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Abstract

We study online learning problems in which a
decision maker wants to maximize their expected
reward without violating a finite set of m resource
constraints. By casting the learning process over
a suitably defined space of strategy mixtures, we
recover strong duality on a Lagrangian relaxation
of the underlying optimization problem, even
for general settings with non-convex reward and
resource-consumption functions. Then, we pro-
vide the first best-of-both-worlds type framework
for this setting, with no-regret guarantees both un-
der stochastic and adversarial inputs. Our frame-
work yields the same regret guarantees of prior
work in the stochastic case. On the other hand,
when budgets grow at least linearly in the time
horizon, it allows us to provide a constant compet-
itive ratio in the adversarial case, which improves
over the O(m log T ) competitive ratio of (Immor-
lica et al., 2019). Moreover, our framework al-
lows the decision maker to handle non-convex
reward and cost functions. We provide two game-
theoretic applications of our framework to give
further evidence of its flexibility.

1. Introduction

In this paper, we study online learning problems in which the
decision maker has to satisfy supply or budget constraints.
In particular, the decision maker is endowed with m � 1
limited resources which are consumed over time. For each
round t up to the time horizon T , the decision maker chooses
a strategy ⇠t which defines a probability measure over the
set of actions. Then, they observe some feedback about
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the reward and resource consumption incurred by playing
⇠t. The process stops at time horizon T , or when the total
consumption of some resource exceeds its budget. The goal
is to maximize the total reward. Our framework can be
instantiated both in the full-information feedback as well
as in the bandit feedback setting. In the full information
feedback setting, the decision maker observes the reward
function ft and resource-consumption function ct at each
t. In the bandit feedback setting they only get to observe
(ft(xt), ct(xt)), where xt is the realized action selected
according to ⇠t.

Our framework subsumes the well-known Bandits with

Knapsacks problem originally introduced by Badanidiyuru
et al. (2013; 2018), which has various motivating appli-
cations such as dynamic pricing (Besbes & Zeevi, 2009;
Babaioff et al., 2012; Besbes & Zeevi, 2012; Wang et al.,
2014), dynamic procurement (Badanidiyuru et al., 2012;
Singla & Krause, 2013), and online ad allocation (Slivkins,
2013; Combes et al., 2015). Moreover, our framework also
subsumes online packing problems, in which the decision
maker observes full feedback before choosing a strategy
(Mehta et al., 2013; Buchbinder & Naor, 2009).

Original contributions We focus on the regime in which
B = ⌦(T ), that is the budget grows at least linearly in
the time horizon T . This is the case, for example, when
the decision maker has a fixed per-iteration budget as in
most motivating applications, such as online advertising
(see, e.g., Balseiro et al. (2020b)). In this setting, we resolve
the following two open questions posed by Immorlica et al.
(2019):

• Is it possible to solve both stochastic and adversarial

version of BwK with exactly the same algorithm?

• Is it possible to obtain a constant-factor competitive

ratio in the adversarial case for the regime B = ⌦(T )?

We answer both questions positively. In doing so, by casting
the learning process over a suitably defined space of strategy
mixtures, we recover strong duality of the Lagrangian relax-
ation of the underlying optimization problem even when ft

and ct are non-convex functions, and the set of available ac-
tions X may be non-convex and non-compact. This strictly
generalizes the setting studied by Immorlica et al. (2019).
We show that our meta-algorithm (Algorithm 1) guarantees
a tight regret bound in the stochastic case, matching known
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results by Badanidiyuru et al. (2013); Agrawal & Devanur
(2014); Immorlica et al. (2019). Moreover, in the adversarial
case, it guarantees a constant approximation ratio which is
computed as the maximum single-round resource consump-
tion over the per-iteration budget. This improves over the
O(m log T ) ratio by Immorlica et al. (2019), and over the
recent O(logm log T ) ratio by Kesselheim & Singla (2020).
In doing so, we provide the first best-of-both-worlds algo-
rithm for online learning problems with knapsacks. This
result allows our framework to achieve good worst-case
performance, while being able to take advantage of well-

behaved problem instances. This makes progress on the line
of work initiated by Bubeck & Slivkins (2012). Finally, we
describe two novel motivating applications of particular in-
terest. First, we show that our framework may be employed
to extend the work by Balcan et al. (2015) to repeated Stack-
elberg Security Games in which resources are costly, and the
planner must satisfy some resource-consumption constraints.
Then, we argue that our framework can be adapted to han-
dle budget-pacing mechanisms in the context of repeated
first-price auctions. This is particularly relevant for mod-
ern auction markets operated by large Internet advertising
companies.

2. Related Work

We highlight the most relevant papers with respect to our
work. For a more in depth discussion of related work the
reader can refer to Slivkins (2019, Chapter 10).

The Bandits with Knapsacks (BwK) framework was intro-
duced and optimally solved by Badanidiyuru et al. (2013;
2018). Other regret-optimal algorithms for Stochastic BwK
have been proposed by Agrawal & Devanur (2014; 2019),
and by Immorlica et al. (2019). The BwK framework has
been subsequently extended to numerous settings such as,
for example, more general notions of resources and con-
straints (Agrawal & Devanur, 2014; 2019), contextual ban-
dits (Dudik et al., 2011; Badanidiyuru et al., 2014; Agarwal
et al., 2014a; Agrawal et al., 2016), and combinatorial semi-
bandits (Sankararaman & Slivkins, 2018).

The Adversarial Bandits with Knapsacks setting was
first studied by Immorlica et al. (2019), who proved
a O(m log T ) competitive ratio. Recently, Kesselheim
& Singla (2020) refined that analysis to obtain an
O(logm log T ) competitive ratio for the adversarial setting.
Moreover, Cardoso et al. (2019) study a related problem
in which the algorithm can continue up to time T , with no
stopping rule as in the standard BwK framework.

Best-of-both-worlds-type algorithms usually guarantee op-
timal regret rates in both adversarial and stochastic set-
tings, without being aware of which environment they are
in. Various work study the case of bandits without budget

constraints (see, e.g., (Bubeck & Slivkins, 2012; Seldin &
Slivkins, 2014; Auer & Chiang, 2016)). In the context of on-
line allocation problems with fixed per-iteration budget, Bal-
seiro et al. (2020a;b) propose a class of algorithms which
attain asymptotically optimal performance in the stochastic
case, and they attain an asymptotically optimal constant-
factor competitive ratio when the input is adversarial. In
their setting, at each round, the input (ft, ct) is observed
by the decision maker before they make a decision. This
makes the problem essentially different from ours. Finally,
Rangi et al. (2019) present an algorithm for the stochastic
and adversarial setting for the special case when there is
only one constrained resource, including time (this particu-
lar setting admits much stronger performance guarantees).
We mention that other results in the simplified setting with
one constrained resource have been obtained by György
et al. (2007); Tran-Thanh et al. (2010; 2012).

Another line of related work concerns online convex opti-
mization with constraints (see, e.g., (Mahdavi et al., 2012;
2013; Chen et al., 2017; Neely & Yu, 2017; Chen & Gian-
nakis, 2018)), where it is usually assumed that the action
set is a convex subset of Rm, in each round rewards (resp.,
costs) are concave (resp., convex), and, most importantly,
resource constraints only apply at the last round, while in
BwK the budget constraints hold for all rounds.

3. Preliminaries

We denote vectors by bold fonts. Given vector x, let x[i]
be its i-th component. The set {1, . . . , n}, with n 2 N>0,
is compactly denoted as [n]. Finally, given a discrete set S,
we denote by �S the |S|-simplex.

Basic Setup There are T rounds and m resources. A de-
cision maker has a non-empty set of available strategies
X ✓ Rn (this set may be non-convex, integral, and even
non-compact). In each round t 2 [T ], the decision maker
chooses xt 2 X , and subsequently observes a reward func-
tion ft : X ! [0, 1], and a function ct : X ! [0, 1]m

specifying resources consumption (both ft and ct need not
be convex). Each resource i 2 [m] is endowed with a bud-
get Bi to be spent over the T steps. Since ct(x)[i] � 0, for
all t, i, and x, budgets cannot be replenished. We denote
by ⇢ := (⇢1, . . . , ⇢m) 2 Rm

>0 the vector of per-iteration
budgets, where for each i 2 [m] we have Bi = T⇢i. With-
out loss of generality we let ⇢1 = . . . = ⇢m = ⇢, and
B1 = B2 = . . . = Bm = B. A problem with arbitrary bud-
gets can be reduced to this setting by dividing, for each re-
source i 2 [m], all per-round resource consumption ct(·)[i]
by Bi/minj Bj . We focus on the regime B = ⌦(T ), and
we study two feedback models: bandit feedback (no auxil-
iary feedback other than ft(xt), ct(xt) is observed by the
decision maker), and full feedback (ft, ct are observed). Let
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�t := (ft, ct), and �T := (�t)Tt=1 be the sequence of inputs
up to time T . At each step t, the decision maker can con-
dition their decision on �t�1, and on the sequence of prior
decisions x1, . . . ,xt�1, but no information about future re-
wards or resource consumption is available. The repeated
decision making process stops at any round ⌧  T in which
the total consumption of any resource i exceeds its budget
Bi. The goal of the decision maker is to maximize its to-
tal reward. Following previous work (Badanidiyuru et al.,
2013; Agrawal & Devanur, 2014; Immorlica et al., 2019),
we assume there exists a void action ? 2 X with reward 0,
and such that ct(?)[i] = 0 for all resources i. This guaran-
tees the existence of a feasible solution (i.e., a sequence of
decisions which do not violate resource constraints).

Regret Minimization A regret minimizer for an arbitrary
set W is an abstract model for a decision maker that re-
peatedly interacts with a black-box environment. At each
time t, the regret minimizer can perform two operations:
(i) NEXTELEMENT(): this procedure outputs an element
wt 2 W; (ii) OBSERVEUTILITY(`t): this procedure up-
dates the internal state of the regret minimizer using the
environment’s feedback, in the form of a utility function
`t : W ! R. The utility function can depend adversari-
ally on the sequence of outputs w1, . . . ,wt�1. The decision
making process encoded by the regret minimizer is online:
at each time t, the output of the regret minimizer can depend
on the sequence (wt0 , `t0)

t�1
t0=1, but no information about

future utilities is available. The objective of the regret min-
imizer is to output a sequence of points in W so that the
cumulative regret

R
T := sup

w⇤2W

TX

t=1

(`t(w
⇤)� `t(wt))

grows asymptotically sublinearly in the time T . For a review
of the various regret minimizers available for the full and
bandit feedback setting see Cesa-Bianchi & Lugosi (2006).

4. Strategy Mixtures

We will need to work with the set of probability measures on
the Borel sets of X . We refer to this set as the set of strategy

mixtures and denote it as ⌅. We endow X with the Lebesgue
�-algebra. We assume that all possible functions ft, ct are
measurable with respect to every probability measure ⇠ 2 ⌅.
This ensures that the various expectations taken are well-
defined, since the functions are assumed to be bounded
above, and are therefore integrable.

It is well-known that the Dirac measures �x for x 2 X
which assign 1 to a set A ✓ X if and only if x 2 A form
the extreme points of the convex set of strategy mixtures
⌅. The Dirac mass �? is the strategy that deterministically
plays the void action. We define ⇠? := �?.

4.1. On Strong Duality

Given two arbitrary measurable functions f : X ! [0, 1],
c : X ! [0, 1]m, we define the following linear program,
which chooses the strategy ⇠ that maximizes the reward f ,
while keeping the expected consumption of every resource
i 2 [m] given c below the target ⇢:

OPT
LP

f,c :=

(
sup
⇠2⌅

Ex⇠⇠[f(x)]

s.t. Ex⇠⇠[c(x)]  ⇢
, (1)

where Ex⇠⇠[ct(x)] = (Ex⇠⇠[ct(x)[i]])mi=1 2 [0, 1]m.

By letting I be an arbitrary set of possible input pairs (f, c),
the Lagrangian relaxation of LP (1) is defined as follows.
Definition 4.1 (Lagrangian Function). The Lagrangian

function L : ⌅ ⇥ Rm
�0 ⇥ I ! R is such that, for any

⇠ 2 ⌅, � 2 Rm
�0, (f, c) 2 I it holds

L(⇠,�, f, c) := Ex⇠⇠[f(x)] + h�,⇢� Ex⇠⇠[c(x)]i.

Next, we show that, when the decision maker is allowed
to choose a strategy mixture, we can recover strong duality
even if f and c are arbitrary non-convex functions (omitted
proofs can be found in Appendix A).
Theorem 4.2. Let f : X ! [0, 1], c : X ! [0, 1]m, and

(f, c) 2 I. It holds:

sup
⇠2⌅

inf
��0

L(⇠,�, f, c) = inf
��0

sup
⇠2⌅

L(⇠,�, f, c) = OPT
LP

f,c.

This theorem can be derived from Luenberger (1997, The-
orem 1, §8.6). For completeness and ease of readability,
we give a proof specific to our setting. The proof is based
on standard convex-optimization arguments. In general, a
semi-infinite linear optimization problem does not admit
strong duality (see the example in Appendix B). However,
the existence of a strategy mixture ⇠? corresponding to
playing deterministically the void action ? allows us to fol-
low closely the standard proof of strong duality via Slater’s
condition, since it yields the existence of a strictly feasible
solution.

Then, we show that we can restrict the set of admissible
dual vectors to

D := {� 2 R�0 : k�k1  1/⇢}, (2)

while continuing to satisfy strong duality.
Lemma 4.3. Let D be defined as in Equation (2). Given

f : X ! [0, 1], c : X ! [0, 1]m, (f, c) 2 I, it holds

sup
⇠2⌅

inf
�2D

L(⇠,�, f, c) = inf
�2D

sup
⇠2⌅

L(⇠,�, f, c) = OPT
LP

f,c.

From Lemma 4.3 we have that � is chosen from a compact
set. By noting that the supremum over a set of lower semi-
continuous (LSC) functions is LSC (Aliprantis et al., 2006,
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Lemma 2.41), we get that sup⇠2⌅ L(⇠,�, f, c) is LSC as a
function of �. It follows by a generalization of Weierstrass’
theorem that an optimal �⇤ exists (Aliprantis et al., 2006,
Theorem 2.43). Therefore, going forward, we will replace
all infima over D by minima when needed.

4.2. Baselines

In this section we provide details on the baselines for the
case of adversarial and stochastic inputs, respectively.

Baseline adversarial setting Given a sequence of inputs
�T , the baseline for the adversarial setting is the total ex-
pected reward of the best fixed policy in ⌅, such that strate-
gies are drawn from the same fixed mixture until the budget
is fully depleted, and the void action is selected afterwards.
Following the notation of Immorlica et al. (2019), we denote
its value by OPTFP� . Given ⌧ 2 [T ], we write OPTFP�,⌧ to de-
note the expected reward of the best fixed policy for inputs
restricted to (�1, . . . , �⌧ ). Moreover, for any sequence of
inputs �T , and for any ⌧ 2 [T ], let f̃⌧ : X ! [0, 1] and
c̃⌧ : X ! [0, 1]m be such that, for each x 2 X :

f̃⌧ (x) :=
1

⌧

⌧X

t=1

ft(x) and c̃⌧ (x) :=
1

⌧

⌧X

t=1

ct(x). (3)

Then, for ⌧ 2 [T ], we define OPTLP
f̃⌧ ,c̃⌧

according to Equa-
tion (1). The value of these LPs will be essential during the
regret analysis.

Baseline stochastic setting In the stochastic version of
the problem, each input �t = (ft, ct) is drawn i.i.d. from
some unknown distribution P over a set of possible in-
put pairs I. Let f̄ : X ! [0, 1] be the expected reward
function, and c̄ : X ! [0, 1]m be the expected resource-
consumption function (where both expectations are taken
w.r.t. P). Let be the set of dynamic policies specifying the
current strategy mixture ⇠t as a function of the past history.
The baseline for the stochastic setting OPT

DP is given by
OPT

DP := sup 2 E�⇠P[OPTDP ,� ], where OPTDP ,� is the
value of the policy  under the sequence of inputs �. Intu-
itively, OPTDP is the value of the best dynamic policy when
the decision maker knows P, but gets to observe the realized
�t only after having made the decision at t. In the follow-
ing, we use the solution to LP (1) initialized with reward
function f̄ , and cost function c̄, as an upper bound to the
value of the optimal policy OPTDP. In particular, we prove
the following.

Lemma 4.4. Given a distribution over inputs P, let f̄ :
X ! [0, 1] be the expected reward function, and c̄ :
X ! [0, 1]m be the expected resource-consumption func-

tion. Then, T · OPTLP
f̄ ,c̄
� OPT

DP
.

5. Meta-Algorithm

Our algorithm is based on the classic primal-dual approach
usually employed in online problems with packing con-
straints (see, e.g., (Balseiro et al., 2020b; Immorlica et al.,
2019)). Our framework assumes access to two regret min-
imizers with the following characteristics. The first one,
which we denote by RP, is the primal regret minimizer

which outputs strategy mixtures in ⌅, and receives as feed-
back the linear utility `

P

t : ⌅ ! R such that, for each
⇠ 2 ⌅, `Pt (⇠) := Ex⇠⇠[ft(x)] � h�t,Ex⇠⇠[ct(x)]i. The
second regret minimizer, which we denote by RD, is the
dual regret minimizer, and it outputs points in the space
of dual variables D. Moreover, RD receives as feedback
the linear utility `Dt : D ! R such that, for each � 2 D,
`
D

t (�) := �h�,⇢� Ex⇠⇠t [ct(x)]i. The primal regret mini-
mizer RP may have either bandit or full feedback, depend-
ing on the setting of interest. The dual regret minimizer RD

has full feedback by construction. Finally, we denote by
EPT (resp., EDT ) the upper bound on the cumulative regret
guaranteed by RP (resp., RD).
Remark 5.1. In order to guarantee convergence in both the
stochastic and adversarial setting, it will be enough to set
D := {� 2 R�0 : k�k1  1/⇢} (see Sections 6 and 7).
Therefore, a natural choice for the dual regret minimizing
algorithm RD is, for example, online mirror descent (OMD)
with negative entropy as reference function, which guaran-
tees a regret upper bound of EDT = O(1/⇢

p
T log(m+ 1))

(Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003).

Algorithm 1 summarizes the structure of our meta-algorithm.
For each t, the meta-algorithm first computes a primal and
dual decision through RP and RD, respectively (see the in-
vocation of NEXTELEMENT()). The action played by the
decision maker at t is going to be xt ⇠ ⇠t. Then, (ft, ct)
are observed, and the budget consumption is updated ac-
cording to the realized cost vector ct(xt). Finally, the inter-
nal state of the two regret minimizer is updated according
to the feedback specified by `Pt , `Dt (see the invocation of
OBSERVEUTILITY()). Notice that the primal regret mini-
mizer RP may as well receive partial feedback (i.e., observe
only (ft(xt), ct(xt)) for each t). In the following sections
we show that, with an appropriate choice of RP, Algorithm 1
can be adapted also to this setting. The algorithm terminates
when the agent has no sufficient budget, or when the time
horizon T is reached.

6. Regret Bound for the Adversarial Setting

In this section, we assume that, for each t 2 [T ], the request
(ft, ct) is chosen by an oblivious adversary, and we look
at the worst-case performance over all possible inputs. We
show that, in this setting, Algorithm 1 is ↵-competitive, with
↵ := 1/⇢. This is, to the best of our knowledge, the first
constant-factor competitive ratio for the adversarial setting
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Algorithm 1 Meta-algorithm for strategy mixture ⌅.
Input: parameters B, T , primal regret minimizer RP,
dual regret minimizer RD

Initialization: 8i 2 [m], Bi,1  B, ⇢ 1 ·B/T , and
initialize RP

,RD.
for t = 1, 2, . . . , T do

Primal decision: ⌅ 3 ⇠t  RP
.NEXTELEMENT(),

xt  
(
x ⇠ ⇠t if Bi,t � 1, 8i 2 [m]

? otherwise
.

Dual decision: D 3 �t  RD
.NEXTELEMENT()

Observe request: observe (ft, ct) and update avail-
able resources: Bi,t+1  Bi,t � ct(xt)[i], 8i 2 [m].
Primal update:

• `Pt  linear utility defined as

`
P

t : ⌅ 3 ⇠ 7! Ex⇠⇠[ft(x)]� h�t,Ex⇠⇠[ct(x)]i

• RP
.OBSERVEUTILITY(`Pt )

Dual update:

• `Dt  linear utility defined as

`
D

t : D 3 � 7! �h�,⇢� Ex⇠⇠t [ct(x)]i

• RD
.OBSERVEUTILITY(`Dt )

end for

in the B = ⌦(T ) regime. The competitive ratio ↵, being
defined as the maximum cost (i.e., 1 in our setting) over the
per-round budget, captures the relative wealthiness of the
decision maker. As one may expect, bidding strategies may
perform poorly when budgets are small compared to the
costs, but better performance can be guaranteed with bigger
budgets. In particular, we provide the following convergence
guarantees of Meta-Algorithm 1 in the adversarial setting.

Theorem 6.1. Consider Meta-Algorithm 1 equipped with

two arbitrary regret minimizers RP
and RD

for the sets ⌅
and D, respectively. Suppose they guarantee cumulative

regret up to time T which is upper bounded by EPT and EDT ,

respectively. Suppose requests are chosen by an oblivious

adversary. Letting ↵ := 1/⇢, for each � > 0 we have

OPT
FP

� � ↵REW�  O(↵2
p
T ln(T/�)) + EPT + EDT

with probability at least 1� �, where REW� :=
P

t ft(xt)
is the reward of the algorithm for the sequence of inputs �.

Proof. Let ⌧ be the stopping time of Algorithm 1, i.e. when
Bi,t < 1. We proceed in three steps.

Step 1: lower bound on the reward up to ⌧ . First, we
provide a lower bound on the reward guaranteed by Algo-
rithm 1 up to the stopping time ⌧ . The cumulative external

regret of RP up to the stopping time ⌧ is

R
P

⌧ = sup
⇠2⌅

⌧X

t=1

�
`
P

t (⇠)� `Pt (⇠t)
�
 EP⌧ .

By definition of `Pt , we have

sup
⇠2⌅

⌧X

t=1

(Ex⇠⇠[ft(x)]� h�t,Ex⇠⇠[ct(x)]i

�Ex⇠⇠t [ft(x)] + h�t,Ex⇠⇠t [ct(x)]i)  EP⌧ .

Then, by rearranging,

⌧X

t=1

Ex⇠⇠t [ft(x)] � sup
⇠2⌅

⌧X

t=1

(Ex⇠⇠[ft(x)]

�h�t,Ex⇠⇠[ct(x)]i+ h�t,Ex⇠⇠t [ct(xt)]i)� EP⌧ . (4)

By definition of dual regret minimizer RD, for any � 2 D
(we will specify a precise value for � in the final step of the
proof), we have

P⌧
t=1(`

D

t (�)� `Dt (�t))  ED⌧ . Then, by
definition of `Dt ,

⌧X

t=1

h�t,Ex⇠⇠t [ct(x)]i �
⌧X

t=1

(h�t,⇢i � h�,⇢i

+h�,Ex⇠⇠t [ct(x)]i)� ED⌧ .

By substituting in Equation (4),

⌧X

t=1

Ex⇠⇠t [ft(x)] � �EP⌧ � ED⌧ + sup
⇠2⌅

⌧X

t=1

(Ex⇠⇠[ft(x)]

+h�t,⇢� Ex⇠⇠[ct(x)]i � h�,⇢� Ex⇠⇠t [ct(x)]i). (5)

Then, we bound the term

A := sup
⇠2⌅

⌧X

t=1

(Ex⇠⇠[ft(x)] + h�t,⇢� Ex⇠⇠[ct(x)]i).

Let OPT⇤
�,⌧ := supx2X

P⌧
t=1 ft(x), that is, OPT⇤

�,⌧ is the
supremum of the unconstrained problem. Then, for each
✏ > 0, there exists an x⇤ 2 X such that

P
t ft(x

⇤) �
OPT

⇤
�,⌧ � ✏. Then, we show that

A � max
x2{x⇤,?}

⌧X

t=1

(Ex⇠⇠[ft(x)] + h�t,⇢� Ex⇠⇠[ct(x)]i)

� ⇢OPT⇤
�,⌧ � ✏. (6)

To do so, we consider two cases. First, if
P⌧

t=1 ft(x
⇤) �P⌧

t=1h�t, ct(x⇤)i, then the value of the function for x⇤ is
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at least

A �
⌧X

t=1

(ft(x
⇤) + h�t,⇢� ct(x

⇤)i)

�
⌧X

t=1

(ft(x
⇤) + h�t, ⇢ · ct(x⇤)� ct(x

⇤)i)

�
⌧X

t=1

ft(x
⇤)� (1� ⇢)

⌧X

t=1

h�t, ct(x
⇤)i

� ⇢
⌧X

t=1

ft(x
⇤) = ⇢OPT

⇤
�,⌧ � ✏,

where the second inequality holds since ct(·) 2 [0, 1]m, for
each t 2 [T ]. Otherwise, if

P
t ft(x

⇤) <
P

th�t, ct(x⇤)i,
we have that the null action ? has value at least

A �
⌧X

t=1

h�t,⇢i �
⌧X

t=1

h�t, ⇢ · ct(x⇤)i

� ⇢
⌧X

t=1

ft(x
⇤) � OPT

⇤
�,⌧ � ✏.

This shows that Equation (6) holds. Hence, A � ⇢OPT⇤
�,⌧ .

Then, by substituting this in Equation (5), we have

⌧X

t=1

(Ex⇠⇠t [ft(x)]� h�,Ex⇠⇠t [ct(x)]i)

� �EP⌧ � ED⌧ + ⇢OPT
⇤
�,⌧ � ⌧ h�,⇢i. (7)

Step 2: relating expectations and their realizations. Now,
we have to relate the lefthand side of the above inequality
to its realized value

P⌧
t=1(ft(xt)� h�, ct(xt)). In order

to do this, let

Wt := �ft(xt)+Ex⇠⇠t [ft(x)]+h�, ct(xt)�Ex⇠⇠t [ct(x)]i,

and observe that W1, . . . ,W⌧ is a martingale difference
sequence, with |Wt|  1 + k�k1. Then, by the Azuma-
Hoeffding inequality, we have that, for any ⌧ 2 [T ],

Pr

"
⌧X

t=1

Wt > (1 + k�k1)
p
2⌧ ln(1/�)

#
 �.

Let, q(⌧,�, �) := (1 + k�k1)
p
2⌧ ln(1/�). Then, by tak-

ing a union bound, we have

Pr

"
8⌧ 2 [T ],

⌧X

t=1

Wt  q(⌧,�, �)

#
� 1� T �.

Therefore, for any � > 0, with probability at least 1� �,
⌧X

t=1

(ft(xt)� h�, ct(xt)i) � �q(⌧,�, �/T )

+
⌧X

t=1

(Ex⇠⇠t [ft(x)]� h�,Ex⇠⇠t [ct(x)]i)

� �
�
q(⌧,�, �/T ) + EP⌧ + ED⌧

�
| {z }

B

+⇢OPT⇤
�,⌧ � ⌧ h�,⇢i,

where the last inequality is by Equation (7).

Step 3: putting everything together. First, we rewrite
OPT

⇤
�,⌧ as a function of the baseline OPTFP� . In particular,

we have

⇢OPT
⇤
�,⌧ � ⇢OPTFP�,⌧ � ⇢

�
OPT

FP

� � T + ⌧
�
.

By definition REW� :=
P⌧

t=1(ft(xt)). Then,

REW� � ⇢OPT⇤
�,⌧ �

⌧X

t=1

h�,⇢� ct(xt)i � B

�
OPT

FP

� � T + ⌧

↵
�

⌧X

t=1

h�,⇢� ct(xt)i � B . (8)

If ⌧ = T (i.e., the stopping time coincides with the time
horizon T ), in order to get the result it is enough to set � =
0, and to substitute the above expression in the definition
of regret. Otherwise, if ⌧ < T , it means that there exists a
resource i

S 2 [m] for which
⌧X

t=1

ct(xt)[i
S] + 1 � ⇢T, (9)

where, in our setting, 1 is the maximum observable cost.
Then, we set � as follows: �[iS] = 1/⇢, and �[i] = 0 for all
i 6= i

S. For this choice of �, and by exploiting Equation (9),
we have

⌧X

t=1

h�,⇢� ct(xt)i = ↵

⌧X

t=1

(⇢� ct(xt)[i
S])

 ⌧ � T + ↵.

Then, by substituting the above expression in Equation (8),

REW� �
OPT

FP

� � T + ⌧

↵
� (⌧ � T )� ↵� B .

Finally, we have

OPT
FP

� � ↵REW�  (T � ⌧)� ↵(T � ⌧) + ↵
2 + ↵ · B

 ↵2 + ↵
�
q(⌧,�, �/T ) + EP⌧ + ED⌧

�

 ↵2 + ↵(1 + ↵)
p

2T ln(T/�) + EPT + EDT ,

where the last inequality holds because the error terms are
increasing in t. This concludes the proof.
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Remark 6.2. Let ˆ̀P
t : X 3 x 7! ft(x)� h�t, ct(x)i. Then,

by definition of the set of strategy mixtures⌅ (see Section 4),
for each ⌧ 2 [T ] it holds

sup
x2X

⌧X

t=1

ˆ̀P
t (x) = sup

⇠2⌅

⌧X

t=1

`
P

t (⇠).

Remark 6.3. The guarantees of Theorem 6.1 can be ex-
tended, with minor modifications, to the bandit feed-
back setting. In particular, let ˆ̀P

t : X ! R be de-
fined as in Remark 6.2, and RP be a primal regret mini-
mizer guaranteeing, with probability at least 1 � �, that
supx2X

P⌧
t=1

⇣
ˆ̀P
t (x)� ˆ̀P

t (xt)
⌘
 EP⌧,�. By Remark 6.2,

the above high-probability regret bound implies that, with
probability at least 1�2�, RP

⌧  EP⌧,�+O(
p
T ln(T/�)/⇢)

(see Appendix A.2). Then, it is possible to follow the proof
of Theorem 6.1, and to recover, via the application of an ad-
ditional union bound, the same guarantees with probability
at least 1� 3�.

7. Regret Bound for the Stochastic Setting

In this section, we prove an optimal regret upper bound
matching that of Badanidiyuru et al. (2013); Immorlica et al.
(2019). We employ the notion of expected Lagrangian

game employed by Immorlica et al. (2019). However, by
working in the space of strategy mixtures ⌅, we provide a
simplified analysis. In particular, working on the mixtures
⌅, we can provide deterministic bounds on the regret, while
Immorlica et al. (2019) works with regret minimizers in high
probability. Moreover, our approach allows to generalize the
result of Immorlica et al. (2019) to general, e.g., non-convex,
problems.

Theorem 7.1. Consider Meta-Algorithm 1 equipped with

two arbitrary regret minimizers RP
and RD

for the sets ⌅
and D, respectively. In particular, assume that they guaran-

tee a cumulative regret up to time T which is upper bounded

by EPT and EDT , respectively. For each t 2 [T ], let the

inputs(ft, ct) be i.i.d. samples from a fixed but unknown

distribution P over the set of possible requests I . For � > 0,

with probability at least 1� � we have

OPT
DP � REW�  O

✓
1

⇢

p
2T log(mT/�)

◆
+ EPT + EDT ,

where REW� :=
P

t ft(xt) is the reward of the algorithm

for the sequence of inputs �.

The proof is based on two steps. First, by applying the
Azuma-Hoeffding inequality, we show that, in the first ⌧ 2
[T ] rounds, the average reward and cost for each resource
i up to ⌧ is close, with high probability, to Ex⇠⇠̄[f̄(x)]
and Ex⇠⇠̄[c̄(x)[i]], where ⇠̄ is the average of the strategy
mixtures selected by the primal regret minimizer. Then, we

define a two-player, zero-sum, expected Lagrangian game

such that, by Lemma 4.3, the value at the Nash equilibrium
of game is equal to OPTLP

f̄ ,c̄
. Finally, we show that ⇠̄ is an

approximation of the equilibrium strategy of one of the two
players.

Analogously to the adversarial case (Remark 6.3), Theo-
rem 7.1 extends to the bandit feedback setting with minor
modifications, whenever a primal regret minimizer for set
X with high-probability regret guarantees with respect to ˆ̀P

t

is available.

8. Applications

In this section, we first provide an explicit instantiation
of our algorithm in the classical multi-armed bandit with
knapsack setting of Badanidiyuru et al. (2013). Then, we
describe two applications of our framework to well known
game-theoretic problems. This provide further evidence of
the flexibility of our framework.

8.1. Multi-Armed Bandits with Knapsacks

Consider a multi-armed bandit problem with K arms (i.e.,
X = [K]), and per-arm utility and cost defined as in Sec-
tion 3.

Let the primal regret minimizer for bandit feedback RP

be EXP3.P (Auer et al., 2002). By its definition (see
Algorithm 1) and by Equation (2), the loss `Pt is such
that `Pt : ⌅ ! [�1/⇢, 1]. Then, at time T , EXP3.P
guarantees that, with probability at least 1 � �, EPT,� 
O(
p
KT log(T/�)/⇢).

Corollary 8.1. Consider Meta-Algorithm 1, and let the pri-

mal regret minimizer for bandit feedback RP
be EXP3.P,

and let the dual regret minimizer with full feedback RD
be

online mirror descent with negative entropy reference func-

tion (see Remark 5.1). We have the following two cases:

• If requests are chosen by an oblivious adversary. Let-

ting ↵ := 1/⇢, for each � > 0 we have

OPT
FP

� � ↵REW�  O(↵2
p
KT log(Tm/�));

• if, for each t 2 [T ], the inputs (ft, ct) are i.i.d. sam-

ples from a fixed but unknown distribution P over the

set of possible requests I. For � > 0, we have

OPT
DP � REW�  O

⇣p
2KT log(Tm/�)/⇢

⌘
;

with probability at least 1� �, where REW� :=
P

t ft(xt)
is the reward of the algorithm for the sequence of inputs �.

8.2. Repeated Stackelberg Games with Knapsacks

In Stackelberg games a leader commits to a (possibly mixed)
strategy, and then a follower best responds to that strategy
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(von Stackelberg, 1934). Stackelberg games have recently
received significant attention for their applications in se-
curity domains (Tambe, 2011). In such settings, Online
Stackelberg Security Games (SSG) have been introduced to
circumvent the assumption that the leader must know the at-
tacker’s utility function (Balcan et al., 2015). We show that
our framework could be extended to model repeated SSGs
in which there are hard budget constraints with respect to
deployed defensive resources.

We take the perspective of the leader that, at each time
t 2 [T ], plays a game against a follower of an unknown
type. The leader has a finite set of available actions AL with
nL := |AL|, and strategies X := �(AL), while the follower
has a set of available actions AF with nF := |AF|, and
strategies Y := �(AF). The utility function of the follower
at time t is denoted by ut : X⇥Y ! R. We assume that, for
each t 2 [T ], x 2 X , and y 2 Y , ut(x,y) := x>

Ut y, for
Ut 2 RnL⇥nF . Moreover, we assume that the follower has
a finite set of possible types K and hence, for each t, Ut 2
{Uk}k2K. At each t, the leader commits to a strategy xt 2
X . Then, the follower will play their best-response given xt.
Formally, for type k 2 K, the follower plays the strategy
yk
xt

:= ea, where a 2 argmaxa02AF
x>
t Ukea0 , and ea

denotes the vector where component a is equal to 1 and the
others are equal to 0. As it is customary in the literature, we
assume that the follower breaks ties in favour of the leader.
Then, the leader’s utility function ft : X ! [0, 1] is such
that, for each x 2 X , and t, ft(x) := x>

UL ykt
x , where

kt is the follower type at round t. This function is upper
semicontinuous, and it is therefore Borel measurable.

At each t, the leader pays a cost based on the strategy they
commit to. In particular, for each t there’s a cost matrix
Ct 2 [0, 1]nL⇥m, that specifies a vector of m costs for
leader’s actions. The cost incurred by the leader at time t

is then x>
t Ct, where xt is the strategy played by the leader

at time t. The leader has an overall budget B 2 R�0 for
each resource. Let ⇢ be the per-iteration budget (defined as
in Section 3), Moreover, we assume the leader has a void
action which yields no reward and no consumption of any
other resource other than time.

In order to apply Algorithm 1, we show that there exists a
regret minimizer for the leader. We show that this is possible
despite the fact that the leader’s utility is non-convex, and
not even continuous. By Remark 6.2, we can safely restrict
our attention to regret minimizers that provide no-regret
with respect to the optimal fixed strategy in x⇤ 2 X . As
a first step, we show that for each sequence of follower’s
types (kt)⌧t=1, there always exists an optimal mixed strategy
belonging to a finite set of strategies X ⇤ ⇢ X . Moreover,
we show that X ⇤ is independent from the sequence of types.
In order to define the restricted set X ⇤, for each type k 2 K
and action a 2 AF, let X k,a ✓ X be the set of leader’s

strategy in which a is a best response for the follower of
type k, i.e., X k,a := {x 2 X : yk

x = ea}. Let a 2 A|K|
L

be a tuple with an action per follower’s type, and Xa be
the polytope such that each action a[k] is optimal for the
corresponding type k, i.e., Xa := \k2KX k,a[k]. Finally,
we let X ⇤ := [

a2A|K|
L

V (Xa), where V (Xa) denotes the
set of the vertexes of the polytope Xa.
Lemma 8.2. Let `L,t(x,�) := ft(x) � h�,x>

Cti for all

pairs (x,�). Then, for each ⌧ 2 [T ], each sequence of re-

ceiver’s types (kt)⌧t=1, and each sequence (�t)⌧t=1, it holds:

max
x⇤2X⇤

⌧X

t=1

`L,t(x
⇤
,�t) = max

x2X

⌧X

t=1

`L,t(x,�t).

Then, we bound the cardinality of the restricted set X ⇤.
Lemma 8.3. It holds |X ⇤|  (|K|n2

F
)nL�1

Lemma 8.2 implies that to build a regret minimizer for X , it
is sufficient to have small regret with respect to the optimal
action in X ⇤. Thus, we can focus on a regret minimizer
for X ⇤. Since X ⇤ has finite support, the set of randomized
strategy ⌅⇤ is the simplex over X ⇤, i.e., ⌅⇤ = �X⇤

. As a
primal regret minimizer, we can employ OMD with a neg-
ative entropy regularizer that provides regret upper bound
O(
p
T log(|X ⇤|)). Therefore, we proved the existence of a

regret minimizer for the primal decision space.
Theorem 8.4. There exists a primal regret minimizer

RP
for the Strackelberg problem with regret EPT =

O(
p
TnL log(|K|nF)).

Equipped with the above result, we can directly apply Theo-
rems 6.1 and 7.1 to our setting.

8.3. Budget-Pacing in Repeated First-Price Auctions

Internet advertising platforms typically offer advertisers the
possibility to pace the rate at which their budget is depleted,
through budget-pacing mechanisms (Agarwal et al., 2014b;
Conitzer et al., 2021; Balseiro et al., 2021). These mecha-
nisms are essential to ensure that the advertisers’ budget is
not depleted too early (thereby missing potentially valuable
future advertising opportunities), while being fully depleted
within the planned duration of the campaign. We focus on
budget pacing in the context of first-price auctions, which
is particularly relevant for selling display ads (e.g., in 2019
Google announced a shift to first-price auctions for its Ad-
Manager exchange).1 Dual mirror descent schemes which
are usually employed in the context of repeated second price
auctions (Balseiro & Gur, 2019; Balseiro et al., 2020a; Celli
et al., 2022) cannot be applied to our setting, because they
rely on particular features of second price auctions.2

1See https://tinyurl.com/chv5nxys.
2In particular, in the primal update step, xt is chosen by maxi-

mizing a function of ft and ct. Therefore, in general, this assumes

https://tinyurl.com/chv5nxys
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We consider the problem faced by a bidder that takes part
to a sequence of first-price auctions. At each round t 2 [T ],
the bidder observes their valuation vt extracted by a finite
set of possible valuations V ⇢ [0, 1], with nv := |V|.3
Then, the bidder chooses bt 2 B, where B ⇢ [0, 1] is a
finite set of nb possible bids. Then, the utility function of
the bidder depends on the maximum among the competing
bids, which we denote by b̂t. In particular, if bt � b̂t, the
bidder wins the auction, pays to the auctioneer bt, and has
utility ft(bt) = vt � bt. Moreover, the bidder incurs in a
cost ct(bt) = bt. Otherwise, the bidder does not win the
item, ft(bt) = 0, and ct(bt) = 0. Finally, the bidder has
a budget B 2 R+, which limits the total amount that the
agent can spend throughout the T rounds. As a benchmark
to evaluate the performance of the algorithm, we consider
the best static policy ⇡ : V ! B. Next, we show that the
problem can be easily addressed via our framework. The set
of static policies can be represented by X := Bnv , where
a vector b 2 B

nv is such that b[v] is the bid played by the
policy with valuation v. Then, the utility function is such
that ft(b) = (vt � b[vt])I{b[vt]�b̂t}, where I denotes the
indicator function, and the cost is ct(b) = b[vt]I{b[vt]�b̂t}.
The set of strategy mixtures is given by the set ⌅ := �X .

Let `Bt : ⌅ 3 ⇠ 7! Eb⇠⇠[ft(b)] � �tEb⇠⇠[ct(b)] be
the primal loss function. We want to show the existence
of a regret minimizer for the set ⌅. To do that, by Re-
mark 6.2, we know that it is enough to design a regret
minimizer for X . Then, by letting ⌅⇤ := (�B)nv , and since
maxb2X

P⌧
t=1 ft(b)��tct(b) = max⇠2⌅⇤

P⌧
t=1 `

B

t (⇠), it
is enough to design a regret minimizer for the set ⌅⇤. Since
the primal loss function `Bt is linear in ⇠, we can apply OMD
with negative entropy regularizer to get a regret upper bound
of O(

p
Tnv log(nb)) (see, e.g., Farina et al. (2021)).

Theorem 8.5. There exists a primal regret minimizer RP

for the problem of bidding in first-price auctions with regret

upper bound O(
p
Tnv log(nb)).

This immediately implies that Theorems 6.1 and 7.1 hold in
the full information setting (i.e., when the bidder observes b̂t
for each t). In the bandit setting, one can obtain analogous
results by instantiating an appropriate regret minimizer (e.g.,
EXP3 by Auer et al. (2002)) for each v 2 V . We remark that
our model is clearly a simplification of real budget-pacing
systems. We leave the problem of studying the general
setting (with arbitrary sets V and B) within our framework
as an interesting future research direction.

that the decision maker observers (ft, ct) before taking the de-
cision at time t. The fact that costs are determined through a
second price auction allows the decision maker to implicitly take
the max without actually observing the costs, by bidding their
adjusted valuation. However, this is not possible when allocations
are determined through first-price auctions.

3In ad auctions this models the fact that the auctioneer shares
with the advertisers some targeting information about users.
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A. Omitted Proofs

A.1. Proofs for Section 4

Theorem 4.2. Let f : X ! [0, 1], c : X ! [0, 1]m, and (f, c) 2 I. It holds:

sup
⇠2⌅

inf
��0

L(⇠,�, f, c) = inf
��0

sup
⇠2⌅

L(⇠,�, f, c) = OPT
LP

f,c.

Proof. Auxiliary sets. Let

V :=
�
(v, t) 2 Rm+1 : 9⇠ 2 ⌅ s.t. Ex⇠⇠[c(x)[i]]� ⇢  v[i], 8i 2 [m], Ex⇠⇠[f(x)] � t

 
,

W :=
�
(0, w) 2 Rm+1 : w > OPT

LP

f,c

 
,

where each element of W is composed of an m-dimensional vector of zeros, and a scalar w. Notice that the dimension
of the two sets does not depend on the dimensionality of ⌅. In particular, V,W have finite dimension even when we
have an infinite-dimensional space of strategy mixtures. We claim that V and W are convex, and V \W = ?. Take
any two points (v1, t1) 2 V , (v2, t2) 2 V , and ↵ 2 [0, 1]. Then, let ⇠↵ = ↵ ⇠1 + (1 � ↵) ⇠2, where ⇠1 (resp., ⇠2) is
a point in ⌅ for which the constraints of V for (v1, t1) (resp., (v2, t2)) are satisfied. We have that ⇠↵ 2 ⌅. Moreover,
by linearity of expectation, we have, for each resource i 2 [m], Ex⇠⇠↵ [c(x)[i]] � ⇢  ↵v1[i] + (1 � ↵)v2[i], and
Ex⇠⇠↵ [f(x)] � ↵t1 + (1� ↵)t2. Then, ↵(v1, t1) + (1� ↵) (v2, t2) 2 V (i.e., V is convex). It is immediate to check that
W is convex. Finally, assume that there exists a point (v0

, t
0) 2 V \W . By definition of V , there exists ⇠0 2 ⌅ such that

Ex⇠⇠0 [c(x)]� ⇢  v0, and Ex⇠⇠0 [f(x)] � t
0. Then, by definition of W , v0 = 0, that is, ⇠0 is budget-feasible. However,

the fact that Ex⇠⇠0 [f(x)] > OPT
LP

f,c is in contradiction with OPTLPf,c being the optimal value of a feasible solution to LP (1).

Separating V and W . By assumption we have that the primal objective OPTLPf,c is finite (otherwise, if OPTLPf,c = +1, we
could immediately recover our result by weak duality). The sets V and W are convex and do not intersect. Therefore, by the
separating hyperplane theorem, there exists a point (�̃, µ̃) 2 Rm+1 \ {0}, and a scalar value � 2 R such that

(v, t) 2 V =) h�̃, vi+ µ̃ t  �, (10)

(0, w) 2W =) µ̃ w � �. (11)

First, it must be that �̃[i]  0 for all i 2 [m], and µ̃ � 0, otherwise we would get unboundedness of the lefthand side of
Equation (10). Moreover, since Equation (11) must hold for each w > OPT

LP

f,c, by continuity we have µ̃OPT
LP

f,c � �. For
each ⇠ 2 ⌅ there exists a pair (v⇠, t⇠) 2 V such that Ex⇠⇠[c(x)]� ⇢ = v⇠, and Ex⇠⇠[f(x)] = t⇠. Together with the fact
that Equation (10) holds for each (v, t) 2 V , this yields that for each ⇠ 2 ⌅,

h�̃,Ex⇠⇠[c(x)]� ⇢i+ µ̃Ex⇠⇠[f(x)]  �  µ̃OPT
LP

f,c. (12)

If µ̃ > 0, then for each ⇠ 2 ⌅
1

µ̃
h�̃,Ex⇠⇠[c(x)]� ⇢i+ Ex⇠⇠[f(x)]  OPT

LP

f,c.

By letting �̂ = ��̃/µ̃, we have L(⇠, �̂, f, c)  OPT
LP

f,c for each ⇠. In particular, sup⇠ L(⇠, �̂, f, c)  OPT
LP

f,c. Then,

inf
��0

sup
⇠2⌅

L(⇠,�, f, c)  OPT
LP

f,c.

By weak duality we get inf��0 sup⇠ L(⇠,�) = OPT
LP

f,c, which proves our statement.

If µ̃ = 0, from Equation (12) we get that, for each ⇠ 2 ⌅, h�̃,Ex⇠⇠[c(x)]� ⇢i  0. Let ⇠? := �? 2 ⌅ be the Dirac mass
that plays the null action. We have that Ex⇠⇠? [c(x)]�⇢ < 0. Then, since �̃  0, it must be �̃ = 0. That is in contradiction
with (�̃, µ̃) 6= 0. This concludes the proof.

Lemma 4.3. Let D be defined as in Equation (2). Given f : X ! [0, 1], c : X ! [0, 1]m, (f, c) 2 I, it holds

sup
⇠2⌅

inf
�2D

L(⇠,�, f, c) = inf
�2D

sup
⇠2⌅

L(⇠,�, f, c) = OPT
LP

f,c.
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Proof. As a first step, we show that

inf
�2D

sup
⇠2⌅

L(⇠,�, f, c)  inf
��0

sup
⇠2⌅

L(⇠,�, f, c).

To do so, notice that for any �0 with ||�0||1 > 1/⇢, we have

sup
⇠2⌅

L(⇠,�0
, f, c) > 1 � OPT

LP

f,c = inf
��0

sup
⇠2⌅

L(⇠,�, f, c),

where the first inequality holds because the null action provides value at least h�0
,⇢i > 1. Then, we have:

sup
⇠2⌅

inf
�2D

L(⇠,�, f, c) � sup
⇠2⌅

inf
��0

L(⇠,�, f, c)

= OPT
LP

f,c

= inf
��0

sup
⇠2⌅

L(⇠,�, f, c)

� inf
�2D

sup
⇠2⌅

L(⇠,�, f, c),

where the first inequality holds since on the lefthand side we have a more restrictive set of dual variables, and the second and
the third inequalities hold by strong duality. Finally, by the max–min inequality

sup
⇠2⌅

inf
�2D

L(⇠,�, f, c)  inf
�2D

sup
⇠2⌅

L(⇠,�, f, c).

This proves our statement.

Lemma 4.4. Given a distribution over inputs P, let f̄ : X ! [0, 1] be the expected reward function, and c̄ : X ! [0, 1]m

be the expected resource-consumption function. Then, T · OPTLP
f̄ ,c̄
� OPT

DP
.

Proof. Let �⇤ = (�⇤1, . . . ,�
⇤
m) 2 D be an optimal dual vector for LP (1) with functions f̄ , c̄. By strong duality (Lemma 4.3),

it holds
f̄(x) + h�⇤

,⇢� c̄(x)i  OPT
LP

f̄ ,c̄, 8x 2 X . (14)

Moreover, let (⇠t)Tt=1 be the sequence of strategy mixtures specified by a given policy  , and denote by xt ⇠ ⇠t an action
realization sampled according to the strategy mixture at t. Let

Zt := (T � t)OPTLPf̄ ,c̄ +
X

t02[t]

(ft0(xt0) + h�,⇢� ct0(xt0)i).

Then, by Equation (14), and since

Ex⇠⇠t

⇥
f̄(x) + h�,⇢� c̄(x)i

⇤
= Ex⇠⇠t, (ft,ct)⇠P[ft(x) + h�,⇢� ct(x)i],

the stochastic process Z0, . . . , ZT is a supermartingale. Let ⌧ 2 [T ] be the stopping time of the algorithm, that is, when the
algorithm depletes the first resource. Then, the realized utility is such that

P⌧
t=1 ft(xt)  Z⌧ . This holds since

(T � ⌧)OPTLPf̄ ,c̄ +
⌧X

t=1

h�,⇢� ct(xt)i � (T � ⌧)OPTLPf̄ ,c̄ +
mX

i=1

�[i](⌧⇢� T⇢)

� (T � ⌧)
⇣
OPT

LP

f̄ ,c̄ � h⇢,�i
⌘
� 0,

where the first inequality comes from the fact that
P

t2[⌧ ] ct(xt)[i]  B for each i 2 [m], and the last inequality comes from
Equation (14) with x equal to the void action ?. Then, taking the expectation on both sides, we get E[Z⌧ ] � E[

P⌧
t=1 ft(xt)].

Let v be the value obtained through policy  . By Doob’s optional stopping theorem, T · OPTLP
f̄ ,c̄

= Z0 � E[Z⌧ ] � v .
Then, since this holds for every possible policy  , we have T · OPTLP

f̄ ,c̄
� sup 2 E[v ] = OPT

DP. This concludes the
proof.
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A.2. Proofs for Section 6

In this section, we provide more details on why Remark 6.3 holds.

Consider a regret minimizer for bandit feedback guaranteeing with probability at least 1� � that

R̂P

T := sup
x2X

⌧X

t=1

⇣
ˆ̀P
t (x)� ˆ̀P

t (xt)
⌘
 EPT,�. (15)

Then, let

wt := ˆ̀P
t (xt)� `Pt (⇠t) = ˆ̀P

t (xt)� Ex⇠⇠t

h
ˆ̀P
t (x)

i
,

and observe that |wt|  1 + 1/⇢. By applying the Azuma-Hoeffding inequality we get that given a ⌧ 2 [T ]

Pr

0

B@
⌧X

t=1

wt > (1 + 1/⇢)
p

2T ln(1/�)| {z }
=:q(�)

1

CA  �.

Then, by a standard application of the union bound,

Pr

 
8⌧ 2 [T ],

⌧X

t=1

wt  q(�)

!
 1� T · �.

Then, with probability at least 1� �,

⌧X

t=1

`
P

t (xt)  q(T/�) +
⌧X

t=1

Ex⇠⇠t

h
ˆ̀P
t (x)

i
.

Then, by Remark 6.2 and by Equation (15), we obtain that, with probability at least 1� 2�, for each ⌧ 2 [T ]

sup
⇠2⌅

⌧X

t=1

�
`
P

t (⇠)� `Pt (⇠t)
�
= sup

x2X

⌧X

t=1

⇣
ˆ̀P
t (x)� `Pt (⇠t)

⌘

 sup
x2X

⌧X

t=1

⇣
ˆ̀P
t (x)� `Pt (xt)

⌘
+ q(T/�)

 EPT,� + q(T/�).

This show that Remark 6.3 is verified.

A.3. Proofs for Section 7

Theorem 7.1. Consider Meta-Algorithm 1 equipped with two arbitrary regret minimizers RP
and RD

for the sets ⌅ and D,

respectively. In particular, assume that they guarantee a cumulative regret up to time T which is upper bounded by EPT and

EDT , respectively. For each t 2 [T ], let the inputs(ft, ct) be i.i.d. samples from a fixed but unknown distribution P over the

set of possible requests I. For � > 0, with probability at least 1� � we have

OPT
DP � REW�  O

✓
1

⇢

p
2T log(mT/�)

◆
+ EPT + EDT ,

where REW� :=
P

t ft(xt) is the reward of the algorithm for the sequence of inputs �.

Proof. Let ⌧ 2 [T ] be the stopping time of Algorithm 1, and ⇠̄ 2 ⌅ be such that, for all x 2 X , ⇠̄(x) :=
P⌧

t=1 ⇠t(x)/⌧ .
The proof proceeds in two steps.
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Step 1 Consider the first ⌧ 2 [T ] rounds. By applying the Azuma-Hoeffding inequality we have that the average reward
and cost for each resource i up to ⌧ is close, with high probability, to Ex⇠⇠̄[f̄(x)] and Ex⇠⇠̄[c̄(x)[i]], respectively. Formally,
given ⌧ 2 [T ], by letting E0

⌧,� := O(
p
⌧ log(m/�)) with probability at least 1� �, we have

1

⌧

⌧X

t=1

ft(xt) � Ex⇠⇠̄

⇥
f̄(x)

⇤
� 1

⌧
E0
⌧,� (16)

1

⌧

⌧X

t=1

ct(x)[i]  Ex⇠⇠̄[c̄(x)[i]] +
1

⌧
E0
⌧,� 8i 2 [m]. (17)

Step 2 Consider a sequence of repeated two-player, zero-sum games up to a given time ⌧ 2 [T ], in which Player 1 (i.e., the
primal player) chooses as their action ⇠ 2 ⌅, and Player 2 (i.e., the dual player) chooses � 2 D. For each t 2 [⌧ ], for a pair
of actions (⇠,�), Player 1 (resp., Player 2) observes utility function L(⇠,�, ft, ct) (resp., �L(⇠,�, ft, ct)). When (ft, ct)
are drawn i.i.d. from some fixed distribution P, we can define L̄(⇠,�) := E(f,c)⇠P[L(⇠,�, f, c)]. We say that (⌅,D, L̄) is
the expected Lagrangian game. Then, the following result holds.

Lemma A.1. Given ⌧ 2 [T ], for � 2 (0, 1), with probability at least 1� 2�, the average strategy mixture ⇠̄ 2 ⌅ up to ⌧ is

such that, for any � 2 D, L̄(⇠̄,�) � OPT
LP

f̄ ,c̄
� 1

⌧

⇣
EPT + EDT + 4(1 + 1/⇢)

p
2T log(T/�)

⌘
.

Let us condition on the fact that Equation (16), Equation (17), and Lemma A.1 hold for each ⌧ 2 [T ]. This event holds with
probability 1� 3�T (by a standard application of the union bound). Then, let ⌧ 2 [T ] be the stopping time of the algorithm.
By definition of stopping time, there exists a resource i

S 2 [m] such that
P⌧

t=1 ct(xt)[iS] > B � 1 (see the primal decision
in Algorithm 1). By taking �̂ such that �̂[iS] = 1/⇢, and �̂[i] = 0 for i 6= i

S, and by Equations (16) and (17), we have

L̄

⇣
⇠̄, �̂

⌘
= Ex⇠⇠̄

⇥
f̄(x)

⇤
+ h�̂,⇢� Ex⇠⇠̄[c̄(x)]i

 1

⌧

 
⌧X

t=1

ft(xt) + ⌧ � 1

⇢

⌧X

t=1

ct(xt)[i
S] + 2E0

⌧,�

!

 1

⌧

 
⌧X

t=1

ft(xt) + ⌧ � T +
1

⇢
+ 2E0

⌧,�

!
.

Then, plugging the above expression in Lemma A.1 yields the following

REW� =
⌧X

t=1

ft(xt) � ⌧ OPTLPf̄ ,c̄ + T � ⌧ � 1

⇢
�
⇣
2E0

⌧,� + EPT + EDT + 4(1 + 1/⇢)
p

2T log(T/�)
⌘
.

Then, by Lemma 4.4, and since OPTLP
f̄ ,c̄
 1,

OPT
DP � REW�  T OPT

LP

f̄ ,c̄ � ⌧ OPT
LP

f̄ ,c̄ � T + ⌧ +
1

⇢
+ 2E0

⌧,� + EPT + EDT + 4(1 + 1/⇢)
p
2T log(T/�)

 EPT + EDT +O

⇣
1/⇢
p
2T log(mT/�)

⌘
.

This concludes the proof.

Lemma A.1. Given ⌧ 2 [T ], for � 2 (0, 1), with probability at least 1� 2�, the average strategy mixture ⇠̄ 2 ⌅ up to ⌧ is

such that, for any � 2 D, L̄(⇠̄,�) � OPT
LP

f̄ ,c̄
� 1

⌧

⇣
EPT + EDT + 4(1 + 1/⇢)

p
2T log(T/�)

⌘
.

Proof. We proceed in two steps:
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(1) Let ⌧ 2 [T ], and ⇠⇤ be the optimal strategy up to ⌧ for the primal player in hindsight (i.e., with knowledge of the
sequence of �t up to ⌧ , while taking expectations over ft and ct at each t). Moreover, let v⇤ be the minimax value for the
expected Lagrangian game (⌅,D, L̄). Then,

1

⌧

⌧X

t=1

L(⇠t,�t, ft, ct) �
1

⌧

⌧X

t=1

L(⇠⇤,�t, ft, ct)�
1

⌧
EPT

�WHP
1

⌧

⌧X

t=1

L̄(⇠⇤,�t)�
1

⌧

⇣
EPT + 2(1 + 1/⇢)

p
2T log(T/�)

⌘

= sup
⇠

L̄(⇠, �̄)� 1

⌧

⇣
EPT + 2(1 + 1/⇢)

p
2T log(T/�)

⌘

� inf
�

sup
⇠

L̄(⇠,�)� 1

⌧

⇣
EPT + 2(1 + 1/⇢)

p
2T log(T/�)

⌘

= v
⇤ � 1

⌧

⇣
EPT + 2(1 + 1/⇢)

p
2T log(T/�)

⌘
,

where �WHP denotes statements that hold with probability at least 1� �.

(2) Fix � 2 D. We have,

1

⌧

⌧X

t=1

L(⇠,�t, ft, ct) 
1

⌧

⌧X

t=1

L(⇠t,�, ft, ct) +
1

⌧
EDT

WHP
1

⌧

⌧X

t=1

L̄(⇠t,�) +
1

⌧

⇣
EDT + 2(1 + 1/⇢)

p
2T log(T/�)

⌘

= L̄(⇠̄,�) +
1

⌧

⇣
EDT + 2(1 + 1/⇢)

p
2T log(T/�)

⌘
.

By Lemma 4.3, we have v
⇤ = OPT

LP

f̄ ,c̄
. Then, by combining the inequalities from Step (1) and (2), and by taking a union

bound we get the result.

A.4. Proofs for Section 8

Lemma 8.2. Let `L,t(x,�) := ft(x)� h�,x>
Cti for all pairs (x,�). Then, for each ⌧ 2 [T ], each sequence of receiver’s

types (kt)⌧t=1, and each sequence (�t)⌧t=1, it holds:

max
x⇤2X⇤

⌧X

t=1

`L,t(x
⇤
,�t) = max

x2X

⌧X

t=1

`L,t(x,�t).

Proof. We show that given an optimal strategy x 2 X , we can build a strategy x⇤ 2 X ⇤ with the same utility. Let a 2 A|K|
L

be the tuple specifying one action per type such that ea[k] = yk
x for each k 2 K, i.e., each follower’s type plays the best

response for x. Once we fix the best response for all the types, the objective is a linear function. Hence, it is linear on Xa.
Then, there exists a vertex of Xa ✓ X ⇤ in which the objective is maximized. Notice that in the vertex the follower could
play a different best response. However, by the optimistic tie breaking assumption, with the best response the leader’s utility
increases, while the costs do not change. This concludes the proof.

Lemma 8.3. It holds |X ⇤|  (|K|n2
F
)nL�1

Proof. Each polytope Xa, a 2 A|K|
L

is defined by the following inequalities over x that imply the optimality of the tuple of
best responses a:

x>
Ukea[k] � x>

Ukea 8k 2 K, a 2 AF.
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Thus, each vertex V (Xa), a 2 A|K|
L

, is the intersection of nL � 1 equalities belonging to the following set:

x>
Ukea = x>

Ukea0 8k 2 K, a, a
0 2 AF,

and the simplex constraint. Hence, there are at most (|K|n2
F
)nL�1 vertices.

B. On Strong Duality in Semi-Infinite LPs

We provide a simple example in which a semi-infinite linear optimization problem does not admit strong duality.

Let X = [0, 1]. Define f : X ! R by

f(x) :=

(
1 if x = 0

0 if x 2 (0, 1]
.

Then, let ⌅ = �X and consider the linear program
(

inf
⇠2⌅

Ex⇠⇠[f(x)]

s.t. Ex⇠⇠[x]  0
. (18)

Since x 2 [0, 1], the only way in which the constraint can be satisfied is always selecting x = 0. Then, the primal optimal
value is p⇤ = 1. Now, the Lagrangian dual of the problem is

g(�) = inf
⇠2⌅

{E[f(x)] + �E[x]}.

We have d
⇤ = sup��0 g(�) = 0. Therefore, we have a duality gap of 1.


