k? from x:

Poly(u)j =

{

Poly(x)j , j = k?

0, otherwise.
(28)

Let û , LPU ◦ LPD(x̂) and k̂? = argmaxk∈{0,1} pθ(k = k|x̂) then

Poly(û)j =

{

Poly(x̂)j , j = k̂?

0, otherwise.
(29)

Using Lemma 1 on x̂, when j = 0

Poly(û)j =

{

Poly(x)π(j), π(j) = k̂?

0, otherwise.
(30)

As pθ is shift-permutation equivariant, therefore k̂? = π(k?). Substituting into Eq. (30),

Poly(û)j =

{

Poly(x)π(j), π(j) = π(k?)

0, otherwise.
(31)

Similarly, when j = 1 and let M = bN/2c

TMPoly(û)j =

{

TMPoly(x)π(j), π(j) = π(k?)

0, otherwise.
(32)

Finally, combining Eq. (31) and Eq. (32) then using Lemma 1 on û,

TNu = LPU ◦ LPD(TNx), (33)

which proves the claim.

A2 Additional Experimental Results

Ablation Study on Gumbel Softmax. We further analyze the effect of sampling with Gumbel-
Softmax during training. We compare LPS (ResNet-18) results using a 3-tap antialiasing filter (Tri-3)
and trained using a Gumbel-Softmax, against its alternative version trained using a standard Softmax
without sampling. The remaining training attributes, including the τ annealing schedule, remain
unaltered. Tab. A1 compares both scenarios. While perfect circular shift consistency is obtained by
design in both cases, the top-1 classification accuracy of the model trained without sampling (93.22%)
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Table A1. Ablation study on the effect of Gumbel-softmax sampling.

Method Anti-Alias Sampling Acc. ↑ C-Cons. ↑
LPS (Softmax) Tri-3 7 93.22± 0.13 100± 0.0

LPS (Gumbel-softmax) Tri-3 3 94.8± 0.14 100± 0.0

is significantly lower than our proposed training approach (94.8%). By incorporating stochasticity,
the model performance improves.

LPS Filter Visualization. We provide visualizations of the convolution weights. Fig. A1 shows a
subset of the convolutional kernels used to select polyphase components at each layer of a ResNet-50
(LPS).

Figure A1. Convolutional weights learned by LPD layers at different ResNet-50 (ImageNet) pooling levels.

Qualitative Results for Semantic Segmentation. In Fig. A2 to Fig. A4, we provide a sampling of
output masks on PASCAL VOC that were predicted by DDAC and our proposed LPS on linearly
shifted inputs. Identical random shifts were applied for both DDAC and LPS. We observe that LPS
predicts smoother object contours and maintains a better consistency across shifts when compared
to DDAC. Regions where our shift consistency property showed significantly different results in
comparison to baseline are highlighted by a red circle.
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learn_poly_sampling
demo # Ipython notebook illustrating layer usage.
learn_poly_sampling

callbacks
clargs
configs
data
eval.py
eval_segmentation.py
layers # LPS layers' implementation
Makefile # Runs tests
models # Classifier and DeepLabV3+ implementation
README.md
requirements.txt
tests # Test cases for the models
train.py
train_segmentation.py
utils

Makefile
README.md

Please refer to README.md for installation and experimentation instructions.

A3.2 LPD Usage Illustration

We illustrate how to incorporate the learnable polyphase downsampling (LPD) layer into a simple
classifier. The network architecture consists of a single convolution layer, followed by LPD, a global
pooling and finally a fully connected layer. We numerically verify that this model is shift-invariant.
As our downsampling layer is implemented as a nn.Module, it can be easily incorporated into any
existing deep-net implemented in Pytorch.

# Define Model
class SimpleClassifier(nn.Module):

def __init__(self, num_classes=3,padding_mode='circular'):
# Conv. Layer
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1,

padding_mode=padding_mode)
# Learnable Polyphase Downsampling Layer
self.lpd = set_pool(partial(

PolyphaseInvariantDown2D,
component_selection=LPS,
get_logits=get_logits_model('LPSLogitLayers'),
pass_extras=False
),p_ch=32,h_ch=32)

# Global Pooling + Classifier
self.avgpool=nn.AdaptiveAvgPool2d((1,1))
self.fc=nn.Linear(32, num_classes)

def forward(self,x):
x = self.conv1(x)
x = self.lpd(x) # Just like any layer.
x = torch.flatten(self.avgpool(x),1)
return self.fc(x)

# Construct Model
torch.manual_seed(0)
model = SimpleClassifier().cuda().eval().double()
# Load Image
img = torch.from_numpy(np.array(Image.open('butterfly.png'))).permute(2,0,1)
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img = img.unsqueeze(0).cuda().double()
# Check is circular shift invariant
y_orig = model(img).detach().cpu()
img_roll = torch.roll(img,shifts=(1, 1), dims=(-1, -2))
y_roll = model(img_roll).detach().cpu()
print("y_orig : %s " % y_orig)
print("y_roll : %s " % y_roll)
assert(torch.allclose(y_orig,y_roll)) # Check shift invariant
print("Norm(y_orig-y_roll): %e " % torch.norm(y_orig-y_roll))

Out:

y _ o r i g : t e n s o r ( [ [ − 2 2 . 0 6 8 1 , −36 .2678 , 2 0 . 5 9 2 8 ] ] ,
d t y p e = t o r c h . f l o a t 6 4 )
y _ r o l l : t e n s o r ( [ [ − 2 2 . 0 6 8 1 , −36.2678 , 2 0 . 5 9 2 8 ] ] ,
d t y p e = t o r c h . f l o a t 6 4 )
Norm ( y_or ig − y _ r o l l ) : 0 .000000 e +00

A3.3 LPU Usage Illustration

We now illustrate how to incorporate the learnable polyphase upsampling (LPU) layer into a simple
encoder-decoder architecture. The network archticture consists of a convolution layer, followed by
LPD, another convolution layer, followed by LPU. We numerically verify that this architecture is
circular shift-equivariant.

class SimpleUNet(nn.Module):
def __init__(self, num_classes=3,padding_mode='circular'):

# Conv. Layer
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1,

padding_mode=padding_mode)
# Learnable Polyphase Downsampling Layer
self.lpd = set_pool(partial(

PolyphaseInvariantDown2D,
component_selection=LPS,
get_logits=get_logits_model('LPSLogitLayers'),
pass_extras=False
),p_ch=32,h_ch=32)

# Conv. Layer
self.conv2 = nn.Conv2d(32, 32, 3, padding=1,

padding_mode=padding_mode)
# Learnable Polyphase Upsampling Layer
antialias_layer = get_antialias(antialias_mode='LowPassFilter',

antialias_size=3,
antialias_padding='same',
antialias_padding_mode='circular',
antialias_group=1)

self.lpu = set_unpool(partial(
PolyphaseInvariantUp2D,
component_selection=LPS_u,
antialias_layer=antialias_layer), p_ch=32)

def forward(self,x):
x = self.conv1(x)
x, prob = self.lpd(x,ret_prob=True) # Just like any layer.
x = self.conv2(x)
x = self.lpu(x,prob=prob) # Just like any layer.
return x

# Construct Model
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torch.manual_seed(0)
model = SimpleUNet().cuda().eval().double()
# Load Image
img = torch.from_numpy(np.array(Image.open('butterfly.png'))).permute(2,0,1)
img = img.unsqueeze(0).cuda().double()
# Check is circular shift equivariant
y_orig = model(img).detach().cpu()
img_roll = torch.roll(img,shifts=(1, 1), dims=(-1, -2))
y_roll = model(img_roll).detach().cpu()
# Roll back to check equality
y_roll_s = torch.roll(y_roll, shifts=(-1,-1), dims=(-1, -2))
print("Norm(y_orig-y_roll_s): %e " % torch.norm(y_orig-y_roll_s))
assert torch.allclose(y_orig, y_roll_s)

Out:

Norm ( y_or ig − y _ r o l l _ s ) : 0 .000000 e +00

A4 Additional Experimental Details

A4.1 LPS Architecture

As described in Sec. 4.2, LPS selects optimal polyphase components via a mapping fθ that is shift-
permutation equivariant. Given a feature map x ∈ R

C×N1×N2 , let its polyphase decomposition of

order 2 be denoted as {xk}
3
k=0,xk ∈ R

C×bN1/2c×bN2/2c. fθ is then parameterized as a two-layer
CNN followed by global average pooling. See Tab. A2 and Tab. A3 for the LPD layer (LPD) and the
logits model architecture details.

Table A2. Learnable polyphase downsampling (LPD) model. After computing the polyphase components and
their logits, the component selection step keeps the phase with the largest logit value.

Layer
Kernel
Size

Bias Stride Pad
Input
Size

Output
Size

Input
Channels

Output
Channels

1 Polyphase decomposition − − 2 − N1 ×N2 4× bN1/2c × bN2/2c C C
2 Logits model − − − − 4× bN1/2c × bN2/2c 4 C 1
3 Component selection − − − − 4× bN1/2c × bN2/2c, 4 bN1/2c × bN2/2c C C

Table A3. Polyphase logits model for a single polyphase component fθ : R
C×bN1/2c×bN2/2c 7→ R.

Layer
Kernel
Size

Bias Stride Pad
Input
Size

Output
Size

Input
Channels

Output
Channels

1 Conv2d + ReLU 3× 3 3 1 1 bN1/2c × bN2/2c bN1/2c × bN2/2c C Chid

2 Conv2d 3× 3 3 1 1 bN1/2c × bN2/2c bN1/2c × bN2/2c Chid Chid

3a Flatten − − − − bN1/2c × bN2/2c ChidbN1/2cbN2/2c Chid 1
3b Global average pooling − − − − ChidbN1/2cbN2/2c 1 1 1

Hidden Layer. In practice, we have the freedom of choosing the number of channels in the hidden
layer, denoted as Chid. For our classification results, Chid is equivalent to the number of channels
of the input tensor. The only exception of this rule corresponds to the LPS ResNet-101 (adaptive
antialias filter) case reported in Tab. 3. A top-1 classification accuracy of 78.8% plus a standard shift
consistency of 92.4% is achieved by reducing the number of hidden channels w.r.t. the input at each
pooling layer. Please see Tab. A4 for the number of input and hidden channels for each LPS layer
used in our ResNet-101 experiments.

Input Dimensionality. Under a mini-batch training setting, the polyphase decomposition of an

input corresponds to a five-dimensional tensor. Let this be denoted as X ∈ R
B×P×C×b

N1

2
c×b

N2

2
c,

where B corresponds to the total number of feature maps in the batch and P = 4 to the number of
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Table A4. ResNet-101: Number of channels at each LPS-D layer.

Layer Conv 1 Maxpool
Layer 2

Downsample
Layer 3

Downsample
Layer 4

Downsample

Input Channels C 64 64 128 256 1024

Hidden Channels Chid 8 8 16 32 72

Table A5. LPS-based ResNet-50 architecture for ImageNet.

Layer
Kernel
Size

Bias Stride Pad
Input
Size

Output
Size

Hidden
Channels

Input
Channels

Output
Channels

1a Conv2d + BN + ReLU 7× 7 7 1 3 224× 224 224× 224 − 3 64
1b LPD − − 2 − 224× 224 112× 112 − 64 64

2a Zero pad − − − − 112× 112 113× 113 − 64 64
2b Max filter 2× 2 − 1 0 113× 113 112× 112 − 64 64
2c LPD − − − − 112× 112 56× 56 64 64 64

Block 1

3a Res. layer − − 1 − 56× 56 56× 56 64 64 256
3b Res. layer − − 1 − 56× 56 56× 56 64 256 256
3c Res. layer − − 1 − 56× 56 56× 56 64 256 256

Block 2

4a Res. layer (LPD) − − 2 − 56× 56 28× 28 128 256 512
4b Res. layer − − 1 − 28× 28 28× 28 128 512 512
4c Res. layer − − 1 − 28× 28 28× 28 128 512 512
4d Res. layer − − 1 − 28× 28 28× 28 128 512 512

Block 3

5a Res. layer (LPD) − − 2 − 28× 28 14× 14 256 512 1024
5b Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5c Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5d Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5e Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5f Res. layer − − 1 − 14× 14 14× 14 256 1024 1024

Block 4

6a Res. layer (LPD) − − 2 − 14× 14 7× 7 512 1024 2048
6b Res. layer − − 1 − 7× 7 7× 7 512 2048 2048
6c Res. layer − − 1 − 7× 7 7× 7 512 2048 2048

7 Global average pool − − − − 7× 7 1× 1 − 2048 2048
8 Flatten − − − − 1× 1 2048 − 2048 1
9 Fully connected − 3 − − 2048 1000 − 1 1

polyphase components (assuming a downscaling factor of 2). To efficiently obtain a logit for each
component, independently of its relative position in the tensor, we reshape it by combining the batch
and polyphase component dimensions.

This alternative representation corresponds to X̂ ∈ R
4B×C×b

N1

2
c×b

N2

2
c, and allows for each

polyphase component to be processed independently of the rest. In practice, our CNN-based logits

model receives X̂ as input and generates a set of 4B logits, one for each polyphase component, in a
single forward pass.

Overall Architecture. Tab. A5 and Tab. A6 provide a general description of the ResNet-based
architecture that incorporates LPD as pooling layer and its custom residual layer, respectively. In
contrast to the original ResNet model, each pooling or downsampling step is replaced by our learn-
based layer. For illustration purposes, we focus on the ResNet-50 model.

A4.2 Baseline Implementations

A4.2.1 Image Classification

In this section, we provide additional implementation details and differences from the three main
classification baselines, Lowpass Filtering (LPF) [56], Adaptive Polyphase Sampling (APS) [5] and
Adaptive Lowpass Filtering (DDAC) [57].
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Table A6. Example of an LPS-based residual layer. Architecture corresponds to the first residual layer of
ResNet-50 block 2 (4a in Tab. A5). The main and shortcut branches receive the input feature map of dimensions
N1 × N2. The LPD layer in the shortcut branch also receives the logits precomputed on the main branch of
dimensions 4 to consistently select the same component.

Layer
Kernel
Size

Bias Stride Pad
Input
Size

Output
Size

Input
Channels

Output
Channels

Main branch

1a Conv2d + BN + ReLU 1× 1 7 1 0 N1 ×N2 N1 ×N2 256 128
1b Conv2d + BN + ReLU 3× 3 7 1 1 N1 ×N2 N1 ×N2 128 128
1c LPD − − 2 − N1 ×N2 bN1/2c × bN2/2c, 4 128 128
1d Conv2d + BN 1× 1 7 1 0 bN1/2c × bN2/2c bN1/2c × bN2/2c 128 512

Shortcut branch

2a LPD (pre-computed) − − 2 − N1 ×N2, 4 bN1/2c × bN2/2c 256 256
2b Conv2d + BN 1× 1 7 1 0 bN1/2c × bN2/2c bN1/2c × bN2/2c 256 512

3 Sum + ReLU − − − − bN1/2c × bN2/2c, bN1/2c × bN2/2c bN1/2c × bN2/2c 512 512

Lowpass Filtering (LPF). LPF classification accuracy and shift consistency values included in
Tab. 1, Tab. 2 and Tab. 3 correspond to those reported by LPF and APS manuscripts. Experimental
results for standard shift consistency were taken from the LPF official repository, while experimental
results analyzing circular shift consistency correspond to those reported by APS. It is important to
note that, while LPF training setup for standard shift consistency uses rescaled random cropping
as part of its preprocessing, our experiments on circular shift consistency follow APS settings and
discard it. Please refer to Sec. A4.4 for details regarding data preprocessing.

Adaptive Polyphase Sampling (APS). As with LPF, APS’s accuracy and consistency values via
no antialiasing or lowpass filtering included in Sec. 5 are obtained from their official manuscript. APS
results via adaptive filtering, denoted in Tab. 1 and Tab. 2 were obtained by replacing our learnable
polyphase selection criteria by APS `2 energy-based selection and incorporated the adaptive filtering
to it.

Adaptive Lowpass Filtering (DDAC). We compare the accuracy and shift consistency of our
proposed pooling method against that of DDAC under both circular and standard shifts. For the
circular shift case, reported for CIFAR-10 and ImageNet in Tab. 1 and Tab. 2, respectively, we replace
the LPS selection criteria by keeping always the even polyphase components (k? = 0), followed by a
learnable low-pass filter with the exact same specifications as the one provided in the official DDAC
code base. For consistency purposes, DDAC experiments analyzing circular shift consistency follow
the same data preprocessing used in APS experiments. More precisely, no rescaled random cropping
is applied for data augmentation.

For the standard shift case, we compare against the best performing DDAC model, ResNet-101,
without any changes. Tab. 3 includes its reported top-1 classification accuracy and shift consistency.
For the sake of clarity, we also include the results obtained by training the model from scratch using
their official code base and hyperparameters.

A4.2.2 Semantic Segmentation

In the paper, we directly compared to the reported values in DDAC [57]. Unfortunately, the authors
did not released their evaluation code and did not provide a clear description of the metric. We were
not able to exactly reproduce their reported mASSC. For a fair comparison, we evaluate DDAC’s
released checkpoint using our mASSC implementation. We will make our implementation publicly
available.

A4.3 Comparison against Classifiers with More Trainable Parameters.

To show the performance improvement attained by our LPD approach is not simply an effect of
introducing more trainable parameters, we compared our ResNet-101 + LPD model (44, 751, 034
parameters) against the larger ResNet-152 model (60, 192, 808 parameters). Both models were trained
on ImageNet using the same augmentation and optimizer configuration. Under such settings, ResNet-
152 achieves 78.3% top-1 classification accuracy and 90.9% shift consistency, while our ResNet-101
+ LPD model obtains 78.8% top-1 accuracy and 92.4% shift-consistency. Despite having 25% less
trainable parameters, our model attains 0.5% higher accuracy and 1.5% higher shift-consistency.
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A4.4 Hyperparameters and Tuning Procedure

A4.4.1 Image Classification

Learn Rate and Optimization Parameters. Following the standard ImageNet setup, the initial
learn rate value corresponds to 0.1 and follows a multi-step schedule, decaying every 30 epochs
by a factor of 0.1. Our models are trained via stochastic gradient descent with 0.9 momentum. A
weight decay of factor 10−4 is imposed to all model trainable weights except those of the LPS layers.
Empirically, this has shown a substantial consistency improvement, avoiding cases where polyphase
logits have very similar values and other numerical precision issues. Additionally, for our experiments
on ResNet-101 and ResNet-50 with adaptive antialiasing filters, following DDAC settings, a learning
rate warmup of five epochs is applied.

Data Preprocessing and Split. Tab. A7 describes the data preprocessing used in our CIFAR-10
experiments. No shifts or resizing augmentations are applied to highlight the fact that perfect circular
shift invariance/equivariance is achieved by design and not induced during training.

Table A7. CIFAR-10 data preprocessing.

Split Train Set Test Set

Preprocessing
(i) Random horizontal flipping

(ii) Normalization
(i) Normalization

For ImageNet experiments evaluating circular shift consistency, we follow APS’s preprocessing
settings. Tab. A8 describes its data preprocessing. For ImageNet experiments evaluating standard
shift consistency, we follow DDAC settings. Tab. A9 describes its data preprocessing.

Table A8. ImageNet data preprocessing for circular shift consistency evaluation.

Split Train Set Test Set

Preprocessing

(i) Resizing to 256× 256
(ii) Center cropping to 224× 224
(iii) Random horizontal flipping

(iv) Normalization

(i) Resizing to 256× 256
(ii) Center cropping to 224× 224

(iii) Normalization

Table A9. ImageNet data preprocessing for standard shift consistency evaluation.

Split Train Set Test Set

Preprocessing

(i) Resizing to 256× 256
(ii) Resized random cropping to 224× 224

(iii) Random horizontal flipping
(iv) Normalization

(i) Resizing to 256× 256
(ii) Center cropping to 224× 224

(iii) Normalization

Computational Settings. Classification experiments on CIFAR-10 are trained on a single NVIDIA
Titan V using a batch size of 256 for 250 epochs. Classification experiments on ImageNet are trained
in distributed data parallel mode on four NVIDIA A6000 GPUs using a batch size of 64 for 90
epochs.

Polyphase Selection for Circular Shift Consistency. For circular shift consistency on both
CIFAR-10 and ImageNet, the polyphase component selection depends on the model state. Dur-
ing training, each LPS layer samples from a Gumbel-softmax distribution. This leads to a convex
combination of polyphase components that improves the backpropagation process. Following the
original Gumbel-Softmax formulation, we use an annealing factor to slowly converge to a one-hot
vector along epochs. Considering 250 and 90 training epochs for CIFAR-10 and ImageNet exper-
iments, respectively, the annealing factor τ ∈ R+ gradually decays to improve the gradient flow
during the error backpropagation step. A step decay approach is used for CIFAR-10 experiments,
while a multistep linear decay is used for ImageNet experiments.
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During testing, optimal polyphase components correspond to those with the largest logit values
(hard-selection), which leads to a classifier with perfect circular shift consistency by design.

Polyphase Selection for Standard Shift Consistency. For standard shift consistency evaluation
on ImageNet, we adopt a fine-tuning procedure to balance the shift consistency and classification
accuracy obtained by our models. Recall that our model guarantees perfect consistency under circular
shifts, which leaves open the posibility of applying more refined training to improve the performance
under standard shifts.

With this in mind, instead of switching to a hard-selection, we relax the annealing factor during the last
28 training epochs, replacing the gumbel-softmax sampling by a standard softmax (soft-association)
for both training and testing.

Tab. A10 includes the details of the Gumbel-softmax annealing schedule for both circular and standard
shift consistency experiments.

Table A10. Gumbel-softmax annealing schedule for image classification.

Consistency
Evaluation

CIFAR-10 ImageNet
Circular Shift Circular Shift Standard Shift

Method Step Decay Multirate Linear Decay Multirate Linear Decay

τ
Schedule

Initial value: τ=1
Decay step: 10 epochs

Decay factor: 0.85
Minumum value: τ = 0.025

Epoch 1/90: τ = 1
Epoch 62/90: τ = 0.5

Epoch 82/90: τ = 0.05
Epoch 90/90: τ = 0.01

Epoch 1/90: τ = 1
Epoch 62/90: τ = 0.5

Epoch 90/90: τ = 0.25

A4.4.2 Semantic Segmentation

Unpooling Component Selection. During training, for both standard and circular shift consistency
evaluation, feature maps obtained from the backbone are unpooled (upsampled and shifted) by
LPU layers. The shift applied to each feature map, intended to place them back into their original
indices, depends on the logit probabilities computed by the backbone. Since these are obtained from
a Gumbel-softmax distribution during training, instead of placing the upsampled feature map at
a single position, LPU layers generate an upscaled representation composed by all four possible
positions (assuming an upscaling factor of 2), each weighted by its corresponding probability. In
other words, LPU soft-unpools the input feature map to all four possible positions, weights them by
their probabilities and adds them together to obtain the output feature map.

For our ImageNet experiments we modify the annealing schedule used for image classification and
tailor it to the segmentation model and its 125 training epochs. First, we linearly increase the annealing
factor from the last value used during the backbone training process (recall that the backbone was
trained using its own Gumbel-softmax annealing schedule) to 0.5. Then, we gradually decay it to
improve the gradient flow during backpropagation.

During testing, LPU layers receive logits from the backbone. Then, feature maps are unpooled
according to the polyphase component with the largest logit value (hard-selection), allowing the
segmentation model to become shift-equivariant by design.

Tab. A11 includes the details of the Gumbel-softmax annealing schedule used in our semantic
segmentation experiments for both circular and standard shift consistency evaluation.
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Table A11. Gumbel-softmax annealing schedule for image segmentation on ImageNet. ∗ Initial τbackbone values
correspond to the final values used during our ResNet-18 and ResNet-101 backbone training.

Consistency
Evaluation

ResNet-18 ResNet-101
Circular Shift Circular and Standard Shift

Method Multirate Linear Decay Multirate Linear Decay

τ
Schedule

Epoch 1/125: τ = τbackbone
∗

Epoch 60/125: τ = 0.5
Epoch 82/125: τ = 0.15
Epoch 90/125: τ = 0.01

Epoch 1/125: τ = τbackbone
∗

Epoch 10/125: τ = 0.5
Epoch 80/125: τ = 0.3

Epoch 100/125: τ = 0.125
Epoch 125/125: τ = 0.01
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