2306.07888v1 [cs.PF] 13 Jun 2023

.
.

arxiv

CAMEQO: A Causal Transfer Learning Approach for Performance
Optimization of Configurable Computer Systems

Md Shahriar Igbal Ziyuan Zhong Iftakhar Ahmad
University of South Carolina Columbia University University of South Carolina
USA USA USA
Baishakhi Ray Pooyan Jamshidi
Columbia University University of South Carolina
USA USA
Abstract NSV
50l o Optimal in Xavier |
Modern computer systems are highly-configurable, with hun- § Q"QP‘:”““ in X2
dreds of configuration options interacting, resulting in enormous S : i
configuration space. As a result, optimizing performance goals (e.g., g a0 :
latency) in such systems is challenging. Worse, owing to evolving < 0 _—
application requirements and user specifications, these systems face =
frequent uncertainties in their environments (e.g., hardware and wor :)]

workload change), making performance optimization even more
challenging. Recently, transfer learning has been applied to address
this problem by reusing knowledge from the offline configuration
measurements of an old environment, aka, source to a new envi-
ronment, aka, target. These approaches typically rely on predictive
machine learning (ML) models to guide the search for finding in-
terventions to optimize performance. However, previous empirical
research showed that statistical models might perform poorly when
the deployment environment changes because the independent and
identically distributed (i.i.d.) assumption no longer holds. To ad-
dress this issue, we propose CAMEO—a method that sidesteps these
limitations by identifying invariant causal predictors under envi-
ronmental changes, enabling the optimization process to operate
on a reduced search space, leading to faster system performance
optimization. We demonstrate significant performance improve-
ments over the state-of-the-art optimization methods on five highly
configurable computer systems, including three MLPERF deep learn-
ing benchmark systems, a video analytics pipeline, and a database
system, and studied the effectiveness in design explorations with
different varieties and severity of environmental changes and show
the scalability of our approach to colossal configuration spaces.

ACM Reference Format:

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan
Jamshidi. 2023. CAMEO: A Causal Transfer Learning Approach for Per-
formance Optimization of Configurable Computer Systems. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion email (Conference acronym "XX). ACM, New York, NY, USA, 18 pages.
https://doi.org/XXXXXXX XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference acronym XX, June 03-05, 2023, Woodstock, NY

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

10 20 30 40 50
Latency (Xavier)

Figure 1: The optimal configuration for MLPERF OBJECT DETEC-
TION pipeline deployed on TX2 does not remain optimal on Xavier.

1 Introduction

Modern computer systems are continuously deployed in hetero-
geneous environments (e.g., Cloud, FPGA, SoCs) and are highly con-
figurable across the software/hardware stack [28, 48]. In such highly
configurable systems, optimizing performance indicators, e.g., la-
tency and energy, is crucial for faster data processing, better user
satisfaction, and lower application maintenance cost [61, 15]. One
possible way to achieve these goals is to tune the systems with con-
figuration options across the stack, such as cpu frequency, swappi-
ness, and memory growth, to achieve optimal performance [65, 6, 10].

Finding an optimal configuration in a highly configurable system,
however, is challenging [29, 62, 21, 60, 2, 8]: (i) Each component
in the system stack, i.e., software, hardware, OS, etc., has many
configuration options that interact with each other, giving rise to
combinatorial configuration space, (ii) estimating the effect of con-
figurations on performance is expensive as one needs to collect
run-time behavior of the system for each configuration, and (iii)
unknown constraints exist among configuration options, giving
rise to many invalid configurations. Moreover, to meet growing
user requirements and reduce service management costs, the under-
lying systems often undergo environmental changes, i.e., hardware
updates, deployment topology change, etc. [14]. Therefore, perfor-
mance optimization of such evolving systems becomes even more
challenging as there is no guarantee that the optimal configura-
tions found in one environment will remain optimal in a different
environment [30, 32, 29]1.

To address these challenges, in real-world deployment scenar-
ios, developers often use a staging (development) environment—a
miniature of a production environment, for testing and debugging.

lwe define an environment as a combination of hardware, workload, software, and
deployment topology

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Table 1: Comparison of CAMEO with state-of-the-art system perfor-
mance optimization approaches.

Feature SmMac ceLLO UNICORN RESTUNE-w/0-ML RESTUNE CAMEO

Detects Spurious Features X
Handles Distribution Shift X
Suitable for Benchmarks v

X

X

Knowledge Reuse
Constrained Optimization

N> N\ %%
> X N\ %X N\
N X X X X
AN NN
AN NN NN

Developers collect many experimentation and performance eval-
uations in staging environments (hereafter, we call them source
environments) to understand the performance behavior of the sys-
tem (what configurations potentially produce performance anom-
alies, what configurations produce stable performance, or where
good configurations lie). Developers then use that knowledge in
the target production settings for downstream performance opti-
mizations or debugging. However, in most cases, the result from the
staging environment is completely different from the result from
production, resulting in a misleading or even wrong indication
about the configurations that produce optimal performance. These
differences in the results mainly occur due to the hardware gap or
workload differences between the development environment and
the production one. For example, the workload of an ML system
may surge, and as a result, the batch size behind the model server
needs to increase to sustain the latency requirement; however, due
to the different memory hierarchy and CPU cores between the
source and the target environments, the optimal setting for inter-
op parallelism of the model server would be vastly different in each
environment [52].

Existing works and gap. Performance Optimization in Config-
urable Systems. Several approaches have been proposed for perfor-
mance optimization of configurable systems, e.g., Bayesian opti-
mization (BO) [25, 66, 64, 4, 44, 29, 32], BO with regression [15],
prediction models [7], search space modification [24], online few-
shot learning [6], and uniform random sampling and random search
algorithms [47]. However, using these approaches in a production
environment requires many queries, which are often too expensive
to collect or maybe infeasible to perform. The optimal configuration
found by these methods in a source environment is also subopti-
mal for the targets, as the optimal configuration determined in the
source environment usually no longer remains optimal in the other
(see Figure 1 for an example).

Transfer Learning for Performance Analysis. In real-world deploy-
ment scenarios, developers typically have access to performance
evaluations of different configurations from a staging environ-
ment. Exploiting such additional information using transfer learn-
ing can result in efficient optimization, as demonstrated by recent
work [32, 39, 26, 43, 40, 33]. For example, searching for the opti-
mized performance in the target setting can leverage the summary
statistics of the models built using source performances [67]. How-
ever, each environmental change can potentially incur a distribution
shift. The ML models used in these transfer learning methods are
vulnerable to spurious correlations, which do not hold across dis-
tribution shifts and result in inferior performance [68, 45, 27] (see
Section 2.1 for an example).

Usage of Causal Analysis in Configurable Systems. To address the
problem of spurious correlations, recent work has leveraged causal

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

inference [27, 16, 53] to build a causal performance model? that
captures the dependencies (a.k.a. causal structures) among configu-
ration options, system events, and performance objectives. How-
ever, the causal graphs in the source and target can still have some
differences (see Figure 3 for an example). Recent work [27] shows
that the source causal model could be reused for performance de-
bugging in the target environment; however, further measurements
are needed for performance model learning and optimization.

In summary, all these existing works are suboptimal for perfor-

mance optimization when the environment changes because the
knowledge extracted by these methods from the source (i.e., opti-
mal configuration) has changed and cannot be directly applied to
the target, the model (i.e., ML-based transfer learning model) may
capture spurious correlations, or the model (i.e., causal model) is
mostly stable but need further adaptation in the target environment
(see Table 1).
Our approach. An ideal optimization approach should leverage the
knowledge derived from the source, which is a close replica of the
target environment with a cheaper experimentation cost. Our key
insight is, using causal reasoning, we should be able to identify the
non-spurious invariances across environments that truly impact
the performance behavior of the system. These invariances can
then be transferred to the target environment for performance
optimization tasks, thus reducing the need for many observational
data in the production environment. Therefore, we will reduce the
cost of optimization tasks without compromising accuracy.

To this end, we propose CaAmMEO (Causal Multi Environment
Optimization), a causal transfer-based optimization algorithm that
aims to overcome the limitation of prior approaches. Our approach
builds on top of two previous works, JUMBO (a multi-task BO
method) [19] and CBO (a causal BO method) [3]. A typical BO
approach consists of two main elements: the surrogate model and
the acquisition function. The surrogate model tries to predict the
performance objective when given a configuration, and the acqui-
sition function assigns a score to each configuration and chooses
the one with the highest score to query for the next iteration. In
CaMEO, we first build two causal performance models to learn
the dependency among configuration options, system events, and
performance objectives for each environment using the previous
performance measurements from the source environment and a
considerably smaller number of measurements from the target envi-
ronment. After that, we simultaneously train two Causal Gaussian
Processes (CGPs) (which leverage the causal performance models
when estimating means and variances) as two surrogate models:
a warm CGP in the source and a cold CGP in the target. The ac-
quisition function combines the individual acquisition functions
of both CGPs to leverage knowledge from both source and target.
This way of combining individual acquisition functions of both
CGPs allows to only to rely on the core features from the source
environment that remain stable across environments and update
belief about the environment specific features in the target, making
the optimization more effective.

%A causal performance model is an acyclic-directed mixed graph, with nodes being
variables and arrows being causal connections. It represents the dependencies (a.k.a.
causal structures) among configuration options, system events, and performance
objectives.

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems ~ Conference acronym XX, June 03-05, 2023, Woodstock, NY

[oo 1 Swappiness'

=0 201
2 2 e
g to B latency
< <
—2 =2

oL 0 |

0.25 0.5
IPC
(a) source (TX2) (b) target (Xavier) (c) true relationship

Figure 2: (a)-(b) The relationship between IPC and latency reverse
from source (TX2) to target (XaviER) while the relationship between
swappiness (the values are denoted as colors) and latency stays in-
variant. (c) The true causal relationship among the relevant variables.

Evaluation. We evaluated CAMEO in terms of its effectiveness, sen-

sitivity, and scalability, and compared it with four state-of-the-art

performance optimization techniques (SMAc [25], RESTUNE-W/0-

ML and ResTUNE [67], ceLLO [15], and UNICORN [27]) using five

real-world highly configurable systems, including three MLPERF

pipelines (object detection, natural language processing, and speech
recognition), a video analytics pipeline, and a database system, de-
ployed on edge and cloud under different environmental changes.

Our results indicate that CAMEO improves latency by 3.7X and

energy by 5.6X on average than the best baseline optimization

approach, RESTUNE.

Contributions. Our contributions are the following:

e We propose CAMEO, a novel causal transfer-based approach that
allows faster optimization of software systems when the envi-
ronment changes. To the best of our knowledge, this is the first
approach that addresses the performance optimization of config-
urable systems using causal transfer learning.

e We conduct a comprehensive evaluation of CAMEO by comparing
it with state-of-the-art optimization methods on five real-world
highly configurable systems under a range of different environ-
mental changes and studied the effectiveness in design explo-
rations with different varieties and severity of environmental
changes and show the scalability of our approach to colossal
configuration spaces. The artifacts and supplementary materials
can be found at https://github.com/softsys4ai/ CAMEO.

2 Motivation and Insights

In this section, we motivate our approach by illustrating why
causal reasoning can contribute to more effective (faster and less
costly) optimization of system performance. In particular, we fo-
cus on how the properties of the causal performance models can
be leveraged across environments. For this purpose, we used the
MLPERF OBJECT DETECTION [50] pipeline as a part of MLPerf In-
ference Benchmark® by following the benchmark rules*, with the
following setup: Model: Resnet50-v1.5; Test Scenario: Offline; Met-
ric: inference latency; Workload: 5000 ImageNet samples; workload
generator: Mlperf Load Generator; Source Hardware: Jetson TX2;
Target Hardware: Jetson Xavier and TX1. For better control, we

3https://mlcommons.org/en/inference-edge-30/
4https://github.com/mlcommons/inference_policies/blob/master/inference_rules.
adoc

cpu utilization
sched sleep
11c stores

number of cores
migrations

logical devices
memory growth

swappiness
context switch

cache miss

cache pressure
°C

gpu frequency
emc frequency
policy

dirty ratio
dirty bg ratio
sched runtime
instructions
syscalls enter
minor faults
load misses

M cpu frequency
cyles

instructions
syscalls enter
minor faults [
context switch E Em] " |
cache miss W T]
| | | | |
cycles [| | | | H N
load misses] EEE N]

cpu utilization

|
sched sleep EE EEEEE |
1lc stores
migrations

latency i m M u u u

Figure 3: There is a significant overlap between the causal structures
(the common edges are represented as blue squares) developed in
different environments (e.g., Jetson TX2 and Xavier). Some edges
unique in the source (green squares) or target (red squares) also exist.

limit the configuration space to 28 options across the stack—4 hard-
ware options (e.g., cpu cores), 22 OS options (e.g., dirty ratio), and
2 compiler options (e.g., allow memory). We sampled 2000 random
configurations and measured inference latency in each environ-
ment. We also collected performance counters and system events
statistics using Linux perf profiler>.

2.1 Why performance optimization using

causal reasoning is more effective?

In order to deploy a configurable computer system such as
MLPERF OBJECT DETECTION in a new environment with low la-
tency and energy consumption, the dominant approach is to train
a performance model using a limited number of samples and use
the model for predicting performance for unmeasured configura-
tions and select the configuration with the optimal performance. To
show how spurious features could mislead performance optimiza-
tion, we investigate the impact of confounders and how they make
it difficult for an ML model to determine the accurate relationship
between configuration options and performance objectives. We
perform a sandbox experiment where we carefully tune swappi-
ness ® and dirty ratio 7 both in source and target, while leaving all
other options at their default values. Here, the observational data
collected from the experiment indicates that as IPC & (one of the
system events) increases, latency increases, which is a spurious
proportional relationship. Relying on spurious features (IPC in this
example) can lead to poor performance predictions (as one might try
to reduce IPC and expect lower latency but end up getting higher
latency) when the environment changes as they are susceptible
to correlation shifts—i.e., the direction of correlation may change
across environments. As shown in Figure 2(a)-(b), a correlation shift
happens in this sandbox experiment as IPC is positively correlated
with latency in the source but negatively correlated in the target.

To investigate the reason behind the correlation shift, we group
the data based on their swappiness (50% and 80%, respectively)
and observe that the correlation between swappiness and latency

Shttps://perf.wikikernel.org/

®swappiness is the rate at which the kernel moves pages into and out of the physical
memory. The higher the value, the more aggressive the kernel will be in moving the
pages out of physical memory to the swap memory.

7dirty ratio is the value that represents the percentage of physical memory that can
consume dirty pages before all processes must write dirty buffers back to the disk.
81PC represents instruction per cycle, which is the average number of instructions
executed for each clock cycle.

https://github.com/softsys4ai/CAMEO
https://mlcommons.org/en/inference-edge-30/
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc
https://perf.wiki.kernel.org/

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Table 2: ML-based regressors (GPR, RFR) have higher generalization
error compared to causal-based regressor (CGPR).

Source Target KL Div. Prediction Error (%)
GPR RFR CGPR
TX2 Xavier 476 224 25.6 11.2
TX2 X1 519 27.6 232 11.4

remains the same (larger swappiness implies higher latency in both
environments) whereas the correlation between swappiness and
IPC reverses (from proportional to inverse proportional) as shown
in Figure 2(a)-(b). Figure 2(c) shows the causal structure where
swappiness is a common cause of both IPC and latency. swappiness
should be considered for latency since it remains invariant across
environments. In contrast, the relationship between IPC and la-
tency is environment dependent, and their correlation can change
when another confounder variable, dirty ratio, is different in source
and target. In our example, since the source has 4x lower physical
memory than the target, the allocated memory for the dirty pages
becomes filled sooner and must be returned to the disk. As a result,
the source will have higher IPC for a lower value of swappiness
as the dirty pages will be flushed before the limit for swappiness
is reached. However, the application is not making any forward
progress here, resulting in increased latency. In the target (due
to larger memory), the dirty pages might never become full, and
only swappiness would cause the IPC to be positively correlated
to latency. The example in Figure 2 shows that the casual model
can capture the data generation process better as it only relies on
the invariant causal mechanisms (swappiness for latency) and can
remove spurious correlations (IPC for latency) that are specific to
a particular environment. Therefore, causal models may suffice to
predict the consequences of interventions (what if scenarios) on
variables to particular values for effective search during optimiza-
tion and allow for better explorations in limited budget scenarios.

To show the benefits of correctly identifying the invariant fea-
tures, we train different ML-based regressors, e.g., Gaussian Process
Regressor (GPR) and Random Forest Regressor (RFR), using data
collected for the sandbox system deployed in TX2 and determined
their prediction error in TX1 and XAVIER (shown in Table 2). Here,
we observe that the ML-based regressors have considerably higher
errors in the target environment despite low source errors. The
prediction error increases further as the distributions become more
dissimilar (indicated by a higher KL-divergence value). In contrast,
the causal approach, Causal Gaussian Process Regressor (CGPR),
has a considerably lower error and remains stable as the degree of
distribution shift increases.

Takeaway 1 Causal models generalize better in performance
prediction tasks across environments by distinguishing in-
variant from spurious features.

2.2 Learning from Causal Structural Properties

in Various Environments
As we have established that a causal model can be reliably used
for performance predictions in new environments, we next study
the properties of the causal graph that can be exploited for faster

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

wa g
23 ° o T g
BemEsa § So 8 8 3
o8 as 3 SEulas o
HE80%E B oBHdAESH ol e
58588888 SHE2°254 an88E
5558 °bel HFwiBas’a 80588
g P2E NRELEANsE AdW 8
R S S] EEC 5B
o g - N N RSP E0828 857820
~+~_Pruned BRE5SE8s A CBREEEER SRS
—_ Unpruned 8B5S A28 C8R3CRARES AR AE
= 50 —s— Unprunec
= instructions [l
g syscalls enter]
g aof R minor faults u
=z context switch [| [] |] H BN
= sl | cache miss [T [
g IPC W u u
15 cycles
S w0l | ¥ L] | H n
g 2 load misses u EEE u]
= cpu utilization]
0}, . L4 ECHEQRETEE] EEEE H n
0 20 40 LS F |
I . migrations
f,Hl(d‘rlUn latency m mm ™ n ™
a) (b)

Figure 4: (a) Pruning edges with a Markov blanket identifies the
optimal configuration faster. (b) Combining the top K nodes’ Markov
blankets eliminates the wrong biases (shown as black squares).

optimization. We build a causal graph using a causal structure
discovery algorithm [56] in source and target, respectively, and
compare them. As shown in Figure 3, both causal graphs are sparse
(the white squares indicate no dependency relationship exists) and
share a significant overlap (the blue squares indicate the edges
present in both). Therefore, a causal model developed in one envi-
ronment can be leveraged in another as prior knowledge. However,
reusing the causal graph entirely might induce some wrong biases
as the causal graphs in the two environments are not identical
(the green and red squares indicate the edges present uniquely in
the source and target, respectively). We must discover the target’s
new causal connections (indicated by the red squares) based on the
observation. Since the number of edges that must be discovered is
small, this can be easily done with a small number of observational
samples from the target environment.

Takeaway 2 A performance optimization approach should
locate high-quality observational samples in the target, si-
multaneously leveraging the source knowledge to guide the
search.

2.3 Learning to Intervene based on Causal
Structure

We need to remove the edges unique to the source. The removal
operation can be accomplished by performing interventions that
estimate the effects of deliberate actions. For example, we measure
how the distribution of an outcome (e.g., latency V) would change
if we intervened during the data gathering process by forcing the
variable cpu frequency O; to a certain value o; while retaining the
other variables as is. We can estimate the outcome of the interven-
tion by modifying the CPM to reflect our intervention and applying
Pearl’s do-calculus [49], which is denoted by Pr(Y | do(O; = 0;)).
However, since many configurations need to be measured, it is not
feasible to perform interventions to estimate the existence of every
edge. Instead, we can significantly reduce the number of configura-
tions by avoiding the interventions on nodes with limited causal
effects on the performance objective. For this purpose, we rank
the causal effects of all the existing nodes on latency and observe
that only one source-specific edge (policy) is among the top 10
most influential nodes. Thus, we can select the top K nodes with

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems ~ Conference acronym XX, June 03-05, 2023, Woodstock, NY

the highest causal effects and combine the Markov blanket ° of
them, which would eliminate all the nodes that have lower causal
effects. In our example, if we select K=6 with Markov blankets then
the wrong biases, migrations->syscalls enter and migrations->llc
stores (the nodes marked by black in Figure 4(b)), are eliminated.
Figure 4(a) shows that pruning the edges helps to reach the optimal
value 19% faster. Therefore, we require an approach that relies on
intervening only on the top K nodes based on source knowledge in the
target environment.

Takeaway 3 Employing rich knowledge in a causal perfor-
mance model, we can intervene on specific configurations
to learn the most about the underlying causal structure and
be able to gather the most relevant data in a limited budget
scheme.

3 CaMEO Design

In this section, we present CAMEO—a framework for performance
optimization of highly configurable computer systems.

3.1 Problem Formulation

Let us consider a highly configurable system of interest with con-
figuration space O, system events and performance counters space
C, and a performance objective Y. Denote O; to be the ith configu-
ration option of a system, which can be set to a range of different
values (e.g., categorical, Boolean, and numerical). The configura-
tion space is a Cartesian product of all hardware, software, and
application-specific options: O = Domain(O1) X ... X Domain(Oy),
where d is the number of options. Configuration options and system
events are jointly represented as a vector X = (O, C). We assume
that in each environment e € & (a combination of hardware, work-
load, software, and deployment topology), the variables (Xe, Ye)
have a joint distribution #,. In the source environment eg, there
are n independent and identically distributed (i.i.d) observations. In
the target environment e;, m (< n) observations can be collected
within a given budget 8. The task is to find a near-optimal con-
figuration, o*, with a fixed measurement budget, f5, in the target
environment, et, that results in Pareto-optimal performance:

0" = argmin, ¢ oY, (0), 1

where O represents the configuration space, Y is a set of perfor-
mance metrics measured in the target environment e;.

3.2 CamEeo0 Overview

CAMEO is a causal transfer learning optimization algorithm that
enables developers and users of highly configurable computer sys-
tems to optimize performance objectives such as latency, energy,
and throughput when the deployment environment changes. Fig-
ure 5 illustrates the overall design of our approach. CaAMEO works
in two phases: (i) knowledge extraction phase, and (ii) knowledge
update phase. In the knowledge extraction phase, CAMEO first deter-
mines the user requirements using a query engine. Then, it learns
a causal performance model Gs using the cheaper offline perfor-
mance measurements Dg from the source environment eg, which is
later reused to obtain meaningful information that is shared with
the target environment e; for faster optimization. As performance

A Markov blanket of a node includes all its parents, children, and children’s parents.

evaluations in the target are expensive, this way of warm-starting
the optimization process by reusing the causal performance model
Gs enables us to navigate the configuration space more effectively
with less number of interventions in the target. However, rely-
ing solely on the source’s information is insufficient to effectively
optimize performance in the target due to the differences across
environments (as shown in Section 2.2). Therefore, in the knowl-
edge update phase, CAMEO employs an active learning mechanism
combining the source causal performance model Gs with a new
causal performance model G; collected from a small number of
samples, Dy, from the target environment.

Once the two causal performance models are constructed, we
simultaneously train two causal Gaussian processes (CGPs) as the
surrogate models—CGPyarm and CGPyq—to model performance
objective Y from Gs and Gt, respectively. The two CGPs operate on
different input spaces. CGPyarm works on a reduced configuration
space that is derived from Gs. In contrast, to ensure that any infor-
mation omitted in the source is not left undiscovered in the target,
CGP,14 works on the entire configuration space. We integrate the
posterior estimates from both CGPyarm and CGP.q to develop
an acquisition function « that can regulate the information from
two CGPs through a controlling variable A. The larger A is, we rely
more on the information in CGPyarm. Next, we evaluate our ac-
quisition function « for different configurations and select the one
for which the « value is maximum for observation or intervention.
The choice of observation and intervention for performance evalu-
ation is guided by an exploration coefficient €. Finally, we use the
newly evaluated configurations to update the causal performance
and surrogate models. We continue the active learning loop until
the stopping criterion is met (i.e., maximum budget f is exhausted
or convergence is attained). The pseudocode for our approach is
provided in Algorithm 1.

3.3 Knowledge Extraction Phase

We next describe the offline knowledge extraction phase.

User Query Translation A developer can use CAMEO to find the
optimal configurations optimizing a system’s performance objec-
tives in a target environment within a limited experimentation bud-
get . The developer can start the optimization process by querying
CaMEo with requests like "How to improve latency within 1 hour
or 50 samples” or "I want to find the configuration with minimum
energy for which latency is less than 20 seconds within 45 minutes?".
The query engine initially translates the user requests to determine
the allowable budget f, constraints ¢/, and the performance goal Y
to optimize. In the first query, the budget is 1 hour or 50 samples,
the performance objective is latency, and no constraints exist. In the
second query, the budget is 45 minutes, the performance objective
is energy, and the constraint is a latency of less than 20 seconds.

Learning Causal Performance Model We begin by building two
causal performance models: Gs and G using the offline perfor-
mance evaluation dataset D5 from the source with n configurations
and the performance dataset O; from the target with randomly
sampled m initial configurations, respectively (line 1). We use an
existing structure discovery algorithm fast causal inference (FCI) to
learn G and G that describes the causal relations among configu-
ration options O;, system events and performance counters C;, and

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Source Causal
Performance Model

Updated Source Causal
Performance Model

Source
Measurements Causal Structure
fidtiltebets b

m Discovery From D¢

Ds

Query 1. How to find the best
configuration with minimum
latency within 60 minutes?

Refine ¥ by
—_—

Eliminating Weak
Bias
!
gS
Target Causal
Performance Model

Knowledge Extraction

Phase cpu
Query 2. How to find the best freq
configuration with minimum Target
latency within 60 minutes for

Measurements
which the energy is less than the @ Causal Structure

50-th percentile?

1

Train Warm

D ———
CGP from &g 2

Train Cold L \ET
_ 5 -
CGP From &y /

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

Build CGPs Compute Acquisition Function

Warm CGP Posterior Warm Acquisition Function

Y > = Compute ayarm

-

CGPwarm Awarm

(I =) Xawarm

a

Knowledge Update
Phase

Combine both
And determine
Next configuration
]

S,
A

I AX acold
Cold Acquisition Function

Cold CGP Posterior

Compute agolg

[CGPgoig %cold

Measure

i SN
Discovery From Jt

Update with @4
Orvp Crax Ori1

Figure 5: Overview of CaAMEO

= =

fault 045

Compute ACE | Poiy | 026 | Determine k °*
015

0

F
il
N

rm | o0oos
cores

page }|Use IAMBS to combing
fault —
k Markov Blankets

Extract “
Markov
Blanket

Figure 6: Refining the causal performance model from the source
to eliminate unwanted information.

performance objectives Y. We select FCI as the causal structure dis-
covery algorithm because (i) it accommodates variables that belong
to various data types such as nominal, ordinal, and categorical data
common across the system stack, and (ii) it accommodates for the
existence of unobserved confounders [56, 46, 18]. This is crucial be-
cause we do not assume absolute knowledge of configuration space,
so there may be configurations we cannot intervene in or system
events we have not observed. FCI operates in three stages. First, we
construct a fully connected undirected graph where each variable
is connected to every other variable. Second, we use statistical in-
dependence tests (Fisher z-test for continuous variables and mutual
information for discrete variables) to prune away edges between
independent variables. Finally, we orient undirected edges using
prescribed edge orientation rules [56, 46, 18, 12, 11] to produce a
partial ancestral graph (or PAG). In addition to both directed and
undirected edges, a PAG also contains partially directed edges that
need to be resolved to generate an acyclic-directed mixed graph
(ADMQG), i.e., we must fully orient partially directed edges with the
correct edge orientation. This work uses an information theoretic
approach to automatically orient partially directed edges using the
LatentSearch algorithm [38] by entropic causal discovery.

Refining Causal Performance Model Now that we have con-
structed the causal performance models which rely on the invariant
features, we may be tempted to directly reuse source model G in

CGP Posterior

Actual Function GP Posterior

L0

08

0.0
0.00

075 100

dity ratio

Figure 7: The posterior of CGP relying on interventional distribu-
tion can capture the target function behavior better than GP.

the target to warm start the optimization process. However, since
some edges are specific to the source (as discussed in Section 2.2),
directly reusing Gs will bias the optimization in the target. To avoid
wasting the budget allocated for the online optimization procedure,
we attempt to minimize those biases as much as possible in this
offline phase. To do so, we transfer the Markov blanket (Mb) of the
top k nodes ranked based on their causal effects on the performance
objective to eliminate unwanted information. This is an important
step as we need to rely on the optimal core features that remain
invariant when a performance distribution shift happens to reason
better in the new environment. Theoretically, a node’s Mb is the
best solution to the feature selection problem for that node [34].
The variables in the Mb can be confidently employed as causally
informative features in the target because it provides a thorough
picture of the local causal structure around the variable. Initially,
we determine k using the method proposed in [22] (line 2). Then,
we extract the Mb of the k nodes to determine the final G that
will be reused in the subsequent phase (line 4) using the IAMBS
algorithm presented in [41]. The IAMBS algorithm is focused on
constructing a Mb for multiple variables (top k nodes). It operates
by determining whether the additivity property holds for Mb of
k variables, further, how to proceed if the additivity property is
violated by selectively performing conditional independence tests
using a growing and a shrinking phase [41].

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems ~ Conference acronym XX, June 03-05, 2023, Woodstock, NY

3.4 Knowledge Update Phase

In this phase, we exploit the knowledge gained from the earlier
phase to guide the search strategy for optimization using the three
components described below.

Build Causal Gaussian Processes. At this stage, we train two
surrogate models: CGPywarm and CGPq for the performance ob-
jective Y from Gs and G, respectively. For this purpose, we use
the mathematical formulation proposed in the CBO approach [3]
to build a CGP. Unlike GPs, CGPs represent the mean using in-
terventional estimates via do-calculus, which allows the surrogate
model to capture the behavior of the performance objective bet-
ter than GPs (as shown in Figure 7), particularly in areas where
observational data is not available. Therefore, we fit a prior on
f(o) = E[Y|do(O; = o;)] with mean and kernel function com-
puted via do-calculus separately for each CGP obtained from G
and G as the following:

fe(0) ~ GP(pie(0), ke, (0,0")) (2)
pte(0) = E[Y|do(O; = 0;)] (©)
kce (0,0") = krgF (o, 0/) + o'e(o)ge(o’)s 4

where 0, (0) = \/Ve(Y|do(O; = 0;)) with V, representing the vari-

ance estimated from the configuration measurements (Ds or D)
for a particular environment. kgpF is the radial basis function of the
kernel defined as krgp(0,0”) = exp(—%), where [is a hyper-
parameter. As a result, the shape of the posterior variance enables
a proper calculation of the uncertainties about the causal effects
(enabling identification of influential configuration options and
interactions). We extract the exploration set (ES) for each environ-
ment, guided by Gs and Gt, and compute the mean and uncertainty

estimates for configurations in the exploration set.

Compute Acquisition Function for Sampling. Denote ;. (0)
and a; (o) to be the single objective acquisition functions of the
two CGPs. For CAMEO, we choose to use the expected improvement
(EI) as the acquisition function [63] since EI has been demonstrated
to perform well for configuration search. EI selects the configuration
that would have the highest expected improvement with respect
to the current best interventional setting separately from e and et
across all configurations in the respective exploration set:

EIE(O) = Ep(y) [max(y - y*’ 0)]’ (5)

where y = E[Y|do(O; = 0;)] and y* is the optimal value ob-
served thus far. In our implementation, we rank the configurations
based on o, (0) scores and then select the ones with the highest
al 14(0) score. The acquisition function (line 10) is:

" (0) = A" (0)ag,4(0) + (1 = A" (0)) ttyyarm (0), (6)
where A" is an interpolation coefficient (line 8-9) that controls
the proportion of knowledge used from source and target and is
dependant on I, and the expected improvement of a configuration.
The above equation shows that A is 1; it would use the contribution
from a,,;4 and use ayyqrm when A is 0. The interpolation coefficient
A" is defined as the following:

A"(0) = L@y ~ warm (0) < L), ™
. is the optimal acquisition value obtained from o,
scores. The choice of I, is critical since it balances the knowledge

used from the source and target. We set [, to be 0.1, which shows
good empirical performance (as shown in Figure 15(b)). Intuitively,
the acquisition function should operate in such a way so that it uses
Qco1q for the configurations that are near the optimal points. Here,
the I, is an acquisition threshold hyper-parameter used to define
near optimal points w.r.t. ®yqrm. Therefore, configurations that
are nearer to the optimal points of ¢yyarm (configurations which
satisfy I, < 0.1) will provide higher expected improvement value
for e p14-

On the contrary, configurations that are further away from the
optimal points of @yarm (configurations which do not satisfy I, <
0.1) will have higher expected improvement value for a\yqrm. This
indicates that either such configurations contain options that have
some environment-specific behavior that is not captured or learned
correctly by the source causal model and the source causal model
needs to be updated.

Now, we find a configuration o™*! for which the a” value is
maximum for either observation or intervention (line 11). Obser-
vational data may be used to correctly predict the causal effects of
configuration options on the performance objective. On the other
hand, estimating consistent causal effects for values outside of the
observable range necessitates intervention. The developer must
identify the optimal combination of these operations to capitalize
on observational data while intervening in regions with higher un-
certainty. We adopt the e—greedy approach as in CBO to trade-off
exploration and exploitation, which is defined as the following:

Vol(H(Dy)) N

~ Vol(0ye0(D(0)) ~ Ny ®)

where D, = Ds U Dy, Vol(H(D,)) represents the volume of the
convex hull for the observational data and Vol(0,c 0 (D(0))) gives
the volume of the interventional domain. Ny, 45 represents the max-
imum number of observations the developer is willing to collect
on a particular environment, and N is the current size of Dy. The
interventional space is bigger than the observational space when
the volume of the observational data Vol(H (D)) is smaller with
respect to the number of observations N. Therefore, we must per-
form interventions to explore regions of the interventional space
not covered by observational data. On the other hand, if the vol-
ume of the observational data Vol(H(D,)) is large with respect to
N, we need to perform observations. This is because we need to
obtain consistent estimates of the causal effects, which can only
be achieved with more observations. We update the convex hull
incrementally for computation purposes.

Evaluate Selected Configuration and Update Belief We mea-
sure the selected configuration o™*! (lines 13-17) and check whether
the newly measured configuration satisfies the constraints (line
18). If not, we replace the performance objective value with an
infinitely high value to force the optimizer to avoid searching in
regions of the space where the constraints are not satisfied (line 19).
We update the causal performance and surrogate models using the
new measurement (line 21). We repeat the optimization loop until
the maximum budget f is exhausted or convergence is reached and
return the configuration with minimum Y as the optimal.

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Algorithm 1 CaMEO

Require: Offline source dataset D, Initial target datatset Dy, Con-
figuration space O, Total budget f, Threshold I, Performance
Objective Y, Constraint P.

Knowledge Extraction Phase
1: Construct a causal performance model from G, Gt using
D, Dy, respectively.
2. Extract the top k nodes from G; in terms of causal effect on
performance objective.
3: Extract Markov Blanket of the top k nodes to construct a new
updated Gs.

— Knowledge Update Phase

4: Initialize CGPwarm and CGP 4.

5: ﬁr =0

6: while " < f do

7. Set .a‘fvarm* = .argminoe‘ooc\r,varm(o)

8: Setinterpolation coefficient: A" (0) = 1(a€varm*—a‘rvarm(o) <
la)

9 Set the acquisition function: a”(0) = A" (0)a (o) + (1 -
Ar(o))a\';varm(o)

10: Pick a new configuration: o"*!

= argminyco @ (0)
11: Compute the exploitation coefficient € using Equation (8)
and sample a random number u ~ £(0, 1)

122 if € < u then

13: make a new observation (o"*1, "1,y *1).

14: else

15: Intervene on the system to obtain an interventional mea-
surement (o1, ¢+, 471,

16: end if

17: if ™! does not satisfy ¥ then

18: yr+1 = 0o

19: endif

20: Update Gs, CGPwarm, Ds, Gt, CGPc1q, and Dy.

21: Update "

22: end while

23: return the configuration with the best performance objective.

4 Evaluation

Subject systems and configurations. We selected five config-
urable computer systems, including a video analytics pipeline, a
CASSANDRA database system, and three deep learning systems (for
image, speech, and NLP, respectively). Following configuration
guides and other related work [20, 27, 55], we used a wide range of
configuration options and system events that impact scheduling,
memory management, and execution behavior. The complete list of
configuration options per system can be found in the supplemen-
tary materials on GitHub. As opposed to prior works (e.g., [59, 58])
that only support binary options due to scalability issues, we ad-
ditionally included discrete options and continuous options. For
discrete options, we exhaustively set each one to all permitted val-
ues. We choose the recommended range from system documents
for continuous options.

We run each software with a set of popular workloads that are
extensively used in benchmarks and prototypes (more details are
provided in Section 5-7). We use various deployment platforms

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

with distinct resources (e.g., computation power, memory) and
microarchitectures to demonstrate our approach’s versatility. We
use NVIDIA Jetson TX2, TX1, AGX Xavier, and Xavier NX devices
for edge deployment. To deploy a particular system on the cloud,
we use Chameleon configurable cloud systems where each node
is a dual-socket system running Ubuntu 20.04 (GNU/Linux 6.4)
with 2 Intel(R) Xeon(R) processors, 64 GB of RAM, hyperthreading,
and TurboBoost. Each socket has 12 cores/24 hyper-threads with
multiple Nvidia Tesla P100 16GB GPU and K80 24GB GPU for deep
learning inference.
Data collection We measure the system’s latency/throughput and
energy for each configuration. Following a common practice [14,
15], we randomly select 2000 configurations for each system for
performance measurements. We repeat each measurement 5 times
and record the median to reduce the effect of measurement noise
and other variabilities [26].
Experimental parameters We use a budget of 200 iterations for
each optimization method, similar to standard system optimization
approaches [67]. We repeat each method’s optimization process 3
with different random seeds for reliability. We follow the standard
tuning and reported parameter values for SMAc, UNICORN, RESTUNE-
w/0o-ML, REsTUNE, and ceLLo. More details about different exper-
imental choices (Table 8-14), implementation (Figure 17-21), and
hyperparameters (Table 15-16) can be found in the supplementary
materials.
Baselines We compare CAMEO against the following:
e SMAC [25]: A sequential model-based configuration optimiza-
tion algorithm.
o UNICORN [27]: An active learning approach that transfers knowl-
edge via a causal model for optimization in the target.
e CELLO [15]: An optimization framework that augments Bayesian
optimization with predictive early termination.
e RESTUNE [67]: A constrained optimization approach that uses
multiple models (ensemble) to represent prior knowledge.
o RESTUNE-w/0-ML [67]: RESTUNE without meta-learning, i.e., it
only learns from scratch in the target.
Evaluation Metrics. When running them for the same time limit,
we compare the best performance objectives (e.g., latency, through-
put, energy, etc.) achieved by each method. We also compare their
relative error (RE) as follows:

_ |ypred - «yopt|

RE = X 100%, 9)
|~yopt|

where Yreq is the best value achieved by each method, and Yopt is
the optimal measured value from our observational dataset of 2000
samples. A method is considered more effective if it recommends a
configuration achieving a lower error.

Research questions. We evaluate CAMEO by answering three
research questions (RQs).

RQ1: How effective is CAMEO in comparison to the state-of-the-art
approaches when the following environmental changes happen? (i)
hardware change, (ii) workload change, (iii) software change, and
(iv) deployment topology change.

RQ2: How the effectiveness of CAMEO changes when the severity
of environmental changes varies?

https://github.com/anonpassen/CAMEO
https://github.com/anonpassen/CAMEO

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems ~ Conference acronym XX, June 03-05, 2023, Woodstock, NY

Hardware Change

—--= CAMEO

0 50 100 150 200 0 50 100 150 200
Iteration Iteration

Figure 8: Effectiveness of CAMEO when hardware changes happen
in the deployment environment.

RQ3: How sensitive is CAMEO when (i) the number of samples in
the source environment varies? (ii) the value of I, varies? and (iii)
the size of the configuration space increases?

5 ROQ1: Effectiveness in Design Explorations

We evaluate the effectiveness of CAMEO in finding an optimal
configuration compared to the state-of-the-art. We consider four
types of environmental changes typically occurring when a sys-
tem is deployed into production. Table 3 shows the summarized
results for each approach averaged over different environmental
changes considered in this paper. CAMEO finds the configuration
with the lowest latency and energy than other approaches, e.g.,
CAaMEO achieves 3.7X and 5.6X lower RE for latency and energy,
respectively, when compared to RESTUNE, the next best method
after CAMEO. We describe the experimental setting and results for
all four environmental changes below.

Hardware change We consider the MLPERF OBJECT DETECTION
pipeline that uses ResNet-18 for inference over 5k images selected
from the 100k test images of the ImageNet dataset [51]. We use
the TX2 as the source hardware and Xavier and TX1 as the tar-
get hardware. We examine these hardware changes since there
are variable degrees of micro-architecture differences among this
hardware separately. We only show results for Xavier (for the
other TX1, we refer to the appendix). As shown in Figure 8, CAMEO
finds the configuration with the lowest values. For example, CAMEO
finds configuration with 1.6X lower latency than REsTUNE. We also
observe a similar trend for energy.

Software change We consider variants of a natural language pro-
cessing (NLP) model—BERT [13] and TINYBERT [35]—deployed on
XAvVIER for the experimental setup. We set up a software change by
changing the model architecture across environments, where we
use TINYBERT with 3 million parameters as the source and BERT-
Bask with 109M parameters as the target. As workload, we perform
sentiment analysis on 1000 out of the 25000 reviews from IMDB test
dataset [42]. We present the results for software change in Figure 9

Table 3: Summarized results averaged over all environment changes.

Latency Energy

RE(%) RE(%)

SMAC 88.2 268.9

CELLO 46.2 182.5
ResTunNE-w/0-ML 48.8 191.1
UNICORN 55.5 179.9
ResTuNE 29.2 81.2
CAMEO 7.8 14.4

Software Change

Software Change

-w/o-ML

=== CAMEO

0 50 100 150 200 0 50 100 150 200
Iteration Iteration

Figure 9: Effectiveness of CAMEO when software changes happen
in the deployment environment.

Workload Change Workload Change

£ 600

—--= CAMEO

" = = - =
0 50 100 150 200 0 50 100 150 200
Iteration [teration

Figure 10: Effectiveness of CaMEo0 in workload change scenarios:
Read-Only to Balanced (left) and Update-Heavy (right).

for latency and energy optimization. The optimal configurations
found by CamEo have 1.1x lower latency and 1.7X lower energy
value compared to those discovered by REsTUNE, respectively.
Workload change We consider CassaNDRA database deployed on
CHAMELEON CLOUD INSTANCE (see Section 4) while varying different
workloads to create different source and target environments using
the TPC-C benchmark [1]. We use a YCSB workload generator to
generate 3 workloads: (i) READ ONLY- 100% read, (ii) BALANCED - 50%
read and 50% update, and (iii) UPDATE HEAVY - 95% update and 5%
read. To optimize throughput, we use a READ oNLY workload as the
source and the remaining two workloads as the target separately.
Results for workload changes are presented in Figure 10. When
the workload changes from READ ONLY to BALANCED, RESTUNE
outperforms CaMEO by finding a configuration with 1.02x higher
throughput. Upon further investigation, we find that here the distri-
butions between source and target were relatively similar, and the
shared covariance learning in MTGP helped REsTUNE in finding a
better configuration. Moreover, the knowledge extraction module
in RESTUNE is particularly developed for correctly capturing work-
load behavior, making it more suitable for this domain adaptation
scenario. However, as the distribution difference increases, CAMEO
outperforms RESTUNE, e.g., UPDATE HEAVY workload CAMEO has
1.06X higher throughput than RESTUNE.

Deployment topology change To test the effectiveness of CAMEO
across deployment topology change, we consider a video analytics
pipeline: DEEPSTREAM that uses 4 camera streams as the workload.
Our DEEPSTREAM pipeline has four components: (i) an x264 decoder,
(if) a multiplexer, (iii) a TrafficCamNet model with ResNet-18 as the
detector, and (iv) an NvDCF tracker, which uses a correlation filter-
based online discriminative learning algorithm for tracking. As the
source environment, we adopt a centralized deployment topology
where all four components run on the same XAvier NX hardware.
We employ a dispersed deployment topology with two XaviEr NX

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Deployment Change Deployment Change

s

os/second

=== CAMEO

0 50 100 150 200 0 50 100 150 200
Iteration Iteration

Figure 11: Effectiveness of CAMEO when deployment topology
changes in the deployment environment.

hardware as the target, deploying the decoder and multiplexer in
one and the detector and tracker in the other. We use ApAcCHE KAFkA
to send and receive output from the multiplexer to the detector
that uses a binary protocol over TCP. Our experimental results
for deployment environment change presented in Figure 11 show
that CAMEO significantly outperforms others in finding optimal
throughput and energy. For example, the optimal configuration
discovered by CAMEO has as high as 1.3x and 1.5 (as) improvement
for throughput and energy, respectively, than the next best method.
Constrained optimization For constrained optimization (opti-
mizing latency with energy constraint or optimizing energy with
latency constraint), we set the energy and latency constraints as [15,
30, 45, 60, 75, 90]-th percentiles of the corresponding distributions.
Table 4 reports the summarized results compared with cELLO, as
this is the only baseline that incorporates constraints. We observe
that other than latency optimization under energy constraints for
workload changes, CAMEO consistently outperforms cerro for hard-
ware, software, and deployment environment changes, e.g., under
latency constraints, CAMEO finds configurations with 1.3x and 1.5X
for software and deployment topology change, respectively.
Summary of observations From the above results, we also ob-
serve that the knowledge-reuse methods (CaAMEO and REsTUNE)
are consistently the top performers over the methods that do not
reuse knowledge. The steep performance curves during the earlier
iterations indicate that the optimization process’s warm-starting
helps quickly go to the region containing good configurations. As a
result, across all environmental changes, methods that reuse knowl-
edge from the source outperform SMAc, cELLO, and UNICORN, which
do not rely on previous information and cannot reach the optimal
within the allowed budget.

Why Cameo works better? To further explain CAMEO’s advan-
tages over other methods, we conduct a case study using the setup
for MLPERF OBJECT DETECTION pipeline deployed on TX2 as the
source and XAVIER as the target mentioned in Section 2. We discuss
our key findings below:

Table 4: Constrained optimization results for latency with energy
and energy with latency constraints.

‘ Latency w. Energy (RE%) Energy w. Latency (RE%)

Environment
Change ‘ CELLO CAMEO ‘ CELLO CAMEO
Hardware 16.8 9.7 14.1 13.9
Software 17.1 22.5 30.9 23.7
Workload 9.5 9.6 14.7 11.1
Deployment | 14.3 11.4 16.7 11.3

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

@ Cello B Unicorn

A ResTune * CAMEO

cpu_frequency

logical_devices

) *
0.00 0.25 0.50 0.75 1.00
vm.dirty_ratio

0 0.0+ — - = |
Mo o3 ok 0% Lo 000 025 050 075 LOO
kernel.sched_child_runs_first scheduler_policy

Figure 12: Contour plot with options with different causal effects.
The color bar indicates latency values, whereas lower values (indi-
cated by blue regions) indicate better performance.

Hardware Change ® T T T T
% w0l —-G,and G, | |
= = G
i) |
A —e— Gi
20| = .
g
=
=1
g
<
jus)

0L 1 | | T
_ - 0 50 100 150 200
0 50 100 150 200

Iteration Iteration

Figure 13: The causal performance models become more accurate
with increasing iterations. The correctness of Gs and Gt when com-
bined helps CaMEO in detecting the optimal configuration more
effectively than other approaches. A lower hamming distance value
indicates a smaller difference with the ground truth causal perfor-
mance model in the target.

(i) The combined correctness of two causal performance mod-
els allows effectively identifying optimal options values. Ta-
ble 5 shows the optimal configuration discovered by different ap-
proaches (highlighted when matched). CAMEO can correctly iden-
tify the maximum number of options values compared to other
approaches with minimum latency value. This is possible due to
the usage of two causal models G and Gt as when combined, they
are nearly identical to the ground truth causal performance model
in the target as shown in Figure 13.

(ii) CaMEO has utilized the budget more efficiently by care-
fully evaluating core configuration options. To better under-
stand the optimization process, we visualize the response surfaces
of three sets of options pairwise with different degrees of average
causal effect (ACE) on latency (Figure 12). The leftmost subfigure
of Figure 12 contains options with lower ACE values, whereas the
rightmost subfigure of Figure 12 contains options with high ACE
values only). The middle subfigure of Figure 12 contains options
that have ACE values near the median (the ACE values of con-
figuration options are provided in Table 5). We observe that the
response surface of the options with higher ACE values is more
complex than those with lower ACE values (rightmost subfigure of
Figure 12). CAMEO is able to correctly determine the optimal values
of cpu_frequency and dirty_ratio which indicates that CAMEO can
understand such complex behavior better than others. Also, CAMEO
has explored more configurations by varying core configurations
options with higher ACE values than lower ones and better under-
stands the response surface with effective resource utilization.
(iii) CaAMEO reaches the better configuration by achieving
better exploration-exploitation trade-offs. From Figure 12, we
observe that CAMEO has higher coverage of the configurations

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems

evaluated during the optimization procedure compared to other
approaches. For example, in the rightmost subfigure of Figure 12,
configurations evaluated by CAMEO cover the highest number of
different regions (indicating better exploration). Here, we also ob-
serve that CAMEO has evaluated a higher number of configurations
near the optimal (blue-colored) regions of the response surface (in-
dicating better exploitation). The identification of core features has
also enabled achieving better exploration-exploitation trade-offs.
Therefore, CAMEO can learn about the regions with configuration
options with lower causal effects within fewer explorations and
focuses on exploitation behavior to quickly reach the optimum.

6 RQ2: Severity of Environmental Changes

The effectiveness of CAMEO changes due to the amount of distri-
bution shift that can happen during environmental changes. Predict-
ing how much the distribution will change when an environmental
change occurs is impossible. Therefore, it is critical to understand
how sensitive CAMEO is to different degrees of change severity.
Following previous work [30], we consider various environmental
changes of varying severity to answer this question. The scale and
the number of changes that occur indicate the severity. For exam-
ple, an environment change is more severe if both hardware and
workload change, compared with only hardware changes.

We consider the centralized deployment of DEEPSTREAM used
in RQ1 as the source and use the following as the targets: (i) Low
severity: We only change one category, hardware (AGX XAVIER to
XavIER NX); (ii) Medium severity: We consider the change of two
categories, hardware and deployment topology. In this setup, the
target is deployed with DEEPSTREAM in a distributed fashion on
two XAvIER NX devices with a decoder with four camera streams
as the workload; and (iii) High severity: We consider a change of
four categories, workload, deployment topology, hardware, and
model. Our target has DEEPSTREAM distributedly deployed on two
TX2s, with a workload of eight camera streams. We also change
the detector from ResNet-18 to ResNet-50.

Results. As shown in Figure 14, CAMEO constantly outperforms
the baselines by achieving maximum throughput for all severity of
environmental changes. For example, CaAMEO finds configuration
with 1.3%, 1.5, and 1.9X higher throughput than RESTUNE under
low, medium, and high severity of changes, respectively. The KL
divergence value between the distributions of the source and low,
medium, and high severity environmental changes setup are 418,

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

951, and 1329. Therefore, we conclude that CAMEO performs better
than baselines as the environmental changes become more severe.

7 RQ3: Sensitivity and Scalability

First, we investigate CAMEO’s performance under different source
measurements and how this affects the knowledge transferred from
the source to the target and overall performance. Second, we deter-
mine how the value of I, influences CAMEO’s effectiveness. Finally,
we investigate CAMEO’s scalability in larger configuration space.
Sensitivity to the number of source measurements. We con-
sider the MLPERF OBJECT DETECTION pipeline deployed on TX2 as
the source and the same pipeline on XAVIER as the target, varying
the number of measurements in TX2 from 30 to 10000 for evalu-
ation and comparing their optimal values discovered by different
approaches. As shown in Figure 15(a), increasing the number of
source measurements positively influences CAMEO’s as compared to
REsTUNE. Including a greater number of source samples increases
the danger of bias from the source environment, particularly when
the distributions of two environments are extremely disparate. From
this figure, we can infer that CAMEO is able to prevent those biases
from getting introduced into the target as more samples are used
for extracting knowledge from the source. We also observe that
CAMEO reaches a plateau (after 2000 samples) faster than RESTUNE,
indicating that CAMEO can find better configurations with fewer
source samples. Since CAMEO can detect the core features which can
be reliably used across environments without much modification.
Sensitivity to I/, value. One of the key parameters for CAMEO
is A that controls the amount of information from CGPyarm and
CGP_y14 for acquisition function calculation. The value of A depends
on Iy, which indicates the distance from the optimal configuration
recommended by awarm. A lower value of I, can be interpreted as
selecting configurations nearer to the optimal configuration, as it is
expected to have similar behavior between source and target in the
nearer regions. In this experiment, we vary the I, value and record
the RE value for each. The experimental results indicate that CAMEO
achieves the minimum error when I, is 1 (shown in Figure 15(b)).
Scalability to the number of configuration options. We con-
sider a speech recognition pipeline that uses DEEPSPEECH [23] for
inference. As workload, we use 2 hours of data extracted from 300
hours of test dataset of the ComMoN Voick dataset for 5 languages
(English, Arabic, Chinese, German, and Spanish). We run inference
on our CHAMELEON CLOUD INSTANCE with one P100 GPU for the
source and one K80 GPU for the target. To evaluate the scalability of

Table 5: Optimal configuration discovered by different baselines. The configuration options are ranked in descending order based on their
average causal effect (ACE) value on the performance objective, i.e., Latency.

Configuration Option SMAC UNICORN RESTUNE-w/O-ML ResTuNE CAMEO ACE Optimal (Source) Optimal (Target) Default (Target)
cpu_frequency 13 1.6 1.6 1.6 2.0 0.19 14 2.0 11
vm.dirty_ratio 20 5 20 5 5 0.13 10 B 50
vm.swappiness 60 60 60 60 60 0.11 30 60 30
gpu_frequency 1.3 1.3 13 1.3 13 0.08 13 1.3 1.1

num_cores 3 4 3 4 4 0.06 3 4 2
memory_growth 0.5 0.9 0.5 0.9 -1 0.04 0.5 =il 0.5
emc_frequency 1.1 13 13 1.1 13 0.009 1.1 13 0.8

drop_caches 0 0 0 0 0 0.008 0 0 1
scheduler_policy NOOP NOOP CFP NOOP NOOP 0.001 NOOP NOOP CFP

vm.vfs_cache_pressure 10 50 10 10 10 0.001 10 10 50
vm.dirty_bytes 30 60 60 30 60 0.0009 30 30 60

kernel.sched_rt_runtime_us 500000 500000 500000 500000 950000 0.0009 500000 9500000 500000
logical_devices 1 1 0 1 1 0.0008 1 1 0

kernel.sched_child_runs_first
Latency

0.0006

0
8s

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Low Severity Change

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

Medium Severity Change

High Severity Change

60 Method
— Cello
50 | ——~ ResTune

++ ResTune-w,

Unicorn

AC

Method
— Cello
ResTune
ResTune-w /o-MI
Unicorn

SMAC

—=-= CAMEO

20

o-ML

Method

— Cello

=== ResTune

=+ ResTune-w/o-ML
=== {nicorn
SMAC
==-=_ CAMEO

Throughput (queries/seconds)
Throughput (queries/seconds)
w

0 50 100
Iteration

150 200 0 50

Iteration

100 150 200 i 0 50 100 150

[teration

Figure 14: Cameo achieves higher throughput when different severity of environmental changes happen in deployment.

T T
- b —— CAMEO 14.3
< . . —~ 15f13.1 _ 134
g - —=— RESTUNE-REUSE || 2 105 11.7
3 ;J’ 10]
5 20| 1= .
3} bl b
=
= ‘ ‘ : * | otk : : : ‘
0 500 1,000 1,500 2,000 005 01 025 05 0.75
Iteration la
(a) (b)

Figure 15: (a) Both approaches find better configurations when
more samples are used in the source. Compared with RESTUNE, the
optimal configuration found by CaAMEO has lower minimum latency.
(b) CamEO has minimum RE when [, is set to 0.1.

Z35

S

£20

£

o "

5

g5, 28

z :

/a 4 66 28 28 50 50 100100 4 6 28 50 100
Number of Variables Number of Variables

(a) (b)

Figure 16: As the number of configuration options and system
events increases, the causal graph discovery time (a) and total time
per iteration (b) increase sub-linearly. Here, we do not include the
time taken to measure a configuration in the optimization loop.
our approach to colossal configuration space [47]. In particular, we
increase the number of variables from 4 to 100 and determine the
discovery time and total time for each iteration using 300 samples
in the target. Figure 16 indicates that the discovery time and time
per iteration increase sub-linearly. Therefore, CAMEO is scalable to
a large number of configuration options and system events. The
scalability of CAMEO can be attributed to the sparsity of the causal
graph, which leads to a small exploration set considered for the
acquisition function.

8 Additional Related Work

Performance optimization in configurable systems. BO-
based optimization methods discover the best configuration suited
for a particular application and platform [44] to streamline com-
piler autotuning [7]. SCOPE [37] improves system performance
and lowers safety constraint breaches by gathering system activity

and switching from resource to execution space for exploration.
CELLO [15] uses prediction-based early termination of sample col-
lection by censored regression. Siegmund et al. [54] proposed a
performance-influence model for configurable systems to under-
stand the influence of configuration options on system performance
using machine learning and sampling heuristics. Nevertheless, these
techniques are platform-specific and unsuitable when a distribution
shift occurs due to environmental changes. In comparison, CAMEO
tackles the shift by transferring causal knowledge.

Transfer learning for performance modeling. It is possible to
expedite the optimization process by transferring performance be-
havior knowledge from one environment to another. However, it is
essential to identify which knowledge is necessary to be transferred
to reach this aim. Jamshidi et al. [31] showed that when the envi-
ronment changes are small, knowledge for forecasting performance
can be transferred, while only knowledge for efficient sampling can
be transferred when the environment changes are severe. Krishna
et al. [39]determined the most relevant source of historical data to
optimize performance modeling. Valov et al. [57] proposed a novel
method for approximating and transferring the Pareto frontiers
of optimal configurations across different hardware environments.
Ballesteros et al. [5] proposed a transfer learning dynamic evo-
lutionary algorithm to generate effective run-time quasi-optimal
configurations of Dynamic Software Product Lines. All these tech-
niques incorporate transfer learning based on correlational statistics
(ML-based). However, Section 2.1 shows that ML-based models are
prone to capturing spurious correlations. In comparison, CAMEO
makes use of causal-based models, which identify invariant features
despite environmental fluctuations.

Usage of causal analysis in configurable systems. Causal anal-
ysis has been used for various debugging and optimization tasks
in configurable systems. Fariha et al. [17] proposed AID which
intervenes through fault injection to pinpoint the root cause of
intermittent failures in the software. Johnson et al. [36] proposed
Causal Testing to analyze and fix software bugs by identifying a set
of executions containing important causal information. Dubslaff et
al. [16] proposed a method to compute feature causes effectively
and leveraged them to facilitate root cause identification and feature
effect/interaction estimation. The causality analysis in these works
is solely on one environment. In contrast, our studied problem in-
volves two environments (source and target) efficiently transferring
the causal knowledge from source to target.

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems ~ Conference acronym XX, June 03-05, 2023, Woodstock, NY

Table 6: Comparison of computation time in seconds required per
iteration for different baselines compared to CAMEO. Lower is better.

Method Model Update Configuration Total
Time Recommendation Time Time

SMAC 5.6 9.2 58.1

CELLO 8.1 9.2 60.3
UNICORN 11.5 11.3 65.4
ResTune-w/0-ML 8.3 9.2 61.3
ResTUNE 9.7 9.7 63.4
CAMEO 12.7 14.4 71.6

9 Limitations

Causal graph error. Causal discovery is an NP-hard problem [9].
Thus, it is possible that the found causal graphs are not ground-truth
causal graphs and do not always reflect the true causal relationship
among variables. However, as shown in many previous works [27,
16], such causal graphs can still be leveraged to achieve better
performance than ML-based approaches on system optimization
and debugging tasks as they avoid capturing spurious correlations.
Noisy Measurements. The system performance measurements
are noisy and can affect the results. To mitigate this, we take each
configuration’s median of 5 runs.

Longer model computational time. Due to using two CGPs, the
computational time of CAMEO is higher than the baseline methods.
For example, on average, CAMEO takes 27.1s per iteration versus
19.4s per iteration taken by RESTUNE (see Table 6 for detailed re-
sults). However, this time is usually negligible compared to evalu-
ation time (44s in our experiments). Besides, when the modeling
time is included, CaAMEO also outperforms the baseline methods.

10 Conclusion

The goal of performance optimization of software systems is to
minimize the number of queries required to accurately optimize a
target black-box function in the production, given access to offline
performance evaluations from the source environment and a signif-
icantly small number of performance evaluations from the target
environment. When the environment changes, existing ML-based
optimization methods tend to be sub-optimal since they are vulner-
able to spurious correlations between configuration variables and
the optimization performance goals (e.g., latency and energy). In
this work, we propose CAMEO, an algorithm that overcomes this
limitation of existing ML-based optimization methods by querying
data based on a combination of acquisition signals derived from
training two Causal Gaussian Processes (CGPs): a cold-CGP operat-
ing directly in the input domain trained using the target data and a
warm-CGP that operates in the feature space of a causal graphical
model pre-trained using the source data. Such a decomposition can
dynamically control the reliability of information derived from the
online and offline data and the use of CGPs helps avoid captur-
ing spurious correlations. Empirically, we demonstrate significant
performance improvements of CAMEO over existing performance
optimization on real-world systems.

Acknowledgements

This work has been supported, in part, by National Science Foun-
dation (Awards 2007202, 2107463, and 2233873). We also thank
Chameleon Cloud for providing cloud resources for the experi-
ments.

References

[1] On-line transaction processing benchmark. https://www.tpc.org/tpcc/.

[2] Mathieu Acher, Hugo Martin, Juliana Pereira, Arnaud Blouin, Jean-Marc Jézéquel,
Djamel Khelladi, Luc Lesoil, and Olivier Barais. Learning very large configuration
spaces: What matters for linux kernel sizes. 2019.

[3] Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, and Javier Gonzalez. Causal bayesian
optimization. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics,
volume 108 of Proceedings of Machine Learning Research, pages 3155-3164. PMLR,
26-28 Aug 2020.

[4] Omid Alipourfard, Honggiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. { CherryPick }: Adaptively unearthing the best cloud
configurations for big data analytics. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 469-482, 2017.

[5] Joaquin Ballesteros and Lidia Fuentes. Transfer learning for multiobjective opti-

mization algorithms supporting dynamic software product lines. In Proceedings of

the 25th ACM International Systems and Software Product Line Conference-Volume

B, pages 51-59, 2021.

Marcel Blocher, Lin Wang, Patrick Eugster, and Max Schmidt. Switches for hire:

resource scheduling for data center in-network computing. In Proceedings of

the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 268-285, 2021.

[7] Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. Efficient compiler auto-
tuning via bayesian optimization. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pages 1198-1209. IEEE, 2021.

[8] Tao Chen and Miging Li. Do performance aspirations matter for guiding software
configuration tuning? an empirical investigation under dual performance objec-
tives. ACM Transactions on Software Engineering and Methodology, 32(3):1-41,
2023.

[9] David Maxwell Chickering, David Heckerman, and Christopher Meek. Large-

sample learning of bayesian networks is np-hard. J. Mach. Learn. Res., 5:1287-1330,

dec 2004.

Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable energy storage

architecture for energy-harvesting devices. In Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 767-781, 2018.

[11] Diego Colombo and Marloes H Maathuis. Order-independent constraint-based

causal structure learning. The Journal of Machine Learning Research, 15(1):3741—

3782, 2014.

Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson.

Learning high-dimensional directed acyclic graphs with latent and selection

variables. The Annals of Statistics, pages 294-321, 2012.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann. Generalizable and

interpretable learning for configuration extrapolation. In Proceedings of the 29th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 728-740, 2021.

Yi Ding, Alex Renda, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann. Cello:

Efficient computer systems optimization with predictive early termination and

censored regression. arXiv preprint arXiv:2204.04831, 2022.

Clemens Dubslaff, Kallistos Weis, Christel Baier, and Sven Apel. Causality in

configurable software systems. arXiv preprint arXiv:2201.07280, 2022.

[17] Anna Fariha, Suman Nath, and Alexandra Meliou. Causality-guided adaptive

interventional debugging. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, pages 431-446, 2020.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods

based on graphical models. Frontiers in genetics, 10:524, 2019.

[19] Kourosh Hakhamaneshi, Pieter Abbeel, Vladimir Stojanovic, and Aditya Grover.

Jumbo: Scalable multi-task bayesian optimization using offline data. arXiv preprint

arXiv:2106.00942, 2021.

Hassan Halawa, Hazem A. Abdelhafez, Andrew Boktor, and Matei Ripeanu.

NVIDIA jetson platform characterization. Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 10417 LNCS:92-105,

2017.

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,

and Benoit Baudry. Test them all, is it worth it? assessing configuration sampling

on the jhipster web development stack. Empirical Software Engineering, 24(2):674-

717, 2019.

Greg Hamerly and Charles Elkan. Learning the k in k-means. Advances in neural

information processing systems, 16, 2003.

[23] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,
et al. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567, 2014.

—_
&

[10

[12

[14

(15

[16

[18

[20

[21

[22

https://www.tpc.org/tpcc/

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

[24] Chin-Jung Hsu, Vivek Nair, Tim Menzies, and Vincent W Freeh. Scout: An experi-
enced guide to find the best cloud configuration. arXiv preprint arXiv:1803.01296,
2018.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In International conference on

learning and intelligent optimization, pages 507-523. Springer, 2011.

[26] Md Shahriar Igbal, Lars Kotthoff, and Pooyan Jamshidi. Transfer Learning for
Performance Modeling of Deep Neural Network Systems. In USENIX Conference
on Operational Machine Learning, Santa Clara, CA, 2019. USENIX Association.

[27] Md Shahriar Igbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and

Pooyan Jamshidi. Unicorn: reasoning about configurable system performance

through the lens of causality. In Proceedings of the Seventeenth European Conference

on Computer Systems, pages 199-217, 2022.

Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic resource provision-

ing for cloud-based software. In Proceedings of the 9th international symposium on

software engineering for adaptive and self-managing systems, pages 95-104, 2014.

[29] Pooyan Jamshidi and Giuliano Casale. An uncertainty-aware approach to optimal
configuration of stream processing systems. In Proc. Int’l Symp. on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2016.

[30] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kastner, Akshay

Patel, and Yuvraj Agarwal. Transfer learning for performance modeling of config-

urable systems: An exploratory analysis. In Proc. Int’l Conf. Automated Software

Engineering (ASE). ACM, 2017.

Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kastner, Akshay

Patel, and Yuvraj Agarwal. Transfer learning for performance modeling of con-

figurable systems: An exploratory analysis. In 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 497-508. IEEE, 2017.

Pooyan Jamshidi, Miguel Velez, Christian Késtner, and Norbert Siegmund. Learn-

ing to sample: Exploiting similarities across environments to learn performance

models for configurable systems. In Proc. Int’l Symp. Foundations of Software

Engineering (FSE). ACM, 2018.

Pooyan Jamshidi, Miguel Velez, Christian Késtner, Norbert Siegmund, and Prasad

Kawthekar. Transfer learning for improving model predictions in highly con-

figurable software. In Proc. Int’l Symp. Soft. Engineering for Adaptive and Self-

Managing Systems (SEAMS). IEEE, 2017.

[34] Mohammad Ali Javidian, Om Pandey, and Pooyan Jamshidi. Scalable causal
transfer learning. arXiv preprint arXiv:2103.00139, 2021.

[35] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang,
and Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv
preprint arXiv:1909.10351, 2019.

[36] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. Causal testing: Understand-
ing defects’ root causes. In Proceedings of the 2020 International Conference on
Software Engineering, 2020.

[37] Hyunji Kim, Ahsan Pervaiz, Henry Hoffmann, Michael Carbin, and Yi Ding. Scope:
Safe exploration for dynamic computer systems optimization. arXiv preprint
arXiv:2204.10451, 2022.

[38] Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath, and Babak Hassibi.
Entropic causal inference. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, page 1156-1162, 2017.

[39] Rahul Krishna, Vivek Nair, Pooyan Jamshidi, and Tim Menzies. Whence to learn?
transferring knowledge in configurable systems using beetle. IEEE Transactions
on Software Engineering, 2020.

[40] Luc Lesoil, Hugo Martin, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel.

Transferring performance between distinct configurable systems: A case study. In

Proceedings of the 16th International Working Conference on Variability Modelling

of Software-Intensive Systems, pages 1-6, 2022.

Xu-Qing Liu and Xin-Sheng Liu. Markov blanket and markov boundary of multi-

ple variables. The Journal of Machine Learning Research, 19(1):1658-1707, 2018.

[42] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 142150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics.

[43] Hugo Martin, Mathieu Acher, Luc Lesoil, Jean Marc Jezequel, Djamel Eddine

Khelladi, and Juliana Alves Pereira. Transfer learning across variants and versions:

The case of linux kernel size. IEEE Transactions on Software Engineering, 2021.

Harshitha Menon, Abhinav Bhatele, and Todd Gamblin. Auto-tuning parameter

choices in hpc applications using bayesian optimization. In 2020 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 831-840. IEEE, 2020.

Yifei Ming, Hang Yin, and Yixuan Li. On the impact of spurious correlation for

out-of-distribution detection. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 36, pages 10051-10059, 2022.

[46] Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. A hybrid causal search
algorithm for latent variable models. In Conference on Probabilistic Graphical
Models, pages 368-379, 2016.

[25

[28

[31

[32

[33

[41

[44

[45

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

[47] JEHO OH, D Batory, and RUBEN HERADIO. Finding near-optimal configurations

in colossal spaces with statistical guarantees. 2022.

Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. Architectural principles
for cloud software. ACM Transactions on Internet Technology (TOIT), 18(2):1-23,
2018.

Judea Pearl. Causality. Cambridge university press, 2009.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages
446-459. IEEE, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV,
115(3):211-252, 2015.

Mehran Salmani, Saeid Ghafouri, Alireza Sanaee, Kamran Razavi, Max
Miihlhauser, Joseph Doyle, Pooyan Jamshidi, and Mohsen Sharifi. Reconciling
high accuracy, cost-efficiency, and low latency of inference serving systems. In
Proceedings of the 3rd Workshop on Machine Learning and Systems, pages 78-86,
2023.

Norbert Siegmund, Johannes Dorn, Max Weber, Christian Kaltenecker, and Sven
Apel. Green configuration: Can artificial intelligence help reduce energy con-
sumption of configurable software systems? Computer, 55(3):74-81, 2022.
Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Késtner.
Performance-influence models for highly configurable systems. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 284-294,
2015.

Moisés Silva-Mufioz, Alberto Franzin, and Hugues Bersini. Automatic config-
uration of the cassandra database using irace. Peer] Computer Science, 7:€634,
2021.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causa-
tion, prediction, and search. MIT press, 2000.

Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. Transferring pareto frontiers
across heterogeneous hardware environments. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pages 12-23, 2020.

Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel,
and Christian Kastner. Configcrusher: Towards white-box performance analysis
for configurable systems. Automated Software Engineering, 27:265-300, 2020.
Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian
Késtner. White-box analysis over machine learning: Modeling performance of
configurable systems. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 1072-1084. IEEE, 2021.

Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian
Késtner. On debugging the performance of configurable software systems: De-
veloper needs and tailored tool support. In 2022 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2022.

Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian
He, and Liping Zhang. Morphling: fast, near-optimal auto-configuration for cloud-
native model serving. In Proceedings of the ACM Symposium on Cloud Computing,
pages 639-653, 2021.

Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa, and Achmad Imam
Kistijantoro. Understanding and auto-adjusting performance-sensitive configura-
tions. ACM SIGPLAN Notices, 53(2), 2018.

[63] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition func-

tions for bayesian optimization. Advances in neural information processing systems,
31, 2018.

Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep param-
eter optimisation. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 1375-1382, 2015.

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. Hey, you have given me too many knobs!: understanding and
dealing with over-designed configuration in system software. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, 2015.

Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao, and Dick Epema. Towards
machine learning-based auto-tuning of mapreduce. In 2013 IEEE 21st International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, pages 11-20. IEEE, 2013.

Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. Restune: Resource oriented tuning boosted by meta-learning
for cloud databases. In Proceedings of the 2021 International Conference on Man-
agement of Data, pages 2102-2114, 2021.

Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham Neubig. Examining and
combating spurious features under distribution shift. In International Conference
on Machine Learning, pages 12857-12867. PMLR, 2021.

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems

A Appendix.
A.1 Definitions and Background

Configuration Space O. Let O; indicate the i*" configuration
option of a system, which can be set to a range of different values
(e.g., categorical, boolean, and numerical). The configuration space
is a Cartesian product of all options O = Dom(O1) X ... X Dom(Oy),
where d is the number of options. A configuration o is then a
member of the configuration space O in which all options are set to
a given value within the range of permitted values for that option.
Environment Space &. We describe an environment e drawn from
a given environment space &, which consists of possible combina-
tions of hardware, workload, software, and deployment topology.

Causal Performance Model G. A causal performance model
(CPM), denoted by G, is an acyclic-directed mixed graph (ADMG)
that provides the functional dependencies (e.g., how variations in
one or multiple variables determine variations in other variables)
between configuration options, system events, and performance ob-
jectives. While interpreting a CPM, we view the nodes as variables
and the arrows as causal connections.

Observation. In the observational formulation, we measure the
distribution of an outcome variable (e.g., latency V) given that we
observe another variable (e.g., cpu frequency O; for 1 < i < d)
taking a certain value o; (e.g., O; = 0;), denoted by Pr(Y | O; = 0;).
Intervention. The interventional inference tackles a harder task of
estimating the effects of deliberate actions. For example, we mea-
sure how the distribution of an outcome (e.g., latency V) would
change if we (artificially) intervened during the data gathering pro-
cess by forcing the variable cpu frequency O; to a certain value
0;, but otherwise retain the other variables (e.g., dirty ratio) as is.
We can estimate the outcome of the artificial intervention by mod-
ifying the CPM to reflect our intervention and applying Pearl’s
do-calculus [49], which is denoted by Pr(Y | do(O; = 0;)). Unlike
observations, there is a structural change in CPM due to interven-
tion that goes along with a change in a probability distribution over
the variables.

Bayesian Optimization. Bayesian Optimization (BO) is an effi-
cient framework to solve global optimization problems using black-
box evaluations of expensive performance objectives Y. A typical
BO approach consists of two main elements: the surrogate model
and the acquisition function. The surrogate models are trained
with a small number of configuration measurements and are used
to predict the objective functions value Y = f (o) using predic-
tive mean (o) and uncertainty o (o) for configurations o € O. A
common practice is to use Gaussian processes (GPs) as surrogate
models where the GP distribution over f (o) is fully specified by its
mean function, its mean function (o), and its covariance function
kc(o,0”). The kernel or covariance function k. captures the regu-
larity in the form of the correlation of the marginal distributions
f(0) and f(0”). After the surrogate model outputs predictive mean
and uncertainty for the unseen configurations, CAMEO needs an
acquisition function to select the best configuration to sample. A
good acquisition function should balance the trade-offs between
exploration and exploitation.

A.2 Additional Details for Evaluation
Tables 7 to 16 and Figures 18 to 21.

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Table 7: Prediction errors in each environment.

Environment Prediction Error (%)
GPR RFR CGPR
X1 11.2 12.8 9.2
TX2 10.7 12.2 9.1
Xavier 13.2 124 8.8

Table 8: Hardware configuration options.

Configuration Options Option Values/Range
num_cores 1-4

cpu_frequency 0.3 - 2.0 (GHz)
gpu_frequency 0.1-1.3 (GHz)
emc_frequency 0.1- 1.8 (GHz)

Table 9: Linux OS/Kernel configuration options.

Configuration Options Option Values/Range
vm.vfs_cache_pressure 1, 100, 500
vm.swappiness 10, 60, 90
vm.dirty_bytes 30, 60
vm.dirty_background_ratio 10, 80
vm.dirty_background_bytes 30, 60
vm.dirty_ratio 5, 10, 20, 50
vm.nr_hugepages 0,1,2
vm.overcommit_ratio 50, 80
vm.overcommit_memory 0,2
vm.overcommit_hugepages 0,1,2
kernel.cpu_time_max_percent 10 - 100
kernel.max_pids 32768, 65536
kernel.numa_balancing 0,1
kernel.sched_latency_ns 24000000, 48000000
kernel.sched_nr_migrate 32, 64, 128

kernel.sched_rt_period_us
kernel.sched_rt_runtime_us
kernel.sched_time_avg_ms
kernel.sched_child_runs_first
swap_memory
scheduler.policy

drop_caches

1000000, 2000000
500000, 950000
1000, 2000

0,1

1,2,3,4 (GB)
CFP, NOOP
0,1,2,3

Table 10: Configuration options in MLPERF OBJECT DETEC-

TION, and SPEECH RECONGITION software system.

Configuration Options Option Values/Range
memory_growth -1, 0.5, 0.9
logical_devices 0,1
inter_op_parallelism_threads 1, num cpus

intra_op_parallelism_threads

1, num cpus

A.3 ROQ1 Additional Results

Figures 22 to 25.

A.4 RQ2 Additional Results

Figure 26.

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Table 11: Configuration options in NLP software system.

Configuration Options Option Values/Range
precision 8,16

distributed_backend ddp, dp

num_workers 0, num gpus, 4X num gpus

Table 12: DEEPSTREAM software configuration options.

Component Configuration Options Option Values/Range
CRF 13, 18, 24, 30
bitrate 1000, 2000, 2800, 5000
buffer_size 6000, 8000, 20000
Decoder presets ultrafast, very fast, faster
medium, slower
maximum_rate 600k, 1000k
refresh OFF, ON
batch_size 0-30
batched_push_timeout 0-20
num_surfaces_per_rame 1,2,3,4
Stream Mux enable_padding 0,1
buffer_pool_size 1-26
sync_inputs 0,1
nvbuf_memory_type 0,1,2,3
net_scale_factor 0.01-10
batch_size 1-60
interval 1-20
offset 0,1
Nvinfer process_mode 0,1
use_dla_core 0,1
enable_dla 0,1
enable_dbscan 0,1
secondary_reinfer_interval 0 - 20
maintain_aspect_ratio 0,1
iou_threshold 0-60
enable_batch_process 0,1
Nvtracker enable_past_frame 0,1
0,1

compute_hw

Snth 1

ImageNet Load ResNerso
Generator

ImageNet

Load
Generator

St 1

Source: Jetson
AGX Xavier

Figure 17: Experimental setup when hardware changes from
XAVIER in the source to TX2 and TX1 in the target, separately,

for MLPERF OBJECT DETECTION pipel

“Target: Jetson
TXi

ine.

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

Table 13: CassaNDRA configuration options.

Configuration Options Option Values/Range
concurrent_writes 32,128,512
file_cache_size 256, 512, 2048
memtable_cleanup 0.1,0.3,0.6
concurrent_compact 0.1, 0.3, 0.6

compaction_methods
num_tokens
concurrent_reads
replication_factor
memtable_heap_space
memtable_allocation
row_cache_size_in_mb
sstable_open_interval
trickle_fsync
inter_dc_stream
key_cache_ssize
stream_throughput
row_cache_save
column_index_size
compaction_throughput
memtable_offheap_space
commitlog_segment
mem_flush_writers
index_summary

SizeTiered, LeveledCompaction
256, 512, 1024
32, 64, 128
1,2,3

256, 1024, 2048
heap, buffers
0,1

30, 50, 100

0,1

100, 200

100, 200

100, 200

0,1

16, 32, 64

16, 32, 64

256, 1024, 2048
32, 64, 256
1,2,3

100, 150

Table 14: Performance system events and tracepoints.

System Events

context_switches
major_faults
minor_faults

migrations

scheduler_wait_time
scheduler_sleep_time

cycles

instructions
number_of_syscall_enter
number_of_syscall_exit
11_dcache_load_misses
11_dcache_loads
[1_dcache_stores
branch_loads
branch_loads_misses
branch_misses
cache_references
cache_misses
emulation_faults

Tracepoint Subsystems

Block

Scheduler

IRQ
ext4

CAMEO: A Causal Transfer Learning Approach for Performance Optimization of Configurable Computer Systems ~ Conference acronym XX, June 03-05, 2023, Woodstock, NY

Table 15: Hyperparameters for DNNs used in CAMEO.

Architecture Hyperparameters Option Values
num_filters_entry flow 32
filter_size_entry_flow (3 x3)
num_filters_middle_flow 64
filter_size_middle_flow 3x3)

RESNET num_filters_exit_flow 728
filter_size_exit_flow (3 x3)
batch_size 32
num_epochs 100
dropout 0.3
maximum_batch_size 16

BERT maximum_sequence_length 13
learning_rate le*
weight_decay 0.3
dropout 0.3
maximum_batch_size 16

DEEPSPEECH maximum_sequence_length 32
learning_rate le™?
num_epochs 10

Table 16: Hyperparameters for FCI used in CAMEO.

Hyperparameters Value
depth -1
test_id fisher-z-test

maximum_path_length -1
complete_rule_set_used False

Source Software

Target Software
! — =
@—‘ i i @ i 1
IMDB Load Tiny-BERT IMDB Load BERT-Base
Generator Generator
PyTorch PyTorch
Complier Complier
Linux Ubuncu 20.04
" -
4= —888888M@M d=
= E
LA LALL
Jetson AGX Xavier Jetson AGX Xavier

Figure 18: Experimental setup when a software change takes
place from TinyBERT to BERT-Base in the target.

Source: Centralized Deployment Target: Distributed Deployment

N | 0 0 00
X264 NvDCF X264 NvDCF
Video Encoder Object Tracker Video Encoder Object Tracker
Streammux ResNet18 Streammux ResNet18
Multiplexer Primary Detector Multiplexer [} Primary Detector
TensorFlow-GPU TensorFlow-GPU
Compiler Compiler
Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04
oS os 0s
Jetson AGX Xavier Jetson Xavier NX | { {| Jetson Xavier NX
Hardware B Hardware-1 Hardware-2

Figure 19: Experimental setup for our experiments when
the deployment topology is changed from centralized to dis-
tributed in the target in the target using two XaAvier NX.

Source Query Target Query
....................... 50% Read 95% Read
100% Read » [5o Updace || 59 Update [|100% Update
Cassandra -_-Cassandm
YCSB Workload YCSB Workload
Generator Generator
Linux Ubuntu 20.04

Chameleon Node

Chameleon Node

Figure 20: Experimental setup when the type of workload is
different with a CassaNDRA database where the source uses
a REaD ONLY workload where the target uses a BALANCED
and UppaTe HEavy workload, separately.

Conference acronym 'XX, June 03-05, 2023, Woodstock, NY

Md Shahriar Igbal, Ziyuan Zhong, Iftakhar Ahmad, Baishakhi Ray, and Pooyan Jamshidi

- Software, Hardware, Workload and
Source Hardware Change Deployment Topology Change ’ o

Deployment Topology Change

[[(

| 0 0 0 [[O 00 g gagcg HOEEE(

x264 NvDCF X264 NvDCF X264 NvDCF X265 ,NVDCF
Video Encoder Object Tracker Video Encoder Object Tracker Video Encoder Object Tracker Video Encoder Object Tracker
Streammux ResNet-18 Streammux ResNet18 Streammux ResNet-18 Streammux : ResNet-50

Multiplexer Primary Detector Multiplexer Primary Detector Multiplexer T Primary Detector Multiplexer | TY] Primary Detector

TensorFlow-GPU
Compiler

TensorFlow-GPU
Compiler

Ubuntu 20.04

Ubuntu 20.04
oS
Jetson AGX Xavier Jetson Xavier NX
Hardware Hardware

TensorFlow-GPU
Compiler

Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04
0s 0Os (e
Jetson Xavier NX Jetson Xavier NX Jetson Xavier NX Jetson Xavier NX
Hard T Hard Hardware-1 Hardware-2

TensorFlow-GPU
Compiler

Figure 21: Experimental setup for different severity of environmental changes. Low severity change scenario when only
hardware changes from XavIER to XaviIER NX in the target (second figure). We change the hardware and deployment topology
for the medium severity change scenario (third figure). For high-severity environmental changes experiments, the primary
detector is changed from RESNET-18 to RESNET-50, the decoder is changed from x264 to x265 with a different deployment
topology from the source distributed with two Xavier NX hardware that is different from the source as well (fourth figure).

Hardware Change Hardware Change

Deployment Change

Deployment Change

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Iteration Iteration Iteration Iteration

Figure 22: Effectiveness of CamEo with JumBo when hardware
changes in the deployment environment.

Figure 25: Effectiveness of CAMEO with JumBo when deployment
topology changes in the deployment environment.

. . Low Severity Change . High Severity Change
Software Chan

Software Cl

" ' Figure 26: Effectiveness of CAMEO when different severity of envi-
5 W m m o m W m m
Iteration

Tteration ronmental changes happen in the deployment environment.
Figure 23: Effectiveness of Cameo with JumBo when software
changes in the deployment environment.

Workload Change Workload Change

600

t (queries/secc

0 50 100 150 200 0 50 100 150 200

Iteration Iteration

Figure 24: Effectiveness of Cameo with JumBo when workload
changes in the deployment environment.

	Abstract
	1 Introduction
	2 Motivation and Insights
	2.1 Why performance optimization using causal reasoning is more effective?
	2.2 Learning from Causal Structural Properties in Various Environments
	2.3 Learning to Intervene based on Causal Structure

	3 Cameo Design
	3.1 Problem Formulation
	3.2 Cameo Overview
	3.3 Knowledge Extraction Phase
	3.4 Knowledge Update Phase

	4 Evaluation
	5 RQ1: Effectiveness in Design Explorations
	6 RQ2: Severity of Environmental Changes
	7 RQ3: Sensitivity and Scalability
	8 Additional Related Work
	9 Limitations
	10 Conclusion
	A Appendix.
	A.1 Definitions and Background
	A.2 Additional Details for Evaluation
	A.3 RQ1 Additional Results
	A.4 RQ2 Additional Results

