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Abstract
Linear programming (LP) is an extremely useful tool which has been successfully applied
to solve various problems in a wide range of areas, including operations research, engineer-
ing, economics, or even more abstract mathematical areas such as combinatorics. It is also
used in many machine learning applications, such as `1-regularized SVMs, basis pursuit,
nonnegative matrix factorization, etc. Interior Point Methods (IPMs) are one of the most
popular methods to solve LPs both in theory and in practice. Their underlying complexity
is dominated by the cost of solving a system of linear equations at each iteration. In this
paper, we consider both feasible and infeasible IPMs for the special case where the number
of variables is much larger than the number of constraints. Using tools from Randomized
Linear Algebra, we present a preconditioning technique that, when combined with the it-
erative solvers such as Conjugate Gradient or Chebyshev Iteration, provably guarantees
that IPM algorithms (suitably modified to account for the error incurred by the approx-
imate solver), converge to a feasible, approximately optimal solution, without increasing
their iteration complexity. Our empirical evaluations verify our theoretical results on both
real-world and synthetic data.
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1. Introduction

Linear programming (LP) is one of the most useful tools available to theoreticians and
practitioners throughout science and engineering. It has been extensively used to solve
various problems in a wide range of areas, including operations research, engineering,
economics, or even in more abstract mathematical areas such as combinatorics. In ma-
chine learning and numerical optimization, LP appears in numerous settings, including
`1-regularized SVMs (Zhu et al., 2004), basis pursuit (BP) (Yang and Zhang, 2011), sparse
inverse covariance matrix estimation (SICE) (Yuan, 2010), the nonnegative matrix factor-
ization (NMF) (Recht et al., 2012), MAP inference (Meshi and Globerson, 2011), adversarial
deep learning (Weng et al., 2018; Wong and Kolter, 2018) etc. Not surprisingly, designing
and analyzing LP algorithms is a topic of paramount importance in computer science and
applied mathematics.

The first algorithm for general-purpose LPs was the famous simplex algorithm, proposed
by (Dantzig, 1951). It worked well in practice, but was shown to have exponential worst-
case running times (Klee and Minty, 1972). The first polynomial time algorithm for general
LPs was the ellipsoid method (Khachiyan, 1979), which is rather slow in practice compared
to the simplex algorithm. This motivated further research on LP algorithms which are
efficient in both theory and practice. One of the most successful paradigms for solving
LPs is the family of Interior Point Methods (IPMs), pioneered by Karmarkar in the mid
1980s (Karmarkar, 1984). Path-following IPMs (also called central-path algorithms) and,
in particular, long-step path following IPMs, are among the most practical approaches for
solving linear programs. See Section 1.2 for a detailed overview of recent work on path-
following IPMs.

Consider the standard form of the primal LP problem:

min cTx , subject to Ax = b ,x ≥ 0 , (1)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are the inputs, and x ∈ Rn is the vector of the
primal variables. The associated dual problem is

max bTy , subject to ATy + s = c , s ≥ 0 , (2)

where y ∈ Rm and s ∈ Rn are the vectors of the dual and slack variables respectively.
Triplets (x,y, s) that uphold both eqns. (1) and (2) are called primal-dual solutions.
Path-following IPMs typically converge towards a primal-dual solution by operating as
follows: given the current iterate (xk,yk, sk), they compute the Newton search direction
(∆x,∆y,∆s) and update the current iterate by making a step towards the search direction.

To compute the search direction, one standard approach (Nocedal and Wright, 2006)
involves solving the normal equations1:

AD2AT∆y = p. (3)

Here, D = X1/2S−1/2 is a diagonal matrix, X,S ∈ Rn×n are diagonal matrices whose
i-th diagonal entries are equal to xi and si, respectively, and p ∈ Rm is a vector whose

1. Another widely used approach is to solve the augmented system (Nocedal and Wright, 2006). This
approach is less relevant for this paper.

2



Faster Randomized IPMs for Tall/Wide Linear Programs

exact definition is given in eqn. (23)2. Given ∆y, computing ∆s and ∆x only involves
matrix-vector products.

The core computational bottleneck in IPMs is the need to solve the linear system of
eqn. (3) at each iteration. This leads to two key challenges: first, for high-dimensional ma-
trices A, solving the linear system is computationally prohibitive. Most implementations of
IPMs use a direct solver ; see Chapter 6 of (Nocedal and Wright, 2006). However, if AD2AT

is large and dense, direct solvers are computationally impractical. If AD2AT is sparse, spe-
cialized direct solvers have been developed, but these do not apply to many LP problems,
especially those arising in machine learning applications, due to irregular sparsity patterns.
Second, an alternative to direct solvers is the use of iterative solvers, but the situation is
further complicated since AD2AT is typically ill-conditioned. Indeed, as IPM algorithms
approach the optimal primal-dual solution, the diagonal matrix D becomes ill-conditioned,
which also results in the matrix AD2AT becoming ill-conditioned. Additionally, using ap-
proximate solutions for the linear system of eqn. (3) causes certain invariants, which are
crucial for guaranteeing the convergence of IPMs, to be violated; see Section 1.1 for details.

In this paper, we address the aforementioned challenges, for the special case where
m � n, i.e., the number of constraints is much smaller than the number of variables; see
Section 6 for a generalization. This is a common setting in many applications of LP solvers.
For example, in machine learning, `1-SVMs and basis pursuit problems often exhibit such
structure when the number of available features (n) is larger than the number of objects
(m). Indeed, this setting has been of interest in recent work on LPs (Donoho and Tanner,
2005; Bienstock and Iyengar, 2006; London et al., 2018).

For simplicity of exposition, we also assume that the constraint matrix A has full rank,
equal to m. First, we propose and analyze two Krylov subspace-based solvers, namely,
preconditioned Conjugate Gradient (CG) and preconditioned Chebyshev iteration for the
normal equations of eqn. (3), using matrix sketching constructions from the Randomized
Linear Algebra (RLA) literature. We develop a preconditioner for AD2AT using matrix
sketching which allows us to prove strong convergence guarantees for the residual of both
the CG and the Chebyshev iteration. Second, building upon the work of Monteiro and
O’Neal (2003), we propose and analyze a provably accurate long-step IPM algorithm. Our
framework works for both feasible and infeasible starting points. The proposed IPM solves
the normal equations using iterative solvers. We note that a non-trivial concern is that the
use of iterative solvers and matrix sketching tools implies that the normal equations at each
iteration will be solved only approximately. In our proposed IPM framework, we develop a
novel way to correct for the error induced by the approximate solution in order to guarantee
convergence. Importantly, this correction step is relatively computationally light, unlike a
similar step previously proposed by Monteiro and O’Neal (2003), which works similarly, but
is computationally inefficient. Third, we empirically show that our algorithm performs well
in practice. We consider solving LPs that arise from `1-regularized SVMs and test them on
a variety of synthetic and real-world data sets. Several extensions of our work are discussed
in Section 6.

2. The superscript k in eqn. (23) simply indicates iteration count and is omitted here for notational sim-
plicity.
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1.1 Our contributions

Our point of departure in this work is the introduction of preconditioned, iterative solvers
for solving eqn. (3). Preconditioning is used to address the ill-conditioning of the ma-
trix AD2AT. Iterative solvers allow the computation of approximate solutions using only
matrix-vector products while avoiding matrix inversion, Cholesky or LU factorizations, etc.
A preconditioned formulation of eqn. (3) is:

Q−1AD2AT∆y = Q−1p, (4)

where Q ∈ Rm×m is the preconditioning matrix; Q should be easily invertible (see (Ax-
elsson and Barker, 1984; Golub and Van Loan, 2013) for background). An alternative yet
equivalent formulation of eqn. (4), which is more amenable to theoretical analysis, is

Q−1/2AD2ATQ−1/2z = Q−1/2p, (5)

where z ∈ Rm is a vector such that ∆y = Q−1/2z. Note that the matrix in the left-hand side
of the above equation is always symmetric, which is not necessarily the case for eqn. (4). We
do emphasize that one can use eqn. (4) in the actual implementation of the preconditioned
solver; eqn. (5) is much more useful in theoretical analyses.

Recall that we focus on the special case where A ∈ Rm×n has m� n, i.e., it is a short-
and-fat matrix. Our first contribution starts with the design and analysis of a preconditioner
for the Conjugate Gradient solver. The preconditioner satisfies, with high probability, the
following bound:

2
2 + ζ

≤ σ2
min(Q−

1
2 AD) ≤ σ2

max(Q−
1
2 AD) ≤ 2

2− ζ , (6)

for some error parameter ζ ∈ [0, 1]. In the above, σmin(·) and σmax(·) correspond to the
smallest and largest singular value of the matrix in parentheses. The above condition says
that the preconditioner effectively reduces the condition number of AD to a constant. We
note that the particular form of the lower and upper bounds in eqn. (6) was chosen to
simplify our derivations.

RLA matrix-sketching techniques allow us to construct preconditioners for all short-
and-fat matrices that satisfy the above inequality and can be inverted efficiently. Such
constructions go back to the work of Avron et al. (2010); see Section 3 for details on the
construction of Q and its inverse. Importantly, given such a preconditioner, we then prove
that the resulting CG iterative solver satisfies

‖Q−1/2AD2ATQ−1/2z̃t −Q−1/2p‖2 ≤ ζt‖Q−
1/2p‖2. (7)

Here z̃t is the approximate solution returned by the CG iterative solver after t iterations.
In words, the above inequality states that the residual achieved after t iterations of the CG
iterative solver drops exponentially fast. Given eqn. (6), we derive eqn. (7) using the mono-
tonic decrease of the preconditioned residual norms of CG. To the best of our knowledge,
such monotonicity of the residual error is not known in the CG literature: indeed, it is
actually well-known that the residual error of CG may oscillate (Fong and Saunders, 2012),
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even in cases where the energy norm of the solution error decreases monotonically. How-
ever, we prove that if the preconditioner is sufficiently good, i.e., it satisfies the constraint of
eqn. (6), then the residual error decreases monotonically as well, resulting in eqn. (7). It is
slightly better than the residual-norm bound derived directly from the energy norm of the
solution-error, which is the standard bound for CG. In the later case, the bound in eqn. (7)
would have another constant factor involving κ(Q−1/2AD), the condition number of the
preconditioned matrix. Using the aforementioned monotonicity of the residual norms, we
are able to get rid of that constant factor. In addition, such monotonic decrease of the
residual norms can also be of independent interest in CG literature. See Section 3.1 for
details.

In addition, we also analyze another popular Krylov subspace-based solver, namely,
Chebyshev iteration (Barrett et al., 1994; Gutknecht and Röllin, 2002). This method avoids
the computation of the inner products which is typically needed for CG or other non-
stationary methods. Inner products are communication intensive in parallel or distributed
settings, and, as such, are detrimental to the performance in such setups. However, there
is a trade-off; in order to avoid the computation of the inner products, it requires adequate
knowledge about spectrum of the coefficient matrix Q−1/2AD2ATQ−1/2, which, in our con-
text, is nothing but the condition in eqn. (6). Therefore, given eqn. (6), we prove that
Chebyshev iteration also satisfies eqn. (7).

Our second contribution is the analysis of a novel variant of a long-step IPM algorithm
proposed by Monteiro and O’Neal (2003). First, we analyze the feasible version of it, which
is the one that starts from a strictly feasible point and stays feasible across all the iterations
– namely, any point (xk,yk, sk) with (xk, sk) > 0 such that such that they are both primal
and dual feasible i.e., Axk = b and ATyk + sk = c. However, the use of an approximate
solver prevents the iterates (xk,yk, sk) from satisfying the above primal and dual feasibility
constraints exactly right after the first iteration of the IPM. In order to account for the
error caused by the CG solver and to push the iterates back to the feasibility, Monteiro and
O’Neal (2003) introduced a perturbation vector v which needs to satisfy a certain linear
invariant exactly. Again, we use RLA matrix sketching principles to propose an efficient
construction for v that provably satisfies the invariant.

Finally, we combine the above two primitives to prove that Algorithm 2 in Section 4
satisfies the following theorem.

Theorem 1. Let 0 ≤ ε ≤ 1 be an accuracy parameter. Consider the long-step feasible
IPM Algorithm 2 (Section 4) that solves eqn. (5) using the iterative solver of Algorithm 1
(Section 3). Assume that the iterative solver runs with accuracy parameter ζ = 1/2 and
iteration count t = O(log n). Then, with probability at least 0.9, the long-step feasible IPM
converges after O(n log 1/ε) iterations.

We note that the constant success probability above is for simplicity of exposition and
can be easily amplified using standard techniques. Also, at each iteration of our long-step
feasible IPM algorithm, the running time is O((nnz(A) + m3) log n). See Section 4 for a
detailed discussion of the overall running time. However, finding a strictly feasible initial
point is a non-trivial task. Therefore, we also briefly discuss the infeasible version of the
long-step IPM algorithm in Section 5.
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Our empirical evaluation demonstrates that our algorithm requires an order of magni-
tude much fewer inner CG iterations than a standard IPM using CG, while producing a
comparably accurate solution (see Section 7). In practice, our empirical evaluation also
indicates that using a CG solver with our sketching-based preconditioner does not increase
the number of (outer) iterations of the infeasible IPM, compared to unpreconditioned CG
or a direct linear solver. Furthermore, there are instances where our solver performs much
better than non-preconditioned CG in terms of (outer) iteration count.

1.2 Comparison with Related Work

There is a large body of literature on solving LPs using IPMs, thus we only review literature
that is immediately relevant to our work. Recall that we solve the normal equations inex-
actly at each iteration, and develop a method to correct for the error incurred. We focus on
IPMs that start with a strictly feasible initial point and discuss papers that present related
ideas.

The use of an approximate iterative solver for eqn. (3), followed by a correction step
to “fix” the approximate solution was proposed by Monteiro and O’Neal (2003) (see our
discussion in Section 1.1). We propose efficient, RLA-based approaches to precondition and
solve eqn. (3), as well as a novel approach to correct for the approximation error in order to
guarantee the convergence of the IPM algorithm. Specifically, Monteiro and O’Neal (2003)
propose to solve eqn. (3) using the so-called maximum weight basis preconditioner (Resende
and Veiga, 1993). However, computing such a preconditioner needs access to a maximal
linearly independent set of columns of AD in each iteration, which is costly, taking O(m2n)
time in the worst-case. More importantly, while (Monteiro et al., 2004) provides a bound
on the condition number of the preconditioned matrix that depends only on properties of
A, and is independent of D, this bound might, in general, be very large. In contrast,
our bound is a constant and it does not depend on properties of A or its dimension. In
addition, Monteiro and O’Neal (2003) assume a bound on the two-norm of the residual of
the preconditioned system, but it is unclear how the proposed preconditioner guarantees
such a bound. Similar concerns exist for the construction of the correction vector v proposed
by Monteiro and O’Neal (2003), which our work alleviates. In this context, there is a long
list of works on designing efficient preconditioners for solving the linear system at each
iteration of IPM. For a more detailed discussion, we refer the interested readers to the
survey of (Gondzio, 2012).

In the Theoretical Computer Science community, following the lines of (Karmarkar,
1984), there has been a series of efforts to design faster LP solvers with improved worst-case
time complexity. The running time of (Karmarkar, 1984) was improved by (Renegar, 1988)
and (Vaidya, 1989) which proposed an algorithm that takes Õ

(
n2.5+o(1)) time. Current

state-of-the-art running times involve fast matrix multiplication (a theoretically appealing
yet impractical approach). For example, (Cohen et al., 2019) proposed an algorithm that
runs in Õ

(
(nω + n2.5−α/2+o(1) + n2+1/6)

)
time, where ω is the exponent of matrix multipli-

cation and α is the dual exponent of matrix multiplication. For ω ≈ 2.38 and α ≈ 0.31 this
time complexity boils down to Õ

(
nω+o(1)). More recently, (Jiang et al., 2021) reduced the

running time of (Cohen et al., 2019) to Õ
(
(nω + n2.5−α/2+o(1) + n2+1/18)

)
, which further

reduces the gap between matrix multiplication and solving LPs.
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Work by (Lee et al., 2019; Brand, 2020; Song and Yu, 2021) achieved the same running
time as (Cohen et al., 2019), using the same so-called lazy update framework of (Cohen et al.,
2019). However, there are subtle differences between these works in terms of the underlying
sketching and sampling techniques, as well as on approaches that achieve fast queries for the
so-called projection maintenance data structure that handles infeasibilities over iterations.
For example, while the work of (Cohen et al., 2019) involves a non-oblivious sampling
scheme whose sampling set and size changes over iterations, (Song and Yu, 2021) utilizes
oblivious sketching through an iterative framework to approximate the central path. On
the other hand, while (Cohen et al., 2019; Brand, 2020; Song and Yu, 2021) solve the linear
system exactly, other works only maintain infeasible updates in each iteration. Similarly,
while (Song and Yu, 2021) can leverage sparse embeddings, most of the aforementioned
works (including (Lee et al., 2019)) require the usage of dense sketching matrices, which
could hinder the sparsity structure of the original linear program.

All the aforementioned solvers are designed for the m ≈ n setting. If A is dense and rect-
angular with n� m, (Brand et al., 2020) provides the theoretically fastest solver, with an it-
eration complexity of Õ(

√
m) and a total time complexity equal to Õ

(
mn+m3). For sparse

rectangular matrices, the best per iteration complexities are given by Õ (nnz(A) +mω) (Lee
and Sidford, 2014) and Õ(nnz(A)+m2) (see (Lee and Sidford, 2015)); both algorithms have
iteration complexity Õ(

√
m). Overall, we note that (Lee and Sidford, 2014, 2015; Lee et al.,

2019; Brand et al., 2020; Cohen et al., 2021; Song and Yu, 2021; Jiang et al., 2021) proposed
and analyzed theoretically ground-breaking algorithms for LPs based on novel tools such as
the so-called projection maintenance, inverse maintenance, fast matrix multiplication, etc.
for accelerating the linear system solvers in IPMs. In contrast, our paper differs from all
these aforementioned TCS works in at least the following three directions:

• First, all these aforementioned approaches are primarily focused on theoretically fast
but practically inefficient short-step path following methods, where the iterates are
constrained within a narrow, restrictive neighborhood of the central path in the inte-
rior of the feasible region. Therefore, the algorithms based on short-step IPMs do not
have much room to maneuver and the progress that they make in each iteration is
limited, at least in practice3. Some of the recent TCS works (for example, Cohen et al.
(2019); Song and Yu (2021) etc.) rely on a stochastic version of the short step central
path method, in which the neighborhood of the central path is slightly wider than
that of the traditional short-step IPMs. This is still considered to be quite restrictive,
as it needs all the pairwise products xisi to be close to to the duality measure µ (more
precisely, it needs 0.9µ ≤ xisi ≤ 1.1µ for all i), which is not a very practical idea
in general. On the other hand, our algorithm is based on long-step path following
IPMs which explore a much larger neighborhood around the central path and offer
significant flexibility in each iteration. As a result, the iterates can take much longer
steps towards optimality. Long-step IPMs are known to be more efficient in practice
compared to short-step IPMs, despite the fact that they exhibit worst-case iteration
complexity O(n).

3. Theoretically, the worst-case iteration complexity of short-step central path methods is given by Õ(
√
n),

which is the best complexity bound known for IPMs.
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• Second, the theoretical benefits of the aforementioned TCS works rely on techniques
such as projection maintenance or inverse maintenance, where one needs to preserve
the orthogonal projection matrix DA>(AD2A>)−1AD ∈ Rn×n or (AD2A>)−1 ∈
Rn×n in order to solve the linear system at each iteration of the IPM. The idea of
maintaining such projection matrices depends on the assumption that the matrix D
does not change much from one iteration to the next. Thus, one only needs to com-
pute the matrix (AD2A>)−1 a few times, which is also known as lazy updating.
In addition, if D only changes in a few of its diagonal entries, one can further use
the idea of low-rank updating to maintain the above projection matrix via the Sher-
man–Morrison–Woodbury (SMW) formula. However, due to large constant factors
involved in the lazy updates framework and the numerical instability of the SMW for-
mula, the notion of projection maintenance is generally inefficient in practice. In con-
trast, our methods do not depend on any of the aforementioned techniques. Instead,
we use randomized preconditioners combined with iterative solvers to approximately
solve the linear system. We also propose a computationally efficient way to correct
for the error caused by the solver. As a result, our method is much more relevant in
practice and, when n� m, the per iteration cost of our algorithm is Õ(nnz(A) +m3)

• Third, all the aforementioned papers involve fast matrix multiplication, which is a the-
oretically relevant yet practically inefficient tool. To the best of our knowledge, there
are no in- or out-of-core implementations of such algorithms that work better than tra-
ditional matrix multiplication approaches and it seems unlikely that such techniques
will become practically relevant in the near future. Our methods leverage standard
matrix multiplication routines and in Section 7 we show how an implementation of
our approach offers advantages over existing, practically relevant approaches.

Another line of research in the Theoretical Computer Science literature that is very
close to our work is (Daitch and Spielman, 2008), who presented an IPM that uses an
approximate solver in each iteration. However, their accuracy guarantee is in terms of the
final objective value, which is different from ours. More importantly, (Daitch and Spielman,
2008) focuses on short-step IPMs, whereas our approach is a long-step algorithm that works
for both feasible and infeasible starting points. Finally, the approximate solver proposed
by (Daitch and Spielman, 2008) works only for the special case of input matrices that
correspond to graph Laplacians, following the lines of (Spielman and Teng, 2004, 2014). In
this context, we note that there are also other relevant works including (Madry, 2013, 2016;
Cohen et al., 2017) that used IPM-based algorithms with approximate solvers for various
combinatorial optimization problems on graphs. However, similar to (Spielman and Teng,
2004), the aforementioned papers also focus on short-step IPMs and the linear systems
associated with them are either Laplacian or symmetric diagonally dominant (SDD).

Another relevant line of research is the work by Cui et al. (2019), which proposed solving
eqn. (3) using preconditioned Krylov subspace methods, including variants of generalized
minimum residual (GMRES) or CG methods. Indeed, Cui et al. (2019) conducted extensive
numerical experiments on LP problems taken from standard benchmark libraries, but did
not provide any theoretical guarantees. Beyond experiments, the methods of (Cui et al.,
2019) primarily differ from ours in the way they used preconditioning. Instead of applying
the preconditioner explicitly, their empirical evaluations rely on an implicit preconditioning
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technique called (stationary) inner-iterations preconditioning (Morikuni and Hayami, 2013,
2015). As the name suggests, the key idea is to use another iterative method as a precondi-
tioner within the linear system that needs to be solved at each iteration of the IPM. From
a theoretical perspective, it is not clear how big or small the resulting condition number
of their preconditioned system could be; moreover, there are two hyperparameters associ-
ated with their preconditioner which need to be tuned optimally and there is no theoretical
guideline on how that can be done.

From a matrix-sketching perspective, our work was also partially motivated by (Chowd-
hury et al., 2018), which presented an iterative, sketching-based algorithm to solve under-
constrained ridge regression problems, but did not address how to make use of such ap-
proaches in an IPM-based framework, as we do here. We refer the reader to the sur-
veys (Woodruff, 2014; Drineas and Mahoney, 2018; Mahoney, 2011; Drineas and Mahoney,
2016; Martinsson and Tropp, 2020) for more background on Randomized Linear Algebra and
regression solvers. In the context of deep neural networks (DNNs), (van den Brand et al.,
2021) recently presented an iterative method to speed up the training of overparametrized
DNNs by a similar type of randomized preconditioner as ours; but the algorithm of (van den
Brand et al., 2021) neither exploited the sparsity in the data, nor they had to correct for
the error caused by the inexact solver, as we do here. In another work, (Avron et al., 2017)
also proposed a similar sketching-based preconditioning technique. However, their efforts
broadly revolved around speeding up and scaling kernel ridge regression. (Pilanci and
Wainwright, 2017) proposed the so-called Newton sketch to construct an approximate Hes-
sian matrix for more general convex problems, of which LP is a special case. Nevertheless,
based on their local convergence guarantee for the sketched Newton updates, their paper
only derived the underlying iteration complexity of the IPM (see, for example, Theorem 4.3
of (Pilanci and Wainwright, 2017)). It is not clear how to use their approach to bound the
number of inner iterations and, as a result, deriving the per iteration cost of their algorithm
is not straightforward. Moreover, their convergence guarantees for the IPM is with respect
to the objective value and not in terms of the duality measure. Finally, the Newton-sketch
of (Pilanci and Wainwright, 2017) does not exploit the sparsity of the data, whereas the
running time of our algorithm depends on the sparsity of A. We also note that (Vu et al.,
2018) proposed a probabilistic algorithm to solve LPs approximately using a random pro-
jection reduced feature space. A possible drawback of this work is that the approximate
solution is infeasible with respect to the original region.

On the empirical side, there are prior implementations of Õ(nnz(A) + poly(m)) solvers
for speeding various ML applications including ordinary least square regression (Clarkson
and Woodruff, 2017; Cormode and Dickens, 2019), general `p-regression (Yang et al., 2017),
ridge regression (Chen et al., 2015; Chowdhury et al., 2018), Fisher linear discriminant
analysis (Ye et al., 2017; Chowdhury et al., 2019), more general Newton updates (Dahiya
et al., 2018) and many more. However, to the best of our knowledge, there are no such
implementations in the context of general linear programming problems, perhaps with the
exception of `1-regression. As discussed before, prior work on short-step IPM for LP that
came up with per iteration cost Õ(nnz(A) + poly(m)) was due to (Lee and Sidford, 2014,
2015), but there is no empirical evaluation because of its heavy reliance on various theoretical
tools such as inverse maintenance, fast matrix multiplication etc.
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Finally, in addition to IPMs, LPs can be solved using the Simplex method. In commer-
cial LP packages like Gurobi, both methods are often used in conjunction. For example,
multiple solvers are run on multiple threads simultaneously and the one that is finishes first
is chosen. Alternatively, an IPM is used initially to get close to the optimal solution and
then the simplex algorithm is used to improve the solution (Bixby et al., 1992; Glavelis
et al., 2018). Thus, developing efficient IPMs is vital for solving LPs and provides a crucial
building block in commerical packages like Gurobi.

2. Notation and Background

A,B, . . . denote matrices and a,b, . . . denote vectors. For vector a, ‖a‖2 denotes its Eu-
clidean norm; for a matrix A, ‖A‖2 denotes its spectral norm and ‖A‖F denotes its Frobe-
nius norm. We use 0 to denote a null vector or null matrix, dependent upon context, and
1 to denote the all-ones vector. For any matrix X ∈ Rm×n with m ≤ n of rank m a thin
Singular Value Decomposition (SVD) is a product UΣVT , with U ∈ Rm×m (the matrix
of the left singular vectors), V ∈ Rn×m( the matrix of the top-m right singular vectors),
and Σ ∈ Rm×m a diagonal matrix whose entries are equal to the singular values of X.
We use σi(·) to denote the i-th singular value of the matrix in parentheses. For any two
vectors a = (a1, . . . , a`)T and b = (b1, . . . , b`)T, we denote a ◦ b = (a1b1, . . . , a`b`)T. For
any two symmetric positive semidefinite (resp. positive definite) matrices A1 and A2 of
appropriate dimensions, A1 4 A2 (A1 ≺ A2) denotes that A2−A1 is positive semidefinite
(resp. positive definite). For any vector a ∈ Rn its `∞ norm is defined as ‖a‖∞ = maxi |ai|.
We extensively use the following standard inequality to prove several results in the paper:

∣∣∣∣∣aT1n
n

∣∣∣∣∣ ≤ ‖a‖∞ ≤ ‖a‖2. (8)

We now briefly discuss a result on matrix sketching (Cohen et al., 2016; Cohen, 2016)
that is particularly useful in our theoretical analyses. In our parlance, Cohen et al. (2016)
proved that, for any matrix Z ∈ Rm×n, there exists a sketching matrix W ∈ Rn×w such
that

∥∥∥ZWWTZT − ZZT
∥∥∥

2
≤ ζ

4
(
‖Z‖22 + ‖Z‖

2
F

r

)
(9)

holds with probability at least 1− δ for any r ≥ 1. Here ζ ∈ [0, 1] is a (constant) accuracy
parameter. Ignoring constant terms, w = O(r log(r/δ)); W has O(log(r/δ)) non-zero entries
per row; and the product ZW can be computed in time O(log(r/δ) · nnz(Z)).

3. Preconditioned Iterative Solver

In this section, we discuss the computation of the preconditioner Q (and its inverse), followed
by a discussion on how such a preconditioner can be used to satisfy eqns. (6) and (7).

10
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Algorithm 1 Solving eqn. (5) via CG or Chebyshev iteration
Input: AD ∈ Rm×n, p ∈ Rm, sketching matrix W ∈ Rn×w, iteration count t;

1: Compute ADW and its SVD: let UQ ∈ Rm×m be the matrix of its left singular vectors
and let Σ1/2

Q ∈ Rm×m be the matrix of its singular values;
2: Compute Q−1/2 = UQΣ−1/2

Q UT
Q;

3: Initialize z̃0 ← 0m and run standard CG or Chebyshev iteration on the preconditioned
system of eqn. (5) for t iterations;
Output: return z̃t;

Algorithm 1 takes as input the sketching matrix W ∈ Rn×w, which we construct as discussed
in Section 2. Our preconditioner Q is equal to

Q = ADWWTDAT. (10)

Notice that we only need to compute Q−1/2 in order to use it to solve eqn. (5). Towards that
end, we first compute the sketched matrix ADW ∈ Rm×w. Then, we compute the SVD
of the matrix ADW: let UQ be the matrix of its left singular vectors and let Σ1/2

Q be the
matrix of its singular values. Notice that the left (and right) singular vectors of Q−1/2 are
equal to UQ and its singular values are equal to Σ−1/2

Q . Therefore, Q−1/2 = UQΣ−1/2
Q UT

Q.
Let AD = UΣVT be the thin SVD representation of AD. We apply the results

of (Cohen et al., 2016) (see Section 2) to the matrix Z = VT ∈ Rm×n with r = m to get
that, with probability at least 1− δ,∥∥∥VTWWTV− Im

∥∥∥
2
≤ ζ

4
(
‖V‖22 + ‖V‖

2
F

m

)
≤ ζ

2 . (11)

In the above we used ‖V‖2 = 1 and ‖V‖2F = m. The running time needed to compute
the sketch ADW is equal to (ignoring constant factors) O(nnz(A) · log(m/δ)). Note that
nnz(AD) = nnz(A). The cost of computing the SVD of ADW (and therefore Q−1/2) is
O(m3 log(m/δ)). Overall, computing Q−1/2 can be done in time

O(nnz(A) · log(m/δ) +m3 log(m/δ)). (12)

Given these results, we now discuss how to satisfy eqns. (6) and (7) using the sketching
matrix W. We start with the following bound, which is relatively straightforward given
prior RLA work.

Lemma 2. If the sketching matrix W satisfies eqn. (11), then, for all i = 1 . . .m,

(1 + ζ/2)−1 ≤ σ2
i (Q−

1/2AD) ≤ (1− ζ/2)−1.

Proof Consider the condition of eqn. (11):

‖VTWWTV− Im‖2 ≤
ζ

2 ⇔ − ζ

2 Im 4 VTWWTV− Im 4
ζ

2 Im (13)

⇔ − ζ

2 AD2AT 4 ADWWTDAT −AD2AT 4
ζ

2 AD2AT (14)

11
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⇔
(

1− ζ

2

)
AD2AT 4 ADWWTDAT︸ ︷︷ ︸

Q

4
(

1 + ζ

2

)
AD2AT . (15)

We obtain eqn. (14) by pre- and post-multiplying the previous inequality by UΣ and ΣUT

respectively and using the facts that AD = UΣVT and AD2AT = UΣ2UT. Also, from
eqn. (13), note that all the eigenvalues of VTWWTV lie between (1− ζ

2) and (1+ ζ
2) and thus

rank(VTW) = m. Therefore, rank(ADW) = rank(UΣVTW) = m, as UΣ is non-singular
and we know that the rank of a matrix remains unaltered by pre- or post-multiplying it by
a non-singular matrix. So, we have rank(Q) = m; in words Q has full rank. Therefore, all
the diagonal entries of ΣQ are positive and Q−1/2QQ−1/2 = Im .

Using the above arguments, pre- and post- multiplying eqn. (15) by Q−1/2, we get(
1− ζ

2

)
Q−1/2AD2ATQ−1/2 4 Im 4

(
1 + ζ

2

)
Q−1/2AD2ATQ−1/2

⇒
(

1 + ζ

2

)−1
Im 4 Q−1/2AD2ATQ−1/2 4

(
1− ζ

2

)−1
Im . (16)

Eqn. (16) implies that all the eigenvalues of Q−1/2AD2ATQ−1/2 are bounded between(
1 + ζ

2

)−1
and

(
1− ζ

2

)−1
, which concludes the proof of the lemma.

The above lemma directly implies eqn. (6). We now proceed to show that the above con-
struction for Q−1/2, when combined with the conjugate gradient solver or Chebyshev itera-
tion to solve eqn. (5), indeed satisfies eqn. (7).

3.1 Conjugate Gradient Solver

As already mentioned in Section 1.1, we derive eqn. (7) using the monotonicity property
of CG resudual norms. It is known that even if the energy norm of the error of the
approximate solution decreases monotonically, the norms of the CG residuals may oscillate.
Interestingly, we can combine a result on the residuals of CG from (Bouyouli et al., 2009)
with Lemma 2 to prove that in our setting the norms of the CG residuals also decrease
monotonically4. We do note that in prior work most of the convergence guarantees for
CG focus on the error of the approximate solution, from which, directly deriving eqn. (7)
induces a constant factor in terms of the condition number of the preconditioned matrix.
Here, we are able to avoid that constant factor by deriving and using the aforementioned
monotonicity of the CG residuals.

Let f̃ (j) be the residual at the j-th iteration of the CG algorithm:

f̃ (j) = Q−1/2AD2ATQ−1/2z̃j −Q−1/2p.

Recall from Algorithm 1 that z̃0 = 0 and thus f̃ (0) = −Q−1/2p. In our parlance, Theorem
8 of (Bouyouli et al., 2009) proved the following bound.

Lemma 3 (Theorem 8 of (Bouyouli et al., 2009)). Let f̃ (j−1) and f̃ (j) be the residuals
obtained by the CG solver at steps j − 1 and j. Then,

‖f̃ (j)‖2 ≤
κ2(Q−1/2AD)− 1

2 ‖f̃ (j−1)‖2 ,

4. See Chapter 9 of (Luenberger and Ye, 2008) for a detailed overview of CG.

12
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where κ(Q−1/2AD) is the condition number of Q−1/2AD.

Satisfying eqn. (7). From Lemma 2, we get

κ2(Q−1/2AD) = σ2
max(Q−1/2AD)
σ2

min(Q−1/2AD)
≤ 1 + ζ/2

1− ζ/2 . (17)

Combining eqn. (17) with Lemma 3,

‖f̃ (j)‖2 ≤
1+ζ/2
1−ζ/2 − 1

2 ‖f̃ (j−1)‖2 = ζ

2− ζ ‖f̃
(j−1)‖2 ≤ ζ‖f̃ (j−1)‖2 , (18)

where the last inequality follows from ζ ≤ 1. Applying eqn. (18) recursively, we get

‖f̃ (t)‖2 ≤ ζ‖f̃ (t−1)‖2 ≤ · · · ≤ ζt‖f̃ (0)‖2 = ζt‖Q−1/2p‖2 ,

which proves the condition of eqn. (7).
We remark that one can consider using MINRES (Paige and Saunders, 1975) instead

of CG. Our results hinges on bounding the two-norm of the residual. MINRES finds, at
each iteration, the optimal vector with respect the two-norm of the residual inside the same
Krylov subspace of CG for the corresponding iteration. Thus, the bound we prove for CG
applies to MINRES as well.

3.2 Chebyshev Iteration

Now, we show that we could potentially replace CG with Chebyshev iteration (see Al-
gorithm 1 of (Gutknecht and Röllin, 2002)) in the step (3) of Algorithm 1. As already
discussed in Section 1.1, the only requirement Chebyshev iteration needs is to have an
upper bound and a lower bound for the singular values of Q−1/2AD2ATQ−1/2, which we
already have in the form of Lemma 2. Therefore, all we need to show is that the sketching
matrix W satisfies eqn. (7) using Chebyshev iteration. For this, we state the following
result from (Gutknecht, 2008), which is instrumental in proving eqn. (7).

Lemma 4 (Theorem 1.6.2 of (Gutknecht, 2008)). The residual norm reduction of the Cheby-
shev iteration, when applied to an symmetric positive definite (SPD) system whose condition
number is upper bounded by U , is bounded according to

‖f̃ (t)‖2
‖f̃ (0)‖2

≤ 2

(√U + 1√
U − 1

)t
+
(√
U − 1√
U + 1

)t−1

(19)

Satisfying eqn. (7). From Lemma 2, we directly have U = 2+ζ
2−ζ . Note that for t = 0

and starting from z̃0 = 0 (i.e., f̃ (0) = Q−1/2p), we directly get eqn. (7) from eqn. (19).
Therefore, we only show that eqn. (7) is satisfied for t ≥ 1. We already have f̃ (0) = Q−1/2p
and letting a =

(√
U−1√
U+1

)t
, we rewrite eqn. (19) as follows

‖f̃ (t)‖2 ≤
2

a+ 1
a

‖Q−1/2p‖2 = 2 a
(a2 + 1)‖Q

−1/2p‖2 ≤ 2 a ‖Q−1/2p‖2 , (20)
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where the last inequality in eqn. (20) holds as a2 > 0. Now, we’ll work on the bound in
eqn. (20). Putting back a =

(√
U−1√
U+1

)t
and U = 2+ζ

2−ζ , we rewrite eqn. (20) as

‖f̃ (t)‖2 ≤ 2
(√
U − 1√
U + 1

)t
‖Q−1/2p‖2 = 2


√

2+ζ
2−ζ − 1√
2+ζ
2−ζ + 1

t ‖Q−1/2p‖2

= 2
(√

2 + ζ −
√

2− ζ√
2 + ζ +

√
2− ζ

)t
‖Q−1/2p‖2 = 2

(
2ζ(√

2 + ζ +
√

2− ζ
)2
)t
‖Q−1/2p‖2

= 2
(

2ζ
4
(
1 +

√
1− (ζ/2)2)

)t
‖Q−1/2p‖2 = ζt

2t−1(1 +
√

1− (ζ/2)2)t ‖Q−1/2p‖2

≤ ζt ‖Q−1/2p‖2 ,

where the last inequality holds as t ≥ 1 and the denominator is greater than unity. This
establishes eqn. (7).

4. The Feasible IPM algorithm

In order to avoid spurious solutions, primal-dual path-following IPMs bias the search di-
rection towards the central path and restrict the iterates to a neighborhood of the central
path. This search is controlled by the centering parameter σ ∈ [0, 1]. At each iteration,
given the current feasible solution (xk,yk, sk), a standard feasible IPM obtains the search
direction (∆xk,∆yk,∆sk) by solving the following system of linear equations:

AD2AT∆yk = pk , (21a)
∆sk = −AT∆yk , (21b)
∆xk = − xk + σµkS−11n −D2∆sk. (21c)

Here D and S are computed given the current iterate (xk and sk); we skip the indices
on D and S for notational simplicity. After solving the above system, the feasible IPM
Algorithm 2 proceeds by computing a step-size ᾱ to return:

(xk+1,yk+1, sk+1) = (xk,yk, sk) + ᾱ(∆xk,∆yk,∆sk). (22)

In the above linear system in eqn. (21), we also use duality measure µk = xkTsk/n and the
vector

pk = −σµkAS−11n + Axk. (23)

Given ∆yk from eqn. (21a), ∆sk and ∆xk are easy to compute from eqns. (21b) and
(21c), as they only involve matrix-vector products. However, since we use Algorithm 1 to
solve eqn. (21a) approximately using the sketching-based preconditioned solver, the iterates
(xk,yk, sk) do not satisfy the primal and dual constraints exactly.

For notational simplicity, we now drop the dependency of vectors and scalars on the
iteration counter k. Let ∆̂y = Q−1/2z̃t be the approximate solution to eqn. (21a). In order
to account for the loss of accuracy due to the approximate solver, we compute ∆̂x as follows:

∆̂x = − x + σµS−11n −D2∆̂s− S−1v. (24)

14
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Here v ∈ Rn is a perturbation vector that needs to exactly satisfy the following invariant
at each iteration of the feasible IPM:

AS−1v = AD2AT∆̂y− p . (25)

We note that the computation of ∆̂s is still done using, essentially, eqn. (21b), namely

∆̂sk = −AT∆̂yk. (26)

At each iteration of the IPM, if v satisfies eqn. (25), then it can be shown that the primal
and dual feasibility constraints are satisfied exactly.
Construction of v. There are many choices for v satisfying eqn. (25). Intuitively, we
would expect the approximation error due to the solver to be reasonably small. Therefore,
to prove convergence, it is desirable for v to have a small norm and hence a natural choice
is

v = (AS−1)†(AD2AT∆̂y− p) .

The aforementioned choice of v has a clear geometric interpretation: it not only ensures
that AS−1v is a Euclidean projection of the infeasible solution onto the column space of
AD, but it is also the minimum norm least squares solution and satisfies the invariant
in eqn. (25) exactly. However, computing v such a way is expensive, as it involves the
evaluation of the pseudoinverse of AS−1, which is expensive, taking time O(m2n). Instead,
we propose to construct v using the sketching matrix W of Section 2. More precisely, we
construct the perturbation vector

v = (XS)1/2W(ADW)†AD2AT∆̂y− p). (27)

Similar to the minimum-norm solution mentioned above, our sketching based solution in
eqn. (27) also guarantees that AS−1v is a projection of the “infeasibility” vector AD2AT∆̂y
−p onto the column space of ADW (which is identical to the column space of AD) and
satisfies eqn. (25) exactly (see Lemma 5 below). The computation of our proposed v is
dominated by the cost of computing (ADW)†, which can be done much more efficiently
as discussed in Section 3. Actually, we do not even need to compute it while evaluating v,
since we have already computed it during the construction of Q−1/2 in Algorithm 1. Finally,
in Lemma 8, we showed that using our choice of v, ‖v‖2 remains small enough (with a few
iterations of the iterative solver), which essentially leads to the convergence of the IPM.

Lemma 5. Let W ∈ Rn×w be the sketching matrix of Section 2 and v be the perturbation
vector of eqn. (27). Then, with probability at least 1− δ, rank(ADW) = m and v satisfies
eqn. (25).

Proof Let AD = UΣVT be the thin SVD representation of AD. We use the exact same W
as discussed in Section 3. Therefore, eqn. (11) holds with probability 1−δ and it directly fol-
lows from the proof of Lemma 2 that rank(ADW) = m. Recall that ADW has full row-rank
and thus ADW (ADW)† = Im. Therefore, taking v = (XS)1/2W(ADW)†(AD2AT∆̂y −
p), we get

AS−1 v = AS−1(XS)1/2W(ADW)†(AD2AT∆̂y− p)

15
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= ADW(ADW)†(AD2AT∆̂y− p)
= AD2AT∆̂y− p ,

where the second equality follows from D = X1/2S−1/2.

We emphasize here that we use the same exact sketching matrix W ∈ Rn×w to form the
preconditioner used in the iterative solver of Section 3 as well as the vector v in eqn. (27).
This allows us to sketch AD only once, thus saving time in practice. Next, we present a
bound for the two-norm of the perturbation vector v of eqn. (27).

Lemma 6. With probability at least 1− δ, our perturbation vector v in Lemma 5 satisfies

‖v‖2 ≤
√

3nµ ‖f̃ (t)‖2, (28)

with f̃ (t) = Q−1/2AD2ATQ−1/2z̃t −Q−1/2p.

Proof Recall that Q = ADW(ADW)T = UQΣQUT
Q. Also, UQ and Σ1/2

Q are (respec-
tively) the matrices of the left singular vectors and the singular values of ADW. Now, let
V̂ be the right singular vector of ADW. Therefore, ADW = UQΣ1/2

Q V̂T is the thin SVD
representation of ADW. Also, from Lemma 2, we know that Q has full rank. Therefore,
Q1/2Q−1/2 = Im. Next, we bound ‖v‖2:

‖v‖2 = ‖(XS)1/2W(ADW)†(AD2AT∆̂y− p)‖2
= ‖(XS)1/2W(ADW)†Q1/2Q−1/2(AD2AT∆̂y− p)‖2
≤ ‖(XS)1/2W(ADW)†Q1/2‖2 ‖f̃ (t)‖2. (29)

In the above we used Q−1/2(AD2AT∆̂y − p) = f̃ (t). Using the SVD of ADW and Q, we
get (ADW)†Q1/2 = V̂Σ−1/2

Q UT
Q UQΣ1/2

Q UT
Q = V̂UT

Q. Now, note that UQ ∈ Rm×m is an
orthogonal matrix and ‖V̂‖2 = 1. Therefore, combining with eqn. (29) yields

‖v‖2 ≤ ‖(XS)1/2WV̂UT
Q‖2‖f̃ (t)‖2 = ‖(XS)1/2WV̂‖2‖f̃ (t)‖2

≤‖(XS)1/2W‖2‖f̃ (t)‖2. (30)

The first equality follows from the unitary invariance property of the spectral norm and the
second inequality follows from the sub-multiplicativity of the spectral norm and ‖V̂‖2 = 1.
Our construction for W implies that eqn. (9) holds for any matrix Z and, in particular, for
Z = (XS)1/2. Eqn. (9) implies that

∥∥∥(XS)1/2WWT(XS)1/2 − (XS)
∥∥∥

2
≤ ζ

4

(
‖(XS)1/2‖22 + ‖(XS)1/2‖2F

m

)
(31)

holds with probability at least 1 − δ. Applying Weyl’s inequality on the left hand side of
the eqn. (31), we get∣∣∣∣∥∥∥(XS)1/2W

∥∥∥2

2
−
∥∥∥(XS)1/2

∥∥∥2

2

∣∣∣∣ ≤ ζ

4

(
‖(XS)1/2‖22 + ‖(XS)1/2‖2F

m

)
. (32)
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Using ζ ≤ 1 and ‖(XS)1/2‖22 ≤ ‖(XS)1/2‖2F = xTs = nµ, we get5

∥∥∥(XS)1/2W
∥∥∥2

2
≤ 3‖(XS)1/2‖2F = 3nµ. (33)

Finally, combining eqns. (30) and (33), we conclude

‖v‖2 ≤
√

3nµ‖f̃ (t)‖2.

Intuitively, the bound in Lemma 6 implies that ‖v‖2 depends on how close the approximate
solution ∆̂y is to the exact solution. Lemma 6 is particularly useful in proving the conver-
gence of Algorithm 2, which needs ‖v‖2 to be a small quantity. Next, using the properties of
our preconditioner Q−1/2, we prove that ‖Q−1/2p‖2 = O(

√
n)√µ. This bound allows us to

further show that that if we run Algorithm 1 for O(log n) iterations, then ‖v‖2 ≤ γσ
4 µ. This

inequality is critical in the convergence analysis of Algorithm 2 (see Section 4.1 for details).
Before presenting our feasible IPM algorithm, we first prove the above two inequalities using
a couple of lemmas.

Let F0 be the set of strictly feasible points respectively i.e.,

F0 = {(x,y, s) : (x, s) > 0, Ax = b, ATy + s = c}.

In addition, we will need the following definition for the neighborhood

N (γ) =
{

(x,y, s) ∈ F0 : xisi ≥ (1− γ)µ
}
. (34)

Here γ ∈ (0, 1) and µ is the duality measure. Note that N (γ) ⊆ F0 and we assume that
F0 is non-empty.

Lemma 7. Let (x,y, s) ∈ N (γ) and let the sketching matrix W ∈ Rn×w satisfy the condi-
tion in eqn. (6). Then,

‖Q−1/2p‖2 ≤
(

1 + σ√
1− γ

)√
2nµ . (35)

Proof To bound ‖Q−1/2p‖2, first we express p as in eqn. (23) and rewrite

Q−1/2p = Q−1/2
(
−σµAS−11n + Ax

)
. (36)

Applying the triangle inequality on ‖Q−1/2p‖2 in eqn. (36), we get

‖Q−1/2p‖2 ≤ ∆1 + ∆2 , (37)

where ∆1 = σµ‖Q−1/2AD(XS)−1/21n‖2 and ∆2 = ‖Q−1/2ADD−1x‖2. In order to
bound ∆1 and ∆2, we use the condition of eqn. (6). In particular, eqn. (6) implies that
‖Q−1/2AD‖2 ≤

√
2 as ζ ≤ 1.

5. The constant three in eqn. (33) could be slightly improved to 3/2; we chose to keep the suboptimal
constant as the better constant does not result in any significant improvements in the number of iterations
of Algorithm 2.
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Bounding ∆1. Applying submultiplicativity, we get

∆1 = σµ ‖Q−1/2 AD (XS)−1/21n‖2
≤ σµ ‖Q−1/2 AD‖2‖(XS)−1/21n‖2 ≤

√
2σµ ‖(XS)−1/21n‖2

=
√

2σµ

√√√√ n∑
i=1

1
xisi

≤
√

2σµ

√√√√ n∑
i=1

1
(1− γ)µ =

√
2σ
√

nµ

(1− γ) , (38)

where we used the fact that (x,y, s) ∈ N (γ).

Bounding ∆2. Since D = S−1/2X1/2 and x = X 1n, we get

∆2 = ‖Q−1/2 AD (S1/2X−1/2) X 1n‖2 = ‖Q−1/2 AD (SX)1/2 1n‖2

≤ ‖Q−1/2 AD‖2‖(SX)1/2 1n‖2 ≤
√

2

√√√√ n∑
i=1

xisi =
√

2nµ. (39)

Final bound. Combining eqns. (37), (38), and (39), we get

‖Q−1/2p‖2 ≤
(

1 + σ√
1− γ

)√
2nµ . (40)

This concludes the proof of Lemma 7.

Lemma 8. Let (x,y, s) ∈ N (γ) and let the sketching matrix W satisfy the conditions of
eqns. (6) and (7). Then, after t ≥ log(nψ)

log(1/ζ) iterations of the iterative solver in Algorithm 1,
we have ‖v‖2 ≤ γσ

4 µ. Here ψ = 4
√

6(1+σ/
√

1−γ)
γσ

and f̃ (t) = Q−1/2AD2ATQ−1/2z̃t −Q−1/2p is
the residual of the solver.

Proof Combining Lemma 7 and the condition in eqn. (7), we get

‖f̃ (t)‖2 ≤ ζt
(

1 + σ√
1− γ

)√
2nµ. (41)

Next, combining Lemma 6 and eqn. (41) we get

‖v‖2 ≤
√

3nµ ‖f̃ (t)‖2 ≤
√

6n ζt
(

1 + σ√
1− γ

)
µ

Therefore, ‖v‖2 ≤ γσµ
4 holds if

√
6n ζt (1 + σ/

√
1−γ)µ ≤ γσµ

4 , which holds for our choice of
t. Now, fixing γ, σ, and ζ, after t = O(log n) iterations of Algorithm 1 the conclusions of
the lemma hold.

Now, we are ready to present the feasible IPM algorithm. Recall the definition the neigh-
borhood N (γ) in eqn. (34).
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Algorithm 2 Feasible IPM
Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn, γ ∈ (0, 1), tolerance ε > 0, σ ∈ (0, 4/5);
Initialize: k ← 0; initial point (x0,y0, s0) ∈ F0;

1: while µk > ε do
2: Compute sketching matrix W ∈ Rn×w (Section 2) with ζ = 1/2 and δ = O(n−1);
3: Solve eqn. (5) for z using Algorithm 1 with W from step (2) and t = O(log n),

and then Compute ∆̂y = Q−1/2z;
4: Compute v using eqn. (27) with W from step (2); ∆̂s using eqn. (21b); ∆̂x using

eqn. (24);
5: Compute α̃ = argmax{α ∈ [0, 1] : (xk,yk, sk) + α(∆̂xk, ∆̂yk, ∆̂sk) ∈ N (γ)}.
6: Compute ᾱ = argmin{α ∈ [0, α̃] : (xk + α∆̂xk)T(sk + α∆̂sk)}.
7: Compute (xk+1,yk+1, sk+1) = (xk,yk, sk) + ᾱ(∆̂xk, ∆̂yk, ∆̂sk); set k ← k + 1;
8: end while

Running time. We start by discussing the running time to compute v. As discussed in Sec-
tion 3, (ADW)† can be computed in O(nnz(A) · log(m/δ)+m3 log(m/δ)) time. Now, as W
has O(log(m/δ)) non-zero entries per row, pre-multiplying by W takes O(nnz(A) log(m/δ))
time (assuming nnz(A) ≥ n). Since X and S are diagonal matrices, computing v takes
O(nnz(A) · log(m/δ) +m3 log(m/δ)) time, which is asymptotically the same as computing
Q−1/2 (see eqn. (12)).

We now discuss the overall running time of Algorithm 2. At each iteration, with failure
probability δ, the preconditioner Q−1/2 and the vector v can be computed in O(nnz(A) ·
log(m/δ)+m3 log(m/δ)) time. In addition, for t = O(log n) iterations of Algorithm 1, all the
matrix-vector products in the CG or Chebyshev iteration can be computed in O(nnz(A) ·
log n) time. Therefore, the computational time for steps (2)-(4) is given by O(nnz(A) ·
(log n + log(m/δ)) + m3 log(m/δ)). Finally, considering ε to be a constant, if we assume
that the IPM needs k = c n iterations to converge and accordingly, if we fix the failure
probability δ = 0.1

c n for some suitable constant c, then taking a union bound over all the
IPM iterations, our algorithm converges with probability at least 1− c n · 0.1

c n = 0.9 and the
running time at each iteration is given by O((nnz(A) +m3) log n).

4.1 Convergence Analysis of Algorithm 2

In this section, we prove a set of results that ultimately establish Theorem 1 and guarantee
the convergence of Algorithm 2. Due to the use of an approximate solver, these proofs
typically differ from the standard analysis of long-step feasible IPM (Wright, 1997) in many
aspects. For example, all the major results in this section rely on the condition that the
error due to the linear solver is small i.e., ‖v‖2 is small, whereas the standard convergence
analysis does not have this requirement as the linear system there is solved exactly i.e.‖v‖2
is always zero. This difference makes our case more intricate as we deal with an extra term
involving ‖v‖2 which needs more care.

On the other hand, while the origin of the statements of our feasible IPM results is
essentially (Monteiro and O’Neal, 2003), the proofs are different from that of (Monteiro
and O’Neal, 2003). The exact same analysis of (Monteiro and O’Neal, 2003) (just by
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making the primal and dual residuals equal to zero) neither directly applies to the feasible
case, nor matches the best iteration complexity of it, whereas our current analysis has
the iteration complexity O(n log 1/ε), which is the best known for feasible long-step path
following IPM algorithms. The proofs that look similar to (Monteiro and O’Neal, 2003)
also have differences. We discuss them individually before the respective lemmas. The only
overlap we have with (Monteiro and O’Neal, 2003) is our Lemma 11 that works for both
feasible and infeasible setting. Now, we proceed to prove our Theorem 1.

First, we can rewrite the linear system of eqns. (24), (25), (26) as follows:

A∆̂x = 0, (42a)
AT∆̂y + ∆̂s = 0, (42b)
X∆̂s + S∆̂x =−XS 1n + σµ1n − v. (42c)

Indeed, we now show how to derive eqns. (24), (25), (26) from eqn. (42). Pre-multiplying
both sides of eqn. (42c) by AS−1 and noting that D2 = XS−1, we get

AD2∆̂s + A∆̂x = −AX1n + σµAS−11n −AS−1v
⇒ AD2∆̂s = −Ax + σµAS−11n −AS−1v. (43)

Eqn. (43) holds as AX1n = Ax and, from eqn. (42a), A∆̂x = 0. Next, pre-multiplying
eqn. (42b) by AD2, we get

AD2AT∆̂y + AD2∆̂s = 0
⇒ AD2AT∆̂y = Ax− σµAS−11n + AS−1v = p + AS−1v. (44)

The first equality in eqn. (44) follows from eqn. (43) and the definition of p. This establishes
eqn. (25). Eqn. (26) directly follows from eqn. (42b). Finally, we get eqn. (24) by pre-
multiplying eqn. (42c) by S−1. We will now use a slightly different notations. We define
the next point traversed by the algorithm as (x(α),y(α), s(α)), where

(x(α),y(α), s(α)) = (x,y, s) + α(∆̂x, ∆̂y, ∆̂s), and (45)
µ(α) = (1/n) x(α)Ts(α). (46)

Our goal is to bound the number of outer iterations required by the feasible IPM algorithm.
To do so, we bound the magnitude of the step size α. First, we provide an upper bound
on α, which allows us to show that each new point (x(α),y(α), s(α)) traversed by the
algorithm stays within the neighborhood N (γ). Second, we provide a lower bound on α,
which allows us to bound the number of iterations required. The following Lemma will be
used throughout the section.

Lemma 9. Assume (∆̂x, ∆̂s, ∆̂y) satisfies eqns. (87) for some σ ∈ R and v ∈ Rn. Let
(x,y, s) be any point such that (x, s) > 0. Then, for every α ∈ R,

(a) x(α) ◦ s(α) = (1− α)x ◦ s + ασµ1n − αv + α2∆̂x ◦ ∆̂s ,

(b) µ(α) = [1− α(1− σ)]µ− αvT1n
n

.
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Proof Proving (a):

x(α) ◦ s(α) = (x + α∆̂x) ◦ (s + α∆̂s)
= x ◦ s + α(x ◦ ∆̂s + s ◦ ∆̂x) + α2∆̂x ◦ ∆̂s
= x ◦ s + α(−x ◦ s + σµ1n − v) + α2∆̂x ◦ ∆̂s
= (1− α)x ◦ s + ασµ1n − αv + α2∆̂x ◦ ∆̂s ,

where the third equality follows from eqn. (42c). Now, left-multiply the above equality by
1T
n and divide by n to obtain (b). (Notice that ∆̂xT∆̂s = 0 from eqns. (42a) and (42b).)

Next, we provide an upper bound on α, ensuring that each new point (x(α),y(α), s(α))
traversed by the algorithm stays within the neighborhood N (γ). Note that the following
result resembles Lemma 3.5 of (Monteiro and O’Neal, 2003), but what makes Lemma 10
different from it is the fact that here we need to additionally prove the strict feasibility of
the new iterate i.e. (x(α),y(α), s(α)) ∈ F0 (in order to show (x(α),y(α), s(α)) ∈ N (γ)),
which was not proven in Lemma 3.5 of (Monteiro and O’Neal, 2003).

Lemma 10. Assume (∆̂x, ∆̂y, ∆̂s) satisfies eqns. (42) for some σ > 0, (x,y, s) ∈ N (γ)
for γ ∈ (0, 1), and ‖v‖2 ≤ γσµ

4 . Then, (x(α),y(α), s(α)) ∈ N (γ) for every scalar α such
that

0 ≤ α ≤ min
{

1, γσµ

4‖∆̂x ◦ ∆̂s‖∞

}
. (47)

Proof First, we show that x(α) ◦ s(α) ≥ (1− γ)µ(α)1n. From Lemma 9, we get

x(α) ◦ s(α)− (1− γ)µ(α)1n

= (1− α) (x ◦ s− (1− γ)µ1n) + αγσµ1n − α
(

v− (1− γ)vT1n
n

1n

)
+ α2

(
∆̂x ◦ ∆̂s

)
≥ α

(
γσµ−

∥∥∥∥∥v− (1− γ)vT1n
n

1n

∥∥∥∥∥
∞
− α

∥∥∥∆̂x ◦ ∆̂s
∥∥∥
∞

)
1n

≥ α
(
γσµ− 2‖v‖∞ − α‖∆̂x ◦ ∆̂s‖∞

)
1n

≥ α
(
γσµ− γσµ

2 − γσµ

4

)
1n = α

γσµ

4 1n ≥ 0.

The first inequality follows from x ◦ s ≥ (1 − γ)µ1n, because (x,y, s) ∈ N (γ) and a ≤
‖a‖∞ 1n for any vector a ∈ Rn. The second-to-last inequality follows from the fact that for
any u ∈ Rn and δ ∈ [0, n],

∥∥∥u− δuT1n
n 1n

∥∥∥
∞
≤ (1 + δ)‖u‖∞. Thus, we prove that the point

(x(α),y(α), s(α)) satisfies the proximity condition for N (γ).
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Finally, we show that (x(α),y(α), s(α)) ∈ F0 i.e. it satisfies the primal and dual con-
straints and (x(α), s(α)) > 0. From eqn. (42) and the fact that (x,y, s) ∈ F0, we get
A x(α) = Ax + αA∆̂x = b. Similarly,

AT y(α) + s(α) = (ATy + s) + α(AT∆̂y + ∆̂s) = ATy + s = c.

We now show that (x(α), s(α)) > 0. For α = 0, we trivially have(x(α), s(α)) = (x, s) > 0.
To prove (x(α), s(α)) > 0 for 0 < α ≤ 1, we first show µ(α) > 0. Using γ ∈ (0, 1), the
inequality

∣∣∣vT1n
n

∣∣∣ ≤ ‖v‖∞ ≤ ‖v‖2, and the assumption ‖v‖2 ≤ γσµ
4 , we get vT1n

n < σµ
4 .

Thus, from Lemma 9(b),

µ(α) = [1− α(1− σ)]µ− α vT1n
n

> [1− α(1− σ)]µ− α σµ4
= (1− α)µ+ α

3σµ
4 > 0. (48)

The last inequality holds because α ∈ (0, 1], σ ∈ (0, 1), and µ > 0. We already have
x(α) ◦ s(α) ≥ (1 − γ)µ(α)1n. Combining with µ(α) > 0 and γ ∈ (0, 1) this implies that
x(α) ◦ s(α) > 0. Therefore, xi(α) si(α) > 0 for all i = 1 . . . n which implies that, for each i,
either both xi(α) and si(α) are positive or both xi(α) and si(α) are negative. We will use
contradiction to prove that the second case is not possible.

Indeed, assume that xi(α) < 0 and si(α) < 0 for some i = 1 . . . n. First, we rewrite
xi(α) and si(α) as follows6

xi(α) = xi + α∆̂xi < 0, (49a)
si(α) = si + α∆̂si < 0. (49b)

Recall that both xi and si are positive. Therefore, pre-multiplying eqn. (49a) by si and
eqn. (49b) by xi we get

xisi + αsi∆̂xi < 0, (50a)
xisi + αxi∆̂si < 0. (50b)

Adding eqns. (50a) and (50b) and applying eqn. (42c) (element-wise), we get

2xisi + α(si∆̂xi + xi∆̂si) < 0
⇒ 2xisi + α(−xisi + σµ− vi) < 0
⇒ (2− α)xisi + ασµ− αvi < 0

⇒ vi >
2− α
α

xisi + σµ > σµ. (51)

In the above vi is the i-th element of v; the first inequality in eqn. (51) holds because α > 0;
the second inequality in eqn. (51) because 2−α

α xisi > 0 (xi, si > 0 and 0 < α ≤ 1). Using
‖v‖2 ≤ γσµ

4 we get
vi ≤ ‖v‖∞ ≤ ‖v‖2 ≤

γσµ

4 < σµ ,

6. Here, xi(α), si(α), xi, si, ∆̂xi, and ∆̂si are the i-th elements of x(α), s(α), x, s, ∆̂x, and ∆̂s, respectively.
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for all i = 1 . . . n. This contradicts the inequality of eqn. (51); thus, both xi(α) > 0 and
si(α) > 0 for all i = 1 . . . n and all α ∈ [0, 1].

We now cite a result from (Monteiro and O’Neal, 2003) that provides a lower bound on ᾱ
and the corresponding µ(ᾱ). Note that (Monteiro and O’Neal, 2003) presented it in context
of infeasible IPM; however, it holds for the feasible case as well, as long as the perturbation
vector v satisfies ‖v‖2 ≤ γσµ

4 at each iteration.

Lemma 11 (Lemma 3.6 of (Monteiro and O’Neal, 2003)). At each iteration of the Algo-
rithm 2, if ‖v‖2 ≤ γσµ

4 , then the step size ᾱ satisfies

ᾱ ≥ min
{

1,
min{γσ, (1− 5

4σ)}µ
4‖∆̂x ◦ ∆̂s‖∞

}
(52)

and

µ(ᾱ) =
[
1− ᾱ

2 (1− 5
4σ)

]
µ. (53)

At this point, we have provided a lower bound (eqn. (52)) for the allowed values of the
step size ᾱ. Next, we will show that this lower bound is bounded away from zero. From
eqn. (52), is suffices to show that ‖∆̂x ◦ ∆̂s‖∞ is bounded. First, we state the following
inequality that will be instrumental in proving Lemma 13.

Lemma 12. Let a,b ∈ Rn be any two vectors such that aTb ≥ 0. Then

‖a ◦ b‖2 ≤ ‖a + b‖22 .

See (Wright, 1997) for a proof of Lemma 12; as a matter of fact, (Wright, 1997) proved
‖a ◦ b‖2 ≤ 2−3/2‖a + b‖22, which is tighter. This tighter bound is not needed in our proof.

Lemma 13. Let (x,y, s) ∈ N (γ) and ‖v‖2 ≤ γσµ
4 . Then (∆̂x, ∆̂y, ∆̂s) satisfies

‖∆̂x ◦ ∆̂s‖∞ ≤
(

1 + σ2

1− γ

)
nµ+ γ2σ2

16(1− γ)µ+ γσ2

2 µ . (54)

Proof First, we multiply eqn. (42c) on the left by (XS)−1/2 to get

D−1∆̂x + D∆̂s = −(XS)1/21n + σµ(XS)−1/21n − (XS)−1/2v . (55)

Next, pre-multiplying eqn. (42b) by ∆̂xT and applying eqn. (42a), we have ∆̂xT∆̂s = 0.
This also implies that ∆̂xT∆̂s = (D−1∆̂x)T(D∆̂s). Applying Lemma 12 with a = D−1∆̂x
and b = D∆̂s, and using eqn. (55) we get

‖∆̂x ◦ ∆̂s‖2 = ‖(D−1∆̂x) ◦ (D∆̂s)‖2 ≤ ‖D−1∆̂x + D∆̂s‖22
= ‖ − (XS)1/21n + σµ(XS)−1/21n − (XS)−1/2v‖22
= ‖(XS)1/21n + (XS)−1/2(v− σµ1n)‖22
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= ‖(XS)1/21n‖22 + 2 · 1T
n(v− σµ1n) + ‖(XS)−1/2(v− σµ1n)‖22

≤ nµ+ 2n(‖v‖2 − σµ) + ‖(XS)−1/2(v− σµ1n)‖22. (56)

The inequality in eqn. (56) follows from ‖(XS)1/21n‖22 = nµ and
∣∣∣1T
nv
∣∣∣ ≤ n ‖v‖∞ ≤ n ‖v‖2.

Next, consider the last term on the right hand side of eqn. (56):

‖(XS)−1/2(v− σµ1n)‖22 = ‖(XS)−1/2v‖22 + σ2µ2‖(XS)−1/21n‖22 − 2σµ1T
n(XS)−1v

≤ ‖v‖22
mini xisi

+ σ2µ2
n∑
i=1

1
xisi
− 2σµ

n∑
i=1

vi
xisi

. (57)

Eqn. (57) follows from ‖(XS)−1/2v‖22 ≤ ‖(XS)−1/2‖22‖v‖22 and ‖(XS)−1/2‖22 = 1/mini xisi.
Moreover, it is easy to verify that ‖(XS)−1/21n‖22 =

∑n
i=1 1/xisi and 1T

n(XS)−1v =
∑n
i=1 vi/xisi.

Now, we have xisi ≥ (1−γ)µ for i = 1 . . . n as (x,y, s) ∈ N (γ). Also, xisi ≤
∑n
i=1 xisi = nµ.

Using the above we rewrite eqn. (57) as

‖(XS)−1/2(v− σµ1n)‖22 ≤
‖v‖22

(1− γ)µ + nσ2µ2

(1− γ)µ − 2σµ
∑n
i=1 vi
nµ

. (58)

Combining eqns. (56) and (58) we get

‖∆̂x ◦ ∆̂s‖2 ≤ nµ+ 2n(‖v‖2 − σµ) + ‖v‖22
(1− γ)µ + nσ2µ

(1− γ) − 2σ
∑n
i=1 vi
n

=
(

1 + σ2

1− γ

)
nµ+ 2n(‖v‖2 − σµ) + ‖v‖22

(1− γ)µ − 2σ
∑n
i=1 vi
n

. (59)

Using ‖v‖2 ≤ γσµ
4 and the fact that

∣∣vT1n/n
∣∣ ≤ ‖v‖∞ ≤ ‖v‖2, we get

‖∆̂x ◦ ∆̂s‖2 ≤
(

1 + σ2

1− γ

)
nµ+ γ2σ2

16(1− γ)µ+ γσ2

2 µ. (60)

Finally, we conclude the proof using ‖∆̂x ◦ ∆̂s‖∞ ≤ ‖∆̂x ◦ ∆̂s‖2.

The next result guarantees the convergence of Algorithm 2 .

Lemma 14. Assume that the constants γ and σ are such that max{γ−1, (1−γ)−1, σ−1, (1−
5
4σ)−1} = O(1). At each iteration of Algorithm 2, if ‖v‖2 ≤ γσµ

4 , then after k = O(n log 1/ε)
iterations, (xk, sk,yk) satisfies

µk ≤ εµ0.

Proof From Lemma 13,

‖∆̂x ◦ ∆̂s‖∞ ≤
(

1 + σ2

1− γ + γ2σ2

16(1− γ) + γσ2

2

)
nµ

⇒ µ‖∆̂x ◦ ∆̂s‖−1
∞ ≥ n−1

(
1 + σ2

1− γ + γ2σ2

16(1− γ) + γσ2

2

)−1

. (61)
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Combining eqns. (52) and (61) we get

ᾱ ≥ min

1,
min{γσ, (1− 5

4σ)}
4n
(
1 + σ2

1−γ + γ2σ2

16(1−γ) + γσ2

2

)
 . (62)

Let max{γ−1, (1− γ)−1, σ−1, (1− 5
4σ)−1} ≤ λ for some constant λ > 1. Therefore, γσ ≥ 1

λ2

and (1− 5
4σ) ≥ 1

λ , which further implies that min{γσ, (1− 5
4σ)} ≥ min{ 1

λ ,
1
λ2 } = 1

λ2 . Also,
1

1−γ ≤ λ. Combining these with eqn. (62), we get

ᾱ ≥ min
{

1,
1
λ2

4n(1 + λσ2 + λγ2σ2

16 + γσ2

2 )

}
= min

{
1, 1

4n(λ2 + λ3σ2 + λ3γ2σ2

16 + λ2γσ2

2 )

}
.

(63)

Note that in eqn.(63), 4n(λ2 + λ3σ2 + λ3γ2σ2

16 + λ2γσ2

2 ) > 1. Thus,

ᾱ ≥ 1
4n(λ2 + λ3σ2 + λ3γ2σ2

16 + λ2γσ2

2 )

⇒ ᾱ

2

(
1− 5

4σ
)
≥

1− 5
4σ

8n(λ2 + λ3σ2 + λ3γ2σ2

16 + λ2γσ2

2 )
≥ 1

8nλ3(1 + λσ2 + λγ2σ2

16 + γσ2

2 )
= β

n
,

(64)

where
β = 1

8λ3(1 + λσ2 + λγ2σ2

16 + γσ2

2 )
. (65)

We also note that the second inequality in eqn. (64) holds because 1− 5
4σ ≥

1
λ . Let µ = µk

and µ(ᾱ) = µk+1 in eqn. (53); applying eqn. (64), we get, µk+1 ≤ (1− β/n)µk, ∀k ≥ 0.
Applying the above inequality recursively, we get µk ≤ (1− β/n)k µ0. Therefore, for any
accuracy parameter ε ∈ (0, 1), µk ≤ εµ0 holds, if (1− β/n)k ≤ ε holds. Thus, it suffices for
k to be at least

k ≥ n

β
log(1/ε). (66)

Therefore, since β, as defined in eqn. (65), is a constant, we need O(n log 1
ε ) iterations to

satisfy µk ≤ εµ0.

Proof of Theorem 1. Finally, the proof of our Theorem 1 directly follows from
combining Lemma 8 and Lemma 14.

5. Infeasible IPM

In this section, we briefly discuss the long-step infeasible IPM using approximate solver
with our sketching-based preconditioner. Recall that such algorithms can, in general, start
with an initial point that is not necessarily feasible, but the initial point does need to satisfy
some, more relaxed, constraints. Following the lines of (Zhang, 1994; Monteiro and O’Neal,
2003), let S be the set of feasible and optimal solutions of the form (x∗,y∗, s∗) for the
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primal and dual problems of eqns. (1) and (2) and assume that S is not empty. Then, long-
step infeasible IPMs can start with any initial point (x0,y0, s0) that satisfies (x0, s0) > 0
and (x0, s0) ≥ (x∗, s∗), for some feasible and optimal solution (x∗, s∗) ∈ S. In words,
the starting primal and slack variables must be strictly positive and larger (element-wise)
when compared to some feasible, optimal primal-dual solution. See Chapter 6 of (Wright,
1997) for a discussion regarding why such choices of starting points are are relevant to
computational practice and can be identified more efficiently than feasible points.

The flexibility of infeasible IPMs comes at a cost: long-step feasible IPMs converge in
O(n log 1/ε) iterations, while long-step infeasible IPMs need O(n2 log 1/ε) iterations to con-
verge (Zhang, 1994; Monteiro and O’Neal, 2003). Here ε is the accuracy of the approximate
LP solution returned by the IPM. Let

Axk − b = rkp, (67a)
ATyk + sk − c = rkd, (67b)

where rkp ∈ Rn and rkd ∈ Rm are the primal and dual residuals, respectively that characterize
how far the iterate (xk,yk, sk) is from being feasible.

As long-step infeasible IPM algorithms iterate and update the primal and dual solutions,
the residuals are updated as well. In case of convergence, these residuals rkp and rkd are
reduced at the same rate as the duality measure µk and eventually converge to zero (Wright,
1997). Let rk = (rkp, rkd) ∈ Rn+m be the primal and dual residual at the k-th iteration: it is
well-known that the convergence analysis of infeasible long-step IPMs critically depends on
rk lying on the line segment between 0 and r0 i.e., the initial residual. Unfortunately, using
approximate solvers for the normal equations violates this invariant. Similar to the feasible
case, a simple solution to fix this problem by adding a perturbation vector v to the current
primal-dual solution that guarantees that the invariant is satisfied is proposed in (Monteiro
and O’Neal, 2003). In this case, the following modified system is slightly different from
eqns. (24)-(26), as it now involves the residuals7 rkp and rkd:

AD2AT∆̂y = AS−1v + p (68a)
∆̂x = − x + σµS−11n −D2∆̂s− S−1v (68b)
∆̂s = − rd −AT∆̂y , (68c)

where the expression of p is now slightly different from eqn. (23) due to infeasibility and is
given by, p = −rp − σµAS−11n + Ax −AD2rd. Again, we use the exact same sketching-
based construction of v that provably satisfies the invariant. Next, we present our main
theorem for long-step infeasible IPM:

Theorem 15. Let 0 ≤ ε ≤ 1 be an accuracy parameter. Consider the long-step infeasible
IPM Algorithm 3 that solves eqn. (5) using the CG or Chebyshev iteration of Algorithm 1
(Section 3). Assume that the iterative solver runs with accuracy parameter ζ = 1/2 and
iteration count t = O(log n). Then, with probability at least 0.9, the long-step infeasible
IPM converges after O(n2 log 1/ε) iterations.

7. For notational simplicity, we drop the index k.
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Before presenting the infeasible IPM algorithm, we will need the following definition for
the neighborhood. The involvement of the residuals rk makes it different from the one in
the feasible case:

N (γ) =
{

(x,y, s) : (x, s) > 0, xisi ≥ (1− γ)µ and ‖r‖2
‖r0‖2

≤ µ

µ0

}
.

Notice that Lemma 6 also holds for our infeasible IPM. The only difference is the expres-
sion of the vector p which now contains the residuals. Combining a result from (Monteiro
and O’Neal, 2003) with our preconditioner Q−1/2, we can prove that ‖Q−1/2p‖2 = O(n)√µ.
Again, it is to be noted that the above bound is worse than Lemma 7 by a factor of

√
n.

This bound allows us to prove that if we run Algorithm 1 for O(log n) iterations, then
‖v‖2 ≤ γσ

4 µ. However, the extra
√
n factor essentially contributes to the O(n2) iteration

complexity of Algorithm 3. See Appendix A for details.

Algorithm 3 Infeasible IPM
Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn, γ ∈ (0, 1), tolerance ε > 0, centering parameter
σ ∈ (0, 4/5);
Initialize: k ← 0; initial point (x0,y0, s0);

1: while µk > ε do
2: Compute sketching matrix W ∈ Rn×w (Section 2) with ζ = 1/2 and δ = O(n−2);
3: Compute rkp = Axk − b; rkd = ATyk + sk − c; and pk from eqn. (67);
4: Solve the linear system of eqn. (5) for z using Algorithm 1 with W from step (2)

and t = O(log n). Compute ∆̂y = Q−1/2z;
5: Compute v using eqn. (27) with W from step (2); ∆̂s using eqn. (68c); ∆̂x using

eqn. (68b);
6: Compute α̃ = argmax{α ∈ [0, 1] : (xk,yk, sk) + α(∆̂xk, ∆̂yk, ∆̂sk) ∈ N (γ)}.
7: Compute ᾱ = argmin{α ∈ [0, α̃] : (xk + α∆̂xk)T(sk + α∆̂sk)}.
8: Compute (xk+1,yk+1, sk+1) = (xk,yk, sk) + ᾱ(∆̂xk, ∆̂yk, ∆̂sk); set k ← k + 1;
9: end while

Notice that as compared to the feasible IPM i.e. Algorithm 2, Algorithm 3 needs an
additional step to compute the primal and dual residuals, namely, rp and rd respectively
(see Step (3)). However, per iteration cost of Algorithm 3 is asymptotically the same as
that of Algorithm 2 (see Section 4) since computing rp and rd only involve a matrix-vector
product and therefore, are dominated by the SVD of ADW and the computation of the
perturbation vector v. See Appendix A for the convergence analysis of Algorithm 3.

6. Extensions

We briefly discuss extensions of our work. Note that we focus only on analyzing pre-
conditioned CG and preconditioned Chebyshev iteration due to their practical advantages
over other solvers. In addition, Chebyshev iteration also offers several advantages in a
parallel environment as it does not need to evaluate communication-intensive inner prod-
ucts for computing the recurrence parameters. However, from a theoretical perspective, in
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(Chowdhury et al., 2020), we analyzed two more solvers, namely, preconditioned Richardson
Iteration and the preconditioned Steepest Descent that could replace the proposed CG or
Chebyshev iteration without any loss in accuracy or any increase in the number of iterations
for the long-step feasible IPM Algorithm 2 of Section 4.

Second, recall that our approach focused on full rank input matrices A ∈ Rm×n with
m � n. Our overall approach still works if A is any m × n matrix that is low-rank, e.g.,
rank(A) = k � min{m,n}. In that case, using the thin SVD of A, we can rewrite the
linear constraints as follows UAΣAVT

Ax = b, where UA ∈ Rm×k and VA ∈ Rn×k are the
matrices of left and right singular vectors of A respectively; ΣA ∈ Rk×k is the diagonal
matrix with the k non-zero singular values of A as its diagonal elements. The LP of eqn. (1)
can be restated as

min cTx , subject to VT
Ax = b̃ ,x ≥ 0 , (69)

where b̃ = Σ−1
A UT

Ab. Note that, rank(VA) = k � n and therefore eqn. (69) can be solved
using our framework. The matrices UA, VA, and ΣA can be approximately recovered
using the fast SVD algorithms of (Halko et al., 2011; Boutsidis et al., 2014; Clarkson and
Woodruff, 2017). However, the accuracy of the final solution will depend on the accuracy
of the approximate SVD and we defer this analysis to future work.

Third, even though we chose to use the Count-Min sketch and its analysis from (Cohen
et al., 2016) (Section 2), there are many other alternative sketching matrix constructions
that would lead to similar results. A particularly simple one is the Gaussian sketching matrix
WG ∈ Rn×w, where every entry is a N (0, 1) random variable. Setting w = O (m+log(1/δ)/ζ2)
would result in the same accuracy guarantees as the sketching matrix of Section 2. However,
the (theoretical) running time needed to compute ADW increases to O(m · nnz(A)). In
practice, at least for relatively small matrices, using Gaussian sketching matrices is a rea-
sonable alternative; see the discussion in (Meng et al., 2014) which argued that the Gaussian
matrix sketching-based solvers are considerably better than direct solvers. We also opted
to use Gaussian matrices in our empirical evaluation, since we primarily interested in mea-
suring the accuracy of the final solution as a function of the number of iterations of the
solver and the IPM algorithm. Other known constructions of sketching matrices that are
also applicable in our setting include (any) sub-gaussian sketching matrix; the Subsampled
Randomized Hadamard transform (SRHT); and any of the Sparse Subspace Embeddings
of (Clarkson and Woodruff, 2017; Nelson and Nguyên, 2013; Meng and Mahoney, 2013;
Cohen, 2016).

7. Experiments

Here we demonstrate the empirical performance of our algorithm on a variety of real-world
data sets from the UCI ML Repository (Dua and Graff, 2017). More specifically, we consider
two problems that were part of the NeurIPS 2003 feature selection challenge: ARCENE
and DEXTER (Guyon et al., 2005). For the ARCENE data set, the task is to distinguish
between cancer and normal patterns from mass-spectrometric data and DEXTER data set
is for a text classification problem. Further, we consider DrivFace (Diaz-Chito et al., 2016),
a problem concerned with identifying the gaze direction in photos of human subjects taken
while driving, and a gene expression cancer RNA-Sequencing data set, accessible on the
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Figure 1: ARCENE (top row) and DEXTER (bottom row) data sets: Our algorithm (Sk.
IPM) requires an order of magnitude fewer inner iterations than the Standard
IPM with CG at each outer iteration, as demonstrated in (a). This is possibly
due to the improved conditioning of Q−1/2AD2ATQ−1/2 compared to AD2AT ,
as shown in (b). For all experiments tolCG = 10−5 and τ = 10−9.

UCI ML Repository, which is part of the RNA-Seq (HiSeq) PANCAN data set (Weinstein
et al., 2013). It is a random extraction of gene expressions from patients who have different
types of tumors: BRCA, KIRC, COAD, LUAD and PRAD. We considered the binary
classification task of identifying BRCA versus other types. We also perform experiments on
synthetic data sets (see Appendix B.2 for details). The experiments were implemented in
Python and we observed that the results for both synthetic data (generated as described in
Appendix B.2) and real-world data were qualitatively similar. Thus, we highlight results on
several representative real-world datasets. The experiments were implemented in Python
and run on a server with Intel E5-2623V3@3.0GHz 8 cores and 64GB RAM.

As an application, we consider `1-regularized SVMs. All of the data sets are concerned
with binary classification withm� n, where n is the number of features. The SVM problem
is a core model in machine learning that is crucial for applications in both regression and
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Figure 2: ARCENE data set: for various (w, tolCG) settings, (a) the maximum number of
inner iterations used by our algorithm and (b) the maximum condition number
of Q−1/2AD2ATQ−1/2, across outer iterations. The standard IPM, across all
settings, needed on the order of 1,000 iterations and κ(AD2AT ) was on the order
of 108. The relative error was fixed to 0.04%.

classification. While there are many variations of SVMs, we use the classical version of SVMs
with an `1 regularizer to illustrate the application of our algorithm. In Appendix B.1, we
describe the `1-SVM problem and how it can be formulated as an LP. Here, m is the number
of training points, n is the feature dimension, and the size of the constraint matrix in the
LP becomes m× (2n+ 1).
Comparisons and Metrics. Our empirical evaluations serve as a proof-of-concept verify-
ing our theoretical findings, by evaluating the effectiveness of our randomized preconditioner
combined with an approximate solver. State-of-the-art implementations of LP solvers are
highly optimized; therefore, it is unlikely to get a fair time-comparison between our al-
gorithm and industrial-grade solvers, since the true algorithmic efficiency of commercial
solvers is confounded by the built-in optimization strategies. We do not report running
times to avoid such direct comparisons with heavily optimized benchmark LP solvers.

In most of our evaluations, we use the infeasible case i.e., Algorithm 3 as finding a strictly
feasible staring point is a non-trivial task. In addition, we focus on CG iterative solver to
compute the approximate search directions. We compare Algorithm 3 with a standard IPM
(see (Press et al., 2007, Ch. 10)) using CG, and a standard IPM using a direct solver. We
also use CVXPY as a benchmark to compare the accuracy of the solutions; we define the
relative error ‖x̂−x?‖2/‖x?‖2, where x̂ is our solution and x? is the solution generated by
CVXPY. In addition, in some of the experiments, we also consider the primal-dual error
cTx−bTy as a key metric to evaluate the quality of the solution returned by our algorithm.
We also consider the number of outer iterations, namely the number of iterations of the
IIPM algorithm, as well as the number of inner iterations, namely the number of iterations
of the CG solver. The inner iterations is highly dependent on the condition number of
the matrices in the normal equations (eqn. (3) or (4)), which we also report. We denote
the relative stopping tolerance for CG by tolCG and we denote the outer iteration residual
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error by τ . If not specified: τ = 10−9, tolCG = 10−5, and σ = 0.5. We evaluated a Gaussian
sketching matrix, and the initial triplet (x,y, s) for all IPM algorithms was set to be all
ones.

Table 1: Comparison of (our) sketched IPM with CG, standard IPM with CG, and Standard
IPM with a direct solver, for the `1-SVM problem on UCI Machine Learning
Repository (Dua and Graff, 2017) data sets. Across all, τ = 10−9 and a relative
error of 10−3 or less was achieved. We define κSk = κ(Q−1/2AD2ATQ−1/2) and
κStan = κ(AD2AT ).

Problem Size Sketch IPM w/ Precond. CG Stand. IPM w/ Unprec. CG IPM w/ Dir.
(m×N) w In. It. Out. It. κSk In. It. Out. It. κStan Out. It.

ARCENE (100× 10K) 200 30 50 38.09 1.1K 59 4.4× 108 50
DEXTER (300× 20K) 500 39 39 75.42 4.6K 39 7.6× 109 39
DrivFace (606× 6400) 1000 50 42 68.87 139K 43 17× 1012 42
Gene RNA (801× 20531) 2000 27 44 20.03 101K 208 4.7× 1012 44

Experimental Results. Figure 1(a) shows that our Algorithm 2 uses an order of mag-
nitude fewer inner iterations than the un-preconditioned standard solver. This is due to
the improved conditioning of the respective matrices in the normal equations, as demon-
strated in Figure 1(b). Across various real-world and synthetic data sets, the results were
qualitatively similar to those shown in Figure 1. Results for several real-world data sets are
summarized in Table 1.

In general, our preconditioned CG solver used in Algorithm 2 does not increase the total
number of outer iterations as compared to the standard IPM with CG, and the standard
IPM with a direct linear solver (denoted IPM w/Dir), as seen in Table 1. Actually, for
unpreconditioned CG there is clearly more outer iterations, especially for Gene RNA, which
has x5 outer iterations. Figure 1 also demonstrates the relative insensitivity to the choice
of w (the sketching dimension, i.e., the number of columns of the sketching matrix W of
Section 2). For smaller values of w, our algorithm requires more inner iterations. However,
across various choices of w, the number of inner iterations is always an order of magnitude
smaller than the number required by the standard solver.

Figure 2 shows the performance of our algorithm for a range of (w, tolCG) pairs. Fig-
ure 2(a) demonstrates that the number of the inner iterations is robust to the choice of
tolCG and w. The number of inner iterations varies between 15 and 35 for the ARCENE
data set, while the standard IPM took on the order of 1, 000 iterations across all parameter
settings. Across all settings, the relative error was fixed at 0.04%. In general, our sketched
IPM is able to produce an extremely high accuracy solution across parameter settings. Thus
we do not report additional numerical results for the relative error, which was consistently
10−3 or less. Figure 2(b) demonstrates a trade-off of our approach: as both tolCG and
w are increased, the condition number κ(Q−1/2AD2ATQ−1/2) decreases, corresponding to
better conditioned systems. As a result, fewer inner iterations are required. In this context,
Figure 3 shows that how the number of inner CG iterations (Figure 3(a)) or the condi-
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Figure 3: ARCENE data set: As w increases, (a) the number of inner iterations decreases,
and is relatively robust to tolCGand (b) the condition number decreases as well.

tion number of Q−1/2AD2ATQ−1/2 (Figure 3(b)) decreases with the increase in sketching
dimension w for various tolCG .

Next, we further evaluate the performance of our algorithm in terms of the total number
of outer iterations when starting from an infeasible point vs. starting from a strictly feasible
point. The objective is to study the effect of feasibility in convergence of our algorithms.
For the feasible IPM, we assume that we already have a strictly feasible starting point.
See Appendix B.4 on how to find a strictly feasible point of an LP. Figure 4 shows that
if we already know a feasible starting point beforehand, then, across all the data sets,
our algorithm indeed takes much fewer number of outer iterations as compared to that of
infeasible-start IPM. Additionally, starting from a feasible or an infeasible point does not
seem to affect the rate with which the primal-dual error decreases

Finally, we run our IPM solver without a v-correction i.e., without using the perturba-
tion vector v in step (5) of Algorithm 3 and notice that our algorithm still converges without
significantly changing the inner or outer iteration counts (see Table 2). We leave the corre-
sponding theoretical analysis for future work. We use the same tolerance parameters and
sketching dimension as in Table 1.

8. Conclusions and Open Problems

We proposed and analyzed a long-step IPM algorithm (both feasible and infeasible) using a
preconditioned conjugate gradient solver for the normal equations and a novel perturbation
vector to correct for the error due to the approximate solver. Thus, we speed up each
iteration of the IPM algorithm, without increasing the overall number of iterations. We
demonstrate empirically that our IPM requires an order of magnitude fewer inner iterations
within each linear solve than standard IPMs.

Several important questions remain open. First of all, from a theoretical perspective,
using the vector v to correct for infeasibility was necessary for our theoretical analysis, but,

32



Faster Randomized IPMs for Tall/Wide Linear Programs

Figure 4: Feasible vs. infeasible start: For all four data sets, we see that the algorithm
takes much fewer number of outer iteration if one can start from a feasible point.
Here, we take w = 1000. Primal-dual errors are in log scale.

Table 2: Comparison of (our) sketched IPM with and without correction, for the `1-SVM
problem on UCI Machine Learning Repository (Dua and Graff, 2017) data sets.
Across all, τ = 10−9 and a relative error of 10−3 or less was achieved.

Problem Size Sketch Size Precond. Sketch IPM without Correction Precond. Sketch IPM with Correction
(m×N) w Max In. It. Sum In. It. Out. It. Max In. It. Sum In. It. Out. It.

ARCENE (100× 10K) 200 29 1868 73 29 1873 73
DEXTER (300× 20K) 500 40 2307 62 40 2271 62
DrivFace (606× 6400) 1000 52 2820 66 50 2804 66
Gene RNA (801× 20531) 2000 27 1445 67 27 1434 67

from an empirical perspective, we observed that the correction was not needed. A theoretical
analysis of long-step IPMs without a correction vector would be of interest. Second, it would
be interesting to explore whether there are other ways to use the preconditioner to design
a feasible step instead of the v-correction. Third, a thorough empirical evaluation of the
effect of preconditioning and approximate solvers, with or without the v-correction, would
be a significant undertaking in future work. Finally, it would be interesting to investigate
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what other theoretically impactful ideas could be used to efficiently solve linear program
in practice. There exists barriers to using methods such as inverse maintenance and lazy
updates in practice, as discussed in Section 1.2. However, it is unknown whether these issues
are fundamental or avoidable.
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Appendix A. Convergence analysis of Algorithm 3

The proofs of long-step feasible IPM and long-step infeasible IPM are different from each
other, since the latter needs additional assumptions on the initial iterate (x0,y0, s0). For a
detailed comparison between proofs of these two variants, we refer the readers to Chapters 5
and 6 of (Wright, 1997). In the context of an approximate solver, most of the proofs related
to the convergence of the long-step infeasible IPMs followed from (Monteiro and O’Neal,
2003), except for the fact that we used our sketching-based preconditioner Q−1/2, as well
as our choice of the vector v that corrects for the error caused by the inexact solver.
Here, we only prove results that are different from (Monteiro and O’Neal, 2003). For our
feasible IPM proofs, there is no prior work that analyzed the theoretical aspects of long-step
feasible IPMs with an approximate solver. Therefore, compared to the prototypical, long-
step feasible IPM of (Wright, 1997), our proofs needed extra care in bounding the duality
gap decrease in each iteration when the linear system is only approximately solved.

A.1 Number of iterations for the iterative solver

In this section, most of the proofs follow (Monteiro and O’Neal, 2003) except for the fact
that we used our sketching based preconditioner Q−1/2. Recall that S is the set of optimal
and feasible solutions for the proposed LP.

Lemma 16. Let (x0,y0, s0) be the initial point with (x0, s0) > 0 and (x∗,y∗, s∗) ∈ S such
that (x∗, s∗) ≤ (x0, s0) with s0 ≥ |ATy0−c|. Then, for any point (x,y, s) ∈ N (γ) such that
r = η r0 and 0 ≤ η ≤ min

{
1, sTx

s0Tx0

}
, we get

(i) η (xTs0 + sTx0) ≤ 3nµ , (70a)
(ii) η ‖S(x∗ − x0)‖2 ≤ η ‖Sx0‖2 ≤ ηsTx0 ≤ 3nµ , (70b)
(iii) η ‖X(s0 + ATy0 − c)‖2 ≤ 2η ‖Xs0‖2 ≤ 2η xTs0 ≤ 6nµ . (70c)

Proof We prove eqns. (70a)–(70c) below.
Proof of eqn. (70a). For completeness, we provide a proof of eqn. (70a) following (Monteiro
and O’Neal, 2003). Since (x∗, s∗,y∗) ∈ S, the following equalities hold:

Ax∗ = b (71a)
ATy∗ + s∗ = c. (71b)

Furthermore, r = ηr0 implies

Ax− b = η(Ax0 − b) (72a)
ATy + s− c = η(ATy0 + s0 − c). (72b)

Combining eqn. (71a) with eqn. (72a) and eqn. (71b) with eqn. (72b), we get

A
(
x− ηx0 − (1− η)x∗

)
= 0 (73a)

AT(y− ηy0 − (1− η)y∗) + (s− ηs0 − (1− η)s∗) = 0. (73b)
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Multiplying eqn. (73b) by
(
x− ηx0 − (1− η)x∗

)T on the left and using eqn. (73a), we get(
x− ηx0 − (1− η)x∗

)T (
s− ηs0 − (1− η)s∗

)
= 0.

Expanding we get

η
(
x0Ts + xTs0

)
= η2x0Ts0 + (1− η)2(x∗)Ts∗ + xTs

+ η(1− η)
(
x0Ts∗ + (x∗)Ts0

)
− (1− η)

(
(x∗)Ts + xTs∗

)
. (74)

Next, we use the given conditions and rewrite eqn. (74) as

η
(
x0Ts + s0Tx

)
≤ η2x0Ts0 + xTs + η(1− η)

(
x0Ts∗ + s0Tx∗

)
≤ η2x0Ts0 + xTs + 2η(1− η)x0Ts0

≤ 2ηx0Ts0 + xTs ≤ 3xTs = 3nµ. (75)

The first inequality in eqn. (75) follows from the following facts. First, (1 − η)((x∗)Ts +
xTs∗) ≥ 0 as (x∗, s∗) ≥ 0 and (x0, s0) ≥ 0. Second, as (x∗, s∗,y∗) ∈ S (which implies
x∗ ◦ s∗ = 0), we have (x∗)Ts∗ = 0. The second inequality in eqn. (75) holds as x∗ ≤ x0,
s∗ ≤ s0, (x∗, s∗) ≥ 0, and (x0, s0) ≥ 0; combining them we get (x0Ts∗ + s0Tx∗) ≤ 2 x0Ts0.
Third inequality in eqn. (75) is true as we have η2x0T +2η(1−η)x0Ts0 = 2ηx0Ts0−η2x0Ts0 ≤
2ηx0Ts0. The final inequality holds as η ≤ xTs

x0T s0 .
Proof of eqn. (70b). The last inequality follows from eqn. (70a). The second to last
inequality is also easy to prove as

‖Sx0‖2 =

√√√√ s∑
i=1

(six0
i )2 ≤

√√√√( s∑
i=1

six0
i

)2

= sTx0 . (76)

To prove the first inequality in eqn. (70b), we use the fact x0 ≥ x∗ as follows:

‖Sx0‖22 − ‖S(x∗ − x0)‖22 =
n∑
i=1

(six0
i )2 −

n∑
i=1

s2
i

(
(x∗i )2 + (x0

i )2 − 2x∗ix0
i

)
=

n∑
i=1

s2
i

(
2x∗ix0

i − (x∗i )2
)
≥ 0 .

Proof of eqn. (70c). To prove this we use a similar approach as in eqn. (70b). The last
inequality directly follows from eqn. (70a); the second to last inequality is also easy to prove
as

‖Xs0‖2 =

√√√√ n∑
i=1

(xis0
i )2 ≤

√√√√( n∑
i=1

xis0
i

)2

= xTs0 . (77)

For the first inequality, we proceed as follows:

‖X(s0 + ATy0 − c)‖22 = ‖Xs0‖22 + ‖X(ATy0 − c)‖22 + 2s0TXTX(ATy0 − c)
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= ‖Xs0‖22 +
n∑
i=1

x2
i (ATy0 − c)2

i + 2
n∑
i=1

x2
i s

0
i (ATy0 − c)i

≤ ‖Xs0‖22 +
n∑
i=1

(xis0
i )2 + 2

n∑
i=1

(xis0
i )2

= ‖Xs0‖22 + ‖Xs0‖22 + 2‖Xs0‖22 = 4‖Xs0‖22. (78)

The inequality in eqn. (78) follows from xi ≥ 0, s0
i ≥ 0 and

∣∣∣(ATy0 − c)i
∣∣∣ ≤ s0

i for all
i = 1 . . . n.

Our next result bounds ‖Q−1/2p‖2 which is instrumental in proving the final bound.

Lemma 17. Let (x0,y0, s0) be the initial point with (x0, s0) > 0 such that x0 ≥ x∗ and
s0 ≥ max{s∗, |c−ATy0|} for some (x∗,y∗, s∗) ∈ S. Furthermore, let (x,y, s) ∈ N (γ) with
r = η r0 for some 0 ≤ η ≤ 1. If the sketching matrix W ∈ Rn×w satisfies the condition in
eqn. (6), then

‖Q−1/2p‖2 ≤
√

2
( 9n√

1− γ + σ

√
n

1− γ +
√
n

)√
µ .

Recall that r = (rp, rd) = (Ax−b,ATy+s−c) and r0 = (r0
p, r0

d) = (Ax0−b,ATy0+s0−c) .

Proof Note that after correcting the approximation error of the iterative solver using v, the
primal and dual residuals r = (rp, rd) corresponding to an iterate (x,y, s) ∈ N (γ) always
lie on the line segment between zero and r(0). In other words, r = ηr(0) always holds for
some η ∈ [0, 1]. This was formally proven in (Monteiro and O’Neal, 2003, Lemma 3.3). In
order to bound ‖Q−1/2p‖2, first we express p as in eqn. (3) and rewrite

Q−1/2p = Q−1/2
(
−rp − σµAS−11n + Ax−AD2rd

)
. (79)

Then, applying the triangle inequality to ‖Q−1/2p‖2 in eqn. (79), we get

‖Q−1/2p‖2 ≤ ∆1 + ∆2 + ∆3 + ∆4 , (80)

where

∆1 = ‖Q−1/2rp‖2 ,
∆2 = σµ‖Q−1/2AD(XS)−1/21n‖2 ,
∆3 = ‖Q−1/2ADD−1x‖2 ,
∆4 = ‖Q−1/2AD2rd‖2 .

To bound ∆1, ∆2, ∆3 and ∆4 we heavily use the condition of eqn. (6).
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Bounding ∆1. Using rp = η r0
p, r0

p = Ax0 − b and b = Ax∗, we rewrite ∆1 as

∆1 = η ‖Q−1/2A(x0 − x∗)‖2
= η ‖Q−1/2ADD−1(x0 − x∗)‖2
≤ η ‖Q−1/2AD‖2‖D−1(x0 − x∗)‖2
≤
√

2η ‖D−1(x0 − x∗)‖2
=
√

2η ‖(XS)−1/2S(x0 − x∗)‖2
≤
√

2η ‖(XS)−1/2‖2 ‖S(x0 − x∗)‖2 , (81)

where the above steps follow from submultiplicativity and eqn. (6). From eqn. (6), note
that we have ‖Q−1/2AD‖2 ≤

√
2 as ζ ≤ 1 . Now, applying eqn. (70b) and ‖(XS)−1/2‖2 =

max1≤i≤n
1√
xisi

, we further have

∆1 ≤
√

2 max
1≤i≤n

1
√
xisi
· 3nµ

≤ 3
√

2n
√

µ

1− γ , (82)

where the last inequality follows from (x,y, s) ∈ N (γ).

Bounding ∆2. Applying submultiplicativity, we get

∆2 = σµ ‖Q−1/2 AD (XS)−1/21n‖2
≤ σµ ‖Q−1/2 AD‖2‖(XS)−1/21n‖2
≤
√

2σµ ‖(XS)−1/21n‖2

=
√

2σµ

√√√√ n∑
i=1

1
xisi

≤
√

2σµ

√√√√ n∑
i=1

1
(1− γ)µ

=
√

2σ
√

nµ

(1− γ) , (83)

where the second to last inequality follows from eqn. (6) and the last inequality holds as
(x,y, s) ∈ N (γ).

Bounding ∆3. Using D = S−1/2X1/2 and x = X 1n we get

∆3 = ‖Q−1/2 AD (S1/2X−1/2) X 1n‖2
= ‖Q−1/2 AD (SX)1/2 1n‖2
≤ ‖Q−1/2 AD‖2‖(SX)1/2 1n‖2

≤
√

2

√√√√ n∑
i=1

xisi =
√

2nµ , (84)

where the inequalities follow from submultiplicativity and eqn. (6).

38



Faster Randomized IPMs for Tall/Wide Linear Programs

Bounding ∆4. Using rd = η r0
d, we have

∆4 = η‖Q−1/2 A D2r0
d‖2

≤ η‖Q−1/2 AD‖2‖(XS)−1/2Xr0
d‖2

≤
√

2η ‖(XS)−1/2X(ATy0 + s0 − c)‖2
≤
√

2η ‖(XS)−1/2‖2 ‖X(ATy0 + s0 − c)‖2 ,

where the above inequalities follow from submultiplicativity and eqn. (6). Now, applying
eqn. (70c) and ‖(XS)−1/2‖2 ≤ 1√

(1−γ)µ
, we further have

∆4 ≤ 6
√

2n
√

µ

1− γ . (85)

Final bound. Combining eqns. (80), (82), ,(83), (84) and (85), we get

‖Q−1/2p‖2 ≤
√

2
( 9n√

1− γ + σ

√
n

1− γ +
√
n

)√
µ . (86)

This concludes the proof of Lemma 17.

A.2 Determining step-size, bounding the number of iterations, and proof of
Theorem 15

Assume that the triplet (∆̂x, ∆̂y, ∆̂s) satisfies eqns. (68a), (68b), and (68c). We rewrite
this system in the following alternative form:

A∆̂x =− rp, (87a)
AT∆̂y + ∆̂s =− rd, (87b)
X∆̂s + S∆̂x =−XS 1n + σµ1n − v. (87c)

Indeed, we now show how to derive eqns. (68b), (68a) and (68c) from eqn. (87). Pre-
multiplying both sides of eqn. (87c) by AS−1 and noting that D2 = XS−1, we get

AD2∆̂s + A∆̂x = −AX1n + σµAS−11n −AS−1v
⇒ AD2∆̂s = −Ax + rp + σµAS−11n −AS−1v. (88)

Eqn. (88) holds as AX1n = Ax and, from eqn. (87a), A∆̂x = −rp. Next, pre-multiplying
eqn. (87b) by AD2, we get

AD2AT∆̂y + AD2∆̂s = −AD2rd
⇒ AD2AT∆̂y = −rp − σµAS−11n + Ax−AD2rd + AS−1v = p + AS−1v. (89)

The first equality in eqn. (89) follows from eqn. (88) and the definition of p. This establishes
eqn. (68a). Eqn. (68c) directly follows from eqn. (87b). Finally, we get eqn. (68b) by pre-
multiplying eqn. (87c) by S−1.
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Next, we define each new point traversed by the algorithm as (x(α),y(α), s(α)), where

(x(α),y(α), s(α)) = (x,y, s) + α(∆̂x, ∆̂y, ∆̂s), (90)
µ(α) = x(α)Ts(α)/n, (91)
r(α) = r (x(α), s(α),y(α)) . (92)

The goal in this section is to bound the number of iterations required by Algorithm 3.
Towards that end, we bound the magnitude of the step size α. First, we provide an upper
bound on α, which allows us to show that each new point (x(α), s(α),y(α)) traversed by
the algorithm stays within the neighborhood N (γ). Second, we provide a lower bound on
α, which allows us to bound the number of iterations required. We use multiple lemmas
from (Monteiro and O’Neal, 2003), which we reproduce here, without their proofs.

First, we provide an upper bound on α, ensuring that each new point (x(α),y(α), s(α))
traversed by the algorithm stays within the neighborhood N (γ).

Lemma 18 (Lemma 3.5 of (Monteiro and O’Neal, 2003)). Assume (∆̂x, ∆̂y, ∆̂s) satisfies
eqns. (87) for some σ > 0, (x,y, s) ∈ N (γ) (for γ ∈ (0, 1)), and ‖v‖2 ≤ γσµ

4 . Then,
(x(α),y(α), s(α)) ∈ N (γ) for every scalar α such that

0 ≤ α ≤ min
{

1, γσµ

4‖∆̂x ◦ ∆̂s‖∞

}
. (93)

We now provide a lower bound on the values of ᾱ and the corresponding µ(ᾱ); see Algo-
rithm 3.

Lemma 19 (Lemma 3.6 of (Monteiro and O’Neal, 2003)). In each iteration of Algorithm 3,
if ‖v‖2 ≤ γσµ

4 , then the step size ᾱ satisfies

ᾱ ≥ min
{

1,
min{γσ, (1− 5

4σ)}µ
4‖∆̂x ◦ ∆̂s‖∞

}
(94)

and

µ(ᾱ) =
[
1− ᾱ

2 (1− 5
4σ)

]
µ. (95)

At this point, we have provided a lower bound (eqn. (94)) for the allowed values of the step
size ᾱ. Next, we show that this lower bound is bounded away from zero. From eqn. (94)
this is equivalent to showing that ‖∆̂x ◦ ∆̂s‖∞ is bounded.

Lemma 20 (Lemma 3.7 of (Monteiro and O’Neal, 2003) (slightly modified)). Let (x0,y0, s0)
be the initial point with (x0, s0) > 0 and (x0, s0) ≥ (x∗, s∗) for some (x∗,y∗, s∗) ∈ S. Let
(x,y, s) ∈ N (γ) be such that r = ηr0 for some η ∈ [0, 1] and ‖v‖2 ≤ γσµ

4 . Then, the search
direction (∆̂x, ∆̂y, ∆̂s) produced by Algorithm 3 at each iteration satisfies

max{‖D−1∆̂x‖2, ‖D∆̂s‖2} ≤
(

1 + σ2

1− γ − 2σ
)1/2√

nµ+ 6n√
(1− γ)

√
µ+ γσ

4
√

1− γ
√
µ.

(96)
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We should note here that the above lemma is slightly different from (Monteiro and O’Neal,
2003, Lemma 3.7). Indeed, (Monteiro and O’Neal, 2003, Lemma 3.7) actually proves the
following bound:

max{‖D−1∆̂x‖2, ‖D∆̂s‖2} ≤
(

1 + σ2

1− γ − 2σ
)1/2√

nµ+ 6n√
(1− γ)

√
µ+ γσ

4
√
n

√
µ .

(97)

Notice that there is slight difference in the last term in the right-hand side, which does
not asymptotically change the bound. The underlying reason for this difference is the fact
that (Monteiro and O’Neal, 2003) constructed the vector v differently. In our case, we need
to bound ‖(XS)−1/2v‖2, which we do as follows:

‖(XS)−1/2v‖2 ≤ ‖(XS)−1/2‖2 ‖v‖2 ≤
1

mini
√
xisi

γσµ

4 , (98)

where in the above expression we use the fact that ‖(XS)−1/2‖2 = 1
mini

√
xisi

. Now as
(x,y, s) ∈ N (γ), we further have xisi ≥ (1 − γ)µ for all i = 1 . . . n. Combining this with
eqn. (98), we get

‖(XS)−1/2v‖2 ≤
γσµ

4
√

(1− γ)µ
= γσ

4
√

1− γ
√
µ. (99)

On the other hand, (Monteiro and O’Neal, 2003) had a different construction of v for which
‖(XS)−1/2v‖2 = ‖f̃ (t)‖2 holds. Therefore they had the following bound:

‖(XS)−1/2v‖2 = ‖f̃ (t)‖2 ≤
γσ

4
√
n

√
µ.

The next lemma bounds the number of iterations that Algorithm 3 needs when started with
an infeasible point that is sufficiently positive.

Lemma 21 (Theorem 2.6 of (Monteiro and O’Neal, 2003)). Assume that the constants γ
and σ are such that max{γ−1, (1 − γ)−1, σ−1, (1 − 5

4σ)−1} = O(1). Let the initial point
(x0, s0,y0) satisfy (x0, s0) ≥ (x∗, s∗) for some (x∗, s∗,y∗) ∈ S and ‖v‖2 ≤ γσµ

4 . Algorithm
3 generates an iterate (xk, sk,yk) satisfying µk ≤ εµ0 and ‖rk‖2 ≤ ε‖r0‖2 after O(n2 log 1/ε)
iterations.

Finally, Theorem 15 follows from Lemmas 8 and 21.

Appendix B. Additional notes on experiments

B.1 Support Vector Machines (SVMs)

The classical `1-SVM problem is as follows. We consider the task of fitting an SVM to
data pairs S = {(xi, yi)}mi=1, where xi ∈ Rn and yi ∈ {+1,−1}. Here, m is the number of
training points, and n is the feature dimension. The SVM problem with an `1 regularizer
has the following form:

minimize
w

‖w‖1 (100)
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subject to yi(wTxi + b′) ≥ 1, i = 1 . . .m.

This problem can be written as an LP by introducing the variables w+ and w−, where
w = w+ − w−. The objective becomes

∑n
j=1w

+
j + w−j , and we constrain w+

i ≥ 0 and
w−i ≥ 0. Note that the size of the constraint matrix in the LP becomes m× (2n+ 1).

B.2 Random data

We generate random synthetic instances of linear programs as follows. To generate A ∈
Rm×n, we set aij ∼i.i.d. U(0, 1) with probability p and aij = 0 otherwise. We then add
min{m,n} i.i.d. draws from U(0, 1) to the main diagonal, to ensure each row of A has at
least one nonzero entry. We set b = Ax + 0.1z, where x and z are random vectors drawn
from N(0, 1). Finally, we set c ∼ N(0, 1).

B.3 Real-world data

We used a gene expression cancer RNA-Sequencing dataset, taken from the UCI Machine
Learning repository. It is part of the RNA-Seq (HiSeq) PANCAN data set (Weinstein et al.,
2013) and is a random extraction of gene expressions from patients who have different
types of tumors: BRCA, KIRC, COAD, LUAD, and PRAD. We considered the binary
classification task of identifying BRCA versus other types.

We also used the DrivFace dataset taken from the UCI Machine Learning repository.
In the DrivFace dataset, each sample corresponds to an image of a human subject, taken
while driving in real scenarios. Each image is labeled as corresponding to one of three
possible gaze directions: left, straight, or right. We considered the binary classification task
of identifying two different gaze directions: straight, or to either side (left or right).

B.4 Feasible starting point

We construct a linear program to find a primal feasible starting point (x0, s0,y0) such that
Ax0 = b. Without loss of generality, assume that all entries of b are positive and let
z ∈ Rm. Then, (x, z) is an optimal solution to the following linear program when z = 0
and Ax = b.

min z , subject to Ax + Iz = b ,x, z ≥ 0 ,
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