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Abstract. In embodied team learning activities, students are expected
to learn to collaborate with others while freely moving in a physical
learning space to complete a shared goal. Students can thus interact in
various team configurations, resulting in increased complexity in their
communication dynamics since unrelated dialogue segments can concur-
rently happen at different locations of the learning space. This can make
it difficult to analyse students’ team dialogue solely using audio data. To
address this problem, we present a study in a highly dynamic healthcare
simulation setting to illustrate how spatial data can be combined with
audio data to model embodied team communication. We used ordered
network analysis (ONA) to model the co-occurrence and the order of
coded co-located dialogue instances and identify key differences in the
communication dynamics of high and low performing teams.
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1 Introduction

Learning to effectively work in teams in co-located settings remains irreplace-
able in many professional sectors, even though online teamwork practices have
become more common [29]. Embodied team learning is one such setting where
students can freely move around a physical learning space to learn how to inter-
act effectively with resources and other students [5]. This is common practice in
high-risk sectors where inadequate teamwork skills have been linked to failures
and safety issues [15] such as in firefighting [2] and healthcare [9]. The conditions
in such settings can lead to high complexity in communication dynamics, as dia-
logue segments of team members can happen in parallel at different physical
locations with varied team member configurations. Figure 1 illustrates this situ-
ation in the context of nursing simulation, where a team of students may need
to temporarily split themselves into two sub-teams to complete various tasks.
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The dialogue within those two sub-teams can be unrelated, resulting in dialogue
segments being spatially distributed. In such a situation, teachers can find it
difficult to assess the team’s performance as critical events can happen simulta-
neously. Students can also struggle to reflect on their team dynamics since they
cannot easily have a comprehensive view of their activity as a whole [21].

Fig. 1. Embodied teamwork in immersive healthcare simulation where students can
temporarily split into sub-teams to complete tasks in parallel towards a shared goal

Rapid advancements in multimodal sensing [14] and artificial intelligence
(AI) innovations are enabling new opportunities to automatically model dialogue
in education. For instance, previous studies have demonstrated that teacher-
student classroom communication can be modelled to provide feedback to teach-
ers on the authority level of their questions [6] and their classroom discourse skills
[22]. It has also been proposed that modelling student-student communication
can enable the analysis of teamwork [34] and collaborative problem-solving skills
[1]. Recent works have demonstrated the value of rendering student verbal com-
munication data visible using word-based interfaces to support the assessment
of group collaboration [16] and interfaces showing key communication events to
help teachers identify groups of students that may require more help [28].

These previous works suggest that the automated analysis of the content of
group communication is becoming feasible and can be highly valuable to study
and support learning. However, in these studies, students have been expected to
work physically together, therefore generating one dialogue segment throughout
a learning session. None of these works targeted highly dynamic embodied team
learning situations where students can freely create sub-teams, which can lead
to distributed dialogue segments, making it hard to extract meaning from stu-
dents’ logged dialogue. The only previous work studying such a highly dynamic
learning situation was presented by Zhao et al. [34] in which authors combined
spatial data with audio to enable extracting meaning from distributed dialogue
segments. However, the authors did not consider the order of occurrence of key
constructs that may augment the meaningfulness of the dialogue analysis. As
suggested by the most of other previous works, it has been critical to consider
such order for analysing verbal communication [6,16,17,22]. Against this gap in
the literature, we formulate the following research question (RQ): To what extent
can the order of occurrence of key high-order team constructs be modelled from
students’ distributed coded dialogue to identify effective team learning practices?



244 L. Zhao et al.

Our work addresses this question, and goes beyond previous work, by pre-
senting a study that illustrates how audio and spatial data of students can be
used to model critical high-order constructs of embodied team communication.
The study was conducted in the context of a highly dynamic healthcare simu-
lation setting. We used ordered network analysis (ONA) to model the order of
occurrence of coded co-located dialogue data and identify effective team learning
practices by analysing key differences between high and low performing teams.

2 Methods

Learning Context. The study involved a series of immersive team simulations,
held over four weeks in 2021, which were part of the regular activities of an under-
graduate course of the Bachelor of Nursing at Undisclosed University. These were
conducted in a specialised classroom space equipped with four patient manikins
and medical equipment simulating a hospital ward (see Fig. 1). Multimodal data
(details provided below) from 228 consenting students (aged 20 to 23), grouped
in 57 teams of four students, were collected. Due to limitations of the micro-
phone hardware (e.g., signal interference) and other practical challenges (e.g.,
students accidentally turning microphones off), only the high-quality data from
60 students grouped in 15 teams were used in this study. Three nursing teachers,
who designed the simulations, monitored the simulation from a control room and
assessed the students’ performance based on their observations.

The learning design included the following four phases. (1) An initial han-
dover, in which the first two students would enter the room and listen to
an introduction conveyed by the doctor (played by a teacher). (2) The ini-
tial assessment, in which the same students would make a plan and would
need to react to an unexpected event pre-programmed by the teachers, involv-
ing the identification of a serious problem suffered by the patient (in bed 4)
and escalating the situation by calling for help. (3) Resolving emergency, in
which the two other students in the team would enter the room, receive han-
dover information and collaborate to help the patient at risk (defined by teachers
as the primary task) while completing tasks for the three other patients (the
secondary tasks). (4) Emergent diagnosis, in which an emergency doctor
would enter the room and students would provide an update of the situation.

Each simulation was between 15 and 30 min long (avg = 20.25 min.; st. dev.
= 8.13 min). Teachers assessed students’ team performance in phases 2 and 3,
since students’ team dynamics mostly happened in these two phases.

Apparatus. Portable wireless (Xiaokoa) headset microphones were provided
to consenting students to capture their voices. A multi-channel (TASCAM US-
16×08) audio interface was used to synchronise the audio streams and store them
into individual files. For spatial data, waist bags each containing a positioning
sensor (Pozyx) were provided to each student. These data included each student’s
body orientation and their x-y spatial coordinates. The team assessment results
were collected using a questionnaire filled by the teachers who evaluated the
simulation. The questionnaire assessed their teamwork effectiveness based on a



Analysing Verbal Communication in Embodied Team Learning 245

7-point Likert scale. All data collection devices were synchronised automatically.
Ethical approval was obtained from the Undisclosed University.

Modelling Multimodal Sensor Data. Utterance intervals (when individual
speech started and ended) were automatically extracted from audio signals cap-
tured by each microphone using a voice activity detection script created via the
Python library py-webrtcvad. The utterance intervals were used to organise stu-
dents’ utterances in the sequence of their turns of talking, and utterance content
would be coded using the coding scheme described below. The utterance content
was transcribed using a third-party transcription service.

Since students could be chatting at completely different locations and have
conversations in parallel, spatial data was needed to organise students’ dialogue
into corresponding dialogue segments. We used the body orientation and spa-
tial coordinates to detect dialogue segments by adopting the f-formations theory
[23]. An f-formation appears whenever multiple people sustain a spatial and ori-
entational relationship for collaboration in close proximity [23]. As a previous
study in healthcare [27] suggested, communication between healthcare profes-
sionals commonly happens in close proximity (less than 1.5 m), we applied an
f-formation detection algorithm [35] to differentiate dialogue segments. Further-
more, the spatial data were also used to detect Spaces of Interests (SoIs), namely
the spaces of primary tasks (bed 4) and secondary tasks (beds 1–3).

Coding Scheme and Procedure. To analyse the content of dialogue seg-
ments, a coding scheme was designed for embodied teamwork communication
in this context by adapting previous coding schemes [13,19] and a team theory
framework [20]. The coding scheme includes four higher-order teamwork con-
structs and nine communication behaviours for coding the dialogue. The first
construct, shared leadership, captures instances when students assigned others
or themselves to specific tasks or provided handover information to bring others
on board as no student was formally appointed as a leader. The second con-
struct, situation awareness, captures the communication related to identification
and reaction to patients’ emergency state [19]. The third construct, shared men-
tal model, captures the communication for establishing a shared understanding
of the current situation and a potential plan to tackle this [32]. The last con-
struct, closed-loop communication, refers to the double-checking of information
or acknowledging the receipt of information [13]. More details about the defini-
tions and examples for each communication behaviour are provided in Table 1.

The coding was done at an utterance level and each utterance could have
multiple codes. Two researchers coded 20% of the dialogue data. Cohen’s kappa
was used to measure inter-rater reliability (0.6 was the threshold for acceptance)
[12]. The kappa for each code was greater than 0.7 (see column 5 in Table 1).
The coding of the remaining 80% of the data was completed by one researcher.

Ordered Network Analysis. As suggested by theories of communication in
healthcare teams [15], the sequential order of communication is essential to
demonstrate effective healthcare teamwork. For example, the order of communi-
cation from information sharing to task allocation can illustrate assigning tasks
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Table 1. Teamwork communication coding scheme and corresponding definition, exam-
ple, and inter-rater reliability.

Teamwork

Constructs

Communication

behaviours (codes)

Definition Example Kappa

Shared

leadership

Task allocation [19] a student explicitly assigns a

task to others or proactively

self-allocates a task

“You do the medical

observation, and I will do

the discharge for the bed

three patient.”

0.744

Provision of

handover

information [15]

a student updates to others

regarding a task to which

they have not been exposed

“She is day-one post total

hysterectomy. She has got a

history of heart disease...”

0.853

Situation

Awareness

Escalation [7] a student informs others

that the situation goes

beyond their capabilities and

they need extra help

“I think we need to call the

emergency team for help.”

0.747

Shared mental

model

Planning [32] a student lists several tasks

remaining to be done for

provoking subsequent task

allocation

“She is due for antibiotics

and pain meds, and we also

need to call her family.”

0.781

Information sharing

[15]

a student proactively shares

information that was not

asked by others

“Her wound is dry and

intact. There is no concern

now.”

0.744

Information request

[15]

a student asks someone else

a question to get information

A: “Is the IV necessary for

this patient?” (Information

request) B: “She does not

need it” (Responding to

request)

0.794

Responding to

request [15]

a student provides

information responding to a

previously asked question

0.804

Closed-loop

communication

Acknowledgement

[4]

a student acknowledges

receipt of information or

instructions from others

“Yes”, “I agree”, “Okay” 0.858

Checking-back [4] a student double-checks the

information or instructions

from others

A: “Can you give her 1ml IV

fluid?” B: “1ml IV fluid”

(Check-back)

0.922

based on clinical evidence, which can be indicative of an effective team coordi-
nation strategy [15]. Thus, we used ordered network analysis (ONA) [30].

ONA is a technique to quantify and visualise the directed connection within
coded data. The ONA algorithm employs similar functions and procedures as
Epistemic Network Analysis (ENA), a widely used network analysis technique for
the modeling and comparison of learning phenomena [3,24,25]. The key differ-
ence is that ONA accounts for the order of connections during the modeling and
visualising processes. ONA starts processing the data by accumulating directed
connections within units of analysis (i.e., subjects of research interest, such as
a team) as high-dimensional vectors. These accumulations operate on the line
level (i.e., the fundamental unit of meaning in the data, such as an utterance)
by counting the order of codes’ co-occurrences within stanza windows (i.e., the
temporal context formed by span of lines). Then, the ordered co-occurrences
are aggregated across each conversation (i.e., collections of meaningfully related
stanza windows, such as all stanza windows of a sub-team) for each unit of anal-
ysis to obtain cumulative connection vectors. Next, a dimensional reduction via
Singular Value Decomposition (SVD) or Means Rotation (MR) is applied to
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the collection of those cumulative vectors to project them as points in a two
dimensional space.

In our study, we applied MR to maximise the variances between two groups
of units on the x-axis of the space. Then, ONA networks are visualised in this
two-dimensional space using two coordinated representations for each unit of
analysis: (1) a projected point, which represents the location of its network in the
low-dimensional projected space (shown as red or blue points in our study), and
(2) a directed weighted network where nodes correspond to the codes, and edges
reflect the relative frequency of connection between two codes. Specifically, the
node size is proportional to the frequency of its represented code being connected
with other codes; and the size of the coloured inner circle of a node is proportional
to self-connections, i.e., the frequency of the code making a connection with itself.
Between each pair of nodes, the edge consists of a pair of triangles with varied
sizes to illustrate the frequency of directed connections. The bigger and darker
a triangle is, the higher frequency of connections is. A black chevron is placed
on the more frequent side of an edge to support recognizing the direction of
connections. For example, a chevron pointing from node A to node B represents
that the directed connection from A to B is more frequent.

To conduct ONA, several parameters need to be specified, namely: lines, con-
versations, stanza windows, units of analysis, and codes. In our study, students’
utterances were used as lines and co-located dialogue segments as conversations.
We used a stanza window size of three lines to accumulate connections, since
we tested multiple configurations of stanza window and found this setting pro-
vided the highest variance in the ONA model [26]. The units of analysis in this
study were the unique combinations of phase (i.e., phases 2 and 3) and SoIs (i.e.,
primary tasks and secondary tasks). Regarding codes, we included all codes in
Table 1 except for checking-back, since it had extremely low frequency (n = 105)
compared to other codes (mean = 791.7, st. dev. = 644.3). We omitted this code
to maximise the clarity of analysis as suggested in [31]. We also excluded pro-
vision of handover information code in the secondary task phase 3 model for a
similar reason. We built ONA models using the R implementation of ONA [10].

To address our RQ, we divided the 15 teams into seven low-performing and
eight high-performing teams based on the median score of their team perfor-
mance. Using these two groups, we can identify prominent differences of team
communication in the mean ONA networks of high and low performing teams.
To demonstrate the prominent differences, we created ONA mean network sub-
tractions by subtracting the two groups’ mean networks. We also conducted
Mann-Whitney U tests on the distribution of projected points to compare if the
differences between the groups were statistically significant.

3 Results

3.1 Primary Tasks

Primary Task: Phase 2. As shown in Fig. 2 (left), for the case of dialogue
data at bed 4 (the primary task), several directed connections appeared in high-
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Fig. 2. Mean network subtractions for low (red edges) and high (blue edges) performing
teams in spaces for primary tasks during the initial assessment, phase 2 (left); and
resolving emergency, phase 3 (right) (Color figure online)

performing teams, while the connection from planning to acknowledgement was
the only major directed connection in low-performing teams. This is not a sur-
prising result since the primary task in phase 2 was to identify the patient at risk
and announce escalation, so team behaviours related to information exchange
and escalation were expected to be more frequent for high-performing teams. The
Mann-Whitney U tests also showed the differences between the high-performing
teams (N = 8, Mdn = 0.40, Q1 = 0.19, Q3 = 0.37) and the low-performing
teams (N = 7, Mdn = −0.301, Q1 = −0.34, Q3 = −0.20) on the first dimension
(U = 54, p = 0.001, r = 0.58) were significant.

Specifically, although both groups of teams showed connections to informa-
tion request, a key difference is that high-performing teams requested information
more frequently after contributing with new information (sharing information)
or after announcing an emergency (escalation). In contrast, information requests
were limited in low-performing teams and happened only after planning, Consid-
ering that the directed connection from planning to acknowledgement is stronger
than from planning to information request, we can conclude that low-performing
teams demonstrated inefficient communication while planning. Moreover, evi-
dence of the effective dynamics of high-performing teams is also illustrated by the
directed connections to responding to request. For example, information request,
and escalation are pointing towards responding to request. This suggests that
students in high-performing teams exchanged information related to the critical
task (announcing escalation) more frequently which was critical in this phase.
Although similar connections occurred for low-performing teams, the strength
of those connections was relatively weak, as indicated by the faded red edges.

Primary Task: Phase 3. The primary task in phase 3 mainly consisted of
providing handover information to new team members and then offering emer-
gent medical support to the patient at risk (in bed 4) while taking care of stable
patients in the other beds. As shown in Fig. 2 (right), dialogue from the high-
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performing teams showed stronger connections among a small set of nodes on
the right side of the x-axis; while low-performing teams had stronger connections
on the left side. The Mann-Whitney U tests showed the difference between the
high-performing teams (N = 8, Mdn = 0.152, Q1 = 0.02, Q3 = 0.31) and the
low-performing teams (N = 7, Mdn = −0.13, Q1 = −0.19, Q3 = −0.10) on the
first dimension (U = 52, p = 0.004, r = 0.52) was significant.

Although both groups of teams showed various connections to the node pro-
vision of handover information, the connections to other nodes were different.
The blue circle in the node provision of handover information shows that the
high-performing teams repeatedly provided handover information, and also when
team members explicitly requested such information (see directed connection
from information request to provision of handover information). This shows
that the high-performing teams could provide handover information fluently and
respond to questions from others. In contrast, the low-performing teams commu-
nicated about handover information infrequently, as indicated by the faded red
edges connected to provision of handover information. This indicates that some
team members in the low-performing teams may have not had complete infor-
mation relevant for the primary task. Additionally, the red edges show that the
low-performing teams communication focused on task allocation, information
sharing, planning, and escalation announcement to gather information, which
are constructs that were expected to occur in the previous phase, rather than
focusing on provision of handover information which was critical in this phase.

3.2 Secondary Tasks

The secondary tasks were related to the three patients with stable physical
conditions. Students were expected to put less effort into the secondary tasks
but still perform them as they would prioritise aiding the patient at risk.

Fig. 3. Mean network subtractions for low (red edges) and high (blue edges) performing
teams in spaces for secondary tasks during the initial assessment – phase 2 (left) and
resolving the emergency – phase 3 (right) (Color figure online)
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Secondary Tasks: Phase 2 and Phase 3. As shown in Fig. 3 (left), the
majority of edges are in red. This is expected since the teams were expected to
put less effort into secondary tasks, and teams rated as low-performing were not
aligned with this expectation. The Mann-Whitney U tests showed a significant
difference between the high-performing teams (N = 8, Mdn = 0.17, Q1 = 0.01,
Q3 = 0.29) and the low-performing teams (N = 7, Mdn = −0.12, Q1 = −0.32,
Q3 = −0.02) on the first dimension (U = 50, p = 0.012, r = 0.53).

The high-performing teams only made one strong connection from acknowl-
edgement to information request. This suggests that the high-performing teams
frequently asked questions in the middle of a dialogue segment, which may
demonstrate their engagement in team communication. Yet, the larger number of
red edges suggests that low-performing teams may have over-emphasised the sec-
ondary tasks. The node escalation also reveals important differences between the
two groups. Specifically, regarding all the edges connected to escalation, the ones
pointed towards escalation, namely from task allocation, information request, and
acknowledgement, are all from the low-performing teams. This suggests that the
low-performing teams sometimes allocated tasks or exchanged information and
then announced escalation. Since this happened in the space of the secondary
tasks, the low-performing teams may have incorrectly announced escalation on
stable patients. In contrast, the edges pointing away from escalation are all from
the high-performing teams. This shows that the high-performing teams some-
times announced escalation and then arranged tasks or exchanged information.
This may happen in a situation that the student working on primary tasks went
to the space of secondary tasks to inform the student working in this space about
escalation of the patient at risk and asked a student for help.

Regarding the communication in the secondary tasks’ space in phase 3, the
Mann-Whitney U tests also showed a significant difference between the high-
performing teams (N = 8, Mdn = 0.013, Q1 = 0.01, Q3 = 0.16) and the low-
performing teams (N = 7, Mdn = −0.13, Q1 = −0.26, Q3 = −0.08) on the
first dimension (U = 56, p = 0.001, r = 0.50). The main finding is that low-
performing teams still overemphasised the secondary tasks in phase 3, as the
majority of edges in Fig. 3 (right) appeared in low-performing teams.

4 Discussion

To address our RQ, we used multimodal data and ONA to model the ordered
communication behaviours in embodied team learning where dialogue segments
were spatially distributed. From the analysis of mean network subtractions, the
effective team learning practice in this setting involves the following behaviours.
(1) Prioritising primary tasks. Through the network subtractions for primary
tasks and secondary tasks, we found that high-performing teams prioritised the
primary tasks while low-performing teams prioritised secondary tasks. This is
aligned with the healthcare literature that suggests that developing effective
patient prioritisation skills is critical in this kind of learning settings [7]. (2)
Timely and correctly performing critical tasks (i.e., escalation and providing han-
dover information). The results illustrate that high-performing teams announced
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escalation on the correct patient timely (in phase 2) and provided abundant han-
dover information. In contrast, low-performing teams more frequently announced
escalation on the wrong (stable) patients or late in phase 3, putting less effort
into providing handover information. This suggests that timely and correctly
performing critical tasks is an effective team practice, as announcing escalation
correctly and timely is related to the effective application of medical resources to
maximise patient safety [7], and providing handover information can contribute
to effective team coordination [15]. (3) Coordinating the team efficiently. All four
network subtractions demonstrated that low-performing teams put more effort
into communicating about team coordination (stronger connections to planning
and task allocation). This suggests that low-performing teams were less efficient
in coordinating their teams, so they had to invest more effort on coordination,
resulting in failure to demonstrate other key effective team behaviours.

This study has several implications for research in embodied teamwork
education and co-located collaborative learning. We demonstrated how ONA
graphs can be useful to analyse communication in an embodied team learning
setting by modelling multimodal data. Other researchers can adapt this method
to model and analyse verbal communication in similar learning settings, such
as collaborative problem-solving [17] and laboratory classroom teaching [11].
We also considered the implication for students and teachers. However, current
ONA visualisations can be hard for them to understand due to their complexity.
Yet, future work can explore ways to effectively communicate the insights from
ONA in ways that students or teachers can understand.

Regarding limitations and future work, the first limitation is the gener-
alisability of the findings. The sample size in this study is limited (60 students
in 15 teams) and the interpretations of the results are based on a specific learn-
ing design, so the findings are not meant to be generalisable. Another limitation
results from the manual transcription and coding of the communication contents.
This currently limits the portability and scalability [33] of this method. Over-
coming this limitation is our future work. We plan to fully automate the tran-
scription and coding procedures using speech-to-text (e.g., the recently released
OpenAI whisper [18]) and natural language processing techniques [8]. Another
future work is to design a method to convey the findings in ONA to students
and teachers in an intuitive way to enable practical application.

Regarding ethical considerations, although spatial data in this study was
anonymous, the audio recordings can lead to privacy concerns. However, it is a
common practice to record audio data in similar studies [16,17]. To minimise
privacy concerns, we used colours to represent the students and never collected
any identity information. Furthermore, we controlled the access to our dataset
to prevent any unintended use [33].

In conclusion, we presented a method to extract communication behaviours
in embodied learning settings from multimodal data and analyse them using
ONA. We illustrated the capability of this method to identify the key factors
for differentiating high and low-performing teams in a team-based embodied
healthcare simulation. The method in this paper can benefit practitioners to
support their teaching and researchers studying embodied teamwork.
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