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Abstract. Data simulations are powerful analytic tools that give researchers a
great degree of control over data collection and experimental design. Despite these
advantages, data simulations have not yet received the same amount of use as other
techniqueswithin the context of quantitative ethnography. In this paper,we explore
the reasons for this and use examples of recent work to argue that data simulations
can—and already do—play an important role in quantitative ethnography.
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1 Introduction

Data simulations are powerful analytical tools. Like statistical models, they can quan-
titatively represent phenomena that we observe in the world. Unlike statistical models,
they are used to generate hypothetical data rather than predictions or inferences from
real data. In turn, they afford researchers a high degree of control over parts of a study
that are typically arduous, complex, and time consuming—things like data collection
and experimental design.

Despite these advantages, data simulation has not been widely adopted as a quantita-
tive ethnographic technique.Understandingwhy is not particularly difficult. Setting aside
the training and experience required to develop data simulations, quantitative ethnogra-
phy (QE) depends on the alignment between observed phenomena, qualitative claims,
and quantitative warrants. More specifically, it depends on the alignment between real
data about real events and qualitative and quantitative interpretations. Because data
simulations by definition do not produce real data, they seem to have no place in QE.

In this paper, we argue that even though data simulations generate and operate
on hypothetical data, they can—and already do—play a useful role in quantitative
ethnographic analyses and the development of QE tools and methods.

2 Background

Before we describe the role of data simulation in QE, it will be useful to review some
of the finer points of the QE process [14, 16] (Fig. 1). While these points are crucial to
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QE, they may nonetheless be obfuscated in a typical analysis given the complexity of
many QE techniques.

QE is fundamentally a process for providing quantitative warrants for qualitative
claims. These claims are made in terms of the [D]iscourse of some culture—that is,
the ways in which members of that particular culture act, talk, think, believe, value,
solve problems, and so on. To make these claims, researchers observe the actual things
members of the culture say and do and record them in some way—they observe the
[d]iscourse of the culture and record their observations as some form of data (field
notes, audio/video recordings, interaction logs, and so on).

The translation of [d]iscourse to data is the first of many simplifications of the
[D]iscourse of a culture that are necessary to conduct anyQE analysis. Of all the possible
things researchers could observe members of a culture doing, they observe and record
some subset of those things as data. And as happens in any human endeavour, they may
make errors.

Prior to analyzing their data, researchers often make another simplification—they
translate their data to some other—usually machine-readable—format. For example,
field notes may be typed up or audio may be transcribed. Here again, errors may occur;
notes may be mistyped, audio mistranscribed.

Using their recorded data, researchers attempt to understand the relationships
between particular themes, ideas, or actions that members of a particular culture use to
understand and operate on the world. In other words, they look for evidence of [C]odes
in their data. Their evidence comes in the form of [c]odes, identifiable pieces of data
that indicate the presence of [C]odes.

The act of coding is an act of pointing; it is a way of saying that some identifiable
piece of data is representative of a higher-level concept [16]. To warrant these acts of
pointing, QE researchers marshal a collection of qualitative and quantitative evidence.
After qualitatively examining the data, they develop a codebook that describes examples
of the links between the higher level concepts they are investigating ([C]odes) and how
those concepts are instanced in the actual data they have ([c]odes).

Using a codebook, two or more raters apply it to the data—otherwise known as
coding—annotating segments of the data for the presence or absence of the [C]ode.
They then compare their ratings using inter-rater reliability (IRR)metrics such asCohen’s
kappa and Shaffer’s rho to demonstrate that these decisions can be reliably applied to the
data. Of course, researchers may also develop automated classifiers to identify [C]odes
using techniques such as regular expressions and evaluate them in a similar way.

The process of coding data is, of course, another simplification with the potential
to introduce error. Quantitative metrics like kappa and rho are a way of controlling for
these kinds of errors, a way of measuring the error and setting thresholds for how much
of it they are willing to tolerate in the analysis.

Once codes have been identified and their relationship to [C]odes warranted, the
next step is typically to identify relationships among the [c]odes that are salient to the
purpose of the analysis. To warrant that these relationships, or connections, constitute
systematic patterns in the data and not simply one-off or random occurrences—that is,
to warrant theoretical saturation—researchers represent the relationships among [c]odes
using statistical models such as epistemic network analysis (ENA) [15]. They then test
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whether a value derived from the sample of data is representative of what that value
would be if calculated from the larger population of data that they might have collected
about the same participants under similar conditions [17]. Here we denote the value from
the sample as a [p]arameter and the value from the population as a [P]arameter.

Having found this quantitative warrant, researchers now have evidence that the rela-
tionships among [c]odes that they observed in their data are representative of the rela-
tionships among the corresponding [C]odes that shape the [D]iscourse of the culture
they are studying. In other words, their qualitative claims are a systematic property of
that culture’s [D]iscourse. Crucially, however, the QE researcher’s task is not complete
until they re-examine these claims in terms of the actual data they have collected. That is,
after the sometimes long, complicated, and reductive task of operationalizing qualitative
claims in quantitative terms, researchers should check that their quantitative representa-
tions are aligned with—or not contradicted by—the actual observations they have made.
In other words, they need to close the interpretive loop.

Fig. 1. The QE process. Adapted from [14]

The description above highlights two important features of the QE process. First—
like any form of analysis—QE requires simplifications of the phenomena researchers
wish to investigate. The things we observe members of a particular culture say and do
we record as data; we categorise the kinds of things that members of that culture do
by pointing to specific pieces of data; we look for connections among these categories
by identifying relationships among these pieces of data. There is always the danger of
oversimplification and error. Observations can be misrecorded; parties may not agree on
whether some pieces of data actually correspond to categorizations of cultural activities;
and identified connections may be meaningless. Second, the QE process hinges on the
alignments between qualitative claims, quantitative representations, and real—that is,
actually observed—data.
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3 Data Simulation

As the term “data simulation” suggests, this technique does not traffic in real data.
To highlight this feature, Gilbert and Troitzsch [9] argue that data simulation differs
importantly from traditional statistical modeling (Fig. 2). In the latter, researchers have
some real-world target that they want to understand. Their aim is to create a model of
the target that is easier to study than the target itself. To do so, they collect data and
develop a model (e.g., a set of regression equations) that abstracts salient features of the
target. This model includes some parameters (e.g., beta coefficients) whose magnitudes
are determined by fitting the model to the data on hand. Finally, they test whether the
model generates predictions that are sufficiently similar to the collected data (e.g., using
a coefficient of determination) and examine the significance and relative magnitude of
the estimated parameters (e.g., using p values and measures effect size).

Simulation proceeds similarly except that the model may be in the form of an algo-
rithm or computer program instead of a set of equations, and this model is used to
generate simulated data rather than predictions from real data. If possible, the simulated
data is compared to available real data to test how similar the two are and assess the
validity of the simulation.

A representative example of data simulation in the social sciences is Jager and col-
leagues’ [10] study of group conflict. They used data simulations to study conflict in
crowds made up of groups with different allegiances, such as supporters of different
football teams. By simulating groups of different sizes and different proportions of
aggressive members, they found that conflict was most common when one group was
larger than the other and the larger group had a relatively high proportion of aggressive
members.

As this example suggests, data simulation has a number of affordances. First, it would
be difficult—or at least unethical—to collect data about crowds of people fighting each
other. Data simulation allows researchers to generate data that abstracts the situation in
a relatively easy and safe way. Second, simulating data provides the researchers with a
high degree of control over the design of the experiment. In the example above, Jager
and colleagues were able to control the number of data points in each sample and the
proportions of aggressive members; they did not have to rely on which participants
happened to be available or consent to their study. Relatedly, data simulation allowed
them to examine plausible cases that might have gone missed if they had relied on
traditional data collection methods—for example, what would happen when the groups
of supporters were exactly the same size? In this sense, the simulation allowed them to
generalize their findings to a broader variety of situations.

Despite these advantages, at first glance data simulations do not seem to cohere
with the QE process, which is so dependent on real data. The dashed links in Fig. 2
indicate steps that are technically unnecessary for data simulation to proceed. While it
can be useful to collect real data and use it to assess the validity of the simulation, it is
possible (and common) to operate solely on simulated data. However, such an approach
is problematic in the context of QE. A QE researcher cannot arrive at qualitative claims
when no real qualitative data exists; a researcher cannot close the interpretive loop if there
is no real data to return to. In the next sections we overview four examples of applications
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Fig. 2. The data simulation process. Adapted from [9]

of data simulation toQE to argue that despite these differences, data simulation can—and
already does—have an important role in QE.

4 Data Simulation in Quantitative Ethnography

4.1 Transcription Error

QE researchers often rely on audio or video recordings of events as data. To analyze
these data they typically transcribe it to some other machine-readable format—e.g.,
text—and then code the transcription [11, 24]. As a result, transcription provides a
critical link in connecting events in the world to models and understandings of those
events. Unfortunately, transcription processes are imperfect and transcription errors can
lead to coding errors, each of which compound to negatively influence the integrity of
the subsequent analysis.

To examine the impact of transcription error on coding performance, Eagan [6] used
a data simulation. In terms of Fig. 2 above, his target was the relationship between
transcription error and coding error—that is, the extent to which errors in a transcription
impact the accuracy of labeling data for a [C]ode. To model this target, he investigated
three main parameters that had previously been shown to influence coding performance:

– base rate: the frequency with which a code appears in a dataset [5, 14, 23].
– token rate: the number of unique tokens1 used to code the dataset divided by the total

number of unique tokens in the dataset [1, 4, 12].
– redundancy rate: for an individual dataset, the ratio of data segments with multiple
independent examples of a code to the total number of positively coded data segments
[8].

To examine how these parameters relate to the impact of transcription error on
coding performance, Eagan developed the sensitivity analysis for transcription error
(SATE) method. In statistics, sensitivity analyses measure the level of bias or error that

1 In textual data, lines of text are composed of tokens: the individual, or unique combinations of,
pieces of information that each line of data contains [22].
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would need to be present in a dataset to invalidate a given inference, statistical result, or
interpretation [7]—that is, the extent to which the data could be altered until an original
result becomes invalid. This same approach can be used to examine the impact error has
on the inferences or claims made in coding processes.

Eagan used the SATEmethod to study both real and simulated data-classifier systems
(DCSs): the pairing of an individual dataset and a specific classifier or coding process.
He did so by introducing transcription error to datasets and re-coding them to determine
whether the resulting coding error was acceptable. Transcription errors were introduced
using a 2-state Markov modulating failure process that goes through a dataset word by
word with, in this case, a 5% chance of replacing each word with another word from the
dataset.

First, Eagan used the SATE method on 18 DCSs from three different real world
learning situations. For eachDCS, 5% transcription errorwas introduced, then the dataset
with error was re-coded with the automated classifier and kappa was calculated between
the original coding and the coding of the data containing transcription errors. This
process of transcription error introduction, re-coding, and kappa calculationwas repeated
2,000 times creating a distribution of kappa for each DCS. If 95% of the distribution
was greater than a coding performance threshold of kappa equal to 0.9, the DCS was
considered robust to 5% transcription error; otherwise it was considered sensitive to 5%
transcription error. He used this approach to demonstrated that SATE could discriminate
between DCSs that were sensitive to 5% transcription error and those that were robust.

His analyses aligned with the previously specified mechanisms of transcription error
influencing coding performance, however the analyses with actual data were too under-
powered—that is he did not have enough data to find statistically significant relationships
between these mechanisms or their interactions in real data. In addition, while the actual
DCSs and prior work provided some guidance as to the ranges of the three parameters
of interest, they did not offer examples or representations of all combinations of these
parameters researchers could expect to encounter.

To investigate how transcription errors impact coding performance more thoroughly,
Eagan created simulated data and associated classifiers to create simulated DCSs that
are more representative of DCSs researchers could expect to see in the real world. As
a result, he was able to assess the significant main effects and three-way interactions
between base rate, token rate, and redundancy rate influencing the impact of transcription
error on coding performance. In general, as base rate increases sensitivity to transcription
error decreases; as token rate increases, sensitivity to transcription error increases; and as
redundancy rate increases, some aspects of coding performance increase, but interactions
make this relationship more complex (for more details see [6]).

4.2 Shaffer’s Rho

The work by Eagan described above used data simulations to examine the relation-
ships among data representations, classifier features, and classifier reliability. This work
assumes that there is some defensible way to warrant classifier reliability—that the rate
of agreement between two or more raters on some sample of data is suitably high and
that the agreement would hold—allowing for some small level of disagreement—if they
were to code the rest of the data. As many QE researchers know, this warrant comes in



The Role of Data Simulation in Quantitative Ethnography 93

the form of Shaffer’s rho [14]. However, it is likely less well known that the calculation
of Shaffer’s rho itself relies on data simulation.

To establish the reliability of coding approaches, researchers often use IRR metrics
such as Cohen’s kappa—especially when there is too much data or not enough time
for one or more raters to code all of the data. The basic idea of using IRR metrics
is to measure and control the amount of uncertainty—that is, disagreement between
raters—involved in a coding process [16]. However, as Eagan and colleagues [4, 5] have
argued, the way researchers commonly use IRR metrics is fundamentally flawed. Many
researchers compute an IRR metric on a sub-sample of their data and simply assume
that it generalizes to the rest of their dataset. That is, they do not control for cases where
the IRR in a sample is over a reliability threshold (say Cohen’s kappa > 0.65), but the
IRR for the entire dataset is below that threshold—a Type I Error.

Shaffer’s rho was developed to address this methodological gap. Here, the target of
interest is the coding reliability of two raters. Given a real set of coded data, the algorithm
that calculates Shaffer’s rho simulates two coding processes over some hypothetical
dataset where the agreement between the two raters is less than the IRR threshold of
interest. In other words, a data simulation is used to generate a large number of coding
pairs that are unreliable given some IRR threshold. Critically, this simulated data shares
important characteristics with the real data on hand.

Next, a portion of this simulated data is sampled and the IRR measure is calculated.
This process of simulating data and calculating IRR on a subsample of the simulated
data is repeated hundreds of times and the IRR values from the samples generate a
distribution of IRR measurements under a null hypothesis—namely that the observed
IRR was sampled from a larger dataset for which the two raters would not have an
acceptable level of agreement. If the observed IRR measurement—the measurement
obtained by two raters on the real data for the code in question—is greater than 95% of
the IRR values in the null hypothesis distribution, a researcher may conclude that their
observed agreement generalizes to the rest of their dataset.

4.3 The Expected Value Test

In many QE analyses, the outputs of statistical models are used to as quantitative war-
rants for qualitative claims about the connections among [C]odes. One common type of
model used in QE is ENA, which identifies the co-occurrence of [c]odes within data.
[p]arameters derived from ENA can then be tested for statistical significance to warrant
theoretical saturation.

As Swiecki [19] argues, these [p]arameters are often derived from the differences
between two samples—saypatterns of connections pre andpost some intervention, or dif-
ferences in connections between control and treatment groups. However, QE researchers
may not always be able—or want—to compare samples. In some cases, they may be
interested in the connections among [C]odes in the [D]iscourse of a single sample—say
one classroom or one group of students. Swiecki (ibid.) developed a data simulation-
based test—the expected value test (EVT)—to produce a [p]arameter appropriate for
these kinds of single sample cases.

The method relies on comparing an ENA model developed from the real data to a
distribution of ENA models developed from simulated data. In typical applications of
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ENA, results are derived in terms of the dimensional reduced networks for each unit of
analysis (ENA scores); however, for this test, the results are derived in terms of the full
networks for each unit. These networks can be thought of as points in a high-dimensional
space. Any collection of points has an average called a centroid and two points close
together in this space are considered similar—that is the units of analysis corresponding
to these points made similar kinds of connections (as identified by ENA). The method
includes the following steps:

– Generate an ENA model from the real data on hand (observed model).
– Generate a distribution of ENA models from simulated data in which the codes
and order of lines—e.g., turns of talk—have been repeatedly randomized—that is,
a distribution of chance-based models.

– Calculate the similarity of the observed model to the average, or centroid, of the
chance-based models. Calculate the distribution of similarities of the chance-based
models to the centroid. Compare the observed similarity to the distribution.

Here, the data simulation takes the form of randomized data. The logic being that
if the connections identified in the real data constituted a systematic pattern in the data,
then they should statistically differ from connections identified in randomized sets of
that data. Using this method, Swiecki (ibid.) was able to show that the EVT could
distinguish between systematic and non-systematic connections in real data, suggesting
that the method provided a plausible quantitative warrant for QE analyses of single
samples.

4.4 Informational Interdependence

Collaborative problem-solving has been studied extensively by QE researchers (see,
for example, [2, 13, 21]). As several researchers argue, collaborative problem-solving is
characterized by different types of interdependence amonggroupmembers. For example,
DeChurch and Mesmer-Magnus [3] argue that informational interdependence arises
when different individuals need to share different kinds of information to complete a
task. Swiecki and colleagues [20] developed a data simulation to explore the nature of
informational interdependence during collaborative problem-solving.

Prior to designing the simulation they examined data collected from a real world
learning situation that made use of a jigsaw pedagogical design [18]. In a jigsaw design,
each team is assigned a unique topic on which to become an “expert”. After learning
about their topic, new teams are formed in which each person has expertise in a different
topic. In these new teams, individuals communicate their knowledge of their assigned
topics with the others. Because informational interdependence involves the sharing of
different information among individuals, the researchers hypothesized that the interac-
tivity among teammates and the dissimilarity of the information they shared could be
used to predict the amount of informational interdependence on the team, and thus, the
impact of pedagogical designs like the jigsaw.

The data on hand consisted of digital records of conversations that teams had using
an online chat messing tool. These teams were tasked with a mechanical engineering
problem, namely, to design an exoskeleton for rescue workers that would perform well
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in terms of attributes like cost and user safety. Following a typical QE process, the
researchers coded these data for the presence or absence of [C]odes related to engineering
design in this context. In particular, they coded for concepts like design inputs and
measurable design outcomes. To measure the effect of the jigsaw—and thus the extent
of informational interdependence—they also included the jigsaw topics as [C]odes,
which represented particular design inputs that individual team members were assigned
to learn about before teams were re-formed.

Analyzing the data qualitatively, they found that chats from the pre-jigsaw sample
were focused on the relationships between design inputs (other than the jigsaw topics)
and design outputs. Chats from the post-jigsaw sample were focused on the relation-
ships among the different jigsaw topics and the design outputs. They also noticed that
the post-jigsaw sample was characterized by a higher level of interaction among team-
mates (individuals tended to exchange turns of talk rather than have monologue-like
sequences of chats) and greater focus on sharing different kinds of information. In other
words, interactivity anddissimilarity of information seemed tobe related to informational
interdependence.

To provide a quantitative warrant for these claims, the researchers developed an ENA
model of the connections between [c]odes present in the data and compared the con-
nections identified in the pre/post-jigsaw samples. This analysis yielded a statistically
significant difference between the two samples that aligned with qualitative findings.
A subsequent analysis regressed the ENA scores on the significant dimension on mea-
sures of interactivity and dissimilarity, controlling for teammembership. The regression
model showed that the mean dissimilarity metric of an individual’s team was signif-
icantly associated with the ENA score, controlling for team effects—individuals on
teams that shared different kinds of information tended to talk more like post-jigsaw
teams. Put another way, sharing different kinds of information was positively related to
informational interdependence.

While these results were useful, they were limited by the nature of the data on hand.
Combinations of dissimilarity and interactivity were only present for limited ranges,
raising the question of what the relationship among informational interdependence,
dissimilarity, and interactivity would be if more complete data was available—that is,
combinations throughout the range of both variables. To investigate this question, the
researchers developed a data simulation.

The original data was the actual chat messages sent by the participants. These mes-
sageswere coded for particular categories and then the relationships between these codes
were modeled. Because it would be too difficult (and nonsensical) to attempt to simulate
chat messages themselves, the researchers simulated the patterns of codes present in
messages instead. Doing so required two generating mechanisms: one that determined
the order in which the simulated participants “chatted” and the other to determine the
codes present in their “chats”.

To generate the sequence in which the simulated participants chatted, the researchers
used a lag-1 transition matrix. To generate the codes present in the chats, they used a
co-occurrence probability matrix for each simulated participant that was based on the
their observed data. Given a pair of participants and a prior chat, the probabilities in
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these matrices determined which codes would be present or absent in the subsequent
chat.

After validating the simulation by comparing its output to the actual data (see [20] for
details), the researchers were able to simulate data under a larger variety of dissimilarity
and interactivity combinations than were present in the real data and test the effect
of these metrics on informational interdependence, which, as with the real data, was
operationalized in terms of their location on the significant dimension of the original
ENA space. The results suggested that dissimilarity and interactivity at the team and
individual levels were significantly related to informational interdependence, expanding
the results of the analysis of the real data.

5 Discussion

Thus far we have argued that QE analysis are characterized by two important features.
First, QE analysis are simplifications of observed phenomena and are thus prone to error.
Second, QE is an analytical process that fundamentally relies on the relationships among
qualitative claims, quantitative representations, and real data. We have also given a brief
overview of the application of data simulations in the context of QE. What remains is to
explicitly link these examples of data simulation to the QE framework. These links are
summarized in Fig. 3 and expanded upon below.

Fig. 3. The QE process with links to data simulation in green.

5.1 Link 1: [D]iscourse to Data

QE researchers record a subset of the [d]iscourse they observe as data. A common
practice is to make audio or video recordings of [d]iscourse and then transcribe those
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recordings for analysis. Any transcription process, whether manual or automated, is
prone to error. Words are mistaken, missed, or attributed to the wrong speaker. Because
QE researchers code these data to make claims about the [D]iscourse of some culture,
these errors, if left uncontrolled, can damage the coding, the analysis of connections,
and consequently, the validity of the entire analysis. Put simply, if the data are bad to
begin with, the analysis will be bad as well. Garbage in, garbage out.

The SATEmethod provides ameans to investigate the tolerance of the coding process
to transcription errors and guidance on how to control for transcription errors. By simu-
lating a range of coding schemes and error prone data, the method can identify specific
features that QE researchers can use to examine whether transcription errors in their data
are likely to negatively impact the reliability of coding schemes applied to those data.
In particular, [c]odes that are prevalent in a dataset and tend to appear multiple times
within segments of data tend to be more robust to transcription error; [c]odes that are
relatively unique compared to the data tend to be more sensitive to transcription error.

5.2 Link 2: [C]odes to [C]odes

QE researchers—as well as ethnographers more generally—come to understand the
[D]iscourse of some culture by understanding the [C]odes of that culture—the kinds
of things they say, do, feel, think, and believe that define them. To do so, they identify
[c]odes in their data—actual pieces of data that they use to argue for the presence (or
absence) of [C]odes. This act of pointing is reductive in the sense that it takes a high-
level, sometimes vague and nuanced concept, and materializes it in the form of pieces
of data. As a reductive act, it is prone to error and open for disagreement between
parties—multiple researchers say, or the researcher and members of the culture.

To justify the link between [c]odes and [C]odes, QE researchers seek some measur-
able consensus or agreement. In many cases they code a subset of the data, measure the
agreement, and determine if the agreement is good enough for the purposes of the analy-
sis. Shaffer’s rho—which is derived, in part, from a data simulation—provides evidence
that the agreement reached on this sample of data would generalize to the rest of the
data at hand, and thus supports and strengthens the link between [c]odes and [C]odes.

5.3 Link 3: Connections

[C]odes in isolationdonot define the [D]iscourse of a culture; it is the relationships among
[C]odes that allows us to understand the culture in some way. In turn, QE researchers
often seek to identify the relationships among [c]odes in their data and warrant that these
relationships are indicative of the patterns among [C]odes that help to define the culture.
One way to warrant this link is to use ENA to identify co-occurrences between [c]odes
in the data and then perform a statistical test, the result of which can suggest that the
patterns observed in the data are systematic—signal, not noise.

While there are established ways of running these statistical tests for cases in which
that are two samples of data that researchers wish to compare, the way forward is less
clear when researchers can or want to only describe the nature of a single sample. Using a
simulation to compare the connections observed in the data to the connections identified
in a randomized version of that data, the EVT provides a statistical test of the connections
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between [c]odes for single samples. In turn, this method can support the link between
the connections among [c]odes and the connections among [C]odes that characterize the
[D]iscourse of some culture.

5.4 Link 4: Building Theory

Initiating aQE analysis requires observations of the [d]iscourse of a culture. These obser-
vations are recorded as data, and the analysis proceeds. When the analysis is finished,
if we have done it well, we have evidence that the qualitative claims we are making
are systematic properties of the [D]iscourse of the culture we are studying—we have
evidence of theoretical saturation. These claims, however, are inherently limited by the
[d]iscourse we have observed.

Although QE uses statistical tests, their function is not the same as in typical quan-
titative inquiry. Outside of QE, statistical tests are typically used to generalize claims
made about some sample of observations—on people, say—to the larger population of
observations we could have made about other people. In other words, typical statistical
tests warrant generalizations outside the data we have. In QE, statistical tests are used
to generalize claims made about some sample of observations on people to the larger
population of observations we could have made about the same people. In QE, statistical
tests warrant generalizations within the data we have.

Nonetheless, the data we have may be severely limited and thus our claims narrow.
Data simulations can help to expand upon the data we have. As shown by the work of
Swiecki and colleagues [20] as well as Eagan [6], data simulation can produce results
that may have been missed if only real data had been examined. However, these results
do not necessarily expand the kinds of claims we can make in the context of QE. The
reason being that they are initially unverifiable.

A QE analysis is not finished when a significant statistical result is or is not obtained.
The analysis is finished when the researchers re-examine the claims that they have
supported or refuted in terms of the [d]iscourse they have recorded as data—that is,
when they have closed the interpretive loop. When data in question is simulated, closing
the loop is not possible—there is no qualitative account to check the results against.
Of course, this does not mean that results from simulated data are useless. Instead, it
reframes these results as the starting point for subsequent analysis; the results become
hypotheses that can be tested by observing more [d]iscourse and conducting future QE
analyses. In other words, they become mechanisms for testing and building theories
about some culture.

6 Conclusion

In this paper, we provided an overview of the QE process and examples of the use of data
simulation in QE. We argued that QE is reliant on real—that is, actually observed—data
and that QE is error prone. In spite of the former and because of the later, we argued
that data simulation has a role to play in QE. A look at Fig. 3 suggests that this role is
more than just a cursory one. New links in the QE process can be created and existing
links can be reinforced.
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Our work here is limited in the sense that we have only provided evidence for the
relationships betweenQE and data simulation.We have not discussed themajor practical
issues associated with using data simulations in QE nor have we provided guidelines for
implementing simulations in the QE context. This paper is a prerequisite to that future
work. For now, we hope that we have given insight to the usefulness of data simulation
in QE and that this paper will spark debate and study about whether and how data
simulation should be incorporated into future QE work.
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