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Abstract

Generative adversarial nets (GANs) have been remarkably successful at learning
to sample from distributions specified by a given dataset, particularly if the given
dataset is reasonably large compared to its dimensionality. However, given limited
data, classical GANs have struggled, and strategies like output-regularization,
data-augmentation, use of pre-trained models and pruning have been shown to
lead to improvements. Notably, the applicability of these strategies is 1) often
constrained to particular settings, e.g., availability of a pretrained GAN; or 2)
increases training time, e.g., when using pruning. In contrast, we propose a
Discriminator gradIent Gap regularized GAN (DigGAN) formulation which can
be added to any existing GAN. DigGAN augments existing GANs by encouraging
to narrow the gap between the norm of the gradient of a discriminator’s prediction
w.r.t. real images and w.r.t. the generated samples. We observe this formulation
to avoid bad attractors within the GAN loss landscape, and we find DigGAN to
significantly improve the results of GAN training when limited data is available.
Code is available at https://github.com/AilsaF/DigGAN.

1 Introduction

Generative Adversarial Nets (GANs) [13] have been remarkably successful at learning to sample
from distributions specified by a given dataset. In practice, this success has garnered a lot of interest in
GANs for a wide range of applications, from data augmentation [23, 61] and domain adaptation [8, 48]
to image-to-image translation [63, 18, 24] and photo editing [4, 64].

This success of GANs strongly relies on the availability of a large dataset. Unsurprisingly, in real-
life circumstances, particularly when the dimensionality of the samples in the dataset is high, the
available samples to train a GAN can be insufficient. Insufficient data may significantly reduce the
performance of standard GANs. For instance, when we train a GAN on CIFAR-100 using just 10%
of the data, BigGAN performance deteriorates from 13.54 FID score to 73.01 FID score, and the
GAN generates images of a single pattern (Fig. 1). To address this deteriorating performance of
GANs trained with limited data, various strategies have been proposed recently, including use of
a pretrained model [60, 42, 28], pruning [7], and data augmentation [23, 61, 59, 62, 19]. However,
despite improving results, each of these strategies also impose restrictions. The use of pretrained
models works best if data domains remain similar. Pruning requires many rounds of training to
increase the sparsity of the neural architecture, which raises the training cost. Data augmentation
can enhance the results, but the benefit is limited with insufficient data (Tab. 3). Regularization is a
cheap and potentially effective approach, and recent work by Tseng et al. [51] adopted this approach,
controlling the distance between the discriminator’s prediction on the real image and the generated
image. However, with limited data, this regularization doesn’t show significant improvements (Tab. 3).

In this paper, we study a new regularization to enhance the training of GANs with limited data. Instead
of constraining the discriminator’s output as done in prior work [51], we propose the Discriminator
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discriminator on real data and generated data to be zero. Mescheder et al. [37] provide more detailed
insights on the gradient penalty. Besides the gradient norm, constraining the discriminator is another
common mechanism [59, 62] and the weight penalty is also a common regularization method for
GANs [4, 5, 29]. Different from these methods, we focus on improving results in the case of limited
training data.

Training of GANs with limited data. Training GANs with limited data has attracted a lot of attention
recently. Data scarcity causes classical GAN training to become more challenging [23, 53, 49]. A
few methods have been proposed to improve the performance of GANs trained with limited data.
One popular idea is data augmentation [62, 59, 23, 61, 19, 6]. Jiang et al. [19] use generated data
as an “augmentation” for the real data, while others do the augmentation on real instances. Chen
et al. [7] leverage pruned neural networks to improve the performance. A few works [60, 42, 28]
used pre-trained GANs, which were learned on a similar data domain using sufficient data before
being transferred to the target domain. Yang et al. [56] require the discriminator to do instance-level
classification and distinguish every individual real and fake image instance as an independent category.
Most closely related to our method is work by Tseng et al. [51], who regularize the distance between
the discriminator evaluated on the real data and the discriminator evaluated on the generated data
to be small. Our approach differs from these methods in that we propose a new regularizer which
encourages the Discriminator gradIent Gap of a GAN to be small. This regularizer is orthogonal to
other solutions (except [51]) and may be used concurrently.

3 Method

3.1 Review of Generative Adversarial Networks

Generative adversarial networks (GANs) consist of a generator G and a discriminator D, which are
pitted against each other. The generator G(z; ¹), parameterized by ¹, learns to map a sample z ∼ Z
drawn from a simple, possibly low-dimensional distribution p(z) (e.g., Gaussian) over domain Z ,
to the complex, possibly high-dimensional data distribution domain X . The discriminator D(x) is
trained to distinguish between real data xR ∼ X and synthetically generated data xF = G(z; ¹)
obtained from the generator. More formally, the game between the generator G and the discriminator
D is described by the following two loss functions, which are often also referred to as the non-
saturating GAN losses:

LG = Ez∼p(z)[ℓG(−D(G(z; ¹)))],

LD = Ex∼pdata(x)[ℓD(−D(x))] + Ez∼p(z)[ℓD(D(G(z; ¹)))].
(1)

Multiple loss functions have been used for ℓG and ℓD. For instance, Jenson-Shannon-GAN [14] uses
ℓG(t) = ℓD(t) = log(1 + exp(t)), and hingeGAN [9] uses ℓG(t) = t and ℓD(t) = max(0, 1 + t).

3.2 Discriminator GradIent Gap (DigGAN)

Worse Performance of GANs with Limited Data. Karras et al. [23] and Tseng et al. [51] observed
that fewer training samples can cause GANs to perform much worse. In empirical studies (e.g.,
Fig. 1), we observe this too. Concretely, we train a BigGAN with 100%, 20% and 10% CIFAR-100
data. The FID score (lower is better) increases dramatically when 10% or 20% data are used (top
right part of Fig. 1). Subsequently the generator produces images of worse quality (see the images
shown in the first row of Fig. 1).

Observation: large gap of gradient norms. In comprehensive experiments across multiple datasets
we observe that the gap between 1) the norm of the gradient of a discriminator’s prediction w.r.t. real
images, and 2) the norm of the gradient of a discriminator’s prediction w.r.t. generated data, i.e., the
squared distance
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increases when the GAN is trained with fewer data. Here, xR and xF = G(z; ¹) denote the training
data and the generated data respectively. For readability, we refer to this gap via “DIG” (Discriminator
gradIent Gap). This phenomenon can be observed in Fig. 1 (see the bottom right part) and Fig. 6 (see
the right part).

3









100% data 20% data 10% data

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓

SNGAN 8.42 19.29 7.24 30.69 6.39 47.08
SNGAN + DigGAN (ours) 8.54 15.11 7.78 22.27 7.36 29.43

BigGAN 9.04 10.53 8.26 21.38 7.62 36.35
BigGAN + DigGAN (ours) 9.09 9.74 8.40 17.11 7.89 23.75

BigGAN + DiffAug 9.04 9.88 8.66 14.51 8.19 23.65
BigGAN + DiffAug + DigGAN (ours) 9.28 8.49 8.89 13.01 8.32 17.87

Table 1: Inception score (IS) (higher is better) and Fréchet Inception distance (FID) (lower is better)
for BigGAN trained with 100%, 20%, 10% CIFAR-10 data, respectively.

100% data 20% data 10% data

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓

BigGAN 10.58 13.54 8.66 33.64 5.35 73.01
BigGAN + RLC [51] 11.18 11.88 9.08 25.51 7.76 49.63
BigGAN + DigGAN (ours) 10.92 12.93 9.21 21.79 9.06 27.61

BigGAN + DiffAug 11.87 12.00 9.41 22.14 8.63 33.70
BigGAN + DiffAug + RLC [51] 10.77 11.84 9.52 21.78 8.89 26.91
BigGAN + DiffAug + DigGAN (ours) 11.45 11.63 9.54 19.79 8.98 24.59

Table 2: Inception score (IS) (higher is better) and Fréchet Inception distance (FID) (lower is better)
for BigGAN trained with 100%, 20%, 10% CIFAR-100 data, respectively.

4 Experiments

4.1 Experimental settings

To validate the effectiveness of the proposed DigGAN regularization, we conduct comprehensive
experiments on CIFAR-10 [27], CIFAR-100, Tiny-ImageNet [30], CUB-200 [52] and multiple low-
shot [61] data using both class-conditional BigGAN, the unconditional SNGAN and StyleGAN2. We
use two standard evaluation metrics, i.e., the Fréchet Inception Distance (FID) [16] and the Inception
Score (IS) [46]. A smaller FID and a larger IS generally imply better GAN models. Moreover, we
further improve our empirical results by combining our regularization with DiffAug [61], a popular
data-augmentation trick. For the regularization, we set ¼ = 1000/(data availability percentage) if no
data augmentation is used; e.g., ¼ = 5000 if we train with 20% data. We set ¼ = 10/(data availability
percentage)2 if data augmentation is used. We also use ³ = 0.5 in all real data experiments. For both
conditional and unconditional GANs, we draw real samples and fake samples randomly in pairs (i.e.,
we pair samples irrespective of their class). All GANs are trained with 4 NVIDIA Geforce RTX 2080
Ti GPUs.

4.2 CIFAR-10 and CIFAR-100

We test our regularization on CIFAR-10 and CIFAR-100 data using two benchmark frameworks:
BigGAN and SNGAN, following the implementation by Zhao et al. [61] and Miyato et al. [38]. Both
CIFAR-10 and CIFAR-100 datasets have 50,000 training images with an image size of 32 × 32.
CIFAR-100 is more challenging, since it includes 100 categories with less images per class, while
CIFAR-10 has 10 categories. We conduct the experiments on 100%, 20%, 10% data, following the
settings used in prior work [61, 51, 7]. We report the results in Tab. 1 and Tab. 2.

Four observations are notable. First, DigGAN can improve GAN performance generally, regardless
of the amount of available data. Use of the regularization hence doesn’t seem to harm GAN training.
Second, our regularization can yield significant advantages when dealing with scarce data. Note that
our regularization improves baseline FIDs by 11.85 score (33.64 vs. 21.79) and 45.4 score (73.01
vs. 27.61) for 20% and 10% CIFAR-100 data respectively. Third, with 10% CIFAR-100 data, the
regularization can even outperform BigGAN that uses DiffAug by 6.09 FID (33.70 vs. 27.61). Fourth,
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100% Tiny 50% Tiny 10% Tiny 100% 50%
ImageNet ImageNet ImageNet CUB-200 CUB-200

BigGAN 31.92 43.45 130.77 20.15 48.67
BigGAN+RLC [51] 28.11 36.11 121.16 40.37 98.38
BigGAN + DigGAN (ours) 17.76 24.63 84.27 14.45 23.20

BigGAN + DiffAug 16.33 24.50 95.40 13.49 24.35
BigGAN+RLC [51]+DiffAug 16.30 23.67 83.76 12.81 23.49
BigGAN + DiffAug + DigGAN (ours) 14.84 22.66 51.18 11.58 21.12

Table 3: Fréchet Inception distance (FID) for BigGAN with Tiny-ImageNet and CUB-200.

100-shot Obama 100-shot grumpy cat AnimalFace Dog AnimalFace Cat

StyleGAN+ADA 49.78 27.34 66.25 41.40
StyleGAN+ADA+DigGAN 41.34 26.75 59.00 37.61

Table 4: Fréchet Inception distance (FID) for StyleGAN2 with ADA on low-shot datasets.

Figure 8: Low-shot generation with DigGAN on Obama, Grumpy Cat, and AnimalFace datasets.

FID (23.67 vs. 22.66) with 50% Tiny-ImageNet data, and increase the improvements to 32.58 FID
(83.76 vs. 51.18) with 10% Tiny-ImageNet data.

4.4 Low-shot generation with StyleGAN2

We also test our DigGAN on low-shot generation tasks. We conduct new low-shot generation
experiments with StyleGAN2+ADA [23]. We run experiments on the 100-shot Obama, 100-shot
Grumpy Cat, and AnimalFace dataset (160 cats and 389 dogs) provided by [61]. All datasets are
at 256× 256 resolution. We use the maximum training length of 600k images for all experiments.
We set the regularization weight as 100. We provide the results in Tab. 4 and show that DigGAN
achieves consistent gains on all datasets. Generated images are in Fig. 8.

4.5 Comparison with other gradient-based regularization methods

Several gradient-based regularization methods have been proposed for GANs. Among them, GP-
1 [15], R1, R2 [45] and DraGAN [37] are the most popular ones. However, GP-0 is usually used
for an SNGAN structure [29], and R1 is usually applied in a StyleGAN2 framework [22]. R2 and
DraGAN are not widely tested in popular model architectures. We provide a comparison on two
settings: StyleGAN+CIFAR10 and BigGAN+CIFAR100. From Tab. 5, we observe: 1) GP-1 is not
compatible with StyleGAN2, as it prevents StyleGAN2 from training properly. Further, it cannot be
applied on BigGAN, since the classes are not available for the interpolated data. 2) DigGAN, R1, R2
and DraGAN can be applied to StyleGAN2 and BigGAN. With the full dataset available, DigGAN
does not necessarily improve over other regularization methods. However, when limited training
data are available, DigGAN is able to improve upon other gradient-based regularization techniques.
Compared to the best baseline, DigGAN improves FID by 5.16 and 6.74 with 10% data availability.

4.6 Ablation study

Regularization strength. We conduct an ablation study regarding the regularization strength
using 10% CIFAR-100 data and the BigGAN framework. We sweep the regularization strength
¼ ∈ {1, 10, 100, 1k, 10k, 100k} and test the models’ sensitivity. We report the results in Fig. 9. We
observe that the performance improves with increasing strength at first, better and better addressing
overfitting. However, as expected, the performance deteriorates when the regularization is too
strong. To provide a more comprehensive comparison, we also sweep R1 regularization [45] over the
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