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AbstractÐMultiuser MIMO (MU-MIMO) technologies can
help provide rapidly growing needs for high data rates in modern
wireless networks. Co-channel interference (CCI) among users
in the same resource-sharing group (RSG) presents a serious
user scheduling challenge to achieve high overall MU-MIMO
capacity. Since CCI is closely related to correlation among spatial
user channels, it would be natural to schedule co-channel user
groups with low inter-user channel correlation. Yet, establishing
RSGs with low co-channel correlations for large user populations
is an NP-hard problem. More practically, user scheduling for
wideband channels exhibiting distinct channel characteristics in
each frequency band remains an open question. In this work,
we proposed a novel wideband user grouping and scheduling
algorithm named SC-MS. The proposed SC-MS algorithm first
leverages spectral clustering to obtain a preliminary set of user
groups. Next, we apply a post-processing step to identify user
cliques from the preliminary groups to further mitigate CCI.
Our last step groups users into RSGs for scheduling such that
the sum of user clique sizes across the multiple frequency bands is
maximized. Simulation results demonstrate network performance
gain over benchmark methods in terms of sum rate and fairness.

Index TermsÐMultiuser MIMO (MU-MIMO), maximal clique,
spectral clustering, user grouping, wideband user scheduling.

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) technologies,

through which a base station (BS) with a large number of

antennas serves multiple devices simultaneously in a shared

channel, provide promising solutions to meet the increasing

demand for high-speed data services and high spectrum

efficiency in modern wireless systems [1]. By exploiting

spatial diversity through multiple antennas, MIMO coverage

delivers improved capacity and spectrum efficiency [2].

Multiuser MIMO (MU-MIMO) allows multiple users on the

same time-frequency resource [3] served by a BS. One major

obstacle of MU-MIMO lies in the co-channel interference

(CCI) among co-channel users in the same resource-sharing

group (RSG) despite spatial channel diversity. Specifically,

the network capacity and spectrum efficiency depends on the

severity of CCI among the multiple RSGs each occupying

one of N frequency bands (channels). Since strong CCI

corresponds to co-channels users with large spatial channel

correlation [4], MU-MIMO capacity and spectrum efficiency

can be significantly improved by scheduling users with low
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channel correlation to the same RSG. Thus, MU-MIMO

performance critically relies on user scheduling algorithms [4].

Desirable scheduling algorithms should divide users into

RSGs across all frequency bands such that within each RSG,

users enjoy low channel correlation [5]. However, due to the

combinatorial nature of the problem, the number of possible

RSG choices grows exponentially with the number of users.

Exhaustive search is prohibitively costly even for a moderate

number of users [6]. Moreover, given the ultra-short transmis-

sion time interval in 5G and future wireless systems [1], it is

urgent to develop low-complexity algorithms that yield good

sub-optimum scheduling decisions dynamically in real-time.

To mitigate the complexity of finding decent RSGs, existing

works have exploited user channel correlation in a heuristic or

greedy manner. The authors of [7] designed a greedy algorithm

to form RSGs by iteratively separating two users into different

RSGs if their channel correlation is greater than a pre-set

threshold. Another work [8] characterized interference degrees

between users as the weight of edges in a graph and adopted

a heuristic RSG formation by sequentially assigning users to

RSGs with the minimum sum increase of graph weights.

However, heuristic methods tend to fall victim to local

optimum and suffer globally. To overcome such drawbacks,

several studies adopt unsupervised learning to extract common

features of user channel correlations [9]. Instead of directly

assigning users to RSGs based on heuristic criteria, the authors

of [10], [11], [12] have adopted two-step strategies to form

RSGs based on user channel correlations. Specifically, the first

step identifies clusters of users with highly similar channels

(i.e. channels with high correlations) by leveraging unsuper-

vised clustering techniques such as the well-known K-means.

The second step forms RSGs by greedily scheduling users

from the same cluster into different RSGs. The motivation

behind these two-step unsupervised strategies is that it is easier

to cluster users with similar channels than to cluster users of

dissimilar channels, e.g., users with low channel correlation.

Although these strategies do not directly minimize user CCI

within each RSG, they provide good performance guarantees

by rejecting RSGs with significant CCI users.

Although clustering-based MU-MIMO scheduling schemes

can effectively form RSGs with mild complexity, to our best

knowledge, none of the existing methods considers wideband

multi-channel systems. In fact, it is highly challenging to

extend existing works to wideband multi-channel systems,



such as the multi-subcarrier (multi-subband) physical layers

of 4G-LTE and 5G-NR, particularly because practical chan-

nel characteristics are frequency-selective due to multi-path

effects. Other traditional algorithms also do not apply to

such problems. Hence, how to improve the sum rate and

spectral efficiency of MU-MIMO systems by forming RSGs

in consideration of user channel state information (CSI) in

different subbands remains an open but vital question.

In this paper, we aim to address two joint and crucial

aforementioned challenges: (1) forming RSGs by clustering

users with dissimilar channels into the same RSG, and (2)

forming RSGs in a multi-band (or multi-channel) system based

on user CSI knowledge. Specifically, we tackle the first chal-

lenge by forming user graphs with edges representing channel

dissimilarity, considering user grouping as a k-way normalized

cut (NCut) problem in graph theory, and adopting spectral

clustering (SC) to obtain a preliminary grouping decision. We

then post-process results from SC to determine its maximal

cliques, so as to further reduce the CCI. We tackle the second

challenge by formulating the multi-band scheduling problem

to maximize the sum size of user cliques in all subbands,

and developing a heuristic procedure accordingly. Integrating

these steps, we propose a novel SC-aided multi-band user

grouping and scheduling (SC-MS) algorithm and demonstrate

its efficacy through extensive numerical simulations.

Notations: Throughout this paper, we use small bold letters

for vectors, capital bold letters for matrices and N -dimensional

(ND) arrays, calligraphic capital letters to denote sets and

graphs, and non-bold font for scalars and functions. We use

(·)T, (·) and (·)H to denote transpose, conjugate and conjugate

transpose, respectively. Finally, ∥ · ∥ denotes ℓ2 norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-cell MU-MIMO OFDM system where

a BS equipped with Q antennas serves S single-antenna users.

The system spectrum is equally divided into N subbands and

each subband consists of M timeslots, which are shorter than

the channel coherence time. A time-frequency resource block

(RB)1 is each combination of timeslot and subband, and hence

there are NM RBs in total. We further denote RB(f, t) the

RB of subband f and timeslot t, ∀f ∈ N = {1, . . . , N}
and ∀t ∈ M = {1, . . . ,M}. Without loss of generality, the

BS is assumed to have perfect knowledge of users’ CSI. Let

H = {hf
i,q}i,q,f ∈ C

Q×S×N be the CSI 3D-array, where

each h
f
i,q ∈ C, ∀i ∈ S = {1, . . . , S}, ∀q ∈ Q = {1, . . . , Q},

∀f ∈ N denotes the CSI between user i and BS’s antenna q

on subband f . Note that user CSIs can follow any arbitrary

channel model. Here, we consider a general case, where CSIs

are random and independent between users, subbands and

BS antennas. We further assume quasi-static block fading

channels, such that CSIs are constant during the M time slots,

less than channel coherence time.

To represent the mapping between users and RBs, we

introduce an indicator 3D-array X = {xf,t
i }i,f,t, where each

1Note that our definition of RB may not match the PRB in LTE or 5G. In
this work, RB is defined as a resource unit occupied by users in a RSG.

Fig. 1: Illustration of the system model and objective. Note that user grouping
is decided based on users’ channels rather than geographical locations.

x
f,t
i ∈ {0, 1}, ∀i ∈ S, ∀f ∈ N , ∀t ∈ M denotes whether user

i is allocated to RB(f, t) or not. Also, each RB can be shared

by multiple users and thus CCI exists among users allocated

to the same RSG. Based on the above elaboration, the signal-

to-interference-plus-noise ratio (SINR) of user i on RB(f, t)
can be obtained by

γ
f,t
i =

pi
∣∣(hf

i )
H
z
f
i

∣∣2

σ2 +
∑

j∈S,j ̸=i

x
f,t
j · pj

∣∣(hf
i )

Hz
f
j

∣∣2 , (1)

where h
f
i = [hf

i,1, . . . , h
f
i,Q]

T ∈ C
Q is the CSI vector of user i

at subband f , pi is the transmission power allocated to user i,

σ2 is the variance of additive white Gaussian noise (AWGN),

and z
f
i is the beamforming precoder of user i at subband f ,

which can be selected as the zero-forcing (ZF) [13], weighted

minimum mean squared error (MMSE) [14] or maximum ratio

transmitter (MRT) [15]. Without loss of generality and for the

sake of exposition, we use the MRT precoders so that

z
f
i =

h
f
i

∥hf
i ∥

, ∀i ∈ S, f ∈ N . (2)

After applying (2) into (1), the SINR can be reformulated as

γ
f,t
i =

pi
σ2

∥hi∥2 +
∑

j∈S,j ̸=i

x
f,t
j · pjρ

2(hf
i ,h

f
j )

, (3)

where ρ(hf
i ,h

f
j ) is the spatial correlation between h

f
i and h

f
j :

ρ(hf
i ,h

f
j ) =

∣∣(hf
i )

H
h
f
j

∣∣

∥hf
i ∥∥h

f
j ∥

, ∀i ∈ S, f ∈ N . (4)

Clearly, the CCI experienced by user i increases with the sum

of squares of CSI correlations between user i and other users in

the same RSG. Since we are interested in exploiting channel

correlations of users at the scheduling problem and aim to

develop simple solutions, we assume equal power allocation

(i.e. pi = pj , ∀i, j ∈ S, i ̸= j).

As shown in Fig. 1, the goal of this paper is to design an user

grouping and scheduling algorithm that allocates a given set



of RBs to S users so that the sum rate of users is maximized,

which is formulated as follows:

max
X

∑

f∈N

∑

t∈M

∑

i∈S

x
f,t
i R

f,t
i

s.t. C1 : xf,t
i ∈ {0, 1} , ∀ i, f, t ,

C2 :
∑

f∈N

∑

t∈M

x
f,t
i = 1 , ∀i , (5)

where R
f,t
i = log2

(
1 + γ

f,t
i

)
denotes the data rate of user i

if allocated to RB(f, t) and constraint C2 requires all users

to be assigned to exactly one RB and constraint. Note that

(5) is a nonlinear integer programming problem, which is

NP-hard [16]. To efficiently optimize (5), we treat sum rate

maximization as forming NM RSGs by exploiting user CSI

correlations such that the CCI within each RSG is minimized.

III. SPECTRAL CLUSTERING AIDED MULTI-BAND USER

GROUPING AND SCHEDULING ALGORITHM

In this section, we will present our proposed solution for

problem (5). Specifically, in subsections III-A and III-B, we

first address the single-band case of problem (5), where N =
1, by leveraging spectral clustering (SC) [17] and propose

the SC-aided Single-band Scheduling (SC-SS) algorithm. In

subsection III-C, we then extend SC-SS to multi-band systems,

where N ≥ 2, and further propose the SC-aided Multi-band

Scheduling (SC-MS) algorithm. Throughout this section, the

terms group, subgraph, and RSG are used interchangeably

according to different contexts, all of which refer to a set of

users allocated to a particular RB.

A. Preliminary User Grouping with Spectral Clustering

We start with the single-band user grouping problem, where

the goal is to find M RSGs with low CCI. Intuitively, the

pairwise relationship of CSI correlations between users in

subband f can be described with an undirected weighted graph

Gf = (S, E), where S is the user set and E denotes the set of

weighted edges describing channel dissimilarity of users. We

define the weight of the edge connecting users i and j as:

w
f
i,j =

{
1− ρ2(hf

i ,h
f
j ) ρ(hf

i ,h
f
j ) ≤ ϵ

0 otherwise
, (6)

where ϵ > 0 serves as a dissimilarity threshold. Note that

w
f
i,j ̸= 0 implies the CSIs of users i and j are dissimilar

(i.e. low correlation) in subband f and hence they can be

assigned to the same RSG, whereas w
f
i,j = 0 implies the

opposite. Although several candidate functions can be used to

set the weight value, we adopt these threshold-based weights

for simplicity [4]. Based on (6), we can construct the adjacency

matrix W
f = {wf

i,j}i,j ∈ R
S×S of Gf . We then define a

diagonal degree matrix D
f = {dfi,j}i,j ∈ R

S×S such that

d
f
i,i =

∑

k∈S,k ̸=i

w
f
i,k and d

f
i,j = 0 for i ̸= j. (7)

The normalized Laplacian matrix of Gf is given by

L
f = (Df )−

1

2

(
D

f −W
f
)
(Df )−

1

2 . (8)

Fig. 2: Illustration of a sample run of our proposed SC-SS with S = 15,
Q = 32, N = 1, M = 3. We depict each step and its corresponding outputs.

Based on this graph model, the single-band user grouping

problem is analogous to partitioning Gf into M disjoint

subgraphs Gf1 , . . . ,G
f
M such that ∪t∈MG

f
t = Gf and each

subgraph is highly intra-connected. Moreover, this is related to

the goal of the k-way NCut problem, which aims to minimize

the sum of cuts of k partitions normalized by their volume

[18], and can be formulated by:

min

k∑

t=1

Cut(Gft , G̃
f
t )

V ol(Gft )
=

∑

t∈M

∑
i∈Gf

t ,j∈G̃f
t
w

f
i,j∑

i∈Gf
t
di,i

, (9)

where G̃ft = Gf \ Gft is the complement of Gft in Gf .

In the proposed SC-SS, we adopt spectral clustering [17],

which approximates the NCut problem to eigenvalues of

the graph Laplacian, to efficiently solves problem (9). The

procedure of SC is summarized below:

1) Construct W f , Df and L
f of the graph Gf based on

user CSI correlation coefficient (4) in subband f .

2) Compute eigenvectors v1, . . . ,vM ∈ R
S of L

f corre-

sponding to its M smallest eigenvalues.

3) Cluster columns of Y = [v1,v2, . . . ,vM ]T into M

separate groups using a given clustering method, e.g.

K-means. These groups, corresponding to disjoint M

subgraphs Gft , form the preliminary RSGs.

The result of SC will then undergo a post-processing procedure

described in the next subsection.

B. Post-Processing via Cliques Detection and Reassignment

Although SC is a good solution for community detection,

the resulting M preliminary RSGs can be further refined for

problem (5). The reason is that these RSGs might still contain

user pairs that exhibit high correlation. In other words, disjoint

subgraphs obtained with SC are not necessarily cliques.

Definition 1. An undirected weighted graph is a clique if it is

complete, or fully connected. That is, a graph G, |G| ≥ 1, is

a clique if all its edge weights wi,j ̸= 0, ∀i, j ∈ G with i ̸= j.

Ideally, we aim to find user cliques so that CSI correlation of

any user pair in an RSG is low. Hence, our proposed second

step in SC-SS is to detect maximal user cliques hidden in

the subgraphs Gft obtained from SC. Finding the maximal

clique in a graph is a NP-hard problem [19]. We can, however,



adopt a heuristic solution. Based on the outcomes of maximal

user clique detection, we design a node reassignment scheme

to form RSGs and obtain the final scheduling decision. The

details are given as follows.

1) Clique Detection: First, we compute the M degree

matrices D
f
t of subgraphs Gft ∀t ∈ M obtained from SC.

For each subgraph, we iteratively remove the node with the

lowest degree until the remaining nodes form a clique. The

reasoning is that if the degree of a node is low, it is less likely

to form a clique than other nodes. We use a buffer set B to

store all nodes removed from the subgraphs. We repeat this

process until all M subgraphs become cliques.

2) Node Reassignment: Next, we sequentially remove an

user ℓ from the buffer B and add it to the subgraph t that

has the minimum sum of squared CSI correlations between

user ℓ and users in Gft , i.e. t = argmint
∑

j∈Gf
t
ρ2(hf

i ,h
f
j ),

suggesting this RSG has minimum CCI for user ℓ. We repeat

this process until B is empty. The resulting M subgraphs

correspond to the final M RSGs, which are mapped to each

RB. In this way, each RB contains users from a distinct RSG.

These RSG users enjoy low CCI in that RB. Fig. 2 depicts

the procedure of SC-SS with an example.

Thus far, we have used index f to describe SC-SS over a

single subband f . In a multi-band case where N ≥ 2, we will

have N independent graphs that have the same set of nodes

but with different edges and weights. Therefore, we will need

further considerations to determine the multi-band scheduling

decision, which we present below.

Algorithm 1: SC-aided Multiband Scheduling, SC-MS

Input: CSI matrix H = {hf
i,q}

S,Q,N
i=1,q=1,f=1

Output: Scheduling decision X = {xf,t
i }

S,N,M
i=1,f=1,t=1

1: Initialize U ←− {1, . . . , S}, xf,t
i ←− 0, ∀ i, f, t

2: for f = 1 to f = N do

3: Construct interference graph Gf of subband f for

remaining users in U
4: Partition Gf into (N − f)M subgraphs by SC

5: for t = 1 to (N − f)M do

6: while Gft is not a clique do

7: Remove node i = argmin
k∈Gf

t

dk,k from Gft

8: Sort Gf1 ,G
f
2 , ...,G

f

(N−f)M by their cardinality |Gft |

9: for t = 1 to M do

10: ∀i ∈ Gft , remove i from U and set x
f,t
i ←− 1

11: while U ̸= ∅ do

12: Randomly remove a user ℓ from U

13: x
f,t
ℓ ←− 1, where (f, t) = argmin

f,t

∑

j∈Gf
t

ρ2(hf
ℓ ,h

f
j )

C. Extend to Multi-band Systems and Complexity Analysis

We have assumed a frequency-selective wideband channel

consisting of N subbands, and independent CSI correlations

of users in each subband. Hence, a straightforward multi-

band scheduling solution is to construct the N interference

graphs Gf , ∀f ∈ N and perform SC with post-processing

independently in each graph. However, under constraint C2,

RBs in different subbands should be disjoint user sets, and thus

we cannot merely treat each subband independently. Hence,

we now consider the joint optimization problem

max
∑

f∈N

∑

t∈M

|Gft | ,

s.t. C1: w
f
i,j ̸= 0 , ∀f ∈ N , ∀i, j ∈ Gft , i ̸= j , (10)

where |Gft | denotes the cardinality of graph Gft and thus

(10) aims to maximize the sum of user clique sizes over all

RSGs obtained before node reassignment, over all subbands.

By optimizing (10), we enforce a global perspective of the

scheduling problem since we are jointly considering user

allocation in multiple frequency bands and the CCI of RSGs

within each subband. By generalizing the previously discussed

SC-SS algorithm, we develop the proposed SC-MS algorithm

to effectively solve multi-band user scheduling problem (5).

SC-MS starts by initializing a user pool U with all S users,

and setting indicators x
f,t
i to 0. Next, we sequentially select a

subband f ∈ N and construct its interference graph Gf based

on the CSI correlation of users in U at subband f . Thereafter,

we partition Gf into (N−f)M subgraphs by SC, where N−f
is the number of subbands that have not been selected yet. The

rationale behind this is to balance sizes of the subgraphs. If

we instead partition Gf into M subgraphs, the average size of

subgraphs in subband f would be greater than subband f +1
which is selected after f , leading to size imbalance.

SC-MS then performs the single-band heuristic to extract

maximal cliques of (N−f)M subgraphs by iteratively remov-

ing nodes from them. Since our goal is to maximize the sum

clique sizes, here we select the M subgraphs with the highest

clique size as the M RSGs in subband f , and abandon the

remaining subgraphs of subband f . We next set the indicators

x
f,t
i of users within these M cliques to 1 accordingly and

remove them from U . We repeat this process until all subbands

of the wideband spectrum have been traversed. By then, we

will have NM clique subgraphs corresponding to NM RSGs.

Note that at this point, there may still exist residual users in

U that have not been assigned to any RB. For this reason, the

final step of SC-MS is to allocate these remaining users to the

existing subgraphs following the same idea proposed in the

SC-SS. In short, we iteratively remove a random user ℓ from

U and assign it to the subgraph that has the minimum sum of

squared CSI correlations between user ℓ and users already in

the RSG. The scheduling indicator of user ℓ is then updated

by x
f,t
ℓ = 1. This step finishes when U is empty, terminating

the algorithm and yielding X , the final scheduling decision.

The overall workflow of SC-MS is detailed in Alg. 1.

We now analyze the computational complexity of SC-MS

in terms of S, M and N . At line 3, constructing adjacent

matrix for graph Gf has cost O(S2). At line 4, performing

SC has cost O(S3) in general [20]. For line 6, checking the



degree of all nodes in Gft to determine if it is a clique has cost

O(S2). Afterward in line 7, removing the node and updating

the graph has cost O(S). Thus, the total cost for lines 5-7 is

O(NMS2). For line 8, sorting has cost O(S logS). For lines

9-10, removing users from U and updating their indicators

has cost O(MS). Also, allocating remaining users in U for

line 11-13 has cost O(NMS2). Thus, the worst-case overall

complexity is O(NS3 + N2MS2), and for a general case

where NM ≤ S, the total complexity of SC-MS is O(NS3).

IV. NUMERICAL EXPERIMENTS

We now evaluate and illustrate the performance of the

proposed multi-band user grouping and scheduling algorithms

in terms of sum rate and fairness via numerical simulations.

Unless otherwise stated, we consider one BS equipped with

Q = 8 antennas serving S = 200 users. We consider a system

of N = 8 subbands and M = 6 timeslots, resulting in 48

RBs. The CSI 3D-array H ∈ C
Q×S×N is generated randomly,

considering both shadowing effect and Rayleigh fading, with

elements independent from each other. The channel gains are

normalized and we set noise power to σ2 = 0.01 (i.e., SNR=

20dB). We use a correlation threshold ϵ = 0.07. We average

results over 30 simulations. We compare our proposed SC-MS

algorithm with other multi-band scheduling approaches.

1) Heuristic algorithm (HRS) adopted from [8]: This al-

gorithm starts with NM empty RBs. In each iteration, HRS

sequentially adds an user i to RB j such that the CCI between

user i and existing users in RB j is the minimum among NM

RBs, i.e. j = argminj
∑

k∈RB(j) ρ
2
i,k. Thus, HRS has a lower

bound of (1− 1
k
) times the optimal value for a general MAX

k-CUT problem [21], where k is the number of clusters to

assign (48 in our setting). HRS complexity: O(NMS2).

2) Hungarian algorithm (HNG) [22]: This scheme treats

the mapping between users and RBs as a bipartite matching

problem. It initializes with NM empty RBs. In each iteration,

HNG constructs a cost matrix C = {ci,j}i,j ∈ R
S×(NM)

where ci,j , ∀i ∈ S, ∀j ∈ {1, . . . , NM} is the CCI between

user i and existing users in RB j. Based on C, it then leverages

the Hungarian algorithm to optimally assign NM users to

RBs, minimizing the sum of matching costs. The process

repeats until all S users are assigned to an RB, taking ⌈ S
NM
⌉

iterations. HNG complexity: O(NMS3).

3) Round Robin (RR): This scheme naÈıvely assigns an user

from the user set, one at a time, to a RB in sequential order, i.e.

RB(1, 1), RB(1, 2), . . . ,RB(N,M), RB(1, 1), RB(1, 2), . . .,
until the user set is empty. RR complexity: O(S).

Fig. 3 depicts the box plot of achieved user data ratesOur

proposed SC-MS outperforms other benchmark schemes in

terms of both average and median data rates. Specifically, SC-

MS average data rate outperforms HRS and HNG by 18%
and 15%, respectively. Additionally, user data rates achieved

by SC-MS are rather consistent and contain fewer outliers, in

comparison to HNG and HRS. Overall, the naÈıve RR leads

to the worst performance, and has the highest variability in

achieved data rates.

To measure the fairness of data rates between users, we

adopt Jain’s fairness index [23], which for RB(f, t) is

Jf,t =

(∑
i∈S x

f,t
i R

f,t
i

)2
(∑

i∈S x
f,t
i

)
·
∑

i∈S

(
x
f,t
i R

f,t
i

)2 . (11)

Fig. 4 illustrates the distribution of Jain’s fairness index of

all RSGs obtained by each scheme. SC-MS achieves the best

fairness among all of the schemes, with a tight distribution

close to the best fairness index value of 1. This is possible

since SC-MS aims to form RSGs whose subgraphs are highly

intra-connected such that the degrees between nodes tend to be

very similar. In turn, this implies users within the same RSG

tend to have similar CCI levels. Therefore, even if user data

rates may vary, as shown in Fig. 1, the users within the same

RSG tend to have similar data rates, thus providing improved

fairness when compared with other benchmarks.

Fig. 5 depicts the sum rate achieved by the different schemes

for varying numbers of users. The sum rate of both HNG and

HRS increases with S until S ≥ 300 before decreasing. This

behavior is related to the objective function of (5) and the

constraints of each scheme. As long as the CCI among users in

each RSG remains low, we can increase the sum rate by adding

more users. However, for a given number of RBs (i.e., RSGs),

when the number of users reaches a certain point (here, S =
300), RSGs become over-populated such that neither HNG nor

HRS can find a scheduling decision to separate users with high

CSI correlation in different RBs within their design rules. As

a result, users’ sum rate decreases due to the increased CCI

caused by users with high CSI correlation within the RSGs.

On the other hand, both our proposed SC-MS and RR

show no decline in sum rates for S ≤ 600 users, albeit for

different reasons. In RR, where RSGs are formed randomly,

the resulting RSGs suffer from severe CCI in all cases, even

at very low numbers of users. Hence, its achieved sum rate

does not show elbow point nor does it change drastically.

In contrast, the sum rate of SC-MS increases even beyond

S = 600 because RSGs are well formed and have not been

severely affected by CCI yet. Compared with HNG and HRS,

SC-MS has a better global perspective of the problem by

leveraging the combination of SC and post-processing. The

results show that SC-MS can efficiently find user cliques

in different subbands and thus can still generate scheduling

decisions to separate users with high CSI correlation when

S ≥ 300, whereas HNG and HRS fail to do so. This illustrates

that our SC-MS is more robust for a larger number of users,

and also scales better as well. That being said, the sum rate

of both SC-MS and RR will eventually start declining when

a sufficiently high number of users leads to severe CCI.

Finally, Fig. 6 illustrates the average user data rate under

different SNRs. To analyze the behavior of data rate with

respect to interference, we also consider a low CCI scenario by

generating channels that have pairwise CSI correlation below

0.2, i.e. ρ(hf
i ,h

f
j ) ≤ 0.2, ∀i, j ∈ S, ∀f ∈ N . The results

show that the data rates become CCI-limited even if the SNR

value continues to grow, though the data rate limit differs



Fig. 3: Distribution of data rate of all
users in different schemes.

Fig. 4: Distribution of fairness index
of all RSGs in different schemes.

Fig. 5: Average sum rate for different
numbers of users in different schemes.

Fig. 6: Average data rate for different
SNR values in different schemes.

for each scheme. This phenomenon is quite common because

user rate is a function of signal-to-interference-plus-noise ratio

(SINR). When the noise power becomes very weak, SINR is

dominated by CCI. Positively, the CCI-limited data rate of SC-

MS clearly exceeds that of HRS, illustrating the ability of SC-

MS scheduling at managing CCI better than other algorithms.

As expected, average rates also grow when we limit CSI

correlation. Interestingly, the performance of SC-MS only

grew by 4% in the limited correlation setting, implying that

most users in the same RSGs formed by our algorithm already

have low CSI correlations. In contrast, the average rate of RR

increases significantly for limited CSI correlation, because its

poor scheduling decisions are less hampered by the strong

CCI of the original setting. Overall, SC-MS shows better

performance at all SNR values in both scenarios, with even

better performance in high SNR regimes.

V. CONCLUSIONS AND FUTURE WORKS

This paper addresses the problem of user scheduling and

resource sharing in wideband MU-MIMO wireless networks.

We form resource sharing groups (RSGs) consisting of low

CCI users in a multi-band system. Specifically, we propose

a spectral clustering aided multi-band user grouping and

scheduling algorithm named SC-MS. Utilizing subband inter-

ference graphs, the SC-MS first efficiently finds the largest

user cliques based on spectral clustering and post-processing.

The process is iterated over all subbands to create as many

RSGs as available RBs. SC-MS then assigns unassigned users

to RSGs based on minimum CCI. Our numerical results show

that SC-MS outperforms other benchmark schemes in terms of

user data rates, RSG fairness and sum rates. The SC-MS scales

well with the number of users at modest computational com-

plexity, making it appealing for large MU-MIMO networks. In

future work, we plan to investigate a more generalized multi-

band scheduling problem that also considers power allocation,

CSI uncertainty, and individual user rate constraints.
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[4] E. Castañeda, A. Silva, A. Gameiro, and M. Kountouris, ªAn overview
on resource allocation techniques for multi-user MIMO systems,º IEEE

Commun. Surveys Tuts., vol. 19, no. 1, pp. 239±284, 2017.
[5] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, ªCapacity limits

of MIMO channels,º IEEE J. Sel. Areas Commun., vol. 21, no. 5, p.
684±702, 2003.

[6] J. Dai and S. Wang, ªClustering-based spectrum sharing strategy for
cognitive radio networks,º IEEE J. Sel. Areas Commun., vol. 35, no. 1,
pp. 228±237, 2017.

[7] M. Alkhaled, E. Alsusa, and W. Pramudito, ªAdaptive user grouping
algorithm for the downlink massive MIMO systems,º IEEE Wireless

Commun. Netw. Conf. (WCNC), pp. 1±6, 2016.
[8] L. Liang, S. Xie, G. Y. Li, Z. Ding, and X. Yu, ªGraph-based resource

sharing in vehicular communication,º IEEE Trans. Wireless Commun.,
vol. 17, no. 7, pp. 4579±4592, 2018.

[9] Y. Xu, G. Yue, and S. Mao, ªUser grouping for massive MIMO in FDD
systems: New design methods and analysis,º IEEE Access, vol. 2, no. 1,
pp. 947±959, 2014.

[10] C. Feres and Z. Ding, ªAn unsupervised learning paradigm for user
scheduling in large scale multi-antenna systems,º IEEE Trans. Wireless

Commun., pp. 1±1, 2022.
[11] Z. Cheng, J. Yang, Z. Wei, and H. Yang, ªUser clustering and scheduling

in UAV systems exploiting channel correlation,º IEEE 30th Annu. Int.

Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), pp. 1±6, 2019.
[12] R.-F. Trifan, R. Lerbour, G. Donnard, and Y. L. Helloco, ªK-means

MU-MIMO user clustering for optimized precoding performance,º IEEE

Wireless Commun. Netw. Conf. (WCNC), pp. 1±5, 2019.
[13] N. Jindal, ªMIMO broadcast channels with finite-rate feedback,º IEEE

Trans. Inf. Theory, vol. 52, no. 11, p. 5045± 5060, 2006.
[14] E. Bjornson and E. Jorswieck, ªOptimal resource allocation in coordi-

nated multi-cell system,º Found. Trends Commun. Inf. Theory, vol. 9,
no. 2-3, p. 113±381, 2013.

[15] T. K. Y. Lo, ªMaximum ratio transmission,º IEEE Trans. Commun.,
vol. 47, no. 10, p. 1458±1461, 1999.

[16] Z. Yang, L. Cai, , and W. Lu, ªPractical scheduling algorithms for
concurrent transmissions in rate-adaptive wireless networks,º Proc. IEEE

29th Conf. Comput. Commun. (INFOCOM), p. 120±128, 2010.
[17] U. von Luxburg, ªA tutorial on spectral clustering,º Statist. Comput.,

vol. 17, no. 84, p. 395±416, 2007.
[18] S. M. Z. He, S. Kompella, and A. Swami, ªLink scheduling and

channel assignment with a graph spectral clustering approach,º IEEE

Mil. Commun. Conf. (MILCOM), pp. 73±78, 2016.
[19] Q. Wu and J.-K. Hao, ªA review on algorithms for maximum clique

problems,º Eur. J. Oper. Res., vol. 242, no. 3, pp. 693±709, 2015.
[20] D. Yan, L. Huang, and M. I. Jordan, ªFast approximate spectral

clustering,º in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining, 2009, p. 907±916.
[21] R. Y. Chang, Z. Tao, J. Zhang, and C. . C. J. Kuo, ªMulticell OFDMA

downlink resource allocation using a graphic framework,º IEEE Trans.

Veh. Technol., vol. 58, no. 7, pp. 3494±3507, 2009.
[22] A. A. Khan, R. S. Adve, and W. Yu, ªOptimizing downlink resource

allocation in multiuser MIMO networks via fractional programming and
the hungarian algorithm,º IEEE Trans. Wireless Commun., vol. 19, no. 8,
pp. 5162±5175, 2020.

[23] R. Jain, D. Chiu, and W. R. Hawe, ªA quafntitative measure of fairness
and discrimination for resource allocation in shared computer systems,º
DEC Research, Hudson, MA, USA, Tech. Rep. TR-301, 1984, vol. 38.


