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Abstract

Voice assistants are becoming increasingly pervasive due to
the convenience and automation they provide through the
voice interface. However, such convenience often comes with
unforeseen security and privacy risks. For example, encrypted
traffic from voice assistants can leak sensitive information
about their users’ habits and lifestyles. In this paper, we
present a taxonomy of fingerprinting voice commands on the
most popular voice assistant platforms (Google, Alexa, and
Siri). We also provide a deeper understanding of the feasibility
of fingerprinting third-party applications and streaming ser-
vices over the voice interface. Our analysis not only improves
the state-of-the-art technique but also studies a more real-
istic setup for fingerprinting voice activities over encrypted
traffic. Our proposed technique considers a passive network
eavesdropper observing encrypted traffic from various de-
vices within a home and, therefore, first detects the invoca-
tion/activation of voice assistants followed by what specific
voice command is issued. Using an end-to-end system design,
we show that it is possible to detect when a voice assistant is
activated with 99% accuracy and then utilize the subsequent
traffic pattern to infer more fine-grained user activities with
around 77-80% accuracy.

1 Introduction

Voice assistants offer convenience by automating various day-
to-day activities through voice commands (e.g., searching the
web, making online purchases, etc.). Furthermore, voice assis-
tants enable the automation of home appliances through voice
commands. Today, around 42.1% of the US population uses a
voice assistant [26] and this number is expected to increase in
the next year [18]. Amazon Alexa, Google Assistant, and Siri
are the top three most popular consumer voice assistants [28].
Amazon Alexa is the market leader, making up more than half
the smart speaker sales by brand in 2022 [49].

However, such convenience also poses new security and
privacy risks. The general perception is that any communica-
tion between a user and their voice assistant remains private

over the internet and is not visible to any party that is not
directly concerned in relation to the request. In other words,
any passive network observer, local or remote, should not be
able to infer high-level user commands just by passively view-
ing the encrypted network traffic. Any amount of information
leaked is a weakness in this assumption and means that a pri-
vacy leakage has occurred, which depending on the amount
of information leaked, can be a serious privacy threat.

Voice assistants, generally, have different types of re-
sponses to different types of commands. Some commands
require built-in responses, while others require a generic web-
searched response. Some voice assistants, such as Amazon
Alexa, also provide third-party functionality called "skills,"
which are analogous to the concept of apps on mobile de-
vices. Third parties develop most of the available skills in
the Amazon skill store to extend the voice assistant’s capa-
bilities. Researchers have recently looked at analyzing the
skills ecosystem and have identified various flaws in the vet-
ting process [31] as well as potential malicious skills them-
selves [30,48]. Since the primary mode of interaction with
voice assistants is through voice commands, prior work has
also shown that, under ideal settings, fingerprinting simple
voice commands is possible [10,29,33,60]. The latest work by
Mao et al. [33] shows that Alexa voice commands can be fin-
gerprinted with around 93% accuracy, highlighting the threat
of a passive adversary on user privacy. However, existing
works have considered an ideal setting where the adversary
can sniff traffic on the local network. In the real world, such a
vantage point is hard to achieve for home networks. Further-
more, existing works only consider isolated traffic from voice
assistants, thus, do not consider an end-to-end analysis.

In this paper, we consider a threat model in which the ad-
versary is not on the local network and has no direct way of
knowing the exact time when any activity was active on the
voice assistant. We consider the adversary outside the home
network/router. While being more realistic, this threat model
brings the challenge of not being able to filter out only the
desired device traffic from all the home traffic due to the use
of NAT, which is standard on home networks. To address the
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problem of filtering device traffic and inferring the time of
activity, we exploit the fact that the traffic corresponding to
the voice assistant activity (i.e., voice command) will be ob-
served on the network immediately following the invocation
of the device. So, we first train a model to infer, from the live
network traffic, when a voice assistant device is activated, i.e.,
when the wake word is triggered. We then probabilistically
filter the immediate subsequent network traffic to filter out the
flows unrelated to the voice assistant and use the remaining
flows to fingerprint the actual voice command. We explore
additional network traffic-level features that were not consid-
ered by previous works. We also expand our work to include
streaming commands and skills. Specifically, we focus on
popular and privacy-sensitive activities. Furthermore, we an-
alyze three popular voice assistant platforms to ensure our
approach is generalizable across platforms.

In particular, we seek to answer the following research
questions RQ1: Can we fingerprint the activation of voice
interface across different voice assistant platforms? Detect-
ing the time of invocation is not just an essential first step in
fingerprinting voice commands but also information leakage
in itself. RQ2: Can we fingerprint voice commands across
different voice platforms as well as different forms of voice
commands (e.g., skills and streaming commands)? We finger-
print Alexa, Google Assistant, and Siri under realistic settings
to understand how the machine learning model’s performance
varies across voice assistants. We also study different types
of voice commands, such as invoking a streaming service
or third-party skills. RQ3: Can we build an end-to-end fin-
gerprinting approach under a real-world setting? By first
inferring the invocation of the assistant and then fingerprint-
ing the activity, we can design an end-to-end solution that can
be deployed to fingerprint voice assistants in the wild.

To answer these questions, we collect network traffic for
different voice commands using three popular voice assis-
tants (Google, Alexa, and Siri). We also collect traffic for
streaming services and skills for Alexa. In addition, to an-
alyze the end-to-end performance in the presence of noise,
we also collect a dataset for Alexa, which contains a mix of
skills, streaming commands, and simple commands with ad-
ditional background noise traffic from a smartphone, laptop
and smart TV to emulate a noisy home network. Next, we
train lightweight machine learning models to detect the ac-
tivation or invocation of voice assistants from the encrypted
network traffic and use the following traffic to fingerprint the
actual voice command. In summary, we make the following
contributions:

* We show that adversaries can fingerprint voice assistant
activities on all three major voice assistant platforms im-
proving the state-of-the-art [33] with AutoML [9, 19] and
novel features. We also consider a more realistic setting
where the adversary passively monitors all traffic from a
smart home, not just the local traffic from a voice assistant.

* We explore additional features using information from

flows, bursts, protocols, and endpoints to enhance classifier
performance. Compared to existing works [33, 60], such
features were often ranked higher by multiple feature im-
portance metrics such as ANOVA and Mutual Information.
Furthermore, when comparing with existing works, we see
a performance improvement in the range of 2% to 69%.

* We introduce an end-to-end approach, where we first de-
tect wake-word invocation from network traffic using a
lightweight machine learning classifier and then use the traf-
fic that follows to predict the actual command with around
77-80% accuracy in the presence of real-world background
noise from other devices using the same network.

* We present, to our knowledge, the first study of fingerprint-
ing streaming commands and third-party apps running on
top of voice assistants. We have publicly released our an-
notated data and models for the research community.'

2 Related Works

Inference through Network Traffic. There is a large body
of work in website fingerprinting, which refers to identifying
the website a user visits by analyzing the network traffic
generated while visiting a given website [12,21,23,40,41,53,
65]. Researchers have also looked at analyzing the encrypted
traffic generated by mobile apps to infer not only the app used
but also the specific functionality executed on the app [5, 7,
15,44,51, 56, 59]. Others have tried to infer contents from
encrypted VoIP [63,64], and video-streaming traffic [46,52].
Researchers have also shown that it is possible to infer the
SSH passphrase by exploiting the timing delays between
subsequent IP packets [55].

IoT Device & Activity Fingerprinting. Researchers have
used network traffic to identify IoT devices utilizing vari-
ous approaches, including DNS traffic, DHCP traffic, and
HTTP headers [43]. Supervised and unsupervised learning-
based approaches have also been used to identify IoT de-
vices [34,36,54]. Saidi et al. [50] proposed methods of de-
tecting IoT devices at scale. Ahmed et al. [6] presented the
largest to-date study of IoT device fingerprinting in which
they consider multiple factors such as fingerprinting across
time, region, and different datasets and under different con-
straints. There has also been research to infer the activities
being performed on IoT devices. Copos et al. [16] used Nest
Thermostat and Nest Protect to infer their activity and us-
age patterns from network traffic. OConnor et al. [39], and
Triminanda et al. [57] used packet size and direction to infer
activities on IoT devices. Apthorpe et al. [8] used traffic vol-
ume and shape-based features to infer device activity. Acar et
al. [4] identify the state and actions of multiple IoT devices
using different protocols such as WiFi, ZigBee, and BLE.

Voice Command Fingerprinting. Kennedy et al. [29] in-

"https://github.com/dilawerll/va-fingerprinting
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Setup details Kennedy et. al. [29] Batyret. al. [10] Wangetal. [60] Maoet. al. [33] Our
Packet timing O O O [ ] [ ]
Packet sizes [ o [ ] [ [ ]
Traffic direction [ ] (] [} [ J [ J
Features used Burst-based @) O @) O [ ]
Flow-based O O O O [
Ports-based @] O O O [ J
IP/domain-based @) O @) O [ ]
Protocol-based @] O O O [ J
Voice Alexa [ ° [ [ [ ]
Assistant Google Assistant O (@] [ ] ©] [ ]
Platforms Siri O O @] O [
Simple [ [ ] [ J ([ ] [ ]
Command types ~ Streaming O O @) O [ ]
Skills O O O (@] [ ]
Adversary tybe Local [ [ ] [ [ ] [ ]
yp Non-local O O @] O [
Assumptions Filtered traffic [ ) ® [ [ ] O
P Aligned traffic ° ° ° ° o
Invocation Detection O O @) (@] [ ]
Analysis Activity Detection [ [ ] [ ] [ ] [ ]
End-to-End O O O O [ J

Table 1: Comparison with existing work on voice command fingerprinting. Symbols convey the following meanings — O: not considered, ©: partially considered,

@: considered.

troduced the voice command fingerprinting attack on Alexa.
They collected a dataset of 100 commands and achieved an
accuracy of 33.8%. Another work using this dataset used
locality-sensitive hashing to improve the accuracy of the ini-
tial work to 42% [10]. In a follow-up work to their original
work [29], Wang et al. performed open-world analysis, includ-
ing Google Home Assistant, and improved the accuracy to
92.89% [60]. Mao et al. [33] created a novel deep learning
model and included timing-based features to improve the ac-
curacy on the same dataset to 93.36% utilizing features such
as direction, time, and size of packets.

Distinction from Prior Work. Our approach is different as
we infer user activity within a time window of one minute
and engineer various features within this window to extract
as much information as possible, including simple and multi-
valued features. We extract many new features, such as proto-
cols, hostnames, and flow-based statistics. We also consider a
more realistic attack model where an adversary is not on the
local network but rather remotely observes network traffic. We
use the dataset mentioned above to benchmark our approach
and show that by utilizing our features, we can improve the
accuracy to 95.70% while using a stricter set of assumptions.
Prior works also do not consider invocation detection for any
platform and also do not consider activity detection for Siri.
To the best of our knowledge, we are the first to consider
different types of commands and skills. Previous research on
voice command fingerprinting only focuses on simple voice
commands, whereas we focus on both commonly used and
privacy-sensitive commands which can reveal sensitive infor-
mation about the user. Table 1 provides a comparison with

related works.

3 Methodology and Data Collection

3.1 Threat Model

The threat model consists of an adversary, which can passively
observe and capture the network traffic. The adversary’s ac-
cess point does not require them to be on the local network
as long as they have access to all the traffic from the target
device. Furthermore, the adversary and target device can be
separated by a NAT, meaning that the adversary cannot use a
simple IP filter to isolate the target device traffic from other
devices on the network. As a result, the traffic captured by
the adversary can have noise from other devices. The adver-
sary, however, cannot modify packets or decrypt any standard
encryption used in certain communication protocols such as
TLS. Any plain-text protocols can, however, be sniffed and
used for analysis (e.g., using DNS traffic for passive DNS
attack). Adversaries’ other capabilities include deploying its
own data collection setup, as described below, and using the
data to analyze and train the required models.

3.2 Proposed Approach

To detect activity or commands on the voice assistant, we first
need a mechanism to infer when a voice assistant is activated.
We can then use this information to isolate the traffic related
to the command and fingerprint the actual voice command.
To that end, we use a machine learning-based binary classi-
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Figure 1: Fingerprint process diagram. Network traffic is sniffed between the home router and internet endpoints. First, the invocation is inferred and upon
detection the activity detection phase is triggered. Each of the modules uses different filtering and ML workflows.

fication pipeline to infer invocations and a separate machine
learning-based multi-class classification pipeline to infer com-
mands or activities. We refer to the invocation classifier as
Invocation Detection and the activity classifier as Activity De-
tection. We propose a novel flow filtering method to isolate
the traffic from voice assistants from other traffic generated
by other devices on the same network. Figure | provides an
overview of our proposed approach.

3.3 Data Collection Setup

Our data collection setup consists of two routers, a Ubuntu
Desktop with a speaker, and voice assistants. We had three
voice assistants, each representing one of the top three popular
platforms: Amazon Alexa, Siri, and Google Assistant. We use
the Amazon Echo Plus (2nd Gen, L9D29R) for Alexa. For
Siri, the Apple HomePod mini (MJ2D3LL/A) is utilized. We
use the Nest Mini (2nd Generation, GA00781-US) for Google
Assistant. Both the routers are Linksys WRT1900ACS routers
running OpenWRT. One of the routers acts as a home router
and a wireless access point for the voice assistants. We refer to
this router as the home router. The home router is connected
to the internet through another router, which we refer to as the
ISP router. All the network traffic from the voice assistants
will go through the home router, which has NAT enabled,
and then to the ISP router. We collect the traffic at the ISP
router. Figure 1 shows the data collection setup visually with
red colored lines showing the controller and speaker used for
automated data collection and traffic capturing. Tepdump [20]
running on the ISP router dumps the packet capture files
(PCAPs) to the Ubuntu Desktop. We use Google Cloud’s
Text-to-Speech API to convert the text commands to audio
files. A script on the desktop plays the commands (audio files)
via the speaker.

Since the voice assistant’s ability to understand the com-
mand can vary depending on factors such as noise and an
imperfect speech recognition engine, we employ solutions to
verify that the voice assistant understands the command it was
issued. For example, Amazon Alexa and Google Assistant
allow users to view their "interaction history" of what the
assistant heard and how it responded. We use these services to

validate each invocation for these two assistants. We use Sele-
nium to scrape and retrieve the web-based record of activities
for Google Assistant and Alexa to match the phrase passed to
the speaker. We noticed about 2% of the samples failed verifi-
cation and were consequently removed later. Upon successful
or failed verification, the script then stores the timestamp and
label of the command along with other information in a sep-
arate JSON file. Next, the script waits for a certain amount
of time (e.g., one minute) and moves on to the next iteration.
Finally, if the voice command issued requires a force stop to
end (e.g., stopping streaming services), the controller issues
the stop command through the speaker (e.g., "Alexa, stop")
after the designated waiting period. Siri, however, does not
provide any accessible interface to retrieve interaction history,
so we manually verified one round of invocations.

3.4 Datasets

We collect datasets from all three platforms. The majority of
our analysis, however, focuses on the Alexa platform as it
is the largest platform by market size in the voice assistant-
enabled smart speakers [18,28]. Table 2 highlights the dif-
ferent datasets. The full list of commands considered in our
work can be found in the extended version of our paper. >

Alexa skills, commands and streaming services. These
datasets consist of simple voice commands, streaming com-
mands, and skills for Alexa. Simple commands are, gener-
ally, short-lived commands which follow the structure of
quick request-response. Examples of such commands could
be "Alexa, what time is it?" or "Alexa, set the alarm for 7 am".
Existing works only consider such commands, as used in the
"Deep VC Fingerprinting" dataset [60]. Such commands usu-
ally take less than 30 seconds from invocation to completion.

Streaming commands are, generally, long-lived commands
which often run until explicitly stopped. Examples of these
commands can be "Alexa, play news from CNN" or "Alexa,
play music from Spotify". Lastly, skills, which are commonly

2Extended  paper version: https://github.com/dilawerll/
va-fingerprinting/blob/main/paper_resources/
ahmed_spying_usenix_2023_extended_version.pdf
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VA Type of Commands . Classes
Dataset Platform | and Description Noise (Samples)
simple_100_alexa | Alexa Simple voice No | 100 (100)
commands
stream_15_alexa Alexa Streaming service No 15 (100)

invocation commands
Multiple skill
invocation commands

skills_100_alexa Alexa No 100 (100)

Google Simple short

simple_50_google Assistant | voice commands No >0(100)
simple_50_alexa Alexa Slmple short No 50 (100)
voice commands
simple_50_siri Siri Simple short No | 50 (100)
voice commands
. Simple, skills and 45 +40 +15
mix_100_alexa Alexa streaming commands Yes =100 (100)
Alexa Simple short
Deep_VC [29] Google voice commands No 100 (1,500)
¥

other N/A * N/A

Table 2: Characteristics of different datasets we collected for our study.
Web interaction scripts generated background traffic as a source of noise.
other datasets were collected to only evaluate a certain scenario and we have
described these datasets as and when needed.

referred to as apps for the Alexa ecosystem are typically de-
veloped by third parties to provide added functionality. An
example of a skill could be a bank skill that enables users
to fetch their bank balance [3] or a game skill that lets users
play the Jeopardy game [24]. We label all different com-
mands which can launch a skill by the identifier of that skill.
We capture traffic from 100 simple commands, 15 streaming
commands, and 100 skills each for 100 samples to create a
total of 215 x 100 = 21,500 samples.

The command selection process consisted of selecting pop-
ular or sensitive commands. We followed the steps that a
general user would adopt to select popular commands. For
example, utilizing platform-specific search engines and using
top-rated skills. For selecting sensitive commands, we focused
on commands/skills that leak a user’s gender, religious belief,
sexual orientation, financial interest, or political leaning.

Commands across other voice assistant platforms. These
datasets include simple voice commands from all three plat-
forms we consider. We capture traffic from 50 simple voice
commands on each platform with 100 samples for each com-
mand, totaling 50 x 100 = 5,000 samples. The commands
between the voice assistants mostly overlap, however, some
commands varied between assistants to accommodate for
some assistants not supporting certain commands or not re-
sponding correctly. For simple voice commands, we again
focus on commands which can leak sensitive information
about users’ lifestyles.

Alexa traffic with background noise. The third type of
dataset we collect facilitates a realistic end-to-end experiment.
We create a command set with a mix of streaming commands
and skills to compose a total of 100 classes (15 streaming com-
mands, 40 skills, and 45 simple voice commands). We also

connected other devices to the same router to emulate a realis-
tic home network with traffic from other devices overlapping
with traffic from the voice assistant device. We create two
web-crawling scripts which generate a high amount of traffic.
One script repeatedly visits the top Alexa 1,000 domains and
clicks on the page several times at random locations to gener-
ate more randomized traffic. The other script repeatedly opens
the Amazon web page and does similar random clicking a few
times on each visit. This is to remove any potential bias due
to amazon.com domains only being accessed by the Alexa
device. The resulting dataset was approximately 12 times
larger than the dataset with only simple Alexa commands.
This shows that the amount of noise added is considerable,
and any system that does not consider noise should adversely
affect the classifier’s performance.

Other public datasets. We also use the "Deep VC Fin-
gerprinting” dataset [29], which was also used by existing
works [10,29,33,60] to benchmark our approach and compare
it to previous techniques for fingerprinting voice commands.
The dataset consists of 100 simple commands selected em-
pirically based on a mixed methods approach of selecting
top commands from Google Search, domain knowledge, and
personal experience. Each voice command was invoked 1,500
times to generate a total of 150,000 samples. Five different
voice templates were used for each command (text-to-speech),
and each voice has 300 samples collected through it. This
dataset, however, lacks validation of commands to ensure
the voice assistant properly perceived the command and the
invocation attempt did not lead to a false invocation.

3.5 Data Pre-processing

We use tshark [58] to convert the PCAP files to CSV for-
mat for further processing. Like most other devices, voice
assistants use standard encryption techniques to encrypt most
traffic between the device and internet endpoints. Thus, the
communication content itself is not observable over the chan-
nel. Some protocols, however, are not encrypted and are plain
text by default, e.g., DNS. Therefore, we extract only the
header level information for all packets other than DNS, i.e.,
packet length, IP addresses, ports, flags, time, etc. We also ex-
tract the query Hostname and response IP addresses for DNS
packets to create an IP address to Hostname mapping. This
process is similar to passive DNS. Utilizing the IP address —
Hostname mapping, we supplement our packet information
by adding a hostname field. We ignore and remove any traffic
not based on IP protocol from our captures, e.g., ARP. We also
perform some additional cleaning to remove malformed pack-
ets from the dataset. Finally, we store the processed packet
files (header information for each packet and the added infor-
mation) in CSV format.
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4 Invocation Detection

Invocation detection refers to identifying when a smart voice
assistant device was activated or invoked. Invocation detec-
tion is integral to any efficient real-world attack on voice
assistants because the adversary would not have a trivial or
straightforward method to find when the user invoked a voice
assistant just by observing the network traffic. So invocation
detection would help pinpoint the time of invocation, which
can then be used for activity detection by focusing on traf-
fic following the user request to the voice assistant. Hence,
invocation detection is the first step in our attack.

Users invoke or activate the voice assistant by uttering the
wake word of the corresponding voice assistant. For example,
"Alexa" is the default wake word on Amazon Echo devices.
Apple’s Siri assistant, by default, responds to "Hey, Siri". "Ok,
Google" and "Hey, Google" are the default wake words on
Google Assistant. Voice assistants remain in their idle state
until they hear the wake word, which triggers them to start
recording and communicating with the backend. This network
communication results in a significant uptick in traffic imme-
diately following the utterance of the wake word. Figure 2
shows an example of this uptick and spike in network traffic
immediately following an invocation.

In a real-world attack, the invocation detection process
should be quick, lightweight, and efficient. A complicated and
complex model can waste significant computing resources, so
we opt for only a few features and relatively simple machine
learning models. To achieve this, we opted for a prediction
every 2 seconds as this allows us to be precise enough with
predicting invocation while also balancing the load of pre-
diction calls on the underlying hardware. We created sliding
windows of width 4 seconds over the continuous network traf-
fic, which slides 2 seconds (corresponding to one shift every 2
seconds). The value 4 for window_ width was selected experi-
mentally by evaluating different values such as 2, 4, 6, and 10.
We found that across all three platforms, window_width=2
gave the worst performance (around 70% accuracy) while
window_width=4 gave the best performance (around 99% ac-
curacy). Increasing the window_width to 6 and 10 decreased
the accuracy by 1% and 4%, respectively. We mark each
window as having an invocation (1 or positive class), if we
invoked the voice assistant in the first 2 seconds (out of 4 sec-
onds) of the window. Otherwise, we mark it as not having an
invocation (0 or negative class). The goal is to teach the classi-
fier to differentiate between an invocation and idle state. Thus,
while creating training data, we skip the traffic after a positive
class label for a specific time interval. This "skipped" traffic
is used for activity detection as it corresponds to an activity
or voice command. Including this traffic as ‘non-invocations’
or negative class samples will lead to false positives as the
voice assistant would not be in an idle state. We then extract
features from each of these windows.

4.1 Feature Extraction & ML Model

Features Used. We saw that each voice assistant gen-
erated a sudden network traffic spike to a particular set
of domains for each invocation. For example, saying the
wake word to Alexa resulted in a sudden spike of network
activity to two domains, namely, unagi-na.amazon.com
and avs-alexa-4-na.amazon.com. Using UDP protocol,
Google Assistant communicated with www.google. com. Siri
contacted de javu.apple.com using TCP protocol. Figure 8
in Appendix B highlights the top five endpoints contacted in
the four-second window of an invocation for all three voice
assistants. The figure confirms the unique selected domains
(in orange color) for all three voice assistants.

We found that Alexa sends, on average, more traffic to
device-metrics-us.amazon.com, butis only present in a
few of the windows and hence not a good candidate. Con-
versely, for Google Assistant, 8.8.8.8 is present in all in-
vocations but lacks in the amount of network traffic in each
window, and this is Google’s DNS domain and hence also
not suited. On the other hand, the domains we selected are
present in all the data windows and send/receive a significant
amount of traffic. We, therefore, compute and extract the total
size of incoming and outgoing packets to/from these selected
domains as features to detect invocation. As a result, we have
two to four features for each platform corresponding to the in-
coming and outgoing traffic size for the selected domains. For
example, in the case of Alexa, we have four features, i.e., total
output and input size for avs-alexa-4-na.amazon.comand
the total output and input size for unagi-na.amazon.com.
Similarly, for Siri, we have two features, i.e., total output and
input size for dejavu.apple.com.

To measure the effectiveness of these features and under-
stand if other applications (e.g., web activity) would conflict
with these features and potentially cause false positives, we
collected additional traffic to these domains through various
sources such as web browsers, mobile apps etc. We plot the
scatter plot of these features in Figure 3. We see that traffic
from voice assistants to these domains significantly differs
from the traffic generated to these domains using other ap-
plications. For example, voice assistants usually send more
outgoing traffic (as they send voice recordings) and receive
less incoming traffic. It was also interesting to note that even
mobile versions of these voice assistants have varying traffic,
as Siri uses less traffic to these domains on the mobile version.
In contrast, the Alexa app uses more traffic to these domains
and does not use the unagi-na.amazon.com. In our case, the
Alexa app used avs-alexa-13-na.amazon.conm instead of
avs-alexa-4-na.amazon.com. However, we consider these
domains to be the same as they are most likely used for load
balancing across platforms. Thus, an attacker can use such
unique domains to segregate network traffic.

Machine Learning Model. We compare the performance of
multiple machine learning models such as AdaBoost classifier,
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Figure 2: Immediately following the invocation, a spike can be seen in traffic to specific domains for each voice assistant. For example, Alexa communicates with
avs-alexa-4-na.amazon.com and unagi-na.amazon.com; Siri communicates with de javu.apple.com and UDP protocol, Google Assistant communicated
with www.google.com using UDP protocol.
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Figure 3: The figure shows the traffic patterns for features we use for invocation detection. We see that invocation traffic from voice assistant commands is very

different from other types of traffic and usually invocation detection generates more outgoing traffic and less incoming traffic.

K Nearest Neighbours (KNN), Random Forest, and XGBoost
classifier from the scikit-learn [42] and xgboost [13] Python
libraries. We input the extracted features into the model, train
on the binary labels (1 for invocation and 0 otherwise), and
compute the commonly used metrics, such as accuracy, preci-
sion, and recall to evaluate the performance.

4.2 Evaluation

We performed 5-fold cross-validation on the dataset to ensure
each sample gets to be in the train and test set across runs.
We train the classifiers for each of the three voice assistants,
and the results for each model and voice assistant are summa-
rized in Table 3. All classifiers perform similarly in detecting
invocation, but we found the Random Forest classifier to be
the best across all metrics. Hence, we select Random Forest
as the default classifier for the end-to-end system evaluation
(in Section 6). Our analysis of the misclassifications found
that most errors were due to incorrect or improper invocations.
For example, one source of error was if the wake word was
uttered, but no command followed it, or if the wake word
was uttered and was followed by a command, but the voice
assistant did not proceed to process the request.

Voice assistants are much more likely to be in their ‘idle’
state rather than the ‘invoked’ state at any given time, re-
sulting in much more non-invocations than invocations. This
difference in prior probabilities can lead to a base-rate prob-
lem similar to what intrusion detection systems face. In short,

Assistant | ML Model | Accuracy | Precision | Recall
AdaBoost 99.72 99.59 99.86

Alexa XGBoost 99.75 99.59 99.91
Random Forest 99.81 99.63 100.0
KNeighbors 99.79 99.59 100.0

AdaBoost 99.65 99.71 99.61

Gooele XGBoost 99.70 99.71 99.71
g Random Forest 99.70 99.71 99.71
KNeighbors 99.65 99.71 99.61

AdaBoost 98.95 98.19 99.81

Siri XGBoost 99.45 99.51 99.42
Random Forest 99.50 99.71 99.32
KNeighbors 99.55 99.52 99.61

Table 3: Comparison of different machine learning models for invocation
detection on Alexa, Google Assistant, and Siri. While different models per-
form better with respect to certain metrics. We found Random Forest most
consistent across all metrics.

even a near-perfect 99% accuracy would mean many false
positives due to a higher number of the negative class in
the data. To evaluate the extent of this problem, we col-
lect ‘idle’ traffic from all three voice assistants for about
12 hours with and without traffic from other devices. Traffic
from other devices was simulated using web crawling scripts.
We used four scripts, one of which opened the Alexa Top
1000 websites and randomly clicked on the landing webpage
to generate more traffic than simply loading the page. The
other three scripts repeatedly opened http://amazon.com,
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http://google.com, http://apple.com websites and per-
formed random user interactions. Raw PCAP size without traf-
fic from other devices is about 15MB, and with background
traffic, it was about 7.2GB. We extract the same features from
this ‘idle’ traffic dataset and use the already trained model to
test against this ‘idle’ traffic trace. We achieved perfect results
of 100% accuracy across the three voice platforms with or
without noise.

We calculated the time-to-predict, which measures how

long it takes to predict an output label given the raw input
data, to be, on average, 9.91 ms across all three voice assistant
platforms. The time-to-predict counts the total time from
converting the raw data to CSV, cleaning and preprocessing,
extracting features, and finally using the trained ML model
to predict a label on a single-core CPU with no additional
hardware accelerators.
Takeaway. We show that inferring the activation of a voice
assistant interface through encrypted network traffic is practi-
cally feasible across the three popular platforms. We achieve
near-perfect results for all three voice assistants. We also show
that our results do not suffer from the base-rate problem since
traffic in an idle state is dissimilar from traffic immediately
following an invocation and, thus, easy to distinguish by a
classifier. We also show that background noise does not sig-
nificantly affect the performance of detecting the invocation
of the voice assistants.

5 Activity Detection

Activity detection is the process of inferring the actual com-
mand or application (i.e., skill) executed. The workflow to use
a voice assistant begins with invoking the voice interface with
the wake word and following it with the phrase relevant to the
voice command. To achieve this, we extract a fixed duration
of traffic, following and including the invocation of the device.
Consequently, any traffic before the invocation or after the
command expires is unrelated to the command or skill and is
typically a source of noise. Such traffic can be eliminated as it
usually is general device traffic, e.g., keep-alive connections,
pings, and device status messages.

To set an optimal threshold of the amount of traffic or in-
terval to consider for fingerprinting commands, we have to
consider the run time of the command. Different commands
and skills can have diverse run times. For example, simple
commands usually only last for up to 30 seconds, but stream-
ing commands can often run until explicitly stopped (e.g.,
Spotify). In such cases, finding an optimal value for window
size would depend on the command at hand. Considering
multitiple different traffic cutoffs (e.g., one, two, and five min-
utes of traffic), we found that increasing this window size
from thirty seconds to two or five minutes would increase the
model’s performance on streaming commands, but it did not
help identify simple commands. To balance the tradeoff, we
use a window size of one minute.

5.1 NAT Issue

Since there might be a NAT active on the home router, the
adversary would not inherently be able to separate all the traf-
fic from an Amazon Echo (target) device from other devices
on that network. This is due to how NAT changes the IP ad-
dress from individual devices to the router’s public IP address,
and so, for an out-of-local network observer, all the traffic
would be seen coming from the router. An adversary would,
however, be able to separate one flow of traffic from another
because NAT does not change external IP, port, or protocol.
Therefore, we define a flow as all traffic with the same set
of IPs, ports, and protocols. For IP protocols that do not use
ports, we set the port number to 0. We also consider flows
to be direction agnostic, i.e., we do not distinguish between
incoming and outgoing flows (between the same endpoints).
We set the inactive flow timeout, which is the time after a
flow is considered to have expired, to 15 seconds. Active flow
timeout is set to one minute, the same as our activity detec-
tion window, since we do not consider traffic longer than a
one-minute duration. Note that our definition of flow does
not depend on the flow/connection definition of any particular
protocol, so if a TCP connection ends and another connection
to the same endpoint (IP, port) starts (e.g., new TCP hand-
shake) within 15 seconds, we consider them as a single-flow
instead of two separate flows.

5.2 Separating Voice Assistant Traffic

To isolate the traffic associated with voice assistants from
traffic generated by other devices, we use the fact that voice
assistants would generate activity-related traffic only after
it is invoked. Since we can only see flows without know-
ing which device inside the home network they belong to,
our goal is to filter the flows related to voice assistant activ-
ity from the others. Traffic related to voice assistant activity
could manifest either as a new flow or part of an established
flow. The new flows, generally, would start immediately after
the invocation of the voice assistants, and we can capture
the flows of interest by capturing traffic from all flows that
‘begin’ in the first m seconds following the invocation and
label these as new flows, where m is a variable time threshold.
This allows us to capture only the more relevant flows to the
activity rather than the noisy flows from other devices. The
already active flows would be active before the invocation of
any particular activity and would therefore be activity agnos-
tic, generally contacting company-specific end-points, e.g.,
device-metrics-us.amazon.com to gather information
about device metrics. To capture traffic from relevant active
flows, we created a list of company-specific domains for each
voice assistant that was frequently contacted in traffic traces
across all commands, e.g., avs-alexa-4-na.amazon.com,
unagi-na.amazon.com, api.alexa.com, etc.for Amazon
Alexa. We capture all the traffic to these end-points and label
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Figure 4: An illustration of our flow separating technique to filter out irrele-
vant flows (blue). Some flows are fixed and will always be considered (red).
Other flows will only be selected (not removed) if they begin within m sec-
onds of invocation. Any traffic outside of the window will be not considered.

these flows as fixed flows. This way, we filter out all traf-
fic other than the new flows and fixed flows. This technique
would allow us to capture most, if not all, of the target device’s
packets while minimizing the traffic from other devices. This
process is visually explained in Figure 4.

In a normal household with multiple voice assistants, it
would be uncommon for all devices to be sending a high
volume of traffic at the same time as the target voice assis-
tant, and for any of the flows not associated with the voice
assistant to start within m seconds of it being invoked. The
optimal value of m depends on the voice assistant and the
amount of expected noise. For example, m=10 is optimal for
Siri, whereas m=35 is optimal for Google Assistant and Ama-
zon Alexa. Setting m=5 would also filter flows more strictly
and can help if the network has too much noise but can re-
move a few relevant flows (hence reducing performance as
well). In our evaluations, we set m=10 as we analyze all three
platforms; however, any value of 5 < m <= 10 would likely
exhibit similar outcomes.

5.3 Feature Extraction

The extracted features can be broadly grouped into single-
valued and multi-valued categories. Single-valued features
contain various counts and distribution-related characteris-
tics over the entire window, e.g., median inter-packet delay
and incoming vs. outgoing traffic ratio. Multi-valued features
are the counts or occurrences of different attributes, such as
how often a given Hostname is contacted or the counts of
packet lengths observed and expressed as a key-value-like
structure. For example, in a given window, if nine packets are
sent to domainl, five packets are sent to domain2 and four
packets are sent to domain3, the value of Hostname multi-
valued feature would be {’ domainl’: 9, ’'domain2’: 5,
"domain3’: 4}. Since each is essentially a dictionary in the
feature vector, we need to encode/serialize them before train-
ing a model to convert them to multiple single-valued features.

A|B]|.. 4 A|B|..|Zc|Z_h
|= > 2 |3 |..|{c9,h:5}—2|3|..] 9|5
‘ 4 11 |..|{c:2,d:3} 4 |11|..l 2|0
Pre-processed
CSV file Extracted features Encoded Features (n=2)

Figure 5: A simple example of feature encoding or serialization from ex-
tracted features. The parameter n is set to 2 here so value Z_d is dropped
when encoding because only top 2 would be selected.

When training the model, we select the top » pairs with re-
spect to the occurrence on the training set. We then encode
the dictionary into multiple single-valued features. The pa-
rameter n is empirically set to 10 for the count of protocols,
100 for TCP-related features, and 50 for UDP-related features.
Figure 5 highlights the encoding process where Features A
and B are regular single-valued features and hence unchanged
during the encoding process. Feature Z is a multi-valued fea-
ture, and hence fop 2 ‘keys’ are selected based on descending
values across all samples and then encoded for each sample.
Table 6 in Appendix A provides a list of all features used.

5.4 Machine Learning Pipeline

We use AutoGluon Tabular [19], which is a part of Au-
toML [9], to train the Machine Learning models. AutoGluon
iterates through many different models, including Random
Forest variants and Deep Learning models, to automatically
optimize the parameters, create ensembles, and select the best-
performing model based on training data. The training data is
split into training and validation °, while the test data is used
to evaluate the final model’s performance.

Training for AutoGluon Tabular without accelerators can
take up a considerable amount of time due to the number of
models and hyperparameters, but after the training process
is complete, the inference or prediction process is faster and
can be easily performed on commodity hardware. Since this
model would not need to predict as frequently as the invoca-
tion detection model, it does not have a similar constraint of
being lightweight. We also found that replacing AutoGluon
Tabular/AutoML with Random Forest classifier or XGB Clas-
sifier usually speeds up the training process with an average of
around 2-4% loss in performance. The time-to-predict, from
raw traffic data to activity class label, was, on average, 467 ms
for AutoGluon Tabular. This time, however, depends on the
model that is finally selected as optimum. Our analysis found
the time-to-predict to be in the range of 250 ms to 900 ms.
To evaluate the quality of the model and performance on test
data, we use commonly employed metrics such as average
accuracy, precision, and recall.

3 AutoGluon creates a validation dataset from a part of the training dataset.
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Dataset Description

| Wang et al. [60] | Mao et al. [33] |

Our

‘ # Labels

Assistant |  Type of activity | Dataset |  Accuracy | Accuracy | Accuracy | Precision | Recall |

Alexa | Simple commands | DeepVCFingerprint [60] | 89.00% | 9036% | 9570% | 95.80% | 95.70% | 100
Alexa Simple commands simple_100_alexa 46.30% 52.20% 80.30% 80.58 % 81.44% 100
Alexa Skills skills_100_alexa 29.22% 36.34% 82.76 % 85.33% | 82.42% 100
Alexa Streaming stream_15_alexa 29.75% 52.45% 99.39% 99.30% 99.34% 15
Alexa Simple commands simple_50_alexa 38.40% 42.80% 87.70 % 87.46 % 88.20% 50
Google Simple commands simple_50_google 89.60% 90.60% 92.67% 92.66% | 92.96% 50
Siri Simple commands simple_50_siri 77.40% 83.09% 92.80% 92.91% | 93.18% 50
Alexa All types with noise ‘ mix_100_alexa ‘ 50.79% ‘ 58.70% ‘ 81.33% ‘ 81.28 % ‘ 81.45% ‘ 100

Table 4: Activity detection performance for various datasets. Results show that all three platforms investigated more or less leak information about the types of
commands they execute. Streaming commands, in particular, are easier to fingerprint. Our method also outperforms existing approaches.

5.5 Comparison with Existing Works

To evaluate our approach and set a benchmark for perfor-
mance, we compare it to existing works using the Deep VC
Fingerprinting dataset [60]. Previous works [10, 29, 33, 60]
have all used this dataset for their evaluations. In particular,
we use the closed-world Amazon traces from the dataset with
a total of 150,000 samples (1,500 each for 100 simple voice
commands). Since the dataset simply contains separate PCAP
traces for each of the individual commands and does not mark
the timestamp of invocation, we cannot use this dataset for
invocation detection or track the flows that start within a cer-
tain time period after invocation. We can, however, consider
the PCAP files to contain all flows relevant to the voice com-
mands and perform voice command fingerprinting to set a
benchmark for this dataset. Table 4 compares the performance
on fingerprinting 100 closed-world Amazon Echo commands
from previous works. On this dataset, our model obtains an
accuracy of 95.70% using the same train and test split (90:10
for training and testing), which is an improvement over the
current state-of-the-art reported accuracy of 93.36%. This
shows that our model outperforms the current state of the art,
and thus we set a baseline for our approach. We will also
compare existing approaches on our datasets to demonstrate
significant improvement over the existing state of the art. *
Previous works have only considered individual packet size,
direction, and timing-based features. However, endpoints, pro-
tocols, and flow-level information can provide additional in-
sights, such as which domains are being contacted in each
activity and the distribution of traffic per flow/burst rather than
the overall traffic. This additional information can provide the
classifier with additional context and make the classifier more
robust in the presence of background noise. For example, acti-
vating a certain Alexa skill might contact an endpoint unique

4For Mao et al., [33] we tried our best to replicate their proposed deep
learning models, but some parameters were not provided (e.g., input dimen-
sion, learning rate, optimizers, and activations), and thus we were not able to
exactly replicate their performance. Similarly, for Wang et al., [60], we had a
performance drop of 2-3% compared to the reported performance. However,
as we show on our realistic datasets, we outperform by around 2% to 69%.

to that skill or a set of skills and can identify the skill devel-
oper’s backend. Various feature importance/ranking metrics
such as ANOVA, Mutual Information and Random Forest’s
Gini index also rank these additional features (e.g., flow-based
and burst-based features) more frequently in the top 10 fea-
tures. More details available in Table 7 in Appendix C. The
usefulness of such features becomes even more evident when
we evaluate existing approaches on our dataset containing a
more realistic setup containing background noise. In fact, we
obtain a performance improvement in the range of 2% to 69%
compared to previous works. On average, across all datasets,
we obtain a performance improvement of 25.76% from Mao
et al. [33] and 32.77 % from Wang et al. [60]. The results
for each dataset are shown in Table 4. Thus, our approach
outperforms the current state of the art and establishes a new
baseline in a more realistic setup.

5.6 Comparing Voice Assistant Platforms

To compare the extent to which different voice assistant plat-
forms are vulnerable to voice command fingerprinting, we
evaluated three platforms (i.e., Alexa, Google Assistant, and
Siri). We used the traffic trace of 50 commands collected from
Nest Mini (Google Assistant), HomePod mini (Siri), and a set
of 50 similar commands for Alexa. The commands were sim-
ilar for each dataset, and we only made minimal changes to
the command set when an assistant did not properly respond
to a command, i.e., did not respond at all or replied with a
non-trivial or unexpected response.

Table 4 shows the performance across all three voice assis-
tants. We see that all voice assistants are similarly vulnerable
to voice fingerprinting attacks. The model performs slightly
better for Google Assistant and Siri compared to Alexa. We
found that most inaccuracies are due to commands that gener-
ate a similar response from the voice assistants, e.g., setting
and cancelling alarms are often mislabeled. We found another
source of errors to be the commands which initiate an internet
‘web’ search by the smart speaker, and the response is usually
generic, e.g., "Here is what I found on the web for..."
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Figure 6: Impact of training sample size on accuracy across three platforms.

We compute and compare the mutual information gained
across each feature to understand what feature groups are
important and provide the most information for each voice
assistant platform. Table 8 in Appendix C highlights the fea-
ture ranking based on mutual information across the three
platforms. We see that flow times, lengths, and packet lengths
are often the most informative features among all features
(full feature list available in Appendix A). Features such as IP,
Hostname, and External Ports are ranked towards the bottom
since, for simple commands, platforms only contact generic
cloud-based end hosts and serve content directly without de-
pending much on third-party content. However, when ana-
lyzing other forms of commands, such as streaming services,
Hostname provides a significant amount of mutual informa-
tion (more details in Section 5.7).

Impact of Training Size. We vary the sample size for each
class and train AutoGluon Tabular classifier for these varying
sample sizes to understand the number of sample sizes needed
to obtain stable performance. Figure 6 shows the evolution of
accuracy for inferring the activity as a function of sample size.
We used a standard 80:20 train:test split of the data in each
case and sampled the given amount from the train set while
evaluating performance on the test set. After approximately
60 samples (i.e., around 48 training samples), the performance
stabilizes with minimal performance gain for a larger training
set.

5.7 Comparison of Different Command Types

To go one step ahead and understand if different types of com-
mands affect the ability to fingerprint, we consider different
voice commands and the resulting activities performed on the
voice assistant device. For this analysis, we use Alexa, the
most popular home voice assistant device by market share,
and provides the most diverse set of voice commands and
third-party skills. As previously mentioned, we collect three
different kinds of activities: simple commands, streaming
commands, and skills for Alexa. Then, we extract features
and use our machine-learning pipeline to compute the results.
The results for each category of commands are reported in

Table 4. The results show that we get high accuracy for stream-
ing commands (99.39%), among other contributing factors,
due to different commands originating from different vendors
and usually having unique endpoints to serve the streaming
content directly to the device [25]. Hostname and IP multi-
valued features also rank higher (compared to other types)
in feature ranking given in Table 8 of Appendix C based on
mutual information. For skills, we often found them contact-
ing generic Amazon/AWS endpoints or other general skill
hosting services (e.g., Voice Apps [2]).

We analyzed the mislabels from the classifier and found that
skills of similar functionality developed by the same developer
were mistaken for each other. For example, the following skill
pairs: ("Morning Sikh Prayer" and "Evening Sikh Prayer")
and ("Bird Sounds" and "Rain Sounds") created confusion
for the classifier. In both cases, the same vendor posted these
skills pairs to Amazon Skill Store and had similar function-
ality. Another set of skills that were often predicted as each
other were fact-based skills such as "Dog Facts", "Cat Facts",
"Unofficial Chuck Norris facts", and "Creepy factoids." These
skills have practically identical traffic patterns when asked for
a fact, and they reply with a fact randomly from a selection of
facts before returning control to Alexa. Upon further investi-
gation, we also found that commands with a similar meaning
or similar trigger-activity response created misclassification
errors. For example, commands such as "add milk to shopping
cart," "add pork to my shopping cart" or "remove bananas
from my shopping cart" were often mistaken for one another.
We also found that asking Alexa "how to deal with anxiety"
and "how to feel less depressed" triggered the same response
from Alexa and hence resulted in incorrect prediction by the
classifier. We provide more examples in Table 5. The per-
formance of our model on different types of commands and
skills shows that, in general, the model can accurately iden-
tify commands. We further evaluated any potential loss in
performance due to potentially losing some traffic when fil-
tering out traffic not from fixed or new flows. We found the
effect negligible (less than 1%) and an acceptable overhead
in all cases. To understand any difference in performance due
to background noise, we used the mix_100_alexa dataset to
evaluate the performance of Activity Detection in Section 6.

5.8 Generalizability Analysis

To understand the generalizability of our developed approach
across different networks and hardware (i.e., a different voice
assistant from the same vendor), we collected a dataset of
50 simple commands (i.e., the same commands used in sim-
ple_50_alexa dataset) using a different Alexa voice assistant
device (Amazon Echo Dot 3rd Gen) deployed in a different
network operated by a different ISP (i.e., a home network as
opposed to the lab network; no network configuration changes
were made to the home network). We then used the classifier
trained on the simple_50_alexa dataset collected from our
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Skills Pair | Count
skill: Daily Evening Sikh Prayer* <> Morning Sikh Prayer* 16
skill: Dog Facts <+ Unofficial Chuck Norris Facts 9
skill: Buddha Sense <+ Me an Interview Question 8
skill: Cat Facts <> Dog Facts 7
Skill: Rain Sounds* <> Bird Sounds* 7
Simple Command Pair ‘ Count
where are the closest therapist? <+ where can I find a divorce lawyer 13
tell me a Hannukah joke <> tell me a halloween joke 10
what are good date spots around <+ where is the closest sperm bank? 9
how to deal with diabetes <+ where can I find a divorce lawyer 9
add bananas to my shopping list <+ remove milk from my shopping list 8

Table 5: Top misclassified pairs in Alexa skills and commands. Skills marked
with “*’ have same developer.

lab (as listed in Table 2) to fingerprint the activities from this
new dataset. The model achieved an accuracy of 83.81% with
a precision and recall of 83.52% and 83.87%, respectively.
We see a slight drop of 3.89% when trained and tested on
the same dataset (the accuracy was 87.7% as shown in Ta-
ble 4). The errors follow a similar pattern where commands
of similar nature are mislabeled as each other. For example,
the top classification error was the command “what are good
date spots around" being labeled as “what are good hotels in
Las Vegas". This evaluation shows that the model general-
izes quite well and can be deployed across ISPs and devices
manufactured by the same vendor.

Takeaway. We show we can fingerprint sensitive voice com-
mands effectively and with high accuracy across all three
voice assistant platforms. Further, we show that different types
of voice commands and skills have slight differences in how
easy/difficult it is to fingerprint them. Similar commands and
skills have similar traffic and can be easily wrongly labeled
as each other. Finally, we demonstrate that our approach gen-
eralizes across different networks and devices.

6 End-to-End Detection

We design an end-to-end classification system ~ for real-world
analysis and inference of traffic from a voice assistant. The
system trains separate invocation and activity detection mod-
els as described in the previous sections. Figure 7 highlights
the overall process. The end-to-end system consists of a soft-
ware control loop that captures 2 seconds of network traffic
from the router and stores it in a queue-like structure. It then
uses 4 seconds of traffic and extracts invocation detection-
related features and provides them to an already trained invo-
cation detection model. The invocation detection model then
provides a binary prediction of invocation detected or not. If
no invocation is detected, the loop goes to the next iteration
and provides the next 2 seconds of traffic. However, if an
invocation is detected, the next 56 seconds of traffic is used
to compose a traffic window of 60 seconds to infer the actual

5 A short demo is available at: https://youtu.be/2Dv8cSkvClg

activity on the voice assistant as described in Section 3. Using
the one-minute traffic, we perform flow filtering to extract the
fixed and new flows. Next, we extract the features for activity
detection from these flows and use the pre-trained AutoGluon
Tabular [19] classifier to predict the activity.

For evaluation, we used the mix_100_alexa dataset, which
has traffic from a combination of 100 different Alexa com-
mands and skills. The dataset contains a mixed total of 100
different simple voice commands, streaming commands, and
skills. The dataset also contains background traffic generated
randomly from desktop devices, which will overlap with traf-
fic from Amazon Echo (Alexa voice assistant) and create
noisy traffic. This allows us to evaluate the performance of
both the end-to-end model and the effectiveness of the flow-
separating technique to differentiate flows from the voice
assistant to the flows from other internet-connected devices.
We used the first 80% data to train and optimize the classifier
and used the latter 20% to evaluate the performance. We did
not use the 5-fold cross-validation or random sampling to
ensure the results were not biased due to temporal factors
such as training samples temporally sandwiched between the
test data samples.

To first isolate and understand any difference in perfor-
mance due to background noise, we evaluate invocation de-
tection and activity detection separately. Using the Random
Forest classifier for invocation detection, we got 98.70% accu-
racy, 97.77% precision, and 99.68% recall, respectively. For
activity detection, we achieved 81.33% accuracy, 81.28% pre-
cision, and 81.45% recall, respectively. This shows that the
system performs well due to our flow filtering process, even in
the presence of relatively high background noise. Finally, we
combine the two models (as shown in Figure 7) and create our
end-to-end system. The end-to-end system has an accuracy,
precision, and recall of 79.91%, 80.34%, and 79.30%, respec-
tively. The average time-to-predict if Alexa was invoked is
9.9 ms (i.e., only the invocation detection model). However,
the average time to predict the exact voice command requires
891 ms (excluding the one-minute wait to obtain activity traf-
fic). This shows that our end-to-end system can infer voice
assistant activity in under one second.

Analysis of misclassifications in end-to-end scenarios
shows that most inaccuracies are due to similar commands or
skills being mislabeled as one another (similar to Table 5), es-
pecially ones that have similar functionality. We also found an
interesting case where an exercise skill (‘6-Minute Full body
stretch’) was labeled as a travel skill (“‘My VoiceTravel’) and
vice versa. Upon further investigation, we found that due to
our data collection only invoking the skill by only the ‘initial’
invocation phrases and not performing deeper interactions
(e.g., replying to if you want to start a workout or not), we had
some cases of skills just asking one prompt and then exiting
upon not hearing a response from the user. This is a limitation
of our data collection approach, and in the future, we plan to
explore deeper automated interaction with skills to potentially
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of traffic

Figure 7: The state diagram of how the end-to-end system works. The input
is a stream of packets fed into the system every 2 seconds. Upon detecting
invocation, the system waits for 1 minute of traffic to distinguish between
new flows and ongoing flows to determine the actual voice command.

gain more meaningful fingerprints.

Real-world End-to-end Evaluation. To confirm our find-
ings in a real-world setting, we perform a small-scale IRB-
approved user study over five sessions of one hour each spread
across five days. We used an Amazon Alexa voice assistant
for this experiment and set it up in our lab. We set up three
additional devices to the lab network that we monitor via an
upstream router: a laptop (Lenovo AMD Ubuntu Laptop), a
mobile phone (Google Pixel 3a), and a smart TV (LG WebOS
TV) to act as other household devices and generate realistic
noise when participants use and interact with these devices.
We instructed the participants in our study to use these de-
vices as they would use them in their own homes (e.g., watch
Netflix on a preinstalled account, surf the web, or play video
games online, etc.). However, for ethical considerations, we
instructed participants not to connect their personal devices to
the lab network or use sensitive applications (e.g., logging into
email, social networks or financial accounts) on the devices
we provided. We also avoided privacy-sensitive commands
in this study since participants may feel uneasy saying or
listening to the responses to these commands in the presence
of others. We had an average of three participants in each ses-
sion (for each one-hour session, participants were paid $10).
In the sessions, once participants began using the devices,
we asked the participants to give a command every few min-
utes (on average approximately 2-3 minutes) from a list of
15 randomly selected commands (which contained 6 simple
commands, 5 skills, 4 streaming commands) selected from
the mix_100_alexa dataset. We also asked the participants
to give a random command not from the list to evaluate the
performance of invocation detection on unseen commands.
For evaluation, we used the invocation and activity detection
models trained on the mix_100_alexa dataset.®

Participants invoked the voice assistant, in total, 80 times
across the five sessions for the closed-world end-to-end eval-
uation, each time choosing a random command from the 15

SIf we trained the activity detection classifier to only focus on the 15
commands we get 92.5% accuracy.

unique known commands. The number of invocations for each
command was unbalanced since participants were randomly
choosing a command; however, we ensured that each com-
mand was at least invoked three times. Participants were also
asked to invoke voice assistants on unseen random commands
20 times in total across the five sessions, and we found that in
all cases, the invocation was correctly detected. For detecting
the exact voice command, we trained a multi-class classi-
fier on ‘known’ commands using the mix_100_alexa dataset
and used the classifier’s confidence score (i.e., the argmax of
the prediction probability) to distinguish if a test sample is
‘known’ versus ‘unknown’ as commonly adopted by existing
literature [6,12,53]. For the ‘unknown’ dataset, we utilized our
other datasets, e.g., simple_100_alexa, skills_100_alexa, and
stream_15_alexa datasets. Combined, these datasets consist
of 215 commands, 100 overlapping with the mix_100_alexa
dataset and hence tagged as ‘known’, and the remaining 115
can be considered ‘unknown’. Using a ROC curve, we de-
termined the optimal threshold value as 0.26 (i.e., minimizes
false positive and maximizes true positive). The threshold
value is defined based on the confidence score of the multi-
class classifier, and if the value is greater than the threshold for
a given sample, the sample is considered as ‘known’ and oth-
erwise as ‘unknown’. Using this threshold value, we achieved
an average accuracy of 90% in distinguishing known samples
from unknowns, with precision and recall being 92% and
91%, respectively.

Next, we used the multi-classifier trained on the
mix_100_alexa dataset to predict the samples classified as
‘known’. For the end-to-end classification accuracy, we con-
sider both the successful filtering of unknown samples and
the successful classification of known samples into their re-
spective class labels for any input. Out of the 80 ‘known’
commands, 73 were predicted as known and 7 as unknown.
Among the commands correctly predicted as known, 63
were also correctly classified into their respective classes,
whereas 10 were incorrectly classified. Thus, 63 of the 80
known commands were correctly classified. Of the 20 un-
known commands, 6 were classified as known and 14 as un-
known. The final end-to-end accuracy can then be computed
as (634 14)/100 = 77/100 = 77%. In some cases, these out-
put labels on unseen commands were closer to real activities,
e.g., the ‘Rain Sounds’ skill (unseen) was marked as ‘Zen
Sounds’ (seen), and set a timer for one minute (unseen) was
marked as set a timer for two minutes (seen). During this
experiment, per command, there was between 8 to 80 times
more traffic going through the router as background noise
compared to the dataset we collected without noise.

Takeaway. We show that our proposed filtering of active and
new flows enables us to fingerprint voice commands even in
the presence of background traffic from other devices on the
same network, as demonstrated through both simulations of
background traffic and real users generating traffic while using
other devices. Furthermore, we demonstrate that by utilizing
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the confidence score of a multi-class classifier, it is possible to
establish a threshold that can effectively distinguish ‘known’
commands from ‘unknown’ under real-world settings.

7 Discussion

Potential Countermeasures. Voice command fingerprint-
ing relies on encrypted network traffic analysis. While the
literature on preventing voice command inference is minimal,
there is extensive literature on preventing general traffic anal-
ysis, such as website fingerprinting. Most of these defenses
should also (with minimal changes) effectively reduce the
performance of our inference attack. Our attack, in particu-
lar, depends upon the ability of the adversary to distinguish
network flows. Any countermeasure where flow information
is unavailable to the adversary, such as a home VPN, would
be effective against our attack. However, consumers typically
do not opt for home-level VPNs as they require additional
device configuration [14]. Other popular countermeasures in-
clude traffic padding and shaping [11,27,32,35,62], where
the goal is to make all traffic similar to each other and hence
reduce the information gained by the adversary. These coun-
termeasures would typically also employ some variation of a
VPN-like tunnel to ensure individual connection information
is unavailable to the adversary. However, such defenses result
in high overheads in terms of bandwidth and latency, ranging
from 40% to over 100% or efficacy [35], thus questioning the
real-time nature of voice assistants.

Another class of countermeasures relies on injecting ad-
versarial noise to fool classifiers [37,45]. However, these
defenses are not foolproof and can be vulnerable as well [35].
Researchers have also looked at splitting traffic over multi-
ple networks (such as WiFi and cellular) [17,22]. Such a
defense promises little to no overhead but is difficult to adopt
as consumer homes usually have one ISP. The most promising
and easy-to-apply approach for voice command fingerprint-
ing attacks is similar to the ‘k-anonymity’ approach proposed
by previous research in the context of website fingerprint-
ing [38,61]. Since most voice commands are neatly grouped
based on their network usage (such as simple short commands,
streaming services, etc.), it is easy to shape them to match
one another with low overheads. Such an approach will only
leak which group a command belongs to but not what that
command is. We leave the implementation and evaluation of
such an approach for voice assistants to future work.

Limitations. Our work focuses on the top three most popular
voice assistants, and we leave other off-the-shelf voice assis-
tants from this analysis. Our approach also relies on manual
observation to select the endpoints to track the invocation
detection. These domains are sometimes region-specific (e.g.,
have a ‘na’ keyword in them due to architectural decisions for
different regions [1]), meaning they might only be used for
devices in the specific region. Outside these regions, devices

may contact their region-specific domains. However, Ren et
al. [47] showed that despite being in different regions, the
device still contacts mostly US-based endpoints. Regardless
we expect other region devices to contact these endpoints or
their region-specific endpoints, which would serve the same
purpose. Our work lacks a comprehensive open-world evalua-
tion for voice commands. We leave such exploration as future
work. Lastly, our approach requires isolating traffic from dif-
ferent flows, but this would not be possible if there is a VPN
or something similar. However, VPNs for IoT devices are not
widespread, and evaluation of voice command fingerprinting
attacks under VPN conditions is left as future work.

8 Conclusion

In this work, we show that it is possible to fingerprint dif-
ferent types of voice commands and skills on Amazon Echo
(Alexa) ecosystem with high accuracy. We also show that it
is also possible to fingerprint voice commands on different
platforms, including Google Assistant and Siri, with a similar,
if not better, performance. Using a novel time-series feature
engineering-based approach, we improve the state-of-the-art
performance on existing datasets and further demonstrate the
effectiveness of our approach under realistic settings. Using a
lightweight machine learning model for invocation detection,
we achieved almost perfect accuracy in detecting when the
voice assistants were activated without being plagued by a
base-rate problem. Furthermore, we show that even when the
adversary is out of the local network, we can achieve similar
performance on activity detection using invocation detection
and a novel method using our flow filtering technique for each
voice assistant. Finally, we show that invocation detection
models and activity detection models can be combined to
create an end-to-end classification system that can predict
activities under real-world performance constraints with a
high amount of background noise.
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Appendix

A Full Feature List

Table 6: List of all features considered with their respective groups.

Total Percentage

Packet Length

Unique Packet Length

Flow Packet Count

Burst Packet Count

Inter-Packet Delay

out_icmp_percentage
out_tcprst_percentage
out_tcppsh_percentage
out_tcpfin_percentage
in_tcp_percentage
in_udp_percentage
out_tcpack_percentage
out_percentage
out_tcp_percentage
in_percentage
in_tepfin_percentage
in_tcppsh_percentage
out_udp_percentage
in_tcprst_percentage
in_tcpurg_percentage
out_dns_percentage
out_tcpurg_percentage
out_tcpsyn_percentage
in_tcpack_percentage
in_dns_percentage
in_tcpsyn_percentage
in_icmp_percentage

in_75per_len
out_mean_len
in_max_len
in_mean_len
out_min_len
in_25per_len
out_max_len
in_10per_len
in_median_len
out_25per_len
out_median_len
in_min_len
in_len_len
in_90per_len
out_10per_len
out_90per_len

in_len_uniquelen
in_median_uniquelen
out_len_uniquelen
out_90per_uniquelen
out_min_uniquelen
out_median_uniquelen
in_25per_uniquelen
out_mean_uniquelen
in_90per_uniquelen
in_max_uniquelen
in_75per_uniquelen
out_max_uniquelen
in_10per_uniquelen
out_25per_uniquelen
out_10per_uniquelen
out_75per_uniquelen

out_mean_flownumpkts
in_min_flownumpkts
out_std_flownumpkts
out_min_flownumpkts
in_75per_flownumpkts
out_75per_flownumpkts
out_max_flownumpkts
out_median_flownumpkts
in_10per_flownumpkts
in_median_flownumpkts
in_90per_flownumpkts
out_25per_flownumpkts
in_mean_flownumpkts
in_max_flownumpkts
out_10per_flownumpkts
in_25per_flownumpkts
out_90per_flownumpkts
in_std_flownumpkts

in_max_burstnumpkts
in_median_burstnumpkts
out_min_burstnumpkts
in_90per_burstnumpkts
in_std_burstnumpkts
in_10per_burstnumpkts
in_75per_burstnumpkts
out_10per_burstnumpkts
out_mean_burstnumpkts
in_mean_burstnumpkts
out_max_burstnumpkts
out_90per_burstnumpkts
in_min_burstnumpkts
out_median_burstnumpkts
out_std_burstnumpkts
in_25per_burstnumpkts
out_75per_burstnumpkts
out_25per_burstnumpkts

in_mean_interpktdelay
out_min_interpktdelay
out_median_interpktdelay
in_90per_interpktdelay
in_std_interpktdelay
out_90per_interpktdelay
out_max_interpktdelay
in_75per_interpktdelay
in_median_interpktdelay
out_mean_interpktdelay
out_75per_interpktdelay
in_25per_interpktdelay
out_25per_interpktdelay
in_min_interpktdelay
out_10per_interpktdelay
in_max_interpktdelay
in_10per_interpktdelay
out_std_interpktdelay

Flow Length

Burst Length

Inter-Burst Delays

out_len_len in_mean_uniquelen
in_std_len out_std_uniquelen
out_75per_len in_min_uniquelen
out_std_len in_std_uniquelen
Burst Time Flow Time

Packet Lengths

out_tcp_dict_packetlens
out_all_dict_packetlens
in_udp_dict_packetlens
out_udp_dict_packetlens
in_tcp_dict_packetlens
in_all_dict_packetlens

External Counts

out_75per_bursttime
in_min_bursttime
out_90per_bursttime
in_25per_bursttime
in_median_bursttime
out_max_bursttime
out_10per_bursttime
out_25per_bursttime
out_mean_bursttime

unique_hostname_tld+1_extcount
unique_hostname_extcount
unique_ip_3octet_extcount
ratio_extport443_extcount
unique_ip_extcount
unique_extport_extcount

Protocols

in_protos_dict_protocols
out_protocols_dict_protocols
in_protocols_dict_protocols

out_protos_dict_protocols

in_std_bursttime

in_10per_bursttime

out_std_bursttime

in_mean_bursttime
in_max_bursttime
in_90per_bursttime
out_min_bursttime
in_75per_bursttime

out_median_bursttime

out_25per_flowtime
in_25per_flowtime
in_std_flowtime
in_10per_flowtime
out_median_flowtime
out_10per_flowtime
out_std_flowtime
in_min_flowtime
out_min_flowtime
out_75per_flowtime
in_75per_flowtime
in_mean_flowtime
in_median_flowtime
in_max_flowtime
out_max_flowtime
in_90per_flowtime
out_90per_flowtime
out_mean_flowtime

in_75per_flowbytes
out_10per_flowbytes
in_mean_flowbytes
out_90per_flowbytes
out_std_flowbytes
in_25per_flowbytes
in_90per_flowbytes
in_10per_flowbytes
out_75per_flowbytes
out_mean_flowbytes
in_min_flowbytes
in_std_flowbytes
out_min_flowbytes
out_max_flowbytes
out_25per_flowbytes
in_max_flowbytes
out_median_flowbytes
in_median_flowbytes

out_90per_burstbytes
in_90per_burstbytes
in_25per_burstbytes
in_mean_burstbytes
out_median_burstbytes
in_min_burstbytes
out_25per_burstbytes
out_max_burstbytes
in_75per_burstbytes
out_mean_burstbytes
out_std_burstbytes
out_10per_burstbytes
in_max_burstbytes
in_std_burstbytes
in_10per_burstbytes
out_min_burstbytes
out_75per_burstbytes
in_median_burstbytes

in_25per_interburstdelay
out_25per_interburstdelay
out_median_interburstdelay
out_75per_interburstdelay
out_mean_interburstdelay
out_10per_interburstdelay
in_median_interburstdelay
in_90per_interburstdelay
in_75per_interburstdelay
out_min_interburstdelay
out_std_interburstdelay
in_min_interburstdelay
in_std_interburstdelay
in_max_interburstdelay
in_10per_interburstdelay
out_max_interburstdelay
out_90per_interburstdelay
in_mean_interburstdelay

Req Reply Packet Lengths

Total Bytes

Total Packets

out_totalpkts
in_totalpkts

all_dict_reqreplylens
udp_dict_reqreplylens
tep_dict_reqreplylens

out_totalbytes
in_totalbytes

Hostname External Port 1P
udp_dict_hostname udp_dict_extport udp_dict_ip
all_dict_hostname tep_dict_extport all_dict_ip
tep_dict_hostname all_dict_extport tep_dict_ip
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Figure 8: Presence of different domains as a ratio of total samples and the average incoming and outgoing traffic sizes. Domains we selected for detecting
invocation are colored orange and have 100% presence rate in all invocation samples.

C Feature Rankings

Table 7: Top 10 features from ranking utilizing multiple methods on the Deep VC Fingerprinting [60] dataset. The rankings show features that existing works do
not consider are important such as flow-based features.

ANOVA | Mutual Information | RF Feature Importance
feature name | F-statistic | feature name | score | feature name | importance
out_protocols_dict 8336 | in_90per_uniquelen 2.867 | in_max_flowbytes 0.032
in_protocols_dict 5710 | in_max_flowbytes 2.424 | in_totalbytes 0.026
in_75per_len 4273 | in_totalbytes 2.041 | in_std_flowbytes 0.023
in_max_flowtime 3109 | in_std_uniquelen 2.025 | in_max_interburstdelay 0.021
out_max_flowtime 3072 | in_std_flowbytes 1.895 | in_90per_uniquelen 0.018
in_mean_len 3019 | in_max_interburstdelay | 1.829 | in_90per_flowbytes 0.018
in_std_flowtime 2881 | in_mean_uniquelen 1.785 | in_mean_flowbytes 0.018
out_std_flowtime 2853 | in_90per_flowbytes 1.696 | out_max_flowbytes 0.017
in_mean_burstbytes 2544 | in_max_flowtime 1.649 | in_max_flowtime 0.015
in_90per_flowtime 2423 | in_mean_flowbytes 1.649 | in_std_uniquelen 0.015

Table 8: Feature ranking based on mutual information across the three platforms combined into feature groups. Features with ‘*’ are multi-valued features that
are encoded at train time. Refer to Table 6 for details about features and groups.

Across Voice Assistants

Across different Alexa command types |

# | Alexa | Siri | Google Assistant | Simple Commands | Streaming | Skills |
1 | (18.33) Total Percentage | (43.78) Flow Time (37.39) Flow Time (18.77) Total Percentage | (17.19) Flow Length (19.19) Flow Length

2 | (13.73) Flow Length (31.33) Flow Length (29.01) Flow Length (14.73) Flow Length (16.85) Total Percentage | (17.98) Total Percentage
3 | (11.71) Pkt Length (24.20) Flow Pkt Count (22.51) Flow Pkt Count | (12.68) Pkt Length (14.31) Hostname* (16.84) Pkt Length

4 | (10.74) Flow Pkt Count | (14.19) Pkt Length (13.77) Inter-Pkt Delay | (11.47) Flow Pkt Count | (13.78) Pkt Length (13.82) Flow Pkt Count
5 | (8.84) Inter-Burst Delay | (13.88) Uniq Pkt Length | (12.03) Pkt Length (9.63) Burst Length (13.53) Inter-Pkt Delay (12.85) Inter-Pkt Delay
6 | (8.77) Burst Length (12.59) Inter-Pkt Delay (9.58) Inter-Burst Delay | (9.23) Inter-Burst Delay | (11.53) Inter-Burst Delay | (12.58) Uniq Pkt Length
7 | (8.64) Flow Time (11.26) Burst Length (8.56) Burst Length (8.80) Flow Time (11.48) Flow Pkt Count (12.56) Burst Length

8 | (7.87) Inter-Pkt Delay (10.18) Total Percentage | (8.14) Uniq Pkt Length | (8.08) Inter-Pkt Delay (10.83) Uniq Pkt Length (12.26) Flow Time

9 | (6.32) Burst Pkt Count (8.58) Inter-Burst Delay | (7.51) Total Percentage | (6.59) Burst Pkt Count (10.43) Burst Length (10.62) Inter-Burst Delay
10 | (4.66) Protocols* (8.13) Burst Time (5.68) Burst Time (5.43) Uniq Pkt Length (10.30) IP* (8.56) Burst Time

11 | (4.34) Uniq Pkt Length (6.79) Protocols* (3.90) Total Bytes (5.01) Protocols* (9.57) Burst Time (7.25) Protocols*

12 | (3.51) Burst Time (4.52) Burst Pkt Count (3.67) Burst Pkt Count (3.90) Burst Time (8.53) Flow Time (6.63) Burst Pkt Count
13 | (3.43) Total Bytes (3.45) Total Bytes (3.11) Protocols* (3.62) Total Bytes (8.09) Burst Pkt Count (4.25) Hostname*

14 | (2.26) Total Pkts (2.55) Total Pkts (2.95) Total Pkts (2.48) Hostname* (6.99) Protocols* (3.60) Total Bytes

15 | (2.04) Hostname* (2.51) External Counts (2.37) Hostname™* (2.38) Total Pkts (3.56) External Counts (3.25) IP*

16 | (1.85) IP* (2.31) Hostname* (1.90) IP* (2.11) IP* (2.74) Total Bytes (2.80) Total Pkts

17 | (1.16) External Counts (2.09) IP* (1.38) Pkt Lengths* (1.35) External Counts (2.14) Total Pkts (1.64) External Counts
18 | (0.90) Pkt Lengths* (1.20) Pkt Lengths* (0.87) External Counts (0.79) Pkt Lengths* (1.42) Pkt Lengths* (0.72) Pkt Lengths*

19 | (0.12) Req Reply Pairs* | (0.22) Req Reply Pairs* | (0.32) Req Reply Pairs* | (0.10) Req Reply Pairs* | (0.53) Req Reply Pairs* (0.44) Req Reply Pairs*
20 | (0.04) External Port* (0.02) External Port* (0.03) External Port* (0.04) External Port* (0.02) External Port* (0.00) External Port*
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