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Abstract

Although reinforcement learning has found widespread use in dense reward set-
tings, training autonomous agents with sparse rewards remains challenging. To
address this difficulty, prior work has shown promising results when using not
only task-specific demonstrations but also task-agnostic albeit somewhat related
demonstrations. In most cases, the available demonstrations are distilled into an
implicit prior, commonly represented via a single deep net. Explicit priors in the
form of a database that can be queried have also been shown to lead to encouraging
results. To better benefit from available demonstrations, we develop a method
to Combine Explicit and Implicit Priors (CEIP). CEIP exploits multiple implicit
priors in the form of normalizing flows in parallel to form a single complex prior.
Moreover, CEIP uses an effective explicit retrieval and push-forward mechanism
to condition the implicit priors. In three challenging environments, we find the
proposed CEIP method to improve upon sophisticated state-of-the-art techniques.

1 Introduction

Reinforcement learning (RL) has found widespread use across domains from robotics [57] and game
AI [44] to recommender systems [6]. Despite its success, reinforcement learning is also known to be
sample inefficient. For instance, training a robot arm with sparse rewards to sort objects from scratch
still requires many training steps if it is at all feasible [46].

To increase the sample efficiency of reinforcement learning, prior work aims to leverage demonstra-
tions [4, 34, 40]. These demonstrations can be task-specific [4, 17], i.e., they directly correspond to
and address the task of interest. More recently, the use of task-agnostic demonstrations has also been
studied [14, 16, 34, 46], showing that demonstrations for loosely related tasks can enhance sample
efficiency of reinforcement learning agents.

To benefit from either of these two types of demonstrations, most work distills the information within
the demonstrations into an implicit prior, by encoding available demonstrations in a deep net. For
example, SKiLD [34] and FIST [16] use a variational auto-encoder (VAE) to encode the “skills,” i.e.,
action sequences, in a latent space, and train a prior conditioned on states based on demonstrations
to use the skills. Differently, PARROT [46] adopts a state-conditional normalizing flow to encode a
transformation from a latent space to the actual action space. However, the idea of using the available
demonstrations as an explicit prior has not received a lot of attention. Explicit priors enable the agent
to maintain a database of demonstrations, which can be used to retrieve state-action sequences given
an agent’s current state. This technique has been utilized in robotics [32, 47] and early attempts of
reinforcement learning with demonstrations [4]. It was also implemented as a baseline in [14]. One
notable recent exception is FIST [16], which queries a database of demonstrations using the current
state to retrieve a likely next state. The use of an explicit prior was shown to greatly enhance the
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performance. However, FIST uses pure imitation learning without any RL, hence losing the chance
for trial and remedy if the imitation is not good enough.

Our key insight is to leverage demonstrations both explicitly and implicitly, thus benefiting from
both worlds. To achieve this, we develop CEIP, a method which combines explicit and implicit
priors. CEIP leverages implicit demonstrations by learning a transformation from a latent space to
the real action space via normalizing flows. More importantly, different from prior work, such as
PARROT and FIST which combine all the information within a single deep net, CEIP selects the
most useful prior by combining multiple flows in parallel to form a single large flow. To benefit from
demonstrations explicitly, CEIP augments the input of the normalizing flow with a likely future state,
which is retrieved via a lookup from a database of transitions. For an effective retrieval, we propose a
push-forward technique which ensures the database to return future states that have not been referred
to yet, encouraging the agent to complete the whole trajectory even if it fails on a single task.

We evaluate the proposed approach on three challenging environments: fetchreach [36], kitchen [11],
and office [45]. In each environment, we study the use of both task-specific and task-agnostic demon-
strations. We observe that integrating an explicit prior, especially with our proposed push-forward
technique, greatly improves results. Notably, the proposed approach works well on sophisticated
long-horizon robotics tasks with a few, or sometimes even one task-specific demonstration.

2 Preliminaries

Reinforcement Learning. Reinforcement learning (RL) aims to train an agent to make the ‘best’
decision towards completing a particular task in a given environment. The environment and the task
are often described as a Markov Decision Process (MDP), which is defined by a tuple (S,A, T, r, γ).
In timestep t of the Markov process, the agent observes the current state st ∈ S, and executes an
action at ∈ A following some probability distribution, i.e., policy π(at|st) ∈ ∆(A), where ∆(A)
denotes the probability simplex over elements in space A. Upon executing action at, the state of
the agent changes to st+1 following the dynamics of the environment, which are governed by the
transition function T (st, at) : S×A → ∆(S). Meanwhile, the agent receives a reward r(st, at) ∈ R.
The agent aims to maximize the cumulative reward

∑

t γ
tr(st, at), where γ ∈ [0, 1] is the discount

factor. One complete run in an environment is called an episode, and the corresponding state-action
pairs τ = {(s1, a1), (s2, a2), . . . } form a trajectory τ .

Normalizing Flows. A normalizing flow [24] is a generative model that transforms elements z0
drawn from a simple distribution pz , e.g., a Gaussian, to elements a0 drawn from a more complex
distribution pa. For this transformation, a bijective function f is used, i.e., a0 = f(z0). The
use of a bijective function ensures that the log-likelihood of the more complex distribution at any
point is tractable and that samples of such a distribution can be easily generated by taking samples
from the simple distribution and pushing them through the flow. Formally, the core idea of a

normalizing flow can be summarized via pa(a0) = pz(f
−1(a0))

∣

∣

∣

∂f−1(a)
∂a

|a=a0

∣

∣

∣
, where |·| is the

determinant (guaranteed positive by flow designs), a is a random variable with the desired more
complex distribution, and z is a random variable governed by a simple distribution. To efficiently
compute the determinant of the Jacobian matrix of f−1, special constraints are imposed on the
form of f . For example, coupling flows like RealNVP [8] and autoregressive flows [31] impose the
Jacobian of f−1 to be triangular.

3 CEIP: Combining Explicit and Implicit Priors

3.1 Overview

As illustrated in Fig. 1, our goal is to train an autonomous agent to solve challenging tasks despite
sparse rewards, such as controlling a robot arm to complete item manipulation tasks (like turning on
a switch or opening a cabinet). For this we aim to benefit from available demonstrations. Formally,
we consider a task-specific dataset DTS = {τTS

1 , τTS
2 , . . . , τTS

m }, where τTS
i is the i-th trajectory of

the task-specific dataset, and a task-agnostic dataset DTA = {
⋃

Di|i ∈ {1, 2, 3, . . . , n}}, where
Di = {τ

i
1, τ

i
2, . . . , τ

i
mi
} subsumes the demonstration trajectories for the i-th task in the task-agnostic

dataset. Each trajectory τ = {(s1, a1), (s2, a2), . . . } in the dataset is a state-action pair sequence
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Figure 1: Overview of our proposed approach, CEIP. Our approach can be divided into three steps: a) cluster
the task-agnostic dataset into different tasks, and then train one flow on each of the n tasks of the task-agnostic
dataset; b) train a flow on the task-specific dataset, and then train the coefficients to combine the n+ 1 flows
into one large flow fTS, which is the implicit prior; c) conduct reinforcement learning on the target task; for each
timestep, we perform a dataset lookup in the task-specific dataset to find the state most similar to current state s,
and return the likely next state ŝnext in the trajectory, which is the explicit prior.

of a complete episode, where s is the state, and a is the action. We assume that the number of
available task-specific trajectories is very small, i.e.,

∑n
i=1 mi � m, which is common in practice.

For readability, we will also refer to DTS using Dn+1.

Our approach leverages demonstrations implicitly by training a normalizing flow fTS, which trans-
forms the probability distribution represented by a policy π(z|s) over a simple latent probability
space Z , i.e., z ∈ Z , into a reasonable expert policy over the space of real-world actions A. As
before, s is the current environment state. Thus, the downstream RL agent only needs to learn a policy
π(z|s) that results in a probability distribution over latent space Z , which is subsequently mapped
via the flow fTS to a real-world action a ∈ A. Intuitively, the MDP in the latent space is governed
by a less complex probability distribution, making it easier to train because the flow increases the
exposure of more likely actions, while reducing the chance that a less-likely action is chosen. This is
because the flow reduces the probability mass for less likely actions given the current state.

Task-agnostic demonstrations contain useful patterns that may be related to the task at hand. However,
not all the task-agnostic data are always equally useful, as different task-agnostic data may require to
expose different parts of the action space. Therefore, different from prior work where all data are
fed into the same deep net model, we first partition the task-agnostic dataset into different groups
according to task similarity so as to increase flexibility. For this we use a classical k-means algorithm.
We then train different flows fi on each of the groups, and finally combine the flows via learned
coefficients into a single flow fTS. Beneficially, this process permits to expose different parts of the
action space as needed and according to perceived task similarity.

Lastly, our approach further leverages demonstrations explicitly, by conditioning the flow not only
on the current state but also on a likely next state, to better inform the agent of the state it should
try to achieve with its current action. In the following, we first discuss the implicit prior of CEIP
in Sec. 3.2; afterward we discuss our explicit prior in Sec. 3.3, and the downstream reinforcement
learning with both priors in Sec. 3.4.

3.2 Implicit Prior

To better benefit from demonstrations implicitly, we use a 1-layer normalizing flow as the backbone
of our implicit prior. It essentially corresponds to a conditioned affine transformation of a Gaussian
distribution. We choose a flow-based model instead of a VAE-based one for two reasons: 1) as the
dimensionality before and after the transformation via a normalizing flow remains identical and since
the flow is invertible, the agent is guaranteed to have control over the whole action space. This ensures
that all parts of the action space are accessible, which is not guaranteed by VAE-based methods
like SKiLD or FIST; 2) normalizing flows, especially coupling flows such as RealNVP [8], can be
easily stacked horizontally, so that the combination of parallel flows is also a flow. Among feasible
flow models, we found that the simplest 1-layer flow suffices to achieve good results, and is even
more robust in training than a more complex RealNVP. Next, in Sec. 3.2.1 we first introduce details
regarding the normalizing flow fi, before we discuss in Sec. 3.2.2 how to combine the flows into one
flow fTS applicable to the task for which the task-specific dataset contains demonstrations.
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Figure 2: An illustration of how we combine different flows into one large flow for the task-specific dataset.
Each red block of “NN” stands for a neural network. Note that ci(u) and di(u) are vectors, while µi and λi are
the i-th dimension of µ(u) and λ(u).

3.2.1 Normalizing Flow Prior. For each task i in the task-agnostic dataset, i.e., for each Di, we
train a conditional 1-layer normalizing flow fi(z;u) = a which maps a latent space variable z ∈ R

q

to an action a ∈ R
q , where q is the number of dimensions of the real-valued action vector. We let u

refer to a conditioning variable. In our case u is either the current environment state s (if no explicit
prior is used) or a concatenation of the current and a likely next state [s, snext] (if an explicit prior is
used). Concretely, the formulation of our 1-layer flow is

fi(z;u) = a = exp{ci(u)} � z + di(u), (1)

where ci(u) ∈ R
q, di(u) ∈ R

q are trainable deep nets, and � refers to the Hadamard product.
The exp function is applied elementwise. When training the flow, we sample state-action pairs
(without explicit prior) or transitions (with explicit prior) (u, a) from the dataset Di, and maximize
the log-likelihood E(u,a)∼Di

log p(a|u); refer to [24] for how to maximize this objective.

In the discussion above, we assume the decomposition of the task-agnostic dataset into tasks to be
given. If such a decomposition is not provided (e.g., for the kitchen and office environments in our
experiments), we perform a k-means clustering to divide the task-agnostic dataset into different parts.
The clustering algorithm operates on the last state of a trajectory, which is used to represent the whole
trajectory. The intuition is two-fold. First, for many real-world MDPs, achieving a particular terminal
state is more important than the actions taken [12]. For example, when we control a robot to pick
and place items, we want all target items to reach the right place eventually; however, we do not care
too much about the actions taken to achieve this state. Second, among all the states, the final state is
often the most informative about the task that the agent has completed. The number of clusters k
in the k-means algorithm is a hyperparameter, which empirically should be larger than the number
of dimensions of the action space. Though we assume the task-agnostic dataset is partitioned into
labeled clusters, our experiments show that our approach is robust and good results are achieved even
without a precise ground-truth decomposition.

In addition to the clusters in the task-agnostic dataset, we train a flow fn+1(z;u) = a on the task-
specific dataset Dn+1 = DTS, using the same maximum log-likelihood loss, which is optional but
always available. This is not necessary when the task is relatively simple and the episodes are short
(e.g., the fetchreach environment in the experiment section), but becomes particularly helpful in
scenarios where some subtasks of a task sequence only appear in the task-specific dataset (e.g., the
kitchen environment).

3.2.2 Few-shot Adaptation. The flow models discussed in Sec. 3.2.1 learn which parts of the
action space to be more strongly exposed from the latent space. However, not all the flows expose
useful parts of the action space for the current state. For example, the target task needs the agent to
move its gripper upwards at a particular location, but in the task-agnostic dataset, the robot more
often moves the gripper downwards to finish another task. In order to select the most useful prior, we
need to tune our set of flows learned on the task-agnostic datasets to the small number of trajectories
available in the task-specific dataset. To ensure that this does not lead to overfitting as only a very
small number of task-specific trajectories are available, we train a set of coefficients that selects the
flow that works the best for the current task. Concretely, given all the trained flows, we train a set of
coefficients to combine the flows f1 to fn trained on the task-agnostic data, and also the flow fn+1

trained on the task-specific data. The coefficients select from the set of available flows the most useful
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one. To achieve this, we use the combination flow illustrated in Fig. 2 which is formally specified as
follows:

fTS(z;u) =

(

n+1
∑

i=1

µi(u) exp{ci(u)}

)

� z +

(

n+1
∑

i=1

λi(u)di(u)

)

. (2)

Here, µi(u) ∈ R, λi(u) ∈ R are the i-th entry of the deep nets µ(u) ∈ R
n+1, λ(u) ∈ R

n+1,
respectively, which yield the coefficients while the deep nets ci and di are frozen. As before, the
exp function is applied elementwise. We use a softplus activation and an offset at the output of µ to
force µi(u) ≥ 10−4 for any i for numerical stability. Note that the combined flow fTS consisting of
multiple 1-layer flows is also a 1-layer normalizing flow. Hence, all the compelling properties over
VAE-based architectures described at the beginning of Sec. 3.2 remain valid. To train the combined
flow, we use the same log likelihood loss E(u,a)∼DTS

log p(a|u) as that for training single flows. Here,

we optimize the deep nets µ(u) and λ(u) which parameterize fTS.

Obviously, the employed combination of flows can be straightforwardly extended to a more compli-
cated flow, e.g., a RealNVP [8] or Glow [22]. However, we found the discussed simple formulation
to work remarkably well and to be robust.

3.3 Explicit Prior

Beyond distilling information from demonstrations into deep nets which are then used as implicit
priors, we find explicit use of demonstrations to also be remarkably useful. To benefit, we encode
future state information into the input of the flow. More specifically, instead of sampling (s, a)-pairs
from a dataset D for training the flows, we consider sampling a transition (s, a, snext) from D. During
training, we concatenate s and snext before feeding it into a flow, i.e., u = [s, snext] instead of u = s.

However, we do not know the future state snext when deploying the policy. To obtain an estimate, we
use task-specific demonstrations as explicit priors. More formally, we use the trajectories within the
task-specific dataset DTS as a database. This is manageable as we assume the task-specific dataset to
be small. For each environment step of reinforcement learning with current state s, we perform a
lookup, where s is the query, states skey in the trajectories are the keys, and their corresponding next
state snext is the value. Concretely, we assume snext belongs to trajectory τ in the task-specific dataset
DTS, and define ŝnext as the result of the database retrieval with respect to the given query s, i.e.,

ŝnext = argminsnext|(skey,a,snext)∈DTS
[(skey − s)2 + C · δ(snext)],where

δ(snext) =

{

1 if ∃s′next ∈ τ, s.t. s′next is no earlier than snext in τ and has been retrieved,

0 otherwise.

(3)

In Eq. (3), C is a constant and δ is the indicator function. We set u = [s, ŝnext] as the condition, feed
it into the trained flow fTS, and map the latent space element z obtained from the RL policy to the
real-world action a. The penalty term δ is a push-forward technique, which aims to push the agent to
move forward instead of staying put, imposing monotonicity on the retrieved ŝnext. Consider an agent
at a particular state s and a flow fTS, conditioned on u = [s, ŝnext] which maps the chosen action z to
a real-world action a that does not modify the environment. Without the penalty term, the agent will
remain at the same state, retrieve the same likely next state, which again maps onto the action that
does not change the environment. Intuitively, this term discourages 1) retrieving the same state twice,
and 2) returning to earlier states in a given trajectory. In our experiments, we set C = 1.

3.4 Reinforcement Learning with Priors

Given the implicit and explicit priors, we use RL to train a policy π(z|s) to accomplish the target
task demonstrated in the task-specific dataset. As shown in Fig. 1, the RL agent receives a state s and
provides a latent space element z. The conditioning variable of the flow is retrieved via the dataset
lookup described in Sec. 3.3 and the real-world action a is then computed using the flow. Note, our
approach is suitable for any RL method, i.e., the policy π(z|s) can be trained using any RL algorithm
such as proximal policy optimization (PPO) [43] or soft-actor-critic (SAC) [15].
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4 Experiments

In this section, we evaluate our CEIP approach on three challenging environments: fetchreach
(Sec. 4.1), kitchen (Sec. 4.2), and office (Sec. 4.3), which are all tasks that manipulate a robot arm.
In each experiment, we study the following questions: 1) Can the algorithm make good use of the
demonstrations compared to baselines? 2) Are our core design decisions (e.g., state augmentation
with explicit prior and the push-forward technique) indeed helpful?

Baselines. We compare the proposed method to three baselines: PARROT [46], SKiLD [34], and
FIST [16]. In all environments, we use reward as our criteria (higher is better). The results are
averaged over 3 runs for SKiLD (much slower to train) and 9 runs for all other methods unless
otherwise mentioned. To differentiate variants of the PARROT baseline and our method, we use
suffixes. We use “EX” to refer to variants with explicit prior, and “forward” for variants with the
push-forward technique. For our method, if we train a task-specific flow on DTS = Dn+1, we append
the abbreviation “TS.” For PARROT, the use of the task-specific data is indicated with “TS” and the
use of task-agnostic data is indicated with “TA.”1 See Table 3 and Table 4 for precise correspondence.

4.1 FetchReach Environment

Environment Setup. The agent needs to control a robot arm to move its gripper to a goal location in
3D space, and remain there. During an episode of 40 steps, the agent receives a 10-dimensional state
about its location and outputs a 4-dimensional action, which indicates the change of coordinates of
the agent and the openness of the gripper. It will receive a reward of 0 if it arrives and stays in the
vicinity of its target. Otherwise, it will receive a reward of −1. This environment is a harder version
of the FetchReach-v1 robotics environment in gym [36], where we increase the average distance
of the starting point to the goal, effectively increasing the training difficulty. Moreover, to test the
robustness of the algorithm, we sample a random action from a normal distribution at the beginning
of each episode, which the agent executes for x steps before the episode begins. We use x ∼ U [5, 20].
For simplicity, we denote the goal generated with azimuth πd

4 as “direction d” (e.g., direction 4.5).

Dataset Setup. We use trajectories from directions d ∈ {0, 1, . . . , 7} as the task-agnostic data. Each
task includes 40 trajectories, and each of the trajectories has 40 steps, i.e., 1600 environment steps in
total. The task-specific datasets contain directions 4.5, 5.5, 6.5, and 7.5. (The robot cannot reach the
other four .5 directions due to physical limits.) For each task-specific dataset, we use 4 trajectories,
for a total of 160 environment steps.

Experimental Setup. For fetchreach, we use a fully-connected deep net with one hidden layer of
width 32 and ReLU [1] activation as a standard “block” of our algorithm (each block corresponds
to a red “NN” rectangle in Fig. 2). We have a pair of blocks for ci(s) and di(s) for each flow fi.
For flow training, we train 8 flows for 8 directions in the task-agnostic dataset without the explicit
prior. We use a batch size of 40 and train for 1000 epochs for both each flow and the combination of
flows, with gradient clipping at norm 10−4, learning rate 0.001, and Adam optimizer [21]. We use
the model that has the best performance on the validation dataset at the end of every epoch. For each
dataset, we randomly draw 80% state-action pairs (or transitions in ablation) as the training set and
20% state-action pairs as the validation set. The combination of flow is also a block, which outputs
both µ(s) and λ(s). See the Appendix for the implementation details of SKiLD, FIST, and PARROT.
For each method with RL training, we use a soft-actor-critic (SAC) [15] with 30K environment steps,
a batch size of 256, and 1000 steps of initial random exploration. Unless otherwise noted, all other
RL hyperparameters in all experiments use the default values of Stable-baselines3 [38].

Main Results. Fig. 3 shows the results for different methods without explicit priors or task-specific
single flow fn+1. In all four tasks, our method significantly outperforms the other baselines. This
indicates that the flow training indeed helps boost the exploration process. Naïve reinforcement
learning from scratch fails in most cases, which underscores the necessity of utilizing demonstrations
to aid RL exploration. As this is a simple task with only a few wildly varied trajectories, adding
a flow for the task-specific dataset does not improve our method. Noteworthy, neither SKiLD nor
FIST works on fetchreach. Their VAE-based architecture with each action sequence as the agent’s
output (“skill”) can not be trained with the little amount of wildly varied data with short horizon.

1The original PARROT in [46] is essentially PARROT+TA. It is straightforward to use PARROT directly on
the task-specific dataset. Hence, we tried PARROT+TS and PARROT+(TS+TA) as well.
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Action Priors. An action prior is a common way to utilize demonstrations for reinforcement
learning [34] and imitation learning [16]. Most work uses an implicit prior, where a probability
distribution of actions conditioned on a state is learned by a deep net and then used to rule out
unlikely attempts [3], to form a hierarchical structure [34, 46], or to serve as a regularizer for RL
training [34, 40], preventing the agent to stray too far from expert demonstrations. Explicit priors
are less explored. They come in the form of nearest neighbors [2] (as in our work) or in the form of
locally weighted regression [32]. They are utilized in robotics [2, 32, 42, 47] and early work of RL
with demonstrations [4]. Another way to explicitly use demonstrations includes filling the buffer of
offline RL algorithms with transitions sampled from an expert dataset to help exploration [17, 29, 54].
Different from all such work, we propose a novel way of using both implicit and explicit priors.

Normalizing Flow. Normalizing flows are a generative model that can be used for variational
inference [23, 52] and density estimation [18, 31] and come in different forms: RealNVP [8],
Glow [22], or autoregressive flow [31]. Many methods use normalizing flows in reinforcement learn-
ing [20, 27, 28, 48, 49, 56] and imitation learning [5]. However, most prior work uses normalizing
flows as a strong density estimator to exploit a richer class of policies. Most closely related to our
work is PARROT [46], which trains a single normalizing flow as an implicit prior. Different from
our work, PARROT does not differentiate tasks among the task-agnostic dataset and does not use an
explicit prior. More importantly, different from prior work, we develop a simple yet effective way to
combine flows using learned coefficients. While there are some approaches that combine flows via
variational mixtures [7, 35], they have not been shown to succeed on challenging RL tasks.

Few-shot Generalization. Few-shot generalization [50] is broadly related, as a model is first trained
across different datasets, and then adapted to a new dataset with small sample size. For example,
similar to our work, FLUTE [51], SUR [9], and URT [25] use models for multiple datasets, which
are then combined via weights for few-shot adaptation. Other methods have shared parameters across
different tasks and only used some components within the model for adaptation [10, 37, 39, 51, 59].
While most work focuses on classification tasks, we address more complex RL tasks. Also, different
from existing work, we found training of independent 1-layer flows without shared layers to be more
flexible, and free from negative transfer as also reported by [19].

6 Discussion and Conclusion

We developed CEIP, a method for reinforcement learning which combines explicit and implicit priors
obtained from task-agnostic and task-specific demonstrations. For implicit priors we use normalizing
flows. For explicit priors we use a database lookup with a push-forward retrieval. In three challenging
environments, we show that CEIP improves upon baselines.

Limitations. Limitations of CEIP are as follows: 1) Training time. The use of demonstrations
requires training a decent number of flows which can be time-consuming, albeit mitigated to some
extent by parallel training. 2) Reliance on optimality of expert demonstrations. Similar to prior work
like SKiLD [34] and FIST [16], our method assumes availability of optimal state-action trajectories
for the target task. Accuracy of those demonstrations impacts results. Future work will focus on
improving robustness and generality. 3) Balance between the degree of freedom and generalization
in fitting the flow mixture. Fig. 4 reveals that more degrees of freedom in the flow mixture improve
results of CEIP. Our current design uses a linear combination which offers O(n) degrees of freedom
(µ and λ), where n is the number of flows. In contrast, too many degrees of freedom will result in
overfitting. It is interesting future work to study this tradeoff.

Societal impact. Our work helps to train RL agents more efficiently from demonstrations for the
same and closely related tasks, particularly when the environment only provides sparse rewards. If
successful, this expands the applicability of automation. However, increased automation may also
cause job loss which negatively impacts society.
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Appendix: CEIP: Combining Explicit and Implicit Priors for Reinforcement

Learning with Demonstrations

This Appendix is organized as follows. First, we reiterate and highlight our key observations.
In Sec. A, we then provide the pseudocode for training the implicit prior and the downstream
reinforcement learning. Afterwards, we provide additional implementation details of the proposed
method and major baselines in Sec. B, and additional details of experimental settings in Sec. C. In
Sec. D, we provide additional experimental results and ablation studies. In Sec. E, we describe the
computational resources consumed by and the training time of each method. Finally, in Sec. F, we
describe the licenses of assets which we used to develop our code.

The key findings of our work include the following:

• Is a task-specific flow necessary? In environments where the episode length is relatively
short and the dynamics are relatively simple, CEIP works better without the task-specific
flow, explicit prior, and push-forward technique as the training complexity is unnecessarily
increased. This is shown in Sec. D.2.

• When is a task-specific flow helpful? In environments where some tasks of the task-
specific dataset are not part of the task-agnostic dataset, a flow trained on the task-specific
dataset improves performance. This is shown in Sec. D.3.

• How related should the tasks in the task-agnostic dataset be to the task at hand? For
both PARROT and CEIP, more related data in the task-agnostic dataset are beneficial.
However, CEIP can automatically discover and compose related flows; in contrast, PARROT
works better only when the dataset fed into the normalizing flow is manually picked to be
more relevant to the target task. This is shown in Sec. D.2.

• Will ground-truth labels help the performance of CEIP? Ground-truth labels will some-
times improve the performance of CEIP; however, this is not always the case. This is shown
in Sec. D.3.

• How will simple baselines, e.g., behavior cloning and replaying demonstrations do?
We find those simple baselines to not work very well, which indicates the non-trivial
nature of our testbed. However, introducing an explicit prior will significantly improve the
performance of behavior cloning. This is shown in Sec. D.3.

• How robust is CEIP with respect to the precision of task-specific demonstrations?
Similar to prior work such as FIST, imprecise task-specific demonstrations will affect
performance. Nevertheless, we find CEIP to be more robust than prior work. This is shown
in Sec. D.3.

• What is the impact of using an explicit prior in PARROT? PARROT results improve
when an explicit prior is used, which further supports the design of CEIP. See ablation
studies in Sec. D.2 and Sec. D.3.

To easily compare CEIP to baselines, we summarize all results achieved at the end of the training
process for the proposed method and baselines on all testbeds in Table 1. To better understand the
behavior of each method, please also see the code and videos of trajectories which are part of this
Appendix.

A Algorithm Details

Alg. 1 provides the pseudocode for training the implicit prior. Alg. 2 illustrates how we use the policy
π(z|s) and the flows to compute the real-world action a, when an explicit prior is available (i.e.,
condition u = [s, snext]) and when using the push-forward technique.

B Additional Implementation Details

We provide our code in the github repository https://github.com/289371298/CEIP for refer-
ence.
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Environment CEIP (ours) PARROT+TA PARROT+TS FIST SKiLD

Fetchreach-4.5 −10.03†
±0.64 −19.33±9.59 −20.30±10.62−34.80±8.33−39.91±0.14

Fetchreach-5.5 −9.76†
±0.47 −20.49±11.51 −14.32±7.53 −39.86±0.50−38.38±2.81

Fetchreach-6.5 −9.08†
±0.36 −14.52±9.44 −18.52±2.34 −38.30±5.28−40.00±0.00

Fetchreach-7.5 −10.29†
±0.67 −10.34±0.79 −10.24±0.69 −39.87±0.72−38.45±2.67

Kitchen-SKiLD-A 4.00±0.00 2.52±0.96 0.51±0.46 2.70±1.23 0.06±0.10

Kitchen-SKiLD-B 3.93±0.08 1.13±0.35 1.25±0.60 1.17±0.93 0.48±0.48

Kitchen-FIST-A 3.95±0.05 1.94±0.07 2.40±0.31 0.33±0.70 0.67±1.15

Kitchen-FIST-B 3.89±0.07 0.00±0.00 1.85±0.05 1.20±0.54 0.00±0.00

Kitchen-FIST-C 3.92±0.06 0.96±0.06 2.07±0.23 0.00±0.00 0.33±0.57

Kitchen-FIST-D 3.94±0.07 1.92±0.06 2.27±0.24 0.53±0.50 1.67±0.58

Office 6.33±0.30 2.05±0.31 1.97±0.22 5.50±1.12 0.50±0.50

Table 1: Summary of the results of each method on all environments at the end of training (higher is better). For
CEIP (our method), we are not using the explicit prior, task-specific single flow, and push-forward technique for
fetchreach (which is denoted by ‘†’). We use all of them for the other experiments. For PARROT, we are not
using the explicit prior, task-specific single flow, and push-forward technique, as all of them are our contributions.
However, as shown in ablation study in Sec. D, these components are general and can be used to improve the
performance of PARROT.

B.1 CEIP

B.1.1 Architecture. We use slightly different architectures for fetchreach and kitchen/office, be-
cause the number of dimensions of the states and actions in fetchreach is much smaller than that in
the other two experiments. Moreover, the size of fetchreach is much smaller too. Hence, a smaller
network is used for fetchreach to prevent overfitting.

Fetchreach. For each single flow, we use a pair of simple Multi-Layer Perceptron (MLP), one for
ci(u) and the other one for di(u). Each network has two hidden layers of width 32 for each single
flow. The number of dimensions for the feature is 20 (with explicit prior) or 10 (without explicit
prior). For the combination of flows, we use one fully-connected neural net with two hidden layers of
width 32, which outputs both µ and λ. µ has an additional softplus activation and a 10−4 offset. If
not otherwise specified, all activation functions in this section are ReLU.

Kitchen and Office. The architecture for the kitchen and office environments is roughly the same as
that for the fetchreach environment. The difference is that we use three hidden layers of width 256
for ci and di of each single flow, and that we use two hidden layers of width 64 for µ and λ. Also, we
use a batchnorm function before each ReLU activation. See Fig. 8 for an illustration.

B.1.2 Flow Training. We use the standard flow training method [24] for training the task-agnostic
and task-specific single flows f1, . . . , fn+1, which is to maximize the (empirical) log-likelihood

max
fi

E(u,a)∼Di
log pa(a|u),

where log pa(a|u) = log pz(f
−1
i (a;u)) + log

∣

∣

∣

∣

∂f−1
i (a;u)

∂a

∣

∣

∣

∣

= log pz(f
−1
i (a;u))− ci(u)

T
1, and

f−1
i (a;u) = z =

a− di(u)

exp{ci(u)}
.

(4)
Here, ci(u) ∈ R

q, di(u) ∈ R
q are trainable deep nets. The exp function and division are applied

elementwise. We use a standard normal distribution over the latent space, i.e., pz = N(0, I).
Moreover, we use maximization w.r.t. fi to denote maximization w.r.t. the parameters of the deep
nets ci, di. To train the combined flow, we use a similar loss function to Eq. (4), i.e.,

max
fTS

E(u,a)∈DTS
log pa(a|u), where log pa(a|u) = log pz(f

−1
TS (a;u)) + log

∣

∣

∣

∣

∂f−1
TS (a;u)

∂a

∣

∣

∣

∣

. (5)

Again, pz is a standard normal distribution. Here, maximization w.r.t. fTS denotes maximization w.r.t.
the parameters of the deep nets µ and λ as shown in Fig. 8.
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Algorithm 1: Training of Implicit Prior

Input :dataset D1, D2, ..., Dn, DTS

Input : training epoch for single flow M , for combination M2

Input : learning rate a
Output :normalizing flow fTS , parameterized by µ(u), λ(u), ci(u), and di(u) where

i ∈ {1, 2, . . . , n+ 1}
begin

// Training single flows
1 for i ∈ {1, 2, . . . , n+ 1} do // recall that we denote DTS = Dn+1

2 for j ∈ {1, 2, . . . ,M} do // for loop over epochs
3 foreach (u, a) ∼ Di do // for each data point

4 z0 ←
a−di(u)

exp{ci(u)}
// elementwise division

5 L = log pz(z0)− ci(u)
T
1 // z ∼ N(0, I)

6 ci ← ci + a× ∂L
∂ci

7 di ← di + a× ∂L
∂di

// Training the combination of flows
8 for j ∈ {1, 2, . . . ,M2} do // for loop over epochs
9 foreach (u, a) ∼ DTS do // for each data point

10 µ0 ← µ(u)
11 λ0 ← λ(u)

12 c =
∑n+1

i=1 µ0,ici(u)

13 d =
∑n+1

i=1 λ0,idi(u)

14 z0 ←
a−d
c

// elementwise division

15 L← log pz(z0)− cT1 // z ∼ N(0, I)

16 µ← µ+ a× ∂L
∂µ

17 λ← λ+ a× ∂L
∂λ

Training Hyperparameters. To train each single flow, we use 1000 epochs on each cluster of the
task-agnostic dataset D1, D2, . . . , Dn and task-specific Dn+1 with a batchsize of 256. We use the
Adam [21] optimizer with a learning rate of 0.001 and a gradient clipping at norm 10−4. For each
dataset, we randomly draw 80% of the state-action pairs / transitions (regardless of which trajectory
they are in) as the training set and use the rest for validation. We use an early stopping that triggers
when the current number of batches fed into the network is greater than 1000 (fetchreach) or 4000
(kitchen/office) and the validation loss does not improving during the last 20% of the batches. The
model with the lowest loss on the validation set is stored and utilized. Each flow is trained separately
and parameters are not shared. Note, we did not optimize the implementation for efficiency, but this
can be accelerated via parallelization.

B.1.3 Reinforcement Learning. We use a well-established reliable implementation of RL algo-

rithms, stable-baselines32, to carry out reinforcement learning. As stable-baselines3 needs a bounded
action space, we set the latent (action) space Z of the RL agent π(z|s) to be [−3, 3] on each
dimension.

B.2 PARROT

PARROT can be seen as a special case of CEIP, where the number of single flows is 1 and µ = 1, λ =
1. This single flow is trained on all task-agnostic data. The original PARROT does not use an explicit
prior or a push-forward technique, which are our contribution in this work. But these components
can be added to PARROT in the same way as they are used in our method. For a fair comparison,
PARROT uses exactly the same architecture and training paradigm of a single flow as CEIP.

2https://stable-baselines3.readthedocs.io/en/master/
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Algorithm 2: Step Function of Reinforcement Learning

Input :current state s, RL policy π(z|s)
Output :action in actual action space a
begin

// r is the last step referred to in the trajectory
if A new episode begins then

foreach τ ∈ DTS do
// reset last reference in each trajectory

r(τ)← −1

1 foreach τ ∈ DTS do
2 foreach (skey, a, snext) ∈ τ do

// Assume this is the i-th step
3 if (s0, j0, τ0) undefined or (skey − s)2 + [i ≤ r(τ)] < (s0 − s)2 + [j0 ≤ r(τ0)] then

// The second term is an indicator function
4 s0 ← skey

5 j0 ← i
6 τ0 ← τ

7 r(τ0)← j0 // update last reference for the chosen trajectory
8 µ0 ← µ(u)
9 λ0 ← λ(u)

10 c←
∑n+1

i=1 µ0,ici(u)

11 d←
∑n+1

i=1 λ0,idi(u) // get transformation from latent to action space
12 Sample z0 from RL policy π(z|s)
13 a← c� z0 + d

B.3 SKiLD

As CEIP, SKiLD also uses an implicit prior. However, different from CEIP which is flow-based,
SKiLD uses a VAE-based architecture where the latent space is for an action sequence called “skill,”
and the decoder of the VAE maps actions from latent space to actual action sequences. In addition,
SKiLD uses two implicit priors that take the current state as input and mimic the state-action
sequence encoder, one for the entire task-agnostic dataset and the other for the task-specific dataset.
To utilize both priors, a discriminator that takes the current state as input is trained. This discriminator
approximates the confidence of the task-specific prior. A reward shaping in the downstream RL
stage is then used to drive the agent back to states similar to those in the task-specific dataset, where
the discriminator reports higher confidence for the task-specific prior. The reward shaping also
encourages the RL agent to form a policy similar to the task-agnostic prior when the confidence is
low, and a policy similar to the task-specific prior when the confidence is high. SKiLD does not
use an explicit prior or the push-forward technique. However, in a similar spirit, the reward-shaping
mechanism encourages the agent to visit states similar to those in the task-specific dataset. We follow
the settings described by SKiLD [34], except for some minor modifications to better adapt SKiLD to
the environments. These modifications are discussed next.

We change the configuration mostly for the fetchreach environment, because skills with 10 steps
are too long for the fetchreach environment with 40 steps in an episode, and because the number
of dimensions of the data and the number of datapoints are much smaller than they are in other
environments. Therefore, we shorten a skill from 10 to 3 steps, and reduce the size of the skill
prior and posterior, which are now 3-layer MLPs with width 32 instead of the original 5-layer MLP
with width 256. Also, as the dataset size decreases, we change the number of epochs. For the skill
prior, we use a batchsize of 20, and train for 7500 cycles over the task-agnostic dataset (for each
cycle, one sub-trajectory of length 3 is sampled for each trajectory).3 For the posterior, we use 30K

3See “RepeatedDataLoader” in SKiLD’s official repository https://github.com/clvrai/spirl/blob/
5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/utils/pytorch_utils.py and https://
github.com/clvrai/spirl/blob/5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/train.py
for the meaning of “cycles.”
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Figure 8: Illustration of our architecture used for kitchen and office environments.

training cycles over the task-specific dataset. The discriminator is trained for 300 epochs, sampling
both task-agnostic and task-specific datasets. For RL, we use the settings employed for the kitchen
environment in the original paper of SKiLD, where the hyperparameter α = 5 is fixed. For the
kitchen and office environments, we follow the original paper and use the same architecture: a 5-layer
MLP with width 128 for the skill prior and posterior, a linear layer and long-short term memory
(LSTM) with width 128 for the encoder, and a 3-layer MLP with width 32 for the discriminator. The
training paradigm is almost the same as the one in the original paper, except that the cycles over the
task-specific dataset are increased due to a decreased dataset size. We also use exactly the same RL
settings as the original paper.

B.4 FIST

Conceptually, FIST can be viewed as SKiLD combined with an explicit prior. However, FIST
uses pure imitation learning, while SKiLD includes a reinforcement learning phase. Also, different
from SKiLD, FIST only uses one prior, which is first trained on the task-agnostic dataset and then
fine-tuned on the task-specific dataset. To decide which key is the “closest” to the query in dataset
retrieval, FIST conducts contrastive learning for the distance metric between states using the InfoNCE
loss [53], where the positive sample is the future state (exactly H steps later, where H is the length of
a skill) of a state in a dataset, and the negative samples are the future states of other states in the same
dataset. This metric is trained on the combined task-agnostic and task-specific data. However, in our
experiment we found that using Euclidean distance as the metric suffices to achieve good result.

For FIST, we mostly follow the settings described in the original paper [16], with the exception of
some minor modifications. Similar to SKiLD, on fetchreach we use 3 steps for a skill, and a lighter
architecture for the skill prior and posterior network with 2 hidden layers of width 32 instead of 5
hidden layers of width 128 for the other experiments. We use the settings for the kitchen environment
in the original paper for all other experiments. Moreover, the original FIST is occasionally unstable
at the beginning of skill prior training in the office environment, due to an initial loss being too large.
To remove this instability, we add gradient clipping at norm 10−3 during the first 100 steps.
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(a) Fetchreach (b) Kitchen (c) Office

Figure 9: Illustration of each environment. For fetchreach, the task-agnostic dataset consists of demonstrations
which move the gripper in the directions of the red arrows, and the task-specific dataset contains demonstrations
which move the gripper in the directions of the yellow arrows. For the kitchen environment, the agent needs
to complete four out of seven tasks mapped on the picture in the correct order. For the office environment, the
agent needs to put items in the container as illustrated in the figure, using the correct order.

C Additional Details of Experimental Settings

In this section, we introduce additional details related to the environment settings and dataset settings
for each environment.

C.1 Fetchreach

Environment Settings. In our version of fetchreach (illustrated in Fig. 9(a)), we need to train a robot
arm to move its gripper to a given but unknown location as quickly as possible, and stay there once
the goal is reached. The state is 10-dimensional, with the first three dimensions describing the current
location of the gripper. The other dimensions are the openness of the gripper and the current velocity.
For each of the 40 steps, the agent needs to output a 4-dimensional action a ∈ [−1, 1]4, where the
first three dimensions are the direction which the gripper is moving to and the fourth is the openness
of the gripper (unused in this experiment). The agent receives a reward of 0 if the Euclidean distance
between the gripper and the target is smaller than 0.05, and −1 otherwise. A perfect agent should
achieve a reward of around −10. The goal denoted as direction d (e.g., direction 4.5) is generated by
first assigning a direction d ∈ [0, 8), then selecting the goal with the Euclidean distance being 0.3
away and the azimuth being dπ

4 , and finally applying a uniform noise of U [−0.015, 0.015] on each of
the three dimensions. In order to test the robustness of the algorithms and increase difficulty, before
each episode begins, we first sample a random action from a normal distribution, and then let the
agent execute the action for x steps, where x ∼ U [5, 20]. This greatly increases the variety of the
trajectories, as shown in Fig. 10.

Dataset Settings. The dataset is acquired by first training an RL agent with soft actor critic (SAC)
which receives the negative current Euclidean distance as a reward until convergence, and then
sampling trajectories on the trained RL agent. For each direction in {0, 1, 2, . . . , 7}, 40 trajectories
(1600 steps) are sampled. For each direction in {4.5, 5.5, 6.5, 7.5}, 4 trajectories (160 steps) are
sampled.

C.2 Kitchen-SKiLD

Environment Settings. We adopt the same setting as SKiLD [34] and FIST [16], where an agent
needs to finish four out of seven tasks in the correct order. The tasks are: open the microwave, move
the kettle, turn on the light switch, turn on the bottom burner, turn on the top burner, slide the right
cabinet, and hinge the left cabinet. The agent needs to complete all four tasks within 280 timesteps,
and a +1 reward is given when one task is completed. The state is 60-dimensional, where the first 9
dimensions describe the current location of the robot, the next 21 dimensions describe the current
object location (the unrelated objects will be zeroed out), and the rest are constant and describe the
initial location of each object. The action a is 9-dimensional where a ∈ [−1, 1]9, which controls the
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Method

Task-specific

flow

Explicit

prior
Push-

forward

CEIP
CEIP+EX X

CEIP+EX+forward X X

CEIP+TS X

CEIP+TS+EX X X

CEIP+TS+EX+forward X X X

Table 3: Abbreviations for variants of CEIP. See Fig. 4 for difference between CEIP, CEIP+2way, and
CEIP+4way; the latter two only appear in the fetchreach ablation.

Method
Use

task-agnostic data
Use

task-specific data

Explicit

prior
Push-

forward

PARROT+TA X

PARROT+TS X

PARROT+(TS+TA) X X

PARROT+TA+EX X X

PARROT+TS+EX X X

PARROT+(TS+TA)+EX X X X

PARROT+TA+EX+forward X X X

PARROT+TS+EX+forward X X X

PARROT+(TS+TA)+EX+forward X X X X

PARROT+2way+TS two most related directions X

PARROT+4way+TS four most related directions X

PARROT+2way two most related directions

Table 4: Abbreviations for variants of PARROT. All variants of PARROT only use a single flow for all data,
which is the key difference between CEIP and PARROT with explicit prior. “2way” and “4way” only appear in
the fetchreach environment where there are 8 directions in the task-agnostic dataset.

D Additional Experimental Results

This section includes additional experimental results, which are ablation studies and auxiliary metrics
that help to better understand the properties of different methods. See the beginning of the Appendix
for a summary of the key findings. Please also see our supplementary material for sample videos of
each trained method on the kitchen and office environments.

D.1 Abbreviations for Ablation Tests

In our experiments, we test multiple variants of CEIP and PARROT for a more thorough ablation.
To more easily differentiate the variants of both methods with different components, we will use
abbreviations as listed in Table 3 and Table 4.

D.2 Fetchreach

Ablation on components of our method. Fig. 11 shows the ablation study on different components
of our method. Results for our method show that using an explicit prior and the push-forward
technique slows down the reward growth during RL training, if applied on a relatively easy and
short-horizon environment. This is likely because we unnecessarily add training complexity to an
environment with a relatively easy task, short horizon, and well-clustered task-agnostic datasets.
However, our method with those components still works better than many baselines and performs
well given more steps.

Ablation on components and data relevance in PARROT. To better understand the properties of
PARROT, we ablate the data used when training PARROT (see Fig. 12). We select a subset of
the task-agnostic data that is more relevant to the task-specific dataset, and study how data in the
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Noise level CEIP+TS+EX CEIP+TS+EX+forward FIST

0.01 (original) 4.17 6.33 5.6
0.02 4.20 4.17 3.8
0.05 0.57 0.83 0.6
0.1 0.05 0.1 0
0.2 0.01 0.02 0

Table 8: Comparison of the reward for CEIP and FIST when noise increases.

has an Apache-2.0 license. For the office environment, we are using a forked version of the roboverse,
which has an MIT license.

Algorithm repositories. We implement PARROT from scratch as PARROT is not open-sourced.
For SKiLD and FIST, we use their official github repositories. SKiLD has no license, but we have
informed the authors and got their consent for using code academically. FIST has a BSD-3-clause
license.
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