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Abstract
Modern computer systems are highly-con�gurable, with hun-

dreds of con�guration options interacting, resulting in enormous
con�guration space. As a result, optimizing performance goals (e.g.,
latency) in such systems is challenging. Worse, owing to evolving
application requirements and user speci�cations, these systems face
frequent uncertainties in their environments (e.g., hardware and
workload change), making performance optimization even more
challenging. Recently, transfer learning has been applied to address
this problem by reusing knowledge from the o�ine con�guration
measurements of an old environment, aka, source to a new envi-
ronment, aka, target. These approaches typically rely on predictive
machine learning (ML) models to guide the search for �nding in-
terventions to optimize performance. However, previous empirical
research showed that statistical models might perform poorly when
the deployment environment changes because the independent and
identically distributed (i.i.d.) assumption no longer holds. To ad-
dress this issue, we propose C����—a method that sidesteps these
limitations by identifying invariant causal predictors under envi-
ronmental changes, enabling the optimization process to operate
on a reduced search space, leading to faster system performance
optimization. We demonstrate signi�cant performance improve-
ments over the state-of-the-art optimization methods on �ve highly
con�gurable computer systems, including threeML���� deep learn-
ing benchmark systems, a video analytics pipeline, and a database
system, and studied the e�ectiveness in design explorations with
di�erent varieties and severity of environmental changes and show
the scalability of our approach to colossal con�guration spaces.

ACM Reference Format:
MdShahriar Iqbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan
Jamshidi. 2023. CAMEO: A Causal Transfer Learning Approach for Per-
formance Optimization of Con�gurable Computer Systems. In Proceedings
of Make sure to enter the correct conference title from your rights con�rma-
tion email (Conference acronym ’XX). ACM, New York, NY, USA, 18 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2023, Woodstock, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

10 20 30 40 50

10

20

30

40

50

60

Latency (Xavier)

L
a
t
e
n
c
y
(
T
X
2
)

Optimal in Xavier

Optimal in TX2

Figure 1: The optimal con�guration for MLP��� O����� D�����
���� pipeline deployed on TX2 does not remain optimal on Xavier.

1 Introduction
Modern computer systems are continuously deployed in hetero-

geneous environments (e.g., Cloud, FPGA, SoCs) and are highly con-
�gurable across the software/hardware stack [28, 48]. In such highly
con�gurable systems, optimizing performance indicators, e.g., la-
tency and energy, is crucial for faster data processing, better user
satisfaction, and lower application maintenance cost [61, 15]. One
possible way to achieve these goals is to tune the systems with con-
�guration options across the stack, such as cpu frequency, swappi-
ness, andmemory growth, to achieve optimal performance [65, 6, 10].

Finding an optimal con�guration in a highly con�gurable system,
however, is challenging [29, 62, 21, 60, 2, 8]: (i) Each component
in the system stack, i.e., software, hardware, OS, etc., has many
con�guration options that interact with each other, giving rise to
combinatorial con�guration space, (ii) estimating the e�ect of con-
�gurations on performance is expensive as one needs to collect
run-time behavior of the system for each con�guration, and (iii)
unknown constraints exist among con�guration options, giving
rise to many invalid con�gurations. Moreover, to meet growing
user requirements and reduce service management costs, the under-
lying systems often undergo environmental changes, i.e., hardware
updates, deployment topology change, etc. [14]. Therefore, perfor-
mance optimization of such evolving systems becomes even more
challenging as there is no guarantee that the optimal con�gura-
tions found in one environment will remain optimal in a di�erent
environment [30, 32, 29]1.

To address these challenges, in real-world deployment scenar-
ios, developers often use a staging (development) environment—a
miniature of a production environment, for testing and debugging.

1we de�ne an environment as a combination of hardware, workload, software, and
deployment topology
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Table 1: Comparison of C���� with state-of-the-art system perfor-
mance optimization approaches.

Feature S��� ����� U������ R��T�����/��ML R��T��� C����
Detects Spurious Features 7 7 3 7 7 3
Handles Distribution Shift 7 7 7 7 3 3
Suitable for Benchmarks 3 3 3 7 3 3

Knowledge Reuse 7 7 7 7 3 3
Constrained Optimization 7 3 7 3 3 3

Developers collect many experimentation and performance eval-
uations in staging environments (hereafter, we call them source
environments) to understand the performance behavior of the sys-
tem (what con�gurations potentially produce performance anom-
alies, what con�gurations produce stable performance, or where
good con�gurations lie). Developers then use that knowledge in
the target production settings for downstream performance opti-
mizations or debugging. However, in most cases, the result from the
staging environment is completely di�erent from the result from
production, resulting in a misleading or even wrong indication
about the con�gurations that produce optimal performance. These
di�erences in the results mainly occur due to the hardware gap or
workload di�erences between the development environment and
the production one. For example, the workload of an ML system
may surge, and as a result, the batch size behind the model server
needs to increase to sustain the latency requirement; however, due
to the di�erent memory hierarchy and CPU cores between the
source and the target environments, the optimal setting for inter-
op parallelism of the model server would be vastly di�erent in each
environment [52].
Existing works and gap. Performance Optimization in Con�g-
urable Systems. Several approaches have been proposed for perfor-
mance optimization of con�gurable systems, e.g., Bayesian opti-
mization (BO) [25, 66, 64, 4, 44, 29, 32], BO with regression [15],
prediction models [7], search space modi�cation [24], online few-
shot learning [6], and uniform random sampling and random search
algorithms [47]. However, using these approaches in a production
environment requires many queries, which are often too expensive
to collect or maybe infeasible to perform. The optimal con�guration
found by these methods in a source environment is also subopti-
mal for the targets, as the optimal con�guration determined in the
source environment usually no longer remains optimal in the other
(see Figure 1 for an example).
Transfer Learning for Performance Analysis. In real-world deploy-
ment scenarios, developers typically have access to performance
evaluations of di�erent con�gurations from a staging environ-
ment. Exploiting such additional information using transfer learn-
ing can result in e�cient optimization, as demonstrated by recent
work [32, 39, 26, 43, 40, 33]. For example, searching for the opti-
mized performance in the target setting can leverage the summary
statistics of the models built using source performances [67]. How-
ever, each environmental change can potentially incur a distribution
shift. The ML models used in these transfer learning methods are
vulnerable to spurious correlations, which do not hold across dis-
tribution shifts and result in inferior performance [68, 45, 27] (see
Section 2.1 for an example).
Usage of Causal Analysis in Con�gurable Systems. To address the
problem of spurious correlations, recent work has leveraged causal

inference [27, 16, 53] to build a causal performance model2 that
captures the dependencies (a.k.a. causal structures) among con�gu-
ration options, system events, and performance objectives. How-
ever, the causal graphs in the source and target can still have some
di�erences (see Figure 3 for an example). Recent work [27] shows
that the source causal model could be reused for performance de-
bugging in the target environment; however, further measurements
are needed for performance model learning and optimization.

In summary, all these existing works are suboptimal for perfor-
mance optimization when the environment changes because the
knowledge extracted by these methods from the source (i.e., opti-
mal con�guration) has changed and cannot be directly applied to
the target, the model (i.e., ML-based transfer learning model) may
capture spurious correlations, or the model (i.e., causal model) is
mostly stable but need further adaptation in the target environment
(see Table 1).
Our approach.An ideal optimization approach should leverage the
knowledge derived from the source, which is a close replica of the
target environment with a cheaper experimentation cost. Our key
insight is, using causal reasoning, we should be able to identify the
non-spurious invariances across environments that truly impact
the performance behavior of the system. These invariances can
then be transferred to the target environment for performance
optimization tasks, thus reducing the need for many observational
data in the production environment. Therefore, we will reduce the
cost of optimization tasks without compromising accuracy.

To this end, we propose C���� (Causal Multi Environment
Optimization), a causal transfer-based optimization algorithm that
aims to overcome the limitation of prior approaches. Our approach
builds on top of two previous works, JUMBO (a multi-task BO
method) [19] and CBO (a causal BO method) [3]. A typical BO
approach consists of two main elements: the surrogate model and
the acquisition function. The surrogate model tries to predict the
performance objective when given a con�guration, and the acqui-
sition function assigns a score to each con�guration and chooses
the one with the highest score to query for the next iteration. In
C����, we �rst build two causal performance models to learn
the dependency among con�guration options, system events, and
performance objectives for each environment using the previous
performance measurements from the source environment and a
considerably smaller number of measurements from the target envi-
ronment. After that, we simultaneously train two Causal Gaussian
Processes (CGPs) (which leverage the causal performance models
when estimating means and variances) as two surrogate models:
a warm CGP in the source and a cold CGP in the target. The ac-
quisition function combines the individual acquisition functions
of both CGPs to leverage knowledge from both source and target.
This way of combining individual acquisition functions of both
CGPs allows to only to rely on the core features from the source
environment that remain stable across environments and update
belief about the environment speci�c features in the target, making
the optimization more e�ective.

2A causal performance model is an acyclic-directed mixed graph, with nodes being
variables and arrows being causal connections. It represents the dependencies (a.k.a.
causal structures) among con�guration options, system events, and performance
objectives.
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Figure 2: (a)-(b) The relationship between IPC and latency reverse
from source (TX2) to target (X�����) while the relationship between
swappiness (the values are denoted as colors) and latency stays in-
variant. (c) The true causal relationship among the relevant variables.

Evaluation. We evaluated C���� in terms of its e�ectiveness, sen-
sitivity, and scalability, and compared it with four state-of-the-art
performance optimization techniques (S��� [25], R��T�����/��
ML and R��T��� [67], ����� [15], and U������ [27]) using �ve
real-world highly con�gurable systems, including three ML����
pipelines (object detection, natural language processing, and speech
recognition), a video analytics pipeline, and a database system, de-
ployed on edge and cloud under di�erent environmental changes.
Our results indicate that C���� improves latency by 3.7⇥ and
energy by 5.6⇥ on average than the best baseline optimization
approach, R��T���.
Contributions. Our contributions are the following:
• We propose C����, a novel causal transfer-based approach that
allows faster optimization of software systems when the envi-
ronment changes. To the best of our knowledge, this is the �rst
approach that addresses the performance optimization of con�g-
urable systems using causal transfer learning.

• We conduct a comprehensive evaluation of C���� by comparing
it with state-of-the-art optimization methods on �ve real-world
highly con�gurable systems under a range of di�erent environ-
mental changes and studied the e�ectiveness in design explo-
rations with di�erent varieties and severity of environmental
changes and show the scalability of our approach to colossal
con�guration spaces. The artifacts and supplementary materials
can be found at https://github.com/softsys4ai/CAMEO.

2 Motivation and Insights
In this section, we motivate our approach by illustrating why

causal reasoning can contribute to more e�ective (faster and less
costly) optimization of system performance. In particular, we fo-
cus on how the properties of the causal performance models can
be leveraged across environments. For this purpose, we used the
M����� O����� D�������� [50] pipeline as a part of MLPerf In-
ference Benchmark3 by following the benchmark rules4, with the
following setup: Model: Resnet50-v1.5; Test Scenario: O�ine; Met-
ric: inference latency; Workload: 5000 ImageNet samples; workload
generator: Mlperf Load Generator; Source Hardware: Jetson TX2;
Target Hardware: Jetson Xavier and TX1. For better control, we

3https://mlcommons.org/en/inference-edge-30/
4https://github.com/mlcommons/inference_policies/blob/master/inference_rules.
adoc
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Figure 3: There is a signi�cant overlap between the causal structures
(the common edges are represented as blue squares) developed in
di�erent environments (e.g., Jetson TX2 and Xavier). Some edges
unique in the source (green squares) or target (red squares) also exist.

limit the con�guration space to 28 options across the stack—4 hard-
ware options (e.g., cpu cores), 22 OS options (e.g., dirty ratio), and
2 compiler options (e.g., allow memory). We sampled 2000 random
con�gurations and measured inference latency in each environ-
ment. We also collected performance counters and system events
statistics using Linux perf pro�ler5.
2.1 Why performance optimization using

causal reasoning is more e�ective?
In order to deploy a con�gurable computer system such as

M����� O����� D�������� in a new environment with low la-
tency and energy consumption, the dominant approach is to train
a performance model using a limited number of samples and use
the model for predicting performance for unmeasured con�gura-
tions and select the con�guration with the optimal performance. To
show how spurious features could mislead performance optimiza-
tion, we investigate the impact of confounders and how they make
it di�cult for an ML model to determine the accurate relationship
between con�guration options and performance objectives. We
perform a sandbox experiment where we carefully tune swappi-
ness 6 and dirty ratio 7 both in source and target, while leaving all
other options at their default values. Here, the observational data
collected from the experiment indicates that as IPC 8 (one of the
system events) increases, latency increases, which is a spurious
proportional relationship. Relying on spurious features (IPC in this
example) can lead to poor performance predictions (as onemight try
to reduce IPC and expect lower latency but end up getting higher
latency) when the environment changes as they are susceptible
to correlation shifts—i.e., the direction of correlation may change
across environments. As shown in Figure 2(a)-(b), a correlation shift
happens in this sandbox experiment as IPC is positively correlated
with latency in the source but negatively correlated in the target.

To investigate the reason behind the correlation shift, we group
the data based on their swappiness (50% and 80%, respectively)
and observe that the correlation between swappiness and latency

5https://perf.wiki.kernel.org/
6swappiness is the rate at which the kernel moves pages into and out of the physical
memory. The higher the value, the more aggressive the kernel will be in moving the
pages out of physical memory to the swap memory.
7dirty ratio is the value that represents the percentage of physical memory that can
consume dirty pages before all processes must write dirty bu�ers back to the disk.
8IPC represents instruction per cycle, which is the average number of instructions
executed for each clock cycle.

https://github.com/softsys4ai/CAMEO
https://mlcommons.org/en/inference-edge-30/
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc
https://perf.wiki.kernel.org/
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Table 2: ML-based regressors (GPR, RFR) have higher generalization
error compared to causal-based regressor (CGPR).

Source Target KL Div. Prediction Error (%)
GPR RFR CGPR

TX2 Xavier 476 22.4 25.6 11.2
TX2 TX1 519 27.6 23.2 11.4

remains the same (larger swappiness implies higher latency in both
environments) whereas the correlation between swappiness and
IPC reverses (from proportional to inverse proportional) as shown
in Figure 2(a)-(b). Figure 2(c) shows the causal structure where
swappiness is a common cause of both IPC and latency. swappiness
should be considered for latency since it remains invariant across
environments. In contrast, the relationship between IPC and la-
tency is environment dependent, and their correlation can change
when another confounder variable, dirty ratio, is di�erent in source
and target. In our example, since the source has 4⇥ lower physical
memory than the target, the allocated memory for the dirty pages
becomes �lled sooner and must be returned to the disk. As a result,
the source will have higher IPC for a lower value of swappiness
as the dirty pages will be �ushed before the limit for swappiness
is reached. However, the application is not making any forward
progress here, resulting in increased latency. In the target (due
to larger memory), the dirty pages might never become full, and
only swappiness would cause the IPC to be positively correlated
to latency. The example in Figure 2 shows that the casual model
can capture the data generation process better as it only relies on
the invariant causal mechanisms (swappiness for latency) and can
remove spurious correlations (IPC for latency) that are speci�c to
a particular environment. Therefore, causal models may su�ce to
predict the consequences of interventions (what if scenarios) on
variables to particular values for e�ective search during optimiza-
tion and allow for better explorations in limited budget scenarios.

To show the bene�ts of correctly identifying the invariant fea-
tures, we train di�erent ML-based regressors, e.g., Gaussian Process
Regressor (GPR) and Random Forest Regressor (RFR), using data
collected for the sandbox system deployed in TX2 and determined
their prediction error in TX1 and X����� (shown in Table 2). Here,
we observe that the ML-based regressors have considerably higher
errors in the target environment despite low source errors. The
prediction error increases further as the distributions become more
dissimilar (indicated by a higher KL-divergence value). In contrast,
the causal approach, Causal Gaussian Process Regressor (CGPR),
has a considerably lower error and remains stable as the degree of
distribution shift increases.

Takeaway 1Causal models generalize better in performance
prediction tasks across environments by distinguishing in-
variant from spurious features.

2.2 Learning from Causal Structural Properties
in Various Environments

As we have established that a causal model can be reliably used
for performance predictions in new environments, we next study
the properties of the causal graph that can be exploited for faster
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3(b)

Figure 4: (a) Pruning edges with a Markov blanket identi�es the
optimal con�guration faster. (b) Combining the top K nodes’ Markov
blankets eliminates the wrong biases (shown as black squares).

optimization. We build a causal graph using a causal structure
discovery algorithm [56] in source and target, respectively, and
compare them. As shown in Figure 3, both causal graphs are sparse
(the white squares indicate no dependency relationship exists) and
share a signi�cant overlap (the blue squares indicate the edges
present in both). Therefore, a causal model developed in one envi-
ronment can be leveraged in another as prior knowledge. However,
reusing the causal graph entirely might induce some wrong biases
as the causal graphs in the two environments are not identical
(the green and red squares indicate the edges present uniquely in
the source and target, respectively). We must discover the target’s
new causal connections (indicated by the red squares) based on the
observation. Since the number of edges that must be discovered is
small, this can be easily done with a small number of observational
samples from the target environment.

Takeaway 2 A performance optimization approach should
locate high-quality observational samples in the target, si-
multaneously leveraging the source knowledge to guide the
search.

2.3 Learning to Intervene based on Causal
Structure

We need to remove the edges unique to the source. The removal
operation can be accomplished by performing interventions that
estimate the e�ects of deliberate actions. For example, we measure
how the distribution of an outcome (e.g., latency Y) would change
if we intervened during the data gathering process by forcing the
variable cpu frequency O8 to a certain value >8 while retaining the
other variables as is. We can estimate the outcome of the interven-
tion by modifying the CPM to re�ect our intervention and applying
Pearl’s do-calculus [49], which is denoted by %A (Y | 3> (O8 = >8 )).
However, since many con�gurations need to be measured, it is not
feasible to perform interventions to estimate the existence of every
edge. Instead, we can signi�cantly reduce the number of con�gura-
tions by avoiding the interventions on nodes with limited causal
e�ects on the performance objective. For this purpose, we rank
the causal e�ects of all the existing nodes on latency and observe
that only one source-speci�c edge (policy) is among the top 10
most in�uential nodes. Thus, we can select the top K nodes with
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the highest causal e�ects and combine the Markov blanket 9 of
them, which would eliminate all the nodes that have lower causal
e�ects. In our example, if we select K=6 with Markov blankets then
the wrong biases, migrations->syscalls enter and migrations->llc
stores (the nodes marked by black in Figure 4(b)), are eliminated.
Figure 4(a) shows that pruning the edges helps to reach the optimal
value 19% faster. Therefore, we require an approach that relies on
intervening only on the top K nodes based on source knowledge in the
target environment.

Takeaway 3 Employing rich knowledge in a causal perfor-
mance model, we can intervene on speci�c con�gurations
to learn the most about the underlying causal structure and
be able to gather the most relevant data in a limited budget
scheme.

3 C���� Design
In this section, we presentC����—a framework for performance

optimization of highly con�gurable computer systems.
3.1 Problem Formulation

Let us consider a highly con�gurable system of interest with con-
�guration space O, system events and performance counters space
C, and a performance objective Y. Denote O8 to be the 8C⌘ con�gu-
ration option of a system, which can be set to a range of di�erent
values (e.g., categorical, Boolean, and numerical). The con�gura-
tion space is a Cartesian product of all hardware, software, and
application-speci�c options: O = ⇡><08=(O1) ⇥ ... ⇥⇡><08=(O3 ),
where d is the number of options. Con�guration options and system
events are jointly represented as a vector X = (O, C). We assume
that in each environment 4 2 E (a combination of hardware, work-
load, software, and deployment topology), the variables (X4 ,Y4 )

have a joint distribution P4 . In the source environment 4s, there
are = independent and identically distributed (i.i.d) observations. In
the target environment 4t,< (⌧ =) observations can be collected
within a given budget B. The task is to �nd a near-optimal con-
�guration, >⇤, with a �xed measurement budget, V , in the target
environment, 4t, that results in Pareto-optimal performance:

>⇤ = argmin>2OY4t (>), (1)

where O represents the con�guration space, Y is a set of perfor-
mance metrics measured in the target environment 4t.
3.2 C���� Overview

C���� is a causal transfer learning optimization algorithm that
enables developers and users of highly con�gurable computer sys-
tems to optimize performance objectives such as latency, energy,
and throughput when the deployment environment changes. Fig-
ure 5 illustrates the overall design of our approach. C���� works
in two phases: (i) knowledge extraction phase, and (ii) knowledge
update phase. In the knowledge extraction phase, C���� �rst deter-
mines the user requirements using a query engine. Then, it learns
a causal performance model Gs using the cheaper o�ine perfor-
mance measurements Ds from the source environment 4s, which is
later reused to obtain meaningful information that is shared with
the target environment 4t for faster optimization. As performance
9A Markov blanket of a node includes all its parents, children, and children’s parents.

evaluations in the target are expensive, this way of warm-starting
the optimization process by reusing the causal performance model
Gs enables us to navigate the con�guration space more e�ectively
with less number of interventions in the target. However, rely-
ing solely on the source’s information is insu�cient to e�ectively
optimize performance in the target due to the di�erences across
environments (as shown in Section 2.2). Therefore, in the knowl-
edge update phase, C���� employs an active learning mechanism
combining the source causal performance model Gs with a new
causal performance model Gt collected from a small number of
samples, Dt, from the target environment.

Once the two causal performance models are constructed, we
simultaneously train two causal Gaussian processes (CGPs) as the
surrogate models—CGPwarm and CGPcold—to model performance
objectiveY from Gs and Gt, respectively. The two CGPs operate on
di�erent input spaces. CGPwarm works on a reduced con�guration
space that is derived from Gs. In contrast, to ensure that any infor-
mation omitted in the source is not left undiscovered in the target,
CGPcold works on the entire con�guration space. We integrate the
posterior estimates from both CGPwarm and CGPcold to develop
an acquisition function U that can regulate the information from
two CGPs through a controlling variable _. The larger _ is, we rely
more on the information in CGPwarm. Next, we evaluate our ac-
quisition function U for di�erent con�gurations and select the one
for which the U value is maximum for observation or intervention.
The choice of observation and intervention for performance evalu-
ation is guided by an exploration coe�cient n . Finally, we use the
newly evaluated con�gurations to update the causal performance
and surrogate models. We continue the active learning loop until
the stopping criterion is met (i.e., maximum budget V is exhausted
or convergence is attained). The pseudocode for our approach is
provided in Algorithm 1.

3.3 Knowledge Extraction Phase
We next describe the o�ine knowledge extraction phase.

User Query Translation A developer can use C���� to �nd the
optimal con�gurations optimizing a system’s performance objec-
tives in a target environment within a limited experimentation bud-
get V . The developer can start the optimization process by querying
C���� with requests like "How to improve latency within 1 hour
or 50 samples" or "I want to �nd the con�guration with minimum
energy for which latency is less than 20 seconds within 45 minutes?".
The query engine initially translates the user requests to determine
the allowable budget V , constraintsk , and the performance goal Y
to optimize. In the �rst query, the budget is 1 hour or 50 samples,
the performance objective is latency, and no constraints exist. In the
second query, the budget is 45 minutes, the performance objective
is energy, and the constraint is a latency of less than 20 seconds.

Learning Causal Performance ModelWe begin by building two
causal performance models: Gs and Gt using the o�ine perfor-
mance evaluation datasetDs from the source with = con�gurations
and the performance dataset Dt from the target with randomly
sampled< initial con�gurations, respectively (line 1). We use an
existing structure discovery algorithm fast causal inference (FCI) to
learn Gs and Gt that describes the causal relations among con�gu-
ration options O8 , system events and performance counters C8 , and
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Figure 6: Re�ning the causal performance model from the source
to eliminate unwanted information.

performance objectivesY. We select FCI as the causal structure dis-
covery algorithm because (i) it accommodates variables that belong
to various data types such as nominal, ordinal, and categorical data
common across the system stack, and (ii) it accommodates for the
existence of unobserved confounders [56, 46, 18]. This is crucial be-
cause we do not assume absolute knowledge of con�guration space,
so there may be con�gurations we cannot intervene in or system
events we have not observed. FCI operates in three stages. First, we
construct a fully connected undirected graph where each variable
is connected to every other variable. Second, we use statistical in-
dependence tests (Fisher z-test for continuous variables and mutual
information for discrete variables) to prune away edges between
independent variables. Finally, we orient undirected edges using
prescribed edge orientation rules [56, 46, 18, 12, 11] to produce a
partial ancestral graph (or PAG). In addition to both directed and
undirected edges, a PAG also contains partially directed edges that
need to be resolved to generate an acyclic-directed mixed graph
(ADMG), i.e., we must fully orient partially directed edges with the
correct edge orientation. This work uses an information theoretic
approach to automatically orient partially directed edges using the
LatentSearch algorithm [38] by entropic causal discovery.

Re�ning Causal Performance Model Now that we have con-
structed the causal performance models which rely on the invariant
features, we may be tempted to directly reuse source model Gs in
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Figure 7: The posterior of CGP relying on interventional distribu-
tion can capture the target function behavior better than GP.

the target to warm start the optimization process. However, since
some edges are speci�c to the source (as discussed in Section 2.2),
directly reusing Gs will bias the optimization in the target. To avoid
wasting the budget allocated for the online optimization procedure,
we attempt to minimize those biases as much as possible in this
o�ine phase. To do so, we transfer the Markov blanket (Mb) of the
top : nodes ranked based on their causal e�ects on the performance
objective to eliminate unwanted information. This is an important
step as we need to rely on the optimal core features that remain
invariant when a performance distribution shift happens to reason
better in the new environment. Theoretically, a node’s Mb is the
best solution to the feature selection problem for that node [34].
The variables in the Mb can be con�dently employed as causally
informative features in the target because it provides a thorough
picture of the local causal structure around the variable. Initially,
we determine : using the method proposed in [22] (line 2). Then,
we extract the Mb of the : nodes to determine the �nal Gs that
will be reused in the subsequent phase (line 4) using the IAMBS
algorithm presented in [41]. The IAMBS algorithm is focused on
constructing a Mb for multiple variables (top : nodes). It operates
by determining whether the additivity property holds for Mb of
: variables, further, how to proceed if the additivity property is
violated by selectively performing conditional independence tests
using a growing and a shrinking phase [41].
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3.4 Knowledge Update Phase
In this phase, we exploit the knowledge gained from the earlier

phase to guide the search strategy for optimization using the three
components described below.
Build Causal Gaussian Processes. At this stage, we train two
surrogate models: CGPwarm and CGPcold for the performance ob-
jective Y from Gs and Gt, respectively. For this purpose, we use
the mathematical formulation proposed in the CBO approach [3]
to build a CGP. Unlike GPs, CGPs represent the mean using in-
terventional estimates via do-calculus, which allows the surrogate
model to capture the behavior of the performance objective bet-
ter than GPs (as shown in Figure 7), particularly in areas where
observational data is not available. Therefore, we �t a prior on
5 (>) = ⇢ [Y|3> ($8 = >8 )] with mean and kernel function com-
puted via do-calculus separately for each CGP obtained from Gs
and Gt as the following:

54 (>) ⇠ ⌧% (`4 (>),:24 (>,>
0
)) (2)

`4 (>) = ⇢̂ [Y|3> ($8 = >8 )] (3)
:24 (>,>

0
) = :'⌫� (>,>

0
) + f4 (>)f4 (>

0
), (4)

where f4 (>) =
q
+̂4 (Y|3> ($8 = >8 )) with +̂4 representing the vari-

ance estimated from the con�guration measurements (Ds or Dt)
for a particular environment. :'⌫� is the radial basis function of the
kernel de�ned as :'⌫� (>,>0) = 4G? (� | |>�> 0 | |2

2;2 ), where ; is a hyper-
parameter. As a result, the shape of the posterior variance enables
a proper calculation of the uncertainties about the causal e�ects
(enabling identi�cation of in�uential con�guration options and
interactions). We extract the exploration set (ES) for each environ-
ment, guided by Gs and Gt, and compute the mean and uncertainty
estimates for con�gurations in the exploration set.
ComputeAcquisition Function for Sampling.DenoteUAwarm (>)
and UAcold (>) to be the single objective acquisition functions of the
two CGPs. For C����, we choose to use the expected improvement
(EI) as the acquisition function [63] since EI has been demonstrated
to performwell for con�guration search. EI selects the con�guration
that would have the highest expected improvement with respect
to the current best interventional setting separately from 4s and 4t
across all con�gurations in the respective exploration set:

⇢�4 (>) = ⇢? (~) [<0G (~ � ~⇤, 0)], (5)

where ~ = ⇢ [Y|3> ($8 = >8 )] and ~⇤ is the optimal value ob-
served thus far. In our implementation, we rank the con�gurations
based on UAwarm (>) scores and then select the ones with the highest
UAcold (>) score. The acquisition function (line 10) is:

UA (>) = _A (>)UAcold (>) + (1 � _A (>))UAwarm (>), (6)

where _A is an interpolation coe�cient (line 8-9) that controls
the proportion of knowledge used from source and target and is
dependant on ;U and the expected improvement of a con�guration.
The above equation shows that _ is 1; it would use the contribution
from U2>;3 and use UF0A< when _ is 0. The interpolation coe�cient
_A is de�ned as the following:

_A (>) = 1(UAwarm* � UAwarm (>)  ;U ), (7)

where UAwarm* is the optimal acquisition value obtained from UAwarm
scores. The choice of ;U is critical since it balances the knowledge

used from the source and target. We set ;U to be 0.1, which shows
good empirical performance (as shown in Figure 15(b)). Intuitively,
the acquisition function should operate in such a way so that it uses
U2>;3 for the con�gurations that are near the optimal points. Here,
the ;U is an acquisition threshold hyper-parameter used to de�ne
near optimal points w.r.t. UF0A< . Therefore, con�gurations that
are nearer to the optimal points of UF0A< (con�gurations which
satisfy ;U  0.1) will provide higher expected improvement value
for U2>;3 .

On the contrary, con�gurations that are further away from the
optimal points of UF0A< (con�gurations which do not satisfy ;U 

0.1) will have higher expected improvement value for UF0A< . This
indicates that either such con�gurations contain options that have
some environment-speci�c behavior that is not captured or learned
correctly by the source causal model and the source causal model
needs to be updated.

Now, we �nd a con�guration >r+1 for which the UA value is
maximum for either observation or intervention (line 11). Obser-
vational data may be used to correctly predict the causal e�ects of
con�guration options on the performance objective. On the other
hand, estimating consistent causal e�ects for values outside of the
observable range necessitates intervention. The developer must
identify the optimal combination of these operations to capitalize
on observational data while intervening in regions with higher un-
certainty. We adopt the n�greedy approach as in CBO to trade-o�
exploration and exploitation, which is de�ned as the following:

n =
+>; (� (DE))

+>; (>>2O (D(O)))
⇥

#

#max
, (8)

where ⇡E = Ds [ Dt, +>; (� (DE)) represents the volume of the
convex hull for the observational data and+>; (>>2O (D(O))) gives
the volume of the interventional domain. #<0G represents the max-
imum number of observations the developer is willing to collect
on a particular environment, and # is the current size of ⇡E . The
interventional space is bigger than the observational space when
the volume of the observational data +>; (� (DE)) is smaller with
respect to the number of observations # . Therefore, we must per-
form interventions to explore regions of the interventional space
not covered by observational data. On the other hand, if the vol-
ume of the observational data +>; (� (DE)) is large with respect to
# , we need to perform observations. This is because we need to
obtain consistent estimates of the causal e�ects, which can only
be achieved with more observations. We update the convex hull
incrementally for computation purposes.

Evaluate Selected Con�guration and Update Belief We mea-
sure the selected con�guration >r+1 (lines 13-17) and check whether
the newly measured con�guration satis�es the constraints (line
18). If not, we replace the performance objective value with an
in�nitely high value to force the optimizer to avoid searching in
regions of the space where the constraints are not satis�ed (line 19).
We update the causal performance and surrogate models using the
new measurement (line 21). We repeat the optimization loop until
the maximum budget V is exhausted or convergence is reached and
return the con�guration with minimum Y as the optimal.
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Algorithm 1 C����
Require: O�ine source datasetDs, Initial target datatsetDt, Con-

�guration space O, Total budget V , Threshold ;U , Performance
Objective Y, Constraint  .

Knowledge Extraction Phase
1: Construct a causal performance model from Gs,Gt using

Ds,Dt, respectively.
2: Extract the top : nodes from Gs in terms of causal e�ect on

performance objective.
3: Extract Markov Blanket of the top : nodes to construct a new

updated Gs.
Knowledge Update Phase

4: Initialize CGPwarm and CGPcold.
5: VA = 0
6: while VA  V do
7: Set UAwarm* = 0A6<8=>2OU

A
warm (>)

8: Set interpolation coe�cient: _A (>) = 1(UAwarm*�U
A
warm (>) 

;U )
9: Set the acquisition function: UA (>) = _A (>)UAcold (>) + (1 �

_A (>))UAwarm (>)
10: Pick a new con�guration: >A+1 = 0A6<8=>2O UA (>)
11: Compute the exploitation coe�cient n using Equation (8)

and sample a random number D ⇡ ` (0, 1)
12: if n < D then
13: make a new observation (>A+1, 2A+1,~A+1).
14: else
15: Intervene on the system to obtain an interventional mea-

surement (>A+1, 2A+1,~A+1).
16: end if
17: if ~A+1 does not satisfy  then
18: ~A+1 = 1

19: end if
20: Update Gs, CGPwarm, Ds, Gt, CGPcold, and Dt.
21: Update VA
22: end while
23: return the con�guration with the best performance objective.

4 Evaluation
Subject systems and con�gurations. We selected �ve con�g-
urable computer systems, including a video analytics pipeline, a
��������� database system, and three deep learning systems (for
image, speech, and NLP, respectively). Following con�guration
guides and other related work [20, 27, 55], we used a wide range of
con�guration options and system events that impact scheduling,
memory management, and execution behavior. The complete list of
con�guration options per system can be found in the supplemen-
tary materials on GitHub. As opposed to prior works (e.g., [59, 58])
that only support binary options due to scalability issues, we ad-
ditionally included discrete options and continuous options. For
discrete options, we exhaustively set each one to all permitted val-
ues. We choose the recommended range from system documents
for continuous options.

We run each software with a set of popular workloads that are
extensively used in benchmarks and prototypes (more details are
provided in Section 5-7). We use various deployment platforms

with distinct resources (e.g., computation power, memory) and
microarchitectures to demonstrate our approach’s versatility. We
use NVIDIA Jetson TX2, TX1, AGX Xavier, and Xavier NX devices
for edge deployment. To deploy a particular system on the cloud,
we use Chameleon con�gurable cloud systems where each node
is a dual-socket system running Ubuntu 20.04 (GNU/Linux 6.4)
with 2 Intel(R) Xeon(R) processors, 64 GB of RAM, hyperthreading,
and TurboBoost. Each socket has 12 cores/24 hyper-threads with
multiple Nvidia Tesla P100 16GB GPU and K80 24GB GPU for deep
learning inference.
Data collection We measure the system’s latency/throughput and
energy for each con�guration. Following a common practice [14,
15], we randomly select 2000 con�gurations for each system for
performance measurements. We repeat each measurement 5 times
and record the median to reduce the e�ect of measurement noise
and other variabilities [26].
Experimental parameters We use a budget of 200 iterations for
each optimization method, similar to standard system optimization
approaches [67]. We repeat each method’s optimization process 3
with di�erent random seeds for reliability. We follow the standard
tuning and reported parameter values for S���,U������, R��T����
�/��ML, R��T���, and �����. More details about di�erent exper-
imental choices (Table 8-14), implementation (Figure 17-21), and
hyperparameters (Table 15-16) can be found in the supplementary
materials.
Baselines We compare C���� against the following:
• SMAC [25]: A sequential model-based con�guration optimiza-
tion algorithm.

• U������ [27]: An active learning approach that transfers knowl-
edge via a causal model for optimization in the target.

• C���� [15]: An optimization framework that augments Bayesian
optimization with predictive early termination.

• R��T��� [67]: A constrained optimization approach that uses
multiple models (ensemble) to represent prior knowledge.

• R��T�����/��ML [67]: R��T��� without meta-learning, i.e., it
only learns from scratch in the target.

Evaluation Metrics. When running them for the same time limit,
we compare the best performance objectives (e.g., latency, through-
put, energy, etc.) achieved by each method. We also compare their
relative error (RE) as follows:

'⇢ =
|Ypred �Yopt |

|Yopt |
⇥ 100%, (9)

where Ypred is the best value achieved by each method, and Yopt is
the optimal measured value from our observational dataset of 2000
samples. A method is considered more e�ective if it recommends a
con�guration achieving a lower error.
Research questions. We evaluate C���� by answering three
research questions (RQs).
RQ1: How e�ective is C���� in comparison to the state-of-the-art
approaches when the following environmental changes happen? (i)
hardware change, (ii) workload change, (iii) software change, and
(iv) deployment topology change.
RQ2: How the e�ectiveness of C���� changes when the severity
of environmental changes varies?

https://github.com/anonpassen/CAMEO
https://github.com/anonpassen/CAMEO
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Figure 8: E�ectiveness of C���� when hardware changes happen
in the deployment environment.

RQ3: How sensitive is C���� when (i) the number of samples in
the source environment varies? (ii) the value of ;U varies? and (iii)
the size of the con�guration space increases?

5 RQ1: E�ectiveness in Design Explorations
We evaluate the e�ectiveness of C���� in �nding an optimal

con�guration compared to the state-of-the-art. We consider four
types of environmental changes typically occurring when a sys-
tem is deployed into production. Table 3 shows the summarized
results for each approach averaged over di�erent environmental
changes considered in this paper. C���� �nds the con�guration
with the lowest latency and energy than other approaches, e.g.,
C���� achieves 3.7⇥ and 5.6⇥ lower RE for latency and energy,
respectively, when compared to R��T���, the next best method
after C����. We describe the experimental setting and results for
all four environmental changes below.
Hardware change We consider the M����� ������ ���������
pipeline that uses ResNet-18 for inference over 5k images selected
from the 100k test images of the ImageNet dataset [51]. We use
the TX2 as the source hardware and X����� and TX1 as the tar-
get hardware. We examine these hardware changes since there
are variable degrees of micro-architecture di�erences among this
hardware separately. We only show results for X����� (for the
other TX1, we refer to the appendix). As shown in Figure 8, C����
�nds the con�guration with the lowest values. For example, C����
�nds con�guration with 1.6⇥ lower latency than R��T���. We also
observe a similar trend for energy.
Software change We consider variants of a natural language pro-
cessing (NLP) model—BERT [13] and T���BERT [35]—deployed on
X����� for the experimental setup. We set up a software change by
changing the model architecture across environments, where we
use T���BERT with 3 million parameters as the source and BERT�
B���with 109M parameters as the target. As workload, we perform
sentiment analysis on 1000 out of the 25000 reviews from IMDB test
dataset [42]. We present the results for software change in Figure 9

Table 3: Summarized results averaged over all environment changes.

Latency Energy
RE(%) RE(%)

S��� 88.2 268.9
����� 46.2 182.5

R��T�����/��ML 48.8 191.1
U������ 55.5 179.9
R��T��� 29.2 81.2
C���� 7.8 14.4
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Figure 9: E�ectiveness of C���� when software changes happen
in the deployment environment.
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Figure 10: E�ectiveness of C���� in workload change scenarios:
Read-Only to Balanced (left) and Update-Heavy (right).

for latency and energy optimization. The optimal con�gurations
found by C���� have 1.1⇥ lower latency and 1.7⇥ lower energy
value compared to those discovered by R��T���, respectively.
Workload change We consider C�������� database deployed on
C�������� ����� �������� (see Section 4) while varying di�erent
workloads to create di�erent source and target environments using
the TPC-C benchmark [1]. We use a YCSB workload generator to
generate 3 workloads: (i) ���� ����- 100% read, (ii) �������� - 50%
read and 50% update, and (iii) ������ ����� - 95% update and 5%
read. To optimize throughput, we use a ���� ���� workload as the
source and the remaining two workloads as the target separately.
Results for workload changes are presented in Figure 10. When
the workload changes from ���� ���� to ��������, R��T���
outperforms C���� by �nding a con�guration with 1.02⇥ higher
throughput. Upon further investigation, we �nd that here the distri-
butions between source and target were relatively similar, and the
shared covariance learning in MTGP helped R��T��� in �nding a
better con�guration. Moreover, the knowledge extraction module
in R��T��� is particularly developed for correctly capturing work-
load behavior, making it more suitable for this domain adaptation
scenario. However, as the distribution di�erence increases, C����
outperforms R��T���, e.g., ������ ����� workload C���� has
1.06⇥ higher throughput than R��T���.
Deployment topology change To test the e�ectiveness of C����
across deployment topology change, we consider a video analytics
pipeline: D���S����� that uses 4 camera streams as the workload.
OurD���S����� pipeline has four components: (i) an x264 decoder,
(ii) a multiplexer, (iii) a Tra�cCamNet model with ResNet-18 as the
detector, and (iv) an NvDCF tracker, which uses a correlation �lter-
based online discriminative learning algorithm for tracking. As the
source environment, we adopt a centralized deployment topology
where all four components run on the same X����� NX hardware.
We employ a dispersed deployment topology with two X����� NX
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Figure 11: E�ectiveness of C���� when deployment topology
changes in the deployment environment.

hardware as the target, deploying the decoder and multiplexer in
one and the detector and tracker in the other.We useA�����K����
to send and receive output from the multiplexer to the detector
that uses a binary protocol over TCP. Our experimental results
for deployment environment change presented in Figure 11 show
that C���� signi�cantly outperforms others in �nding optimal
throughput and energy. For example, the optimal con�guration
discovered by C���� has as high as 1.3⇥ and 1.5⇥ (as) improvement
for throughput and energy, respectively, than the next best method.
Constrained optimization For constrained optimization (opti-
mizing latency with energy constraint or optimizing energy with
latency constraint), we set the energy and latency constraints as [15,
30, 45, 60, 75, 90]-th percentiles of the corresponding distributions.
Table 4 reports the summarized results compared with �����, as
this is the only baseline that incorporates constraints. We observe
that other than latency optimization under energy constraints for
workload changes, C���� consistently outperforms ����� for hard-
ware, software, and deployment environment changes, e.g., under
latency constraints, C���� �nds con�gurations with 1.3⇥ and 1.5⇥
for software and deployment topology change, respectively.
Summary of observations From the above results, we also ob-
serve that the knowledge-reuse methods (C���� and R��T���)
are consistently the top performers over the methods that do not
reuse knowledge. The steep performance curves during the earlier
iterations indicate that the optimization process’s warm-starting
helps quickly go to the region containing good con�gurations. As a
result, across all environmental changes, methods that reuse knowl-
edge from the source outperform S���, �����, and U������, which
do not rely on previous information and cannot reach the optimal
within the allowed budget.
Why C���� works better? To further explain C����’s advan-
tages over other methods, we conduct a case study using the setup
for M����� O����� D�������� pipeline deployed on TX2 as the
source and X����� as the target mentioned in Section 2. We discuss
our key �ndings below:

Table 4: Constrained optimization results for latency with energy
and energy with latency constraints.

Environment Latency w. Energy (RE%) Energy w. Latency (RE%)

Change ����� C���� ����� C����

Hardware 16.8 9.7 14.1 13.9
Software 17.1 22.5 30.9 23.7
Workload 9.5 9.6 14.7 11.1

Deployment 14.3 11.4 16.7 11.3
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Figure 12: Contour plot with options with di�erent causal e�ects.
The color bar indicates latency values, whereas lower values (indi-
cated by blue regions) indicate better performance.
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Figure 13: The causal performance models become more accurate
with increasing iterations. The correctness of Gs and Gt when com-
bined helps C���� in detecting the optimal con�guration more
e�ectively than other approaches. A lower hamming distance value
indicates a smaller di�erence with the ground truth causal perfor-
mance model in the target.

(i) The combined correctness of two causal performancemod-
els allows e�ectively identifying optimal options values. Ta-
ble 5 shows the optimal con�guration discovered by di�erent ap-
proaches (highlighted when matched). C���� can correctly iden-
tify the maximum number of options values compared to other
approaches with minimum latency value. This is possible due to
the usage of two causal models Gs and Gt as when combined, they
are nearly identical to the ground truth causal performance model
in the target as shown in Figure 13.
(ii) C���� has utilized the budget more e�ciently by care-
fully evaluating core con�guration options. To better under-
stand the optimization process, we visualize the response surfaces
of three sets of options pairwise with di�erent degrees of average
causal e�ect (ACE) on latency (Figure 12). The leftmost sub�gure
of Figure 12 contains options with lower ACE values, whereas the
rightmost sub�gure of Figure 12 contains options with high ACE
values only). The middle sub�gure of Figure 12 contains options
that have ACE values near the median (the ACE values of con-
�guration options are provided in Table 5). We observe that the
response surface of the options with higher ACE values is more
complex than those with lower ACE values (rightmost sub�gure of
Figure 12). C���� is able to correctly determine the optimal values
of cpu_frequency and dirty_ratio which indicates that C���� can
understand such complex behavior better than others. Also, C����
has explored more con�gurations by varying core con�gurations
options with higher ACE values than lower ones and better under-
stands the response surface with e�ective resource utilization.
(iii) C���� reaches the better con�guration by achieving
better exploration-exploitation trade-o�s. From Figure 12, we
observe that C���� has higher coverage of the con�gurations
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evaluated during the optimization procedure compared to other
approaches. For example, in the rightmost sub�gure of Figure 12,
con�gurations evaluated by C���� cover the highest number of
di�erent regions (indicating better exploration). Here, we also ob-
serve that C���� has evaluated a higher number of con�gurations
near the optimal (blue-colored) regions of the response surface (in-
dicating better exploitation). The identi�cation of core features has
also enabled achieving better exploration-exploitation trade-o�s.
Therefore, C���� can learn about the regions with con�guration
options with lower causal e�ects within fewer explorations and
focuses on exploitation behavior to quickly reach the optimum.

6 RQ2: Severity of Environmental Changes

The e�ectiveness of C���� changes due to the amount of distri-
bution shift that can happen during environmental changes. Predict-
ing how much the distribution will change when an environmental
change occurs is impossible. Therefore, it is critical to understand
how sensitive C���� is to di�erent degrees of change severity.
Following previous work [30], we consider various environmental
changes of varying severity to answer this question. The scale and
the number of changes that occur indicate the severity. For exam-
ple, an environment change is more severe if both hardware and
workload change, compared with only hardware changes.

We consider the centralized deployment of D���S����� used
in RQ1 as the source and use the following as the targets: (i) Low
severity: We only change one category, hardware (AGX X����� to
X����� NX); (ii) Medium severity: We consider the change of two
categories, hardware and deployment topology. In this setup, the
target is deployed with D���S����� in a distributed fashion on
two X����� NX devices with a decoder with four camera streams
as the workload; and (iii) High severity: We consider a change of
four categories, workload, deployment topology, hardware, and
model. Our target has D���S����� distributedly deployed on two
TX2s, with a workload of eight camera streams. We also change
the detector from ResNet-18 to ResNet-50.
Results. As shown in Figure 14, C���� constantly outperforms
the baselines by achieving maximum throughput for all severity of
environmental changes. For example, C���� �nds con�guration
with 1.3⇥, 1.5⇥, and 1.9⇥ higher throughput than R��T��� under
low, medium, and high severity of changes, respectively. The KL
divergence value between the distributions of the source and low,
medium, and high severity environmental changes setup are 418,

951, and 1329. Therefore, we conclude that C���� performs better
than baselines as the environmental changes become more severe.

7 RQ3: Sensitivity and Scalability
First, we investigateC����’s performance under di�erent source

measurements and how this a�ects the knowledge transferred from
the source to the target and overall performance. Second, we deter-
mine how the value of ;U in�uences C����’s e�ectiveness. Finally,
we investigate C����’s scalability in larger con�guration space.
Sensitivity to the number of source measurements.We con-
sider the M����� ������ ��������� pipeline deployed on TX2 as
the source and the same pipeline on X����� as the target, varying
the number of measurements in TX2 from 30 to 10000 for evalu-
ation and comparing their optimal values discovered by di�erent
approaches. As shown in Figure 15(a), increasing the number of
source measurements positively in�uences C����’s as compared to
R��T���. Including a greater number of source samples increases
the danger of bias from the source environment, particularly when
the distributions of two environments are extremely disparate. From
this �gure, we can infer that C���� is able to prevent those biases
from getting introduced into the target as more samples are used
for extracting knowledge from the source. We also observe that
C���� reaches a plateau (after 2000 samples) faster than R��T���,
indicating that C���� can �nd better con�gurations with fewer
source samples. Since C���� can detect the core features which can
be reliably used across environments without much modi�cation.
Sensitivity to ;U value. One of the key parameters for C����
is _ that controls the amount of information from CGPwarm and
CGPcold for acquisition function calculation. The value of _ depends
on ;U , which indicates the distance from the optimal con�guration
recommended by Uwarm. A lower value of ;U can be interpreted as
selecting con�gurations nearer to the optimal con�guration, as it is
expected to have similar behavior between source and target in the
nearer regions. In this experiment, we vary the ;U value and record
the RE value for each. The experimental results indicate that C����
achieves the minimum error when ;U is 1 (shown in Figure 15(b)).
Scalability to the number of con�guration options.We con-
sider a speech recognition pipeline that uses D��������� [23] for
inference. As workload, we use 2 hours of data extracted from 300
hours of test dataset of the C����� V���� dataset for 5 languages
(English, Arabic, Chinese, German, and Spanish). We run inference
on our C�������� ����� �������� with one P100 GPU for the
source and one K80 GPU for the target. To evaluate the scalability of

Table 5: Optimal con�guration discovered by di�erent baselines. The con�guration options are ranked in descending order based on their
average causal e�ect (ACE) value on the performance objective, i.e., Latency.

Con�guration Option S��� U������ R��T�����/��ML R��T��� C���� ACE Optimal (Source) Optimal (Target) Default (Target)
cpu_frequency 1.3 1.6 1.6 1.6 2.0 0.19 1.4 2.0 1.1
vm.dirty_ratio 20 5 20 5 5 0.13 10 5 50
vm.swappiness 60 60 60 60 60 0.11 30 60 30
gpu_frequency 1.3 1.3 1.3 1.3 1.3 0.08 1.3 1.3 1.1
num_cores 3 4 3 4 4 0.06 3 4 2

memory_growth 0.5 0.9 0.5 0.9 -1 0.04 0.5 -1 0.5
emc_frequency 1.1 1.3 1.3 1.1 1.3 0.009 1.1 1.3 0.8
drop_caches 0 0 0 0 0 0.008 0 0 1

scheduler_policy NOOP NOOP CFP NOOP NOOP 0.001 NOOP NOOP CFP
vm.vfs_cache_pressure 10 50 10 10 10 0.001 10 10 50

vm.dirty_bytes 30 60 60 30 60 0.0009 30 30 60
kernel.sched_rt_runtime_us 500000 500000 500000 500000 950000 0.0009 500000 9500000 500000

logical_devices 1 1 0 1 1 0.0008 1 1 0
kernel.sched_child_runs_first 0 0 0 0 0 0.0006 0 0 1

Latency 22s 15s 14s 13s 8s 7s 8s 48s
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Figure 14: C���� achieves higher throughput when di�erent severity of environmental changes happen in deployment.
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Figure 15: (a) Both approaches �nd better con�gurations when
more samples are used in the source. Compared with R��T���, the
optimal con�guration found by C���� has lower minimum latency.
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Figure 16: As the number of con�guration options and system
events increases, the causal graph discovery time (a) and total time
per iteration (b) increase sub-linearly. Here, we do not include the
time taken to measure a con�guration in the optimization loop.
our approach to colossal con�guration space [47]. In particular, we
increase the number of variables from 4 to 100 and determine the
discovery time and total time for each iteration using 300 samples
in the target. Figure 16 indicates that the discovery time and time
per iteration increase sub-linearly. Therefore, C���� is scalable to
a large number of con�guration options and system events. The
scalability of C���� can be attributed to the sparsity of the causal
graph, which leads to a small exploration set considered for the
acquisition function.

8 Additional Related Work
Performance optimization in con�gurable systems. BO-

based optimization methods discover the best con�guration suited
for a particular application and platform [44] to streamline com-
piler autotuning [7]. SCOPE [37] improves system performance
and lowers safety constraint breaches by gathering system activity

and switching from resource to execution space for exploration.
����� [15] uses prediction-based early termination of sample col-
lection by censored regression. Siegmund et al. [54] proposed a
performance-in�uence model for con�gurable systems to under-
stand the in�uence of con�guration options on system performance
usingmachine learning and sampling heuristics. Nevertheless, these
techniques are platform-speci�c and unsuitable when a distribution
shift occurs due to environmental changes. In comparison, C����
tackles the shift by transferring causal knowledge.
Transfer learning for performance modeling. It is possible to
expedite the optimization process by transferring performance be-
havior knowledge from one environment to another. However, it is
essential to identify which knowledge is necessary to be transferred
to reach this aim. Jamshidi et al. [31] showed that when the envi-
ronment changes are small, knowledge for forecasting performance
can be transferred, while only knowledge for e�cient sampling can
be transferred when the environment changes are severe. Krishna
et al. [39]determined the most relevant source of historical data to
optimize performance modeling. Valov et al. [57] proposed a novel
method for approximating and transferring the Pareto frontiers
of optimal con�gurations across di�erent hardware environments.
Ballesteros et al. [5] proposed a transfer learning dynamic evo-
lutionary algorithm to generate e�ective run-time quasi-optimal
con�gurations of Dynamic Software Product Lines. All these tech-
niques incorporate transfer learning based on correlational statistics
(ML-based). However, Section 2.1 shows that ML-based models are
prone to capturing spurious correlations. In comparison, C����
makes use of causal-based models, which identify invariant features
despite environmental �uctuations.
Usage of causal analysis in con�gurable systems. Causal anal-
ysis has been used for various debugging and optimization tasks
in con�gurable systems. Fariha et al. [17] proposed AID which
intervenes through fault injection to pinpoint the root cause of
intermittent failures in the software. Johnson et al. [36] proposed
Causal Testing to analyze and �x software bugs by identifying a set
of executions containing important causal information. Dubsla� et
al. [16] proposed a method to compute feature causes e�ectively
and leveraged them to facilitate root cause identi�cation and feature
e�ect/interaction estimation. The causality analysis in these works
is solely on one environment. In contrast, our studied problem in-
volves two environments (source and target) e�ciently transferring
the causal knowledge from source to target.
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Table 6: Comparison of computation time in seconds required per
iteration for di�erent baselines compared to C����. Lower is better.

Method Model Update Con�guration Total
Time Recommendation Time Time

S��� 5.6 9.2 58.1
����� 8.1 9.2 60.3

U������ 11.5 11.3 65.4
R��T�����/��ML 8.3 9.2 61.3

R��T��� 9.7 9.7 63.4
C���� 12.7 14.4 71.6

9 Limitations
Causal graph error. Causal discovery is an NP-hard problem [9].
Thus, it is possible that the found causal graphs are not ground-truth
causal graphs and do not always re�ect the true causal relationship
among variables. However, as shown in many previous works [27,
16], such causal graphs can still be leveraged to achieve better
performance than ML-based approaches on system optimization
and debugging tasks as they avoid capturing spurious correlations.
Noisy Measurements. The system performance measurements
are noisy and can a�ect the results. To mitigate this, we take each
con�guration’s median of 5 runs.
Longer model computational time. Due to using two CGPs, the
computational time of C���� is higher than the baseline methods.
For example, on average, C���� takes 27.1s per iteration versus
19.4s per iteration taken by R��T��� (see Table 6 for detailed re-
sults). However, this time is usually negligible compared to evalu-
ation time (44s in our experiments). Besides, when the modeling
time is included, C���� also outperforms the baseline methods.

10 Conclusion
The goal of performance optimization of software systems is to

minimize the number of queries required to accurately optimize a
target black-box function in the production, given access to o�ine
performance evaluations from the source environment and a signif-
icantly small number of performance evaluations from the target
environment. When the environment changes, existing ML-based
optimization methods tend to be sub-optimal since they are vulner-
able to spurious correlations between con�guration variables and
the optimization performance goals (e.g., latency and energy). In
this work, we propose C����, an algorithm that overcomes this
limitation of existing ML-based optimization methods by querying
data based on a combination of acquisition signals derived from
training two Causal Gaussian Processes (CGPs): a cold-CGP operat-
ing directly in the input domain trained using the target data and a
warm-CGP that operates in the feature space of a causal graphical
model pre-trained using the source data. Such a decomposition can
dynamically control the reliability of information derived from the
online and o�ine data and the use of CGPs helps avoid captur-
ing spurious correlations. Empirically, we demonstrate signi�cant
performance improvements of C���� over existing performance
optimization on real-world systems.
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A Appendix.

A.1 De�nitions and Background
Con�guration Space O. Let O8 indicate the 8C⌘ con�guration
option of a system, which can be set to a range of di�erent values
(e.g., categorical, boolean, and numerical). The con�guration space
is a Cartesian product of all options O = ⇡><(O1) ⇥ ...⇥⇡><(O3 ),
where d is the number of options. A con�guration > is then a
member of the con�guration space O in which all options are set to
a given value within the range of permitted values for that option.
Environment Space E.We describe an environment 4 drawn from
a given environment space E, which consists of possible combina-
tions of hardware, workload, software, and deployment topology.
Causal Performance Model G. A causal performance model
(CPM), denoted by G, is an acyclic-directed mixed graph (ADMG)
that provides the functional dependencies (e.g., how variations in
one or multiple variables determine variations in other variables)
between con�guration options, system events, and performance ob-
jectives. While interpreting a CPM, we view the nodes as variables
and the arrows as causal connections.
Observation. In the observational formulation, we measure the
distribution of an outcome variable (e.g., latency Y) given that we
observe another variable (e.g., cpu frequency O8 for 1  8  3)
taking a certain value >8 (e.g., O8 = >8 ), denoted by %A (Y | O8 = >8 ).
Intervention. The interventional inference tackles a harder task of
estimating the e�ects of deliberate actions. For example, we mea-
sure how the distribution of an outcome (e.g., latency Y) would
change if we (arti�cially) intervened during the data gathering pro-
cess by forcing the variable cpu frequency O8 to a certain value
>8 , but otherwise retain the other variables (e.g., dirty ratio) as is.
We can estimate the outcome of the arti�cial intervention by mod-
ifying the CPM to re�ect our intervention and applying Pearl’s
do-calculus [49], which is denoted by %A (Y | 3> (O8 = >8 )). Unlike
observations, there is a structural change in CPM due to interven-
tion that goes along with a change in a probability distribution over
the variables.
Bayesian Optimization. Bayesian Optimization (BO) is an e�-
cient framework to solve global optimization problems using black-
box evaluations of expensive performance objectives Y. A typical
BO approach consists of two main elements: the surrogate model
and the acquisition function. The surrogate models are trained
with a small number of con�guration measurements and are used
to predict the objective functions value Ŷ = 5 (>) using predic-
tive mean ` (>) and uncertainty f (>) for con�gurations > 2 O. A
common practice is to use Gaussian processes (GPs) as surrogate
models where the GP distribution over 5 (>) is fully speci�ed by its
mean function, its mean function ` (>), and its covariance function
:2 (>,>0). The kernel or covariance function :2 captures the regu-
larity in the form of the correlation of the marginal distributions
5 (>) and 5 (>0). After the surrogate model outputs predictive mean
and uncertainty for the unseen con�gurations, C���� needs an
acquisition function to select the best con�guration to sample. A
good acquisition function should balance the trade-o�s between
exploration and exploitation.

A.2 Additional Details for Evaluation
Tables 7 to 16 and Figures 18 to 21.

Table 7: Prediction errors in each environment.

Environment Prediction Error (%)
GPR RFR CGPR

TX1 11.2 12.8 9.2
TX2 10.7 12.2 9.1
Xavier 13.2 12.4 8.8

Table 8: Hardware con�guration options.

Con�guration Options Option Values/Range
num_cores 1 - 4
cpu_frequency 0.3 - 2.0 (GHz)
gpu_frequency 0.1 - 1.3 (GHz)
emc_frequency 0.1 - 1.8 (GHz)

Table 9: Linux OS/Kernel con�guration options.

Con�guration Options Option Values/Range
vm.vfs_cache_pressure 1, 100, 500
vm.swappiness 10, 60, 90
vm.dirty_bytes 30, 60
vm.dirty_background_ratio 10, 80
vm.dirty_background_bytes 30, 60
vm.dirty_ratio 5, 10, 20, 50
vm.nr_hugepages 0, 1, 2
vm.overcommit_ratio 50, 80
vm.overcommit_memory 0, 2
vm.overcommit_hugepages 0, 1, 2
kernel.cpu_time_max_percent 10 - 100
kernel.max_pids 32768, 65536
kernel.numa_balancing 0, 1
kernel.sched_latency_ns 24000000, 48000000
kernel.sched_nr_migrate 32, 64, 128
kernel.sched_rt_period_us 1000000, 2000000
kernel.sched_rt_runtime_us 500000, 950000
kernel.sched_time_avg_ms 1000, 2000
kernel.sched_child_runs_first 0, 1
swap_memory 1, 2, 3, 4 (GB)
scheduler.policy CFP, NOOP
drop_caches 0, 1, 2, 3

Table 10: Con�guration options inM����� O����� D�����
����, and S����� R���������� software system.

Con�guration Options Option Values/Range
memory_growth -1, 0.5, 0.9
logical_devices 0, 1
inter_op_parallelism_threads 1, num cpus
intra_op_parallelism_threads 1, num cpus

A.3 RQ1 Additional Results
Figures 22 to 25.

A.4 RQ2 Additional Results
Figure 26.
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Table 11: Con�guration options in NLP software system.

Con�guration Options Option Values/Range
precision 8,16
distributed_backend ddp, dp
num_workers 0, num gpus, 4⇥ num gpus

Table 12: D��������� software con�guration options.

Component Con�guration Options Option Values/Range
CRF 13, 18, 24, 30
bitrate 1000, 2000, 2800, 5000
bu�er_size 6000, 8000, 20000

Decoder presets ultrafast, very fast, faster
medium, slower

maximum_rate 600k, 1000k
refresh OFF, ON
batch_size 0 - 30
batched_push_timeout 0 - 20
num_surfaces_per_rame 1, 2, 3, 4

Stream Mux enable_padding 0, 1
bu�er_pool_size 1 - 26
sync_inputs 0, 1
nvbuf_memory_type 0, 1, 2, 3
net_scale_factor 0.01 - 10
batch_size 1 - 60
interval 1 - 20
o�set 0, 1

Nvinfer process_mode 0, 1
use_dla_core 0, 1
enable_dla 0, 1
enable_dbscan 0, 1
secondary_reinfer_interval 0 - 20
maintain_aspect_ratio 0, 1
iou_threshold 0 - 60
enable_batch_process 0, 1

Nvtracker enable_past_frame 0, 1
compute_hw 0, 1, 2, 3, 4
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Figure 17: Experimental setup when hardware changes from
X����� in the source to TX2 and TX1 in the target, separately,
for M�P��� O����� D�������� pipeline.

Table 13: C�������� con�guration options.

Con�guration Options Option Values/Range
concurrent_writes 32, 128, 512
file_cache_size 256, 512, 2048
memtable_cleanup 0.1, 0.3, 0.6
concurrent_compact 0.1, 0.3, 0.6
compaction_methods SizeTiered, LeveledCompaction
num_tokens 256, 512, 1024
concurrent_reads 32, 64, 128
replication_factor 1, 2, 3
memtable_heap_space 256, 1024, 2048
memtable_allocation heap, bu�ers
row_cache_size_in_mb 0, 1
sstable_open_interval 30, 50, 100
trickle_fsync 0, 1
inter_dc_stream 100, 200
key_cache_ssize 100, 200
stream_throughput 100, 200
row_cache_save 0, 1
column_index_size 16, 32, 64
compaction_throughput 16, 32, 64
memtable_o�heap_space 256, 1024, 2048
commitlog_segment 32, 64, 256
mem_flush_writers 1, 2, 3
index_summary 100, 150
Table 14: Performance system events and tracepoints.

System Events
context_switches
major_faults
minor_faults
migrations
scheduler_wait_time
scheduler_sleep_time
cycles
instructions
number_of_syscall_enter
number_of_syscall_exit
l1_dcache_load_misses
l1_dcache_loads
l1_dcache_stores
branch_loads
branch_loads_misses
branch_misses
cache_references
cache_misses
emulation_faults
Tracepoint Subsystems
Block
Scheduler
IRQ
ext4
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Table 15: Hyperparameters for DNNs used in C����.

Architecture Hyperparameters Option Values
num_filters_entry �ow 32
filter_size_entry_flow (3 ⇥ 3)
num_filters_middle_flow 64
filter_size_middle_flow (3 ⇥ 3)

R��N�� num_filters_exit_flow 728
filter_size_exit_flow (3 ⇥ 3)
batch_size 32
num_epochs 100
dropout 0.3
maximum_batch_size 16

B��� maximum_sequence_length 13
learning_rate 14�4
weight_decay 0.3
dropout 0.3
maximum_batch_size 16

D��������� maximum_sequence_length 32
learning_rate 14�4
num_epochs 10

Table 16: Hyperparameters for FCI used in C����.

Hyperparameters Value
depth -1
test_id �sher-z-test
maximum_path_length -1
complete_rule_set_used False
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Figure 18: Experimental setup when a software change takes
place from TinyBERT to BERT-Base in the target.
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Figure 19: Experimental setup for our experiments when
the deployment topology is changed from centralized to dis-
tributed in the target in the target using two X����� NX.
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Figure 20: Experimental setup when the type of workload is
di�erent with a C�������� database where the source uses
a R��� O��� workload where the target uses a B�������
and U����� H���� workload, separately.
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Figure 21: Experimental setup for di�erent severity of environmental changes. Low severity change scenario when only
hardware changes from X����� to X����� NX in the target (second �gure). We change the hardware and deployment topology
for the medium severity change scenario (third �gure). For high-severity environmental changes experiments, the primary
detector is changed from R��N���18 to R��N���50, the decoder is changed from �264 to �265 with a di�erent deployment
topology from the source distributed with two X����� NX hardware that is di�erent from the source as well (fourth �gure).
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Figure 22: E�ectiveness of C���� with J���� when hardware
changes in the deployment environment.
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Figure 23: E�ectiveness of C���� with J���� when software
changes in the deployment environment.
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Figure 24: E�ectiveness of C���� with J���� when workload
changes in the deployment environment.
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Figure 25: E�ectiveness of C���� with J���� when deployment
topology changes in the deployment environment.
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Figure 26: E�ectiveness of C���� when di�erent severity of envi-
ronmental changes happen in the deployment environment.
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