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Abstract—Multiuser MIMO (MU-MIMO) technologies can
help provide rapidly growing needs for high data rates in modern
wireless networks. Co-channel interference (CCI) among users
in the same resource-sharing group (RSG) presents a serious
user scheduling challenge to achieve high overall MU-MIMO
capacity. Since CCI is closely related to correlation among spatial
user channels, it would be natural to schedule co-channel user
groups with low inter-user channel correlation. Yet, establishing
RSGs with low co-channel correlations for large user populations
is an NP-hard problem. More practically, user scheduling for
wideband channels exhibiting distinct channel characteristics in
each frequency band remains an open question. In this work,
we proposed a novel wideband user grouping and scheduling
algorithm named SC-MS. The proposed SC-MS algorithm first
leverages spectral clustering to obtain a preliminary set of user
groups. Next, we apply a post-processing step to identify user
cliques from the preliminary groups to further mitigate CCI.
Our last step groups users into RSGs for scheduling such that
the sum of user clique sizes across the multiple frequency bands is
maximized. Simulation results demonstrate network performance
gain over benchmark methods in terms of sum rate and fairness.

Index Terms—Multiuser MIMO (MU-MIMO), maximal clique,
spectral clustering, user grouping, wideband user scheduling.

I. INTRODUCTION

Multiple-Input-Multiple-Output  (MIMO) technologies,
through which a base station (BS) with a large number of
antennas serves multiple devices simultaneously in a shared
channel, provide promising solutions to meet the increasing
demand for high-speed data services and high spectrum
efficiency in modern wireless systems [1]. By exploiting
spatial diversity through multiple antennas, MIMO coverage
delivers improved capacity and spectrum efficiency [2].

Multiuser MIMO (MU-MIMO) allows multiple users on the
same time-frequency resource [3] served by a BS. One major
obstacle of MU-MIMO lies in the co-channel interference
(CCI) among co-channel users in the same resource-sharing
group (RSG) despite spatial channel diversity. Specifically,
the network capacity and spectrum efficiency depends on the
severity of CCI among the multiple RSGs each occupying
one of N frequency bands (channels). Since strong CCI
corresponds to co-channels users with large spatial channel
correlation [4], MU-MIMO capacity and spectrum efficiency
can be significantly improved by scheduling users with low
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channel correlation to the same RSG. Thus, MU-MIMO
performance critically relies on user scheduling algorithms [4].

Desirable scheduling algorithms should divide users into
RSGs across all frequency bands such that within each RSG,
users enjoy low channel correlation [5]. However, due to the
combinatorial nature of the problem, the number of possible
RSG choices grows exponentially with the number of users.
Exhaustive search is prohibitively costly even for a moderate
number of users [6]. Moreover, given the ultra-short transmis-
sion time interval in 5G and future wireless systems [1], it is
urgent to develop low-complexity algorithms that yield good
sub-optimum scheduling decisions dynamically in real-time.

To mitigate the complexity of finding decent RSGs, existing
works have exploited user channel correlation in a heuristic or
greedy manner. The authors of [7] designed a greedy algorithm
to form RSGs by iteratively separating two users into different
RSGs if their channel correlation is greater than a pre-set
threshold. Another work [8] characterized interference degrees
between users as the weight of edges in a graph and adopted
a heuristic RSG formation by sequentially assigning users to
RSGs with the minimum sum increase of graph weights.

However, heuristic methods tend to fall victim to local
optimum and suffer globally. To overcome such drawbacks,
several studies adopt unsupervised learning to extract common
features of user channel correlations [9]. Instead of directly
assigning users to RSGs based on heuristic criteria, the authors
of [10], [11], [12] have adopted two-step strategies to form
RSGs based on user channel correlations. Specifically, the first
step identifies clusters of users with highly similar channels
(i.e. channels with high correlations) by leveraging unsuper-
vised clustering techniques such as the well-known K-means.
The second step forms RSGs by greedily scheduling users
from the same cluster into different RSGs. The motivation
behind these two-step unsupervised strategies is that it is easier
to cluster users with similar channels than to cluster users of
dissimilar channels, e.g., users with low channel correlation.
Although these strategies do not directly minimize user CCI
within each RSG, they provide good performance guarantees
by rejecting RSGs with significant CCI users.

Although clustering-based MU-MIMO scheduling schemes
can effectively form RSGs with mild complexity, to our best
knowledge, none of the existing methods considers wideband
multi-channel systems. In fact, it is highly challenging to
extend existing works to wideband multi-channel systems,



such as the multi-subcarrier (multi-subband) physical layers
of 4G-LTE and 5G-NR, particularly because practical chan-
nel characteristics are frequency-selective due to multi-path
effects. Other traditional algorithms also do not apply to
such problems. Hence, how to improve the sum rate and
spectral efficiency of MU-MIMO systems by forming RSGs
in consideration of user channel state information (CSI) in
different subbands remains an open but vital question.

In this paper, we aim to address two joint and crucial
aforementioned challenges: (1) forming RSGs by clustering
users with dissimilar channels into the same RSG, and (2)
forming RSGs in a multi-band (or multi-channel) system based
on user CSI knowledge. Specifically, we tackle the first chal-
lenge by forming user graphs with edges representing channel
dissimilarity, considering user grouping as a k-way normalized
cut (NCut) problem in graph theory, and adopting spectral
clustering (SC) to obtain a preliminary grouping decision. We
then post-process results from SC to determine its maximal
cliques, so as to further reduce the CCI. We tackle the second
challenge by formulating the multi-band scheduling problem
to maximize the sum size of user cliques in all subbands,
and developing a heuristic procedure accordingly. Integrating
these steps, we propose a novel SC-aided multi-band user
grouping and scheduling (SC-MS) algorithm and demonstrate
its efficacy through extensive numerical simulations.

Notations: Throughout this paper, we use small bold letters
for vectors, capital bold letters for matrices and N-dimensional
(ND) arrays, calligraphic capital letters to denote sets and
graphs, and non-bold font for scalars and functions. We use
()7, (-) and ()" to denote transpose, conjugate and conjugate
transpose, respectively. Finally, || - || denotes ¢ norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-cell MU-MIMO OFDM system where
a BS equipped with () antennas serves S single-antenna users.
The system spectrum is equally divided into N subbands and
each subband consists of M timeslots, which are shorter than
the channel coherence time. A time-frequency resource block
(RB)! is each combination of timeslot and subband, and hence
there are NM RBs in total. We further denote RB(f,¢) the
RB of subband f and timeslot ¢, Vf € N = {1,...,N}
and Vt € M = {1,...,M}. Without loss of generality, the
BS is assumed to have perfect knowledge of users’ CSI. Let
= {h! Yiqs € C2*S*N be the CSI 3D-array, where
eachhf eC,VieS=1{l,....5,Yqe Q=1{l,....Q}
Vf e N denotes the CSI between user ¢ and BS’s antenna ¢
on subband f. Note that user CSIs can follow any arbitrary
channel model. Here, we consider a general case, where CSIs
are random and independent between users, subbands and
BS antennas. We further assume quasi-static block fading
channels, such that CSIs are constant during the M time slots,
less than channel coherence time.
To represent the mapping between users and RBs, we
introduce an indicator 3D-array X = {z/"'}, ;,, where each

Note that our definition of RB may not match the PRB in LTE or 5G. In
this work, RB is defined as a resource unit occupied by users in a RSG.
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Fig. 1: Illustration of the system model and objective. Note that user grouping
is decided based on users’ channels rather than geographical locations.

xPt e {0,1},Vi € 8,Vf € N,Vt € M denotes whether user
i is allocated to RB(f,t) or not. Also, each RB can be shared
by multiple users and thus CCI exists among users allocated
to the same RSG. Based on the above elaboration, the signal-
to-interference-plus-noise ratio (SINR) of user ¢ on RB(f,?)
can be obtained by

2
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where h{ = [hzl,.. hj ] € C¥ is the CSI vector of user i

at subband f, p; is the transmission power allocated to user ¢,

2 is the variance of additive white Gaussian noise (AWGN),
and zzf is the beamforming precoder of user i at subband f,
which can be selected as the zero-forcing (ZF) [13], weighted
minimum mean squared error (MMSE) [14] or maximum ratio
transmitter (MRT) [15]. Without loss of generality and for the
sake of exposition, we use the MRT precoders so that
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After applying (2) into (1), the SINR can be reformulated as
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where ,o(hgc , h,f ) is the spatial correlation between hzf and h; :
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Clearly, the CCI experienced by user ¢ increases with the sum
of squares of CSI correlations between user ¢ and other users in
the same RSG. Since we are interested in exploiting channel
correlations of users at the scheduling problem and aim to
develop simple solutions, we assume equal power allocation
(i.e. ps = pj, Vi, j €S, # j).

As shown in Fig. 1, the goal of this paper is to design an user
grouping and scheduling algorithm that allocates a given set



of RBs to S users so that the sum rate of users is maximized,
which is formulated as follows:
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where sz = log, (1 + ’yif ’t) denotes the data rate of user @
if allocated to RB(f,¢) and constraint C2 requires all users
to be assigned to exactly one RB and constraint. Note that
(5) is a nonlinear integer programming problem, which is
NP-hard [16]. To efficiently optimize (5), we treat sum rate
maximization as forming N M RSGs by exploiting user CSI
correlations such that the CCI within each RSG is minimized.

III. SPECTRAL CLUSTERING AIDED MULTI-BAND USER
GROUPING AND SCHEDULING ALGORITHM

In this section, we will present our proposed solution for
problem (5). Specifically, in subsections III-A and III-B, we
first address the single-band case of problem (5), where N =
1, by leveraging spectral clustering (SC) [17] and propose
the SC-aided Single-band Scheduling (SC-SS) algorithm. In
subsection III-C, we then extend SC-SS to multi-band systems,
where N > 2, and further propose the SC-aided Multi-band
Scheduling (SC-MS) algorithm. Throughout this section, the
terms group, subgraph, and RSG are used interchangeably
according to different contexts, all of which refer to a set of
users allocated to a particular RB.

A. Preliminary User Grouping with Spectral Clustering

We start with the single-band user grouping problem, where
the goal is to find M RSGs with low CCI. Intuitively, the
pairwise relationship of CSI correlations between users in
subband f can be described with an undirected weighted graph
Gf = (S,€&), where S is the user set and € denotes the set of
weighted edges describing channel dissimilarity of users. We
define the weight of the edge connecting users ¢ and j as:

Wl — 1—p2(h!,hl) p(h! h])<e
0 otherwise

) (6)
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where € > 0 serves as a dissimilarity threshold. Note that
wf ; # 0 implies the CSIs of users ¢ and j are dissimilar
(i.e. low correlation) in subband f and hence they can be
assigned to the same RSG, whereas wf ;,; = 0 implies the
opposite. Although several candidate functions can be used to
set the weight value, we adopt these threshold-based weights
for simplicity [4]. Based on (6), we can construct the adjacency
matrix W/ = {w jtig € RS*9 of Gf. We then define a

diagonal degree matrix D/ = {dw}w € R%*Y such that
> owl and df;=0forizj ()
kES ki
The normalized Laplacian matrix of G/ is given by

Lf:(Df)_%(Df—Wf)(Df)_%. (8)
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Fig. 2: Illustration of a sample run of our proposed SC-SS with S = 15,
Q =32, N =1, M = 3. We depict each step and its corresponding outputs.

Based on this graph model, the single-band user grouping
problem is analogous to partitioning G/ into M disjoint
subgraphs Q{,...,Q}TJ such that uteMgtf = G/ and each
subgraph is highly intra-connected. Moreover, this is related to
the goal of the k-way NCut problem, which aims to minimize
the sum of cuts of k partitions normalized by their volume
[18], and can be formulated by:

" Cut( Qt ,Qt 2icq jed! Wiy
miny_ U s = Y S )

Ziegf di,i

where @f =gf \ gtf is the complement of Qf in G7.

In the proposed SC-SS, we adopt spectral clustering [17],
which approximates the NCut problem to eigenvalues of
the graph Laplacian, to efficiently solves problem (9). The
procedure of SC is summarized below:

1) Construct W7, Df and L’ of the graph G/ based on
user CSI correlation coefficient (4) in subband f.

2) Compute eigenvectors vy, ...,vy € R® of L/ corre-
sponding to its M smallest eigenvalues.

3) Cluster columns of Y = [vy,vs,...,vy]|" into M
separate groups using a given clustering method, e.g.
K-means. These groups, corresponding to disjoint M
subgraphs Q{ , form the preliminary RSGs.

=2

t=1 teM

The result of SC will then undergo a post-processing procedure
described in the next subsection.

B. Post-Processing via Cliques Detection and Reassignment

Although SC is a good solution for community detection,
the resulting M preliminary RSGs can be further refined for
problem (5). The reason is that these RSGs might still contain
user pairs that exhibit high correlation. In other words, disjoint
subgraphs obtained with SC are not necessarily cligues.

Definition 1. An undirected weighted graph is a clique if it is

a clique if all its edge weights w; ; # 0,Yi,j € G with i # J.

Ideally, we aim to find user cliques so that CSI correlation of
any user pair in an RSG is low. Hence, our proposed second
step in SC-SS is to detect maximal user cliques hidden in
the subgraphs gtf obtained from SC. Finding the maximal
clique in a graph is a NP-hard problem [19]. We can, however,



adopt a heuristic solution. Based on the outcomes of maximal
user clique detection, we design a node reassignment scheme
to form RSGs and obtain the final scheduling decision. The
details are given as follows.

1) Clique Detection: First, we compute the M degree
matrices D{ of subgraphs (]tf vVt € M obtained from SC.
For each subgraph, we iteratively remove the node with the
lowest degree until the remaining nodes form a clique. The
reasoning is that if the degree of a node is low, it is less likely
to form a clique than other nodes. We use a buffer set B to
store all nodes removed from the subgraphs. We repeat this
process until all M subgraphs become cliques.

2) Node Reassignment: Next, we sequentially remove an
user ¢ from the buffer B and add it to the subgraph ¢ that
has the minimum sum of squared CSI correlations between
user ¢ and users in G, i.e. t = argmin, 3, jeg! P (hf hf)
suggesting this RSG has minimum CCI for user £. We repeat
this process until B is empty. The resulting M subgraphs
correspond to the final M RSGs, which are mapped to each
RB. In this way, each RB contains users from a distinct RSG.
These RSG users enjoy low CCI in that RB. Fig. 2 depicts
the procedure of SC-SS with an example.

Thus far, we have used index f to describe SC-SS over a
single subband f. In a multi-band case where N > 2, we will
have N independent graphs that have the same set of nodes
but with different edges and weights. Therefore, we will need
further considerations to determine the multi-band scheduling
decision, which we present below.

Algorithm 1: SC-aided Multiband Scheduling, SC-MS

Input: CSI matrix H = {hf poe N

i=1,q=1,
Output: Scheduling decision X = {xfft}f JY;W 1e=1

. Initialize U «+ {1,...,S}, :Eft — 0, Vi, f,t
forf—ltof Ndo
Construct interference graph G/ of subband f for
remaining users in U
Partition G/ into (N — f)M subgraphs by SC
fort=1to (N — f)M do
while g{ is not a cliqgue do
L Remove node i = argmindy, ; from Qtf
kegf

wor o=

N R

8 Sort g{, g{, - g(fN_f)M by their cardinality |gg"|

9: fort =1to M do
fit

10: L Vi € gt , remove ¢ from U/ and set z;" < 1

11: while 4 # () do

12: Randomly remove a user ¢ from U

13: alt 1, where (f,t) = argmin Y p(he,hf)
it jeg!

C. Extend to Multi-band Systems and Complexity Analysis

We have assumed a frequency-selective wideband channel
consisting of /N subbands, and independent CSI correlations

of users in each subband. Hence, a straightforward multi-
band scheduling solution is to construct the N interference
graphs G/,Vf € N and perform SC with post-processing
independently in each graph. However, under constraint C2,
RBs in different subbands should be disjoint user sets, and thus
we cannot merely treat each subband independently. Hence,
we now consider the joint optimization problem

max Y > |G]],

fEN teM

st. Cliw!, #£0,  VfeNVijed] i#j, (10)
where |G| denotes the cardinality of graph G and thus
(10) aims to maximize the sum of user clique sizes over all
RSGs obtained before node reassignment, over all subbands.
By optimizing (10), we enforce a global perspective of the
scheduling problem since we are jointly considering user
allocation in multiple frequency bands and the CCI of RSGs
within each subband. By generalizing the previously discussed
SC-SS algorithm, we develop the proposed SC-MS algorithm
to effectively solve multi-band user scheduling problem (5).

SC-MS starts by initializing a user pool ¢ with all S users,
and setting indicators xlf " to 0. Next, we sequentially select a
subband f € A and construct its interference graph G/ based
on the CSI correlation of users in I at subband f. Thereafter,
we partition G/ into (N — f) M subgraphs by SC, where N — f
is the number of subbands that have not been selected yet. The
rationale behind this is to balance sizes of the subgraphs. If
we instead partition G/ into M subgraphs, the average size of
subgraphs in subband f would be greater than subband f + 1
which is selected after f, leading to size imbalance.

SC-MS then performs the single-band heuristic to extract
maximal cliques of (N — f)M subgraphs by iteratively remov-
ing nodes from them. Since our goal is to maximize the sum
clique sizes, here we select the M subgraphs with the highest
clique size as the M RSGs in subband f, and abandon the
remaining subgraphs of subband f. We next set the indicators
xf " of users within these M cliques to 1 accordingly and
remove them from U/. We repeat this process until all subbands
of the wideband spectrum have been traversed. By then, we
will have N M clique subgraphs corresponding to N M RSGs.

Note that at this point, there may still exist residual users in
U that have not been assigned to any RB. For this reason, the
final step of SC-MS is to allocate these remaining users to the
existing subgraphs following the same idea proposed in the
SC-SS. In short, we iteratively remove a random user ¢ from
U and assign it to the subgraph that has the minimum sum of
squared CSI correlations between user ¢ and users already in
the RSG. The scheduling indicator of user ¢ is then updated
by x{ ' = 1. This step finishes when U/ is empty, terminating
the algorithm and yielding X, the final scheduling decision.
The overall workflow of SC-MS is detailed in Alg. 1.

We now analyze the computational complexity of SC-MS
in terms of S, M and N. At line 3, constructing adjacent
matrix for graph G/ has cost O(S?). At line 4, performing
SC has cost O(S?) in general [20]. For line 6, checking the



degree of all nodes in gg” to determine if it is a clique has cost
O(S?). Afterward in line 7, removing the node and updating
the graph has cost O(S). Thus, the total cost for lines 5-7 is
O(N M S?). For line 8, sorting has cost O(S log S). For lines
9-10, removing users from U/ and updating their indicators
has cost O(MS). Also, allocating remaining users in U for
line 11-13 has cost O(N M S?). Thus, the worst-case overall
complexity is O(NS? + N2MS?), and for a general case
where NM < S, the total complexity of SC-MS is O(N S3).

IV. NUMERICAL EXPERIMENTS

We now evaluate and illustrate the performance of the
proposed multi-band user grouping and scheduling algorithms
in terms of sum rate and fairness via numerical simulations.

Unless otherwise stated, we consider one BS equipped with
(Q = 8 antennas serving .S = 200 users. We consider a system
of N = 8 subbands and M = 6 timeslots, resulting in 48
RBs. The CSI 3D-array H € C@*5*N ig generated randomly,
considering both shadowing effect and Rayleigh fading, with
elements independent from each other. The channel gains are
normalized and we set noise power to 02 =0.01 (i.e., SNR=
20dB). We use a correlation threshold € = 0.07. We average
results over 30 simulations. We compare our proposed SC-MS
algorithm with other multi-band scheduling approaches.

1) Heuristic algorithm (HRS) adopted from [8]: This al-
gorithm starts with NM empty RBs. In each iteration, HRS
sequentially adds an user ¢ to RB j such that the CCI between
user ¢ and existing users in RB j is the minimum among N M
RBs, i.e. j = arg minj ZkeRB(j) pf)k. Thus, HRS has a lower
bound of (1 — 1) times the optimal value for a general MAX
k-CUT problem [21], where k is the number of clusters to
assign (48 in our setting). HRS complexity: O(N M S?).

2) Hungarian algorithm (HNG) [22]: This scheme treats
the mapping between users and RBs as a bipartite matching
problem. It initializes with N M empty RBs. In each iteration,
HNG constructs a cost matrix C = {c¢; ;};; € RS*WVM)
where ¢; ;,Vi € §,Vj € {1,...,NM} is the CCI between
user ¢ and existing users in RB j. Based on C, it then leverages
the Hungarian algorithm to optimally assign N M users to
RBs, minimizing the sum of matching costs. The process
repeats until all S users are assigned to an RB, taking [
iterations. HNG complexity: O(N M S3).

3) Round Robin (RR): This scheme naively assigns an user
from the user set, one at a time, to a RB in sequential order, i.e.
RB(1,1), RB(1,2), ...,RB(N, M), RB(1,1), RB(1,2),...,
until the user set is empty. RR complexity: O(S).

Fig. 3 depicts the box plot of achieved user data ratesOur
proposed SC-MS outperforms other benchmark schemes in
terms of both average and median data rates. Specifically, SC-
MS average data rate outperforms HRS and HNG by 18%
and 15%, respectively. Additionally, user data rates achieved
by SC-MS are rather consistent and contain fewer outliers, in
comparison to HNG and HRS. Overall, the naive RR leads
to the worst performance, and has the highest variability in
achieved data rates.

S
W1

To measure the fairness of data rates between users, we
adopt Jain’s fairness index [23], which for RB(f, ) is

it pfity2
_ (Eiesxi R; ) . (11)

(Zies mzft) : ZiGS (${7tR{7t)2

Fig. 4 illustrates the distribution of Jain’s fairness index of
all RSGs obtained by each scheme. SC-MS achieves the best
fairness among all of the schemes, with a tight distribution
close to the best fairness index value of 1. This is possible
since SC-MS aims to form RSGs whose subgraphs are highly
intra-connected such that the degrees between nodes tend to be
very similar. In turn, this implies users within the same RSG
tend to have similar CCI levels. Therefore, even if user data
rates may vary, as shown in Fig. 1, the users within the same
RSG tend to have similar data rates, thus providing improved
fairness when compared with other benchmarks.

Fig. 5 depicts the sum rate achieved by the different schemes
for varying numbers of users. The sum rate of both HNG and
HRS increases with S until S > 300 before decreasing. This
behavior is related to the objective function of (5) and the
constraints of each scheme. As long as the CCI among users in
each RSG remains low, we can increase the sum rate by adding
more users. However, for a given number of RBs (i.e., RSGs),
when the number of users reaches a certain point (here, S =
300), RSGs become over-populated such that neither HNG nor
HRS can find a scheduling decision to separate users with high
CSI correlation in different RBs within their design rules. As
a result, users’ sum rate decreases due to the increased CCI
caused by users with high CSI correlation within the RSGs.

On the other hand, both our proposed SC-MS and RR
show no decline in sum rates for S < 600 users, albeit for
different reasons. In RR, where RSGs are formed randomly,
the resulting RSGs suffer from severe CCI in all cases, even
at very low numbers of users. Hence, its achieved sum rate
does not show elbow point nor does it change drastically.
In contrast, the sum rate of SC-MS increases even beyond
S = 600 because RSGs are well formed and have not been
severely affected by CCI yet. Compared with HNG and HRS,
SC-MS has a better global perspective of the problem by
leveraging the combination of SC and post-processing. The
results show that SC-MS can efficiently find user cliques
in different subbands and thus can still generate scheduling
decisions to separate users with high CSI correlation when
S > 300, whereas HNG and HRS fail to do so. This illustrates
that our SC-MS is more robust for a larger number of users,
and also scales better as well. That being said, the sum rate
of both SC-MS and RR will eventually start declining when
a sufficiently high number of users leads to severe CCI.

Finally, Fig. 6 illustrates the average user data rate under
different SNRs. To analyze the behavior of data rate with
respect to interference, we also consider a low CCI scenario by
generating channels that have pairwise CSI correlation below
0.2, ie. p(h!,h]) < 0.2,Vi,j € S,¥f € N. The results
show that the data rates become CCI-limited even if the SNR
value continues to grow, though the data rate limit differs
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for each scheme. This phenomenon is quite common because
user rate is a function of signal-to-interference-plus-noise ratio
(SINR). When the noise power becomes very weak, SINR is
dominated by CCI. Positively, the CCI-limited data rate of SC-
MS clearly exceeds that of HRS, illustrating the ability of SC-
MS scheduling at managing CCI better than other algorithms.

As expected, average rates also grow when we limit CSI
correlation. Interestingly, the performance of SC-MS only
grew by 4% in the limited correlation setting, implying that
most users in the same RSGs formed by our algorithm already
have low CSI correlations. In contrast, the average rate of RR
increases significantly for limited CSI correlation, because its
poor scheduling decisions are less hampered by the strong
CCI of the original setting. Overall, SC-MS shows better
performance at all SNR values in both scenarios, with even
better performance in high SNR regimes.

V. CONCLUSIONS AND FUTURE WORKS

This paper addresses the problem of user scheduling and
resource sharing in wideband MU-MIMO wireless networks.
We form resource sharing groups (RSGs) consisting of low
CCI users in a multi-band system. Specifically, we propose
a spectral clustering aided multi-band user grouping and
scheduling algorithm named SC-MS. Utilizing subband inter-
ference graphs, the SC-MS first efficiently finds the largest
user cliques based on spectral clustering and post-processing.
The process is iterated over all subbands to create as many
RSGs as available RBs. SC-MS then assigns unassigned users
to RSGs based on minimum CCI. Our numerical results show
that SC-MS outperforms other benchmark schemes in terms of
user data rates, RSG fairness and sum rates. The SC-MS scales
well with the number of users at modest computational com-
plexity, making it appealing for large MU-MIMO networks. In
future work, we plan to investigate a more generalized multi-
band scheduling problem that also considers power allocation,
CSI uncertainty, and individual user rate constraints.
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