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Abstract

Resource-constrained perception systems such as
edge computing and vision-for-robotics require
vision models to be both accurate and lightweight
in computation and memory usage. While knowl-
edge distillation is a proven strategy to enhance
the performance of lightweight classification mod-
els, its application to structured outputs like ob-
ject detection and instance segmentation remains
a complicated task, due to the variability in out-
puts and complex internal network modules in-
volved in the distillation process. In this paper,
we propose a simple yet surprisingly effective se-
quential approach to knowledge distillation that
progressively transfers the knowledge of a set of
teacher detectors to a given lightweight student.
To distill knowledge from a highly accurate but
complex teacher model, we construct a sequence
of teachers to help the student gradually adapt.
Our progressive strategy can be easily combined
with existing detection distillation mechanisms
to consistently maximize student performance
in various settings. To the best of our knowl-
edge, we are the first to successfully distill knowl-
edge from Transformer-based teacher detectors
to convolution-based students, and unprecedent-
edly boost the performance of ResNet-50 based
RetinaNet from 36.5% to 42.0% AP and Mask
R-CNN from 38.2% to 42.5% AP on the MS
COCO benchmark. Code available at https:
//github.com/Shengcao-Cao/MTPD.

1. Introduction

Deploying deep neural models in safety-critical real-time
applications is challenging, especially on devices with lim-
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Figure 1. Our proposed Multi-Teacher Progressive Distillation
(MTPD) leads to state-of-the-art student detection perfor-
mance. When switching the teacher model from a convolution-
based detector to a Transformer-based one with stronger detection
performance, the student does not become more accurate, due to
the architectural difference between the teacher-student pair. Pro-
gressively distilling knowledge from multiple teacher detectors can
mitigate the capacity gap and result in the best student detection
performance.

ited resources such as self-driving cars or virtual/augmented
reality headsets. This is mainly due to the huge computa-
tional complexity and massive memory/storage demands.
One effective strategy is to train lightweight architectures
that have already been carefully engineered for efficient
memory access, via knowledge distillation (Bucilua et al.,
2006; Hinton et al., 2014) which is able to compress learned
information from a large model into a small one.

Implementing knowledge distillation in the realm of object
detection, despite existing efforts, presents its unique chal-
lenges stemming from the complex task outputs (Chen et al.,
2017): Detectors operate with multi-task heads (for classifi-
cation and box/mask regression) producing variable-length
outputs, which differentiates detection from the single-
output classification task. Therefore, distillation methods
developed for classification are often not directly applica-
ble to detection, and dedicated methods (Chen et al., 2017)
need to be developed for detection in the literature (detailed
discussion in Appendix E, Table 16).

Recent work (Zhang & Ma, 2021; Shu et al., 2021; Yang
et al., 2022b) on detector distillation mainly considers de-
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signing advanced distillation loss functions for transferring
features from teachers to students. However, there are two
unsolved challenges: 1) The capacity gap (Cho & Hariharan,
2019; Mirzadeh et al., 2020) between models can result in
a sub-optimal distilled student even if the strongest teacher
has been employed, which is undesired when optimizing
the accuracy-efficiency trade-off of the student. Moreover,
when distilling knowledge from Transformer-based teach-
ers (Dosovitskiy et al., 2020; Liu et al., 2021) to classical
convolution-based students, this architectural difference can
enlarge the teacher-student gap (Figure 1). 2) Current meth-
ods assume that one target teacher has been selected. How-
ever, this meta-level optimization of teacher selection is
neglected in the existing literature of detector distillation.
In fact, finding a pool of strong teacher candidates is easy,
but trial-and-error may be necessary before determining the
most compatible teacher for a specific student.

To address these challenges, we propose a framework that
learns a lightweight detector via Multi-Teacher Progres-
sive Distillation (MTPD): 1) We find sequential distilla-
tion from multiple teachers arranged into a curriculum
significantly improves knowledge distillation and bridges
the teacher-student capacity gap caused by different archi-
tectures. As shown in Figure 1, even with huge architectural
difference, MTPD can effectively transfer knowledge from
Transformer-based teachers to convolution-based students,
while previous methods cannot. 2) For the teacher selection
problem, we design a heuristic algorithm for a given student
and a pool of teacher candidates, to automatically determine
the order of teachers to use in the distillation procedure.
This algorithm is based on the analysis of the representation
similarity between models, which does not require prior
knowledge of the specific distillation mechanism.

To summarize, our main contributions are:

* We propose a framework for learning lightweight de-
tectors through Multi-Teacher Progressive Distillation
(MTPD), which is simple yet effective and general. We
develop a principled method to automatically design a
sequence of teachers appropriate for a given student and
progressively distill it.

* MTPD is a meta-level strategy that can be easily com-
bined with previous efforts in detection distillation. We
perform comprehensive empirical evaluation on the chal-
lenging MS COCO dataset and observe consistent gains,
regardless of the distillation loss complexity (from a sim-
ple feature-matching loss in Table 3 to the most advanced,
sophisticated losses in Figure 4).

* MTPD learns lightweight RetinaNet and Mask R-CNN
with state-of-the-art accuracy, even in heterogeneous back-
bone and input resolution settings. Perhaps most impres-
sively, for the first time, we investigate heterogeneous
distillation from Transformer-based teacher detectors to a
convolution-based student, and find progressive distilla-

tion is the key to bridge their gap (Figure 1, Table 5).

* We empirically show that the improvement comes from
better generalization rather than better optimization. The
knowledge transferred from multiple teachers leads the
student to a more flat minimum, and thus help the student
generalize better (Figure 5).

2. Related Work

Knowledge distillation for classification: The idea of
training a shallow student network with supervision from
a deep teacher was originally proposed by Bucilua et al.
(2006), and later formally popularized by Hinton et al.
(2014). Different knowledge can be used, such as response-
based knowledge (Hinton et al., 2014), and feature-based
knowledge (Romero et al., 2015; Ahn et al., 2019). Sev-
eral multi-teacher knowledge distillation methods have been
proposed (Vongkulbhisal et al., 2019; Sau & Balasubrama-
nian, 2016), which usually use the average of logits and
feature representations as the knowledge (You et al., 2017;
Fukuda et al., 2017). Mirzadeh et al. (2020) show that an
intermediate teacher assistant, decided by architectural sim-
ilarities, can bridge the gap between the student and the
teacher. We find: 1) Extending Mirzadeh et al. (2020) to
detection where teacher architectures are diverse is challeng-
ing. 2) Classification-oriented distillation (Romero et al.,
2015; Ahn et al., 2019) is not directly applicable to de-
tection. 3) Using a sequence of teachers, instead of their
ensemble (You et al., 2017; Fukuda et al., 2017), is more
effective. A more detailed discussion that compares our
approach with prior work on progressive distillation, multi-
teacher distillation, online distillation, deep mutual learning,
and other distillation mechanisms is in Appendix E.

Object detection and instance segmentation: A variety
of convolutional neural network (CNN) based object detec-
tion frameworks have been proposed, and can be generally
divided into single-stage and two-stage detectors. Typical
single-stage methods include YOLO (Redmon et al., 2016;
Redmon & Farhadi, 2018) and RetinaNet (Lin et al., 2017b),
and two-stage methods include Faster R-CNN (Ren et al.,
2014) and Mask R-CNN (He et al., 2017). Recently, several
multi-stage models are proposed, such as HTC (Chen et al.,
2019a) and DetectoRS (Qiao et al., 2021). These detection
frameworks achieve better detection accuracy with better
feature extraction backbones and more complicated heads,
which are more computationally expensive.

Knowledge distillation for detection and segmentation:
Dedicated distillation methods are proposed to train efficient
object detectors for this task different from classification.
Chen et al. (2017) first use knowledge distillation to enforce
the student detector to mimic the teacher’s predictions. More
recent efforts usually focus on learning from the teacher’s
features, rather than final predictions. Various distillation
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mechanisms have been proposed to leverage the impact of
foreground and background objects (Wang et al., 2019; Guo
et al., 2021a), relation between individual objects (Zhang &
Ma, 2021; Dai et al., 2021), or relation between local and
global information (Yang et al., 2022a;b). Different from the
methods that distill from a single teacher, we study multi-
teacher distillation where an ordered sequence of teachers
is required, and we find that a simple feature-matching loss
is adequate to significantly boost student accuracy.

3. Approach

In Multi-Teacher Progressive Distillation (MTPD), we
propose to progressively distill a student model S with a
pool of N teachers P = {T;} ;. Typical object detectors
consist of four modules: (1) backbone, which extracts visual
features, such as ResNet (He et al., 2016) and ResNeXt (Xie
et al., 2017); (2) neck, which extracts multi-level feature
maps from various stages of the backbone, such as FPN (Lin
et al., 2017a) and Bi-FPN (Tan et al., 2020); (3) optional
region proposal network (RPN) used in two-stage detectors;
and (4) head, which generates final predictions for object
detection and segmentation. We denote the output feature
maps of the neck as FNet where Net can be either the student
model S or one of the teachers T; € P. With neck modules
like FPN, the feature maps can be multi-level.

MTPD is a general meta-strategy for detector distillation
that progressively learns a student using a sequence of teach-
ers. Here, to examine this meta-strategy without involving
sophisticated distillation mechanisms, we introduce a sim-
ple feature-matching distillation for a single teacher 7; in
Section 3.1. Then we discuss progressive distillation with
multiple teachers from P in Section 3.2.

3.1. Preliminary: Single Teacher Distillation via Simple
Feature Matching

In order to learn an efficient student detector S through
distillation, we encourage the feature representation of a
student to be similar to that of the teacher (Chen et al., 2017,
Yang et al., 2021). To this end, we minimize the discrepancy
between the feature representations of the teacher and the
student. Without bells and whistles, we simply minimize
the L2 distance between F'7¢ and F'°:

r(F9)], 0

where r(-) is a function used to match the feature map
dimensions of the teacher and the student.

Laisan = || F"* —

We define 7(-) as follows:

* (Homogeneous case) If the numbers of channels and the
spatial resolutions are both the same between 7; and S,
7(+) is an identity function.

* (Heterogeneous case) If the numbers of channels are dif-

ferent but the spatial resolutions are the same, we use 1 x 1
convolutional filters as (). If the spatial resolutions are
different but the numbers of channels are the same, we
use an upsampling layer as 7(-). If both the numbers of
channels and spatial resolutions are different, we compose
the convolutional and upsampling layers as 7(-).

Note that the mapping 7(-) is only required at training time
and thus does not add any overhead to the inference. Over-
all, our loss function can be written as:

L = ALgisin + Letect, 2

where )\ is a balancing hyper-parameter and Lgeqe, is the de-
tection loss based on the ground truth labels. Compared with
state-of-the-art detection distillation approaches (Zhang &
Ma, 2021; Shu et al., 2021; Yang et al., 2022a;b), which
introduce more complex designs of the distillation loss, this
feature-matching distillation is simpler and does not require
running the heads of the teacher model. Our distillation loss
is illustrated in Figure 2-Left.

3.2. Progressive Distillation with Multiple Teachers

The overall aim of knowledge distillation is to make a stu-
dent mimic a teacher’s output, so that the student is able
to obtain similar performance to teacher’s. However, the
capacity of the student model is limited, making it hard for
the student to learn from a highly complex teacher (Cho &
Hariharan, 2019). To address this issue, multiple teacher
networks are used to provide more supervision to a stu-
dent (Sau & Balasubramanian, 2016; You et al., 2017). Un-
like previous methods which distill knowledge from the
ensemble of logits or features simultaneously, we propose
to distill feature-based knowledge from multiple teachers
sequentially. Our key insight is that instead of mimicking
the ensemble of all feature information together, the stu-
dent can be distilled more effectively by the knowledge
provided by one teacher each time. This progressive knowl-
edge distillation approach can be considered as designing a
curriculum (Bengio et al., 2009) offered by a sequence of
teachers, as illustrated in Figure 2-Right.

The crucial question is: What is the optimal order O of
the teachers when distilling the student? A brute-force
approach might search over all orders and pick the best
(that produces a distilled student with the highest validation
accuracy). However, the space of permutation orders grows
exponentially with the number of teachers, making this
impractical to scale. Therefore, we propose a principled and
efficient approach based on a correlation analysis of each
model’s learned feature representation.

First, we quantify the dissimilarity between each pair of
models’ representations, as a proxy for their capacity gap.
Representation (dis)similarity (Raghu et al., 2017; Wang
et al., 2018; Kornblith et al., 2019) has been studied to under-
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Figure 2. Multi-Teacher Progressive Distillation (MTPD) for object detectors. Left: For each teacher-student pair, the training target
consists of two parts: Lgisin minimizes the discrepancy between the neck feature maps of the student and the current teacher, and Lgetect
is the original detection loss based on the ground truth. Right: We use a sequence of teacher models to distill the lightweight student
detector. The sequence of teachers forms a curriculum. Using a suitable sequence of teachers can significantly boost the student model’s
performance. The representative performance curve illustrates that MTPD improves the COCO validation AP of ResNet-50 backboned
student first from 36.5% to 37.9% using HTC (Teacher 1), and then from 37.9% to 39.9% using DetectoRS (Teacher 2).

stand the learning capacity of neural models. In our setting,
we find a linear regression model is adequate for measuring
the representation dissimilarity. Given two trained detectors
A and B, we freeze their parameters, and thus fixing the fea-
ture representations. Then we learn a linear mapping r(+),
implemented by a 1 x 1 convolutional layer at each feature
level, as specified in the heterogeneous case in Section 3.1.
r(+) is trained to minimize Lgin, SO it can transform A’s
features to approximate B’s features. After training r(-), we
evaluate it by Lgisin on the validation set, and denote the val-
idation loss as the adaptation cost C(A, B). This metric can
be a proxy of the capacity gap between two models: When
C(A, B) is zero, a linear mapping can transform A’s features
to B’s, and there is no additional knowledge from B. When
C(A, B) is large, it is more difficult to adapt A’s representa-
tion to B’s. Note that the adaptation cost is non-symmetric —
it is relatively easier to adapt a high-capacity model’s repre-
sentations to a low-capacity model’s representations, than
the other way around.

We design a heuristic algorithm, Backward Greedy Selec-
tion (BGS), to acquire a near-optimal distillation order O
automatically (see pseudo-code in Algorithm 1 and illustra-
tion in Figure 3). Suppose the maximum number of teachers
to be selected is limited by k£ (which can be arbitrarily de-
cided according to desired training time), and we aim to find
a teacher index sequence « no longer than k. We construct
the teacher order backwards: The best performing teacher
is set as the final target Ty, ; before the final teacher, we
use another teacher, which has the smallest adaptation cost
C(-,T,,) to that final teacher, as the penultimate teacher
T.,_,- We repeat this procedure to find preceding teachers,
until: 1) when trying to select T, ;, we find the transfer costs
from remaining teachers to the next teacher C(-, Ty, ) are
all larger than the transfer cost from the trained student
to the next teacher C(S,T,,,,); or 2) we reach the given
maximum step limit k. Intuitively, the resulting sequence
of teachers bridges the gap between the student model and
the teacher, with an increasingly difficult curriculum. Sec-

tion 4.1 and Appendix A demonstrate the efficacy of BGS.

Our teacher order design approach is efficient and scalable.
In fact, the main computation overhead is the optimization of
a set of tiny linear mappings (R2%% +— R256 for FPN-based
detectors). In our setting, this process requires about 3 GPU
hours per student model, a fraction of the hundreds of GPU
hours needed for distillation. If more teacher candidates
are added, we can first generate feature maps only once for
each teacher. Then we optimize pair-wise linear mappings
using only 10%-20% GPU hours, ensuring a near-linear time
consumption increase relative to the number of teachers.

Since MTPD is a meta-level strategy, it can be integrated
with previous designs of distillation mechanisms, without
much efforts. Starting with a student detector and a pool of
candidate teachers, we can first select a subset of teachers
and design their distillation order. In place of the simple
feature matching loss, we then apply a more advanced dis-
tillation mechanism with each teacher sequentially to train
the student detector.

4. Experiments

We study the efficacy and generalizability of our proposed
MTPD from multiple perspectives. First of all in Section 4.1,
we use a controlled experiment to demonstrate that BGS
consistently produces teacher orders that are near-optimal
compared with all possibilities. Then in Sections 4.2 and 4.3,
we apply MTPD along with the simple feature-matching
loss (Section 3.1) to show that this strategy alone brings
significant gains to knowledge distillation. Since our contri-
bution of progressive distillation is orthogonal to previous
efforts in designing distillation mechanisms, in Section 4.4
we then combine MTPD with state-of-the-art distillation
mechanisms to maximize the student performance, and we
show that MTPD is the key to the success of distillation from
Transformer-based teachers to convolution-based students.
Finally in Section 4.5, we understand the performance gain
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Table 1. Configuration and COCO performance of the teacher
and student detectors. We investigate a variety of models with
heterogeneous input resolutions, backbones, necks, and head struc-
tures. ‘1x’ input resolution refers to the standard 1333 x 800
resolution, and ‘0.25%” means 333 x 200 resolution. ‘R-’ back-
bones are ResNets with different number of layers.

Input . AP Runtime

Model R Backbone Neck Head Box  Mask (ms)
Teachers

I 1x R50 FPN  Mask R-CNN 382 347 51
i 1x R50 FPN FCOS 38.7 - 36
1 1x R50 FPN HTC 423 374 181
v 1x R50+SAC RFP  HTC (DetectoRS) | 49.1 42.6 223
\Y 1x R50+SAC RFP  Mask R-CNN 45.1  40.1 142
Students

I 1x R50 FPN  RetinaNet 36.5 - 43
11 1x R50 FPN  Mask R-CNN 382 347 51
11 1x R18 FPN  Mask R-CNN 333 305 29
v 0.25x  R50 FPN  Mask R-CNN 258  23.0 17

5': RetinaNet

Ty: Mask R-CNN
Ty: FCOS

Ty HTC

T7y: DetectoRS

118110070
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Figure 3. Adaptation costs among models. The number on each
directed edge is the adaptation cost metric described in Section 3.2.
Some edges are not shown for visual clarity. The red path is
suggested by BGS when k = 3 teachers are selected: 1) We use
the best performing Teacher IV as the final teacher in the sequence;
2) use the teacher closest to Teacher IV, which is Teacher III, as
the second teacher; and 3) use the teacher closest to Teacher III,
which is Teacher I, as the first teacher.

of MTPD by analyzing the training loss dynamics.

Student and teacher models: To investigate the impact of
different teacher models and their combinations, as shown
in Table 1, we construct a variety of teacher-student pairs
from a set of widely-used object detection and instance
segmentation networks, including RetinaNet (Lin et al.,
2017b), Mask R-CNN (He et al., 2017), FCOS (Tian et al.,
2019), HTC (Chen et al., 2019a), and DetectoRS (Qiao et al.,
2021). They have a wide range of runtime and detection
performance. We select ResNet-50 backboned RetinaNet
and Mask R-CNN as the student models (Students I & II),
due to their low latency, simple structure, and wide ap-
plication, for single-stage and two-stage object detection
respectively. More advanced models such as DetectoRS
have better detection performance, but require much more
training/inference time, so we use them as teachers. We also
consider lightweight variants of Mask R-CNN as students,
which have a smaller backbone (Student III) or a reduced
input resolution (Student IV).

Table 2. Comparison of the teacher order suggested by BGS
with all other orders under limited training budgets (Li et al.,
2020b). k denotes the maximum number of used teachers. Top:
We show some statistics of all possible student AP performance
and the ranking of the student using our distillation order. Bottom:
We visualize the comparative advantage of our teacher orders (red
dots) over all other orders (black dots). Some black scatter points
overlap due to the same student AP. BGS consistently produces
highly competitive distillation orders of teachers.

Suggested Student | All student Ranking in
teacher order AP AP range all orders
1 v 36.7 [36.2, 36.8] 2/4
2 -1V 37.6 [36.2, 37.6] 1716
3| I=II=IV 37.9 [36.2, 38.0] 2/40
4 | I=II=IV 37.9 [36.2,38.2] 7/64
38.4
38.0 1 -@- Our teacher orders .
' «  All teacher orders _,——'é‘ """" ‘
% 37.6 o- " :
g 3721 e
> 4
2 36.8 1 e
36.4 1 .
36.0 T T T T T
0 1 2 3 4
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Datasets and evaluation metrics: We mainly evaluate
on the challenging object detection dataset MS COCO
2017 (Lin et al., 2014), which contains bounding boxes
and segmentation masks for 80 common object categories.
We train our models on the split of train2017 (118k
images) and report results on val2017 (5k images). We
report the standard COCO-style Average Precision (AP)
metric and end-to-end latency (from images to predictions)
as the runtime. We also evaluate on another object detec-
tion dataset Argoverse-HD (Chang et al., 2019), and a more
challenging evaluation protocol in streaming perception (Li
et al., 2020a). These results are in Appendix D.

Baselines: Our main contribution is orthogonal to previous
methods: We leverage a sequence of teachers to distill the
student, instead of designing a sophisticated distillation loss
to better transfer knowledge from one single teacher. Since
we are studying a new setting where multiple teachers are
available, which is missing in previous literature, we mainly
focus on the absolute improvements — the performance of
our distilled student models compared with the original
student models and with the performance upper-bound of
the teacher models.

4.1. Searching for Near-Optimal Teacher Orders

As we have discussed in Section 3.2, finding the optimal
order of teachers for MTPD takes factorial time complex-
ity. To acquire a near-optimal teacher order, we propose
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Table 3. Homogeneous distillation of COCO detectors, where students with ResNet-50 backbones are distilled from teachers with
ResNet-50 backbones. We report the detection (‘Box’) and segmentation (‘Mask’) APs, and we compare our student produced by MTPD
with the off-the-shelf (‘OTS’) student and the student trained longer. MTPD significantly improves the detection AP over the ‘OTS’
student by 3.4% for RetinaNet and 3.2% for Mask R-CNN, and outperforms the baselines.

Box Mask

ID | Model Method AP APy, AP,; APs APy AP, | AP APs, AP;s APs APy AP
1 OTS 36.5 554 39.1 204 403 48.1 - - - - - -
2 | RetinaNet Longer 3x training schedule 39.5 588 422 238 432 503 - - - - - -
3 | (StudentI) Directly distilled by Teacher IV | 39.5 58.6 419 21.0 428 540 - - - - - -
4 MTPD: Teachers III—1V 399 592 427 217 433 541 - - - - - -

5 OTS 382 588 414 219 409 495|347 557 372 183 374 472
6 Mask R-CNN Longer 3x training schedule 409 613 448 244 446 523|371 583 399 184 398 519
7 (Student 11) Directly distilled by Teacher IV | 41.0 61.6 450 235 445 540 |37.0 585 398 175 399 513
8 Distilled by ensemble V+IV 39.8 603 434 221 433 529|359 571 381 183 39.0 498
9 MTPD: Teachers V—IV 414 619 451 233 450 554|373 588 398 194 404 521

the heuristic algorithm Backward Greedy Selection (BGS,
pseudo-code shown in Algorithm 1). In this section, we
validate that BGS is near-optimal. To achieve this compre-
hensive comparison, we distill Student I with all orders of
teachers from the pool of Teachers I-IV. We use a reduced
training budget: For each teacher, we only train the student
for 3 epochs on MS COCO. We use the linear learning rate
schedule, which has been shown comparably effective in a
limited budget setting by Li et al. (2020b).

We first measure the adaptation costs among the student
and teacher models. A visualization of the cost graph is
shown in Figure 3. Following BGS, we can construct a
sequence of teachers. We compare the teacher orders given
by BGS against all other orders, via the distilled students’
performance. As shown in Table 2, teacher orders suggested
by BGS are consistently near-optimal in this setting. In
the following sections, we use the order provided by BGS,
without brute-force iterating over all possible orders. One
might argue that the greedy path selection of BGS, as shown
in Figure 3, is inferior to a global optimization algorithm.
However, we find that BGS consistently outperforms other
heuristics including global optimization algorithms (see de-
tails in Appendix A). In fact, the later teachers impact the
student performance more profoundly, so we need to greed-
ily select teachers from the sequence tail.

4.2. Distillation with Homogeneous Teachers

We start by distilling RetinaNet and Mask R-CNN with a
ResNet-50 backbone (Students I & II). Here we consider ho-
mogeneous teachers where the numbers of channels and the
spatial resolutions of feature maps are consistent between
the student and teacher. For the RetinaNet student, we still
consider the pool of Teachers I-IV, the same as Section 4.1.
For the Mask R-CNN student, we should no longer use
Teacher I (the student itself) or Teacher II (the single-stage
teacher does not outperform the student by a large margin).
To compensate for that, we include Teacher V, which can

be considered as a hybrid model of the DetectoRS back-
bone/neck and Mask R-CNN head. Thus, the teacher pool
for Mask R-CNN includes Teachers III-V. To control the
total training time, we limit the number of teachers to be
2. We initialize from an off-the-shelf (‘OTS’) student, and
sequentially distill it using 2 teachers, each with a 1x train-
ing schedule. In total, the student is distilled for 24 epochs,
and the training time is equivalent to a 2 X training schedule.
In addition to the OTS student, we also compare with three
other baselines: 1) the student trained with a longer 3 x
training schedule, which is commonly supported in object
detection libraries and stronger than 1x,2X training; 2) the
student directly distilled by the final target teacher, using
a 2x training schedule; and 3) the student distilled by the
ensemble of teachers’ feature maps. Detector details are
listed in Table 1.

Following Section 4.1, we use BGS to determine the se-
quence of teachers to use for each student. For the Reti-
naNet student, BGS suggests teacher sequence III—IV. For
the Mask R-CNN student, BGS suggests teacher sequence
V—IV. Table 3 shows the distillation results on COCO.
Additional results, analysis, and ablation studies of Mask
R-CNN distillation are in Appendix B.

Overall performance: Our distilled student models (rows
4&9) significantly improves over the ‘OTS’ students (rows
1&5). The box AP of RetinaNet is improved from 36.5% to
39.9% (+3.4%). The box AP of Mask R-CNN is improved
from 38.2% to 41.4% (+3.2%) and the mask AP of Mask
R-CNN is improved from 34.7% to 37.3% (+2.6%). After
progressive distillation, our resulting Mask R-CNN detector
has comparable performance with HTC teacher, but much
less runtime (51ms vs. 181ms).

Comparison with baselines: First, the performance gain
is not merely from a longer training schedule. Our distilled
student models (rows 4&9) consistently outperform original
students trained with a 3x schedule (rows 2&6). Second,
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Table 4. Heterogeneous distillation of COCO detectors, where
students with smaller backbones (ResNet-18 vs. ResNet-50) or
input resolutions (333 x 200 vs. 1333 x 800) are distilled with
heterogeneous teachers, requiring an additional feature adaptor
(Section 3.1). We report the detection (‘Box’) and segmentation
(‘Mask’) APs, and compare our distilled student with its teachers
(see Table 1), the off-the-shelf (‘OTS’) student, and the student
distilled from an ensemble of the teachers. MTPD significantly
improves the ‘OTS’ students by over 3% AP.

. AP
ID | Model ‘ Backbone Resolution Box  Mask
1 | Student III, OTS RI18 1x 333 305
2 | Student III, Teacher Ensemble | R18 1x 36.0 32.1
3 | Student III, MTPD RI18 1x 37.0 337
4 | Student IV, OTS R50 0.25x% 258 23.0
5 | Student IV, MTPD R50 0.25x% 315 282

progressive distillation using a curriculum of teachers (rows
4&9) is better than direct distillation from a strong teacher
(rows 3&7), even if the total training time is the same. Ad-
ditionally, we find that using a sequence of teachers (row
9), instead of their ensemble (row 8), is more effective.
This shows that integrating different types of knowledge
from multiple teachers is non-trivial, and our progressive
approach is better than simultaneously distilling from multi-
ple teachers. Notably, our detection performance for large
objects receives the most gain (about 6% APy, improve-
ment for both models). We emphasize APy, because in an
efficiency-centric real-world application (e.g., autonomous
driving, robot navigation), detecting nearby larger objects is
more crucial than others. From a realistic perspective, better
AP, shows better applicability of our approach.

4.3. Distillation with Heterogeneous Teachers

To validate that MTPD is general, we now consider a
more challenging heterogeneous scenario, where students
and teachers have different backbones or input resolutions.
Specifically, Student III, a ResNet-18 Mask R-CNN, is dis-
tilled with ResNet-50 teachers; Student IV, a model with
reduced input resolution, is distilled with teachers trained
with larger input resolutions. The results are summarized in
Table 4, and additional results are included in Appendix C.

Heterogeneous backbones: Student III has a ResNet-18
backbone and about half runtime as its ResNet-50 counter-
part (Teacher I). We find that the proper distillation scheme
for Student III is to use the sequence of (rather than ensem-
bling) Teachers -V —IV, which significantly improves
Student III over the ‘OTS’ model. The box AP of Student
III is improved from 33.3% to 37.0% (+3.7%); and espe-
cially for large objects, APy, is improved from 43.6% to
50.0% (+6.4%).

Heterogeneous input resolutions: Although inputs with
varying resolutions can be fed into most object detectors

without changing the architecture, the performance often
degenerates when there is a resolution mismatch between
training and evaluation (Tan et al., 2020; Li et al., 2020a).
If ultimately we want to apply a detector to low-resolution
inputs for fast inference, it is better to use low-resolution
inputs during training. On the other hand, we conjecture
that teachers with high-resolution inputs may provide finer
details that can assist the student. With MTPD, we investi-
gate the improvement of a low-resolution student distilled
by a sequence of teachers with high-resolution inputs. We
denote the standard input resolution 1333 x 800 as 1x, and
a reduced resolution 333 x 200 as 0.25x. We distill Stu-
dent I'V (with 0.25 x resolution) by a sequence of Teacher I
variants (0.5x — 0.75x — 1x). From Table 4, we can see
substantial improvement brought by MTPD: The box AP is
improved from 25.8% to 31.5% (+5.7%), and the mask AP
is improved from 23.0% to 28.2% (+5.2%).

4.4. Generalizability to State-of-the-Art Distillation
Mechanisms

Our meta-level strategy of using a sequence of teachers to
progressively distill a student is independent of the choice
of distillation mechanism for each teacher. We have shown
MTPD can boost the simple feature-matching distillation,
and in this section, we will combine MTPD with state-of-
the-art distillation mechanisms for object detection to
further improve student accuracy.

Distillation protocol: We evaluate MTPD with three most
recent methods on detector distillation: CWD (Shu et al.,
2021), FGD (Yang et al., 2022a), and MGD (Yang et al.,
2022b). In Appendix E, we show that classification-
oriented distillation is inferior to methods delicately de-
signed for detectors. For a fair comparison, we use the
same teacher-student pairs as them: RetinaNet/ResNet-
50 and RetinaNet/ResNeXt-101 (Lin et al., 2017b) are the
single-stage student and final teacher. RepPoints/ResNet-
50 and RepPoints/ResNeXt-101 (Yang et al., 2019b) are
the two-stage, anchor-free student and final teacher. Mask
R-CNN/ResNet-50 and Cascade Mask R-CNN/ResNeXt-
101-DCN (He et al., 2017) are the two-stage, anchor-based
student and final teacher. Between them, we insert one
medium-capacity teacher to progressively distill the student:
RetinaNet/ResNet-101 for the first pair, RepPoints/ResNet-
101 for the second, and Cascade Mask R-CNN/ResNet50-
DCN for the third. Also for fairness, we keep the total
training epochs the same. We set “1x” training schedule
for each teacher, so that the total training time is equivalent
to “2x,” the same as previous work.

Figure 4 shows that MTPD consistently improves students’
final accuracy. For example, the performance of FGD-
distilled RetinaNet/ResNet-50 improves from 40.7% to
41.5% AP (+0.8%), and this gain is larger than mechanism
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Figure 4. MTPD consistently benefits state-of-the-art distillation mechanisms. Using an intermediate RetinaNet/ResNet-101 teacher
between RetinaNet/ResNet-50 student and RetinaNet/ResNeXt-101 teacher (a), RepPoints/ResNet-101 teacher between RepPoints/ResNet-
50 student and RepPoints/ResNeXt-101 teacher (b), or Cascade Mask R-CNN/ResNet50-DCN teacher between Mask R-CNN/ResNet-50
student and Cascade Mask R-CNN/ResNeXt-101-DCN teacher (¢ for Box AP and d for Mask AP), we improve the direct distillation

baselines by 0.2% to 0.8% AP, without increasing training time.

Table 5. Distillation from Transformer-based teachers (Liu
et al., 2021) to convolution-based students. Due to the archi-
tectural difference and capacity gap, directly distilling from a
stronger teacher with Swin-S backbone does not yield better stu-
dents than convolution-based teachers in Figure 4. An intermediate
Swin-T teacher and progressive distillation solve this issue without
increasing training time. Compared to off-the-shelf models, our
RetinaNet and Mask R-CNN students improve by 5.5% AP and
4.3% box AP, respectively.

o AP
ID ‘ Model Distillation ‘ Box Mask
1 | RetinaNet Direct RetinaNet/Swin-S 41.0 -
2 | (Student I) MTPD: RetinaNet/Swin-T—S | 42.0 -
3 | Mask R-CNN Direct MRCNN/Swin-S 420 377
4 | (Student II) MTPD: MRCNN/Swin-T—S 42.5 384

advance from FGD to MGD (+0.3%). We bring perfor-
mance gains to state-of-the-art detection distillation almost

for free.

Next, we investigate how to further maximize the stu-
dent performance. Due to better computation efficiency, a
convolution-based (rather than Transformer-based) student
is preferred. Meanwhile, Swin Transformer (Liu et al., 2021)
can act as an even stronger teacher than the convolution-
based teachers used in previous work. However, compared
with convolution-based teachers, direct distillation from
such a teacher cannot improve the student performance,
even if we use the state-of-the-art method MGD. For exam-
ple, RetinaNet/Swin-Small (47.1% AP) is much stronger
than RetinaNet/ResNeXt-101(41.6% AP), but direct distilla-
tion from both yields the same student performance (41.0%
AP). To bridge the architectural difference and capacity gap
between the ResNet-50 student and Swin-Small teacher, we
can utilize an intermediate Swin-Tiny teacher. As shown in
Table 5, MTPD brings the best students: the performance
of ResNet-50 based RetinaNet increases to 42.0% AP, and
Mask R-CNN increases to 42.5% AP. We also successfully
distill a Transformer-based student from convolution-based
teachers in Appendix F.

4.5. Unpacking the Performance Gain: Generalization
or Optimization?

We have shown that our distilled students significantly im-
prove the accuracy on the validation data over off-the-shelf
students. As further demonstrated in Figure 5a, the vali-
dation accuracy of the distilled student gradually increases
during distillation, and achieves a higher value compared
with the student trained without teachers. A natural ques-
tion then arises — why is distillation helping? There are two
possible hypotheses: (1) improved optimization: distillation
facilitates the optimization procedure, leading to a better lo-
cal minimum; and (2) improved generalization: distillation
helps the student generalize to unseen data.

Improved optimization is typically manifested through a
better model, a lower training loss, and a higher valida-
tion accuracy, which is exactly the case for Mask R-CNN,
HTC, and DetectoRS. Consequently, one might think that
distillation works in the same way. However, our inves-
tigation suggests the opposite — MTPD increases both the
validation accuracy and the training loss, and therefore effec-
tively reduces the generalization gap. In Figure 5, we com-
pare the original RetinaNet model and the distilled student,
which have the same architecture, the same latency, and
are trained on the same data, but with different supervision
(only ground-truth labels vs. additional knowledge distilla-
tion). To eliminate the influence of learning rate changes,
we train the original student with a 3 schedule and restart
the learning rate at the same time with the distilled student.
Interestingly, although distillation can improve the student’s
validation performance, the training detection loss of the
distilled student is higher than the original student. This
suggests that distillation does not help the optimization pro-
cess to find a local minimum with a lower training loss, but
rather strengthens the generalizability of the student model.

To further support this observation, we also visualize the
local loss landscape (Li et al., 2018). The distilled stu-
dent has a flatter loss landscape (Figure 5d) compared with
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Figure 5. Comparison of student models trained with and without teacher distillation. We train a ResNet-50 backboned RetinaNet
(Student I) with (A) a prolonged 3x training schedule (curves in blue), or (B) MTPD from HTC (Teacher III) and then DetectoRS

(Teacher IV) (curves in

-green-red). We compare the validation AP (a) and the training detection 10oss Lgetect (b) of the two students

during the training process. Despite its worse training loss, the distilled student can generalize better on the validation set. We also
compare the loss landscapes (Li et al., 2018) of the original student (¢) and the distilled student (d). Distillation can guide the student to
converge to a flatter local minimum. These observations suggest that distillation helps generalization rather than optimization.

the original one (Figure 5c). As widely believed in the
machine learning literature, flat minima lead to better gener-
alization (Hochreiter & Schmidhuber, 1997; Keskar et al.,
2017). The observation shown in Figure 5 is illustrated for
RetinaNet, but we also have a similar observation in other
students. As a conclusion, knowledge distillation, which
enforces the student to mimic the teachers’ features, can be
considered as an implicit regularization, and helps the stu-
dent combat overfitting and achieve better generalization.

5. Conclusion

We present a simple yet effective approach to knowledge
distillation, which progressively transfers the knowledge of
a sequence of teachers to learn a lightweight object detector.
Our approach automatically arranges multiple teachers into
a curriculum, thus effectively mitigating the capacity gap
between the teacher and student. We successfully distill
knowledge from Transformer-based teachers to convolution-
based students, and achieve state-of-the-art performance on

the challenging COCO dataset. We also find that distillation
improves generalization rather than optimization.

Limitation and future work: This work has mainly fo-
cused on empirical results and analysis. Due to the complex-
ity of the detection task and models, we have not included
theoretical understanding of the representation-based adap-
tation cost and better generalization resulted by distillation,
but they will be our future direction. As a general approach
to object detection, this work shares similar concerns with
other detection techniques, such as potential misuse in en-
hancing surveillance systems, infringing upon privacy rights,
or contributing to biased outcomes.
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