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Abstract— Large-scale in-situ 3D reconstruction of crop fields
presents a challenging task, as the 3D crop structures play a
crucial role in plant phenotyping and significantly influence
crop growth and vyield. While existing efforts focus on close-
range plants, only a limited number of deep learning-based
methods have been developed explicitly for large-scale 3D crop
reconstruction, mainly due to the scarcity of large-scale crop
sensing data. In this paper, we leverage unmanned aerial vehi-
cles (UAVs) in agriculture and utilize a recently captured multi-
view real-world snap beans crop dataset to develop an unsuper-
vised structure-from-motion (SfM) framework. Our framework
is designed specifically for reconstructing large-scale 3D crop
structures. It addresses the challenge of inaccurate depth infer-
ence caused by excessively repeated patterns in the crop dataset,
resulting in highly accurate 3D crop reconstruction for large-
scale scenarios. Through experiments conducted on the crop
dataset, we demonstrate the accuracy and robustness of our 3D
crop reconstruction algorithm. The application of our proposed
framework has the potential to advance research in agriculture,
enabling better plant phenotyping and understanding of crop
growth and vyield.

I. INTRODUCTION

Large-scale highly accurate 3D structure of the farmland
is important information regarding the holistic crop field
structure, especially in precision agriculture. An accurate 3D
reconstruction model of the crop provides special phenotypes
for crop breeding and crop selection to be helpful with
breeding next-generation crops [39][18]. 3D reconstructed
crop models can be used to evaluate crop growth and
crop yield, which allows further effective crop manage-
ment. Therefore, the research for 3D reconstruction of the
farmland is indispensable to greatly improve and speed up
the ability of researchers and scientists to evaluate crop
structural change, finally towards the objective of effective
management of the large-scale crop fields. To obtain robust
and accurate crop reconstruction, the current 3D crop re-
construction methods mainly use active sensing techniques
(structured light [60][37], Time-of-flight (TOF) cameras [17],
LiDAR [55][9]), and image-based 3D reconstruction tech-
niques (Structure from Motion [41][30], multi-view stereo
[55][4]) to acquire a single reconstructed plant. But research
has rarely been conducted on large-scale farmland 3D model-
ing, which reduces the comprehensiveness of the overall crop
analysis, leading to inefficient crop management. In addition,
the above-mentioned sensing-techniques-based systems are
very costly, which is not favorable to large-scale scene re-
construction applications. The above-mentioned image-based
reconstruction methods are based on conventional methods,
which generate inaccurate 3D reconstruction models due
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to inevitably mismatched feature points during reconstruc-
tion. In recent times, a limited number of deep learning
approaches can produce satisfactory results on close-range
plants [30][31][24], which target at ego-view individual plant
reconstruction. However, they have a critical limitation when
applied to large-scale farmland reconstruction using multiple-
view crop images from a bird’s eye view due to the repeated
textures, which makes it difficult to train and improve an
appropriate network for large-scale crop reconstruction. In
addition, most of the existing crop datasets are captured in
the laboratory environment, which is difficult to be directly
applied to large-scale 3D crop reconstruction.

In this paper, we present an unsupervised 3D recon-
struction framework that is applied to a real-world snap
bean crop dataset captured by the UAV for large-scale
3D reconstruction. The dataset includes 15 snap bean crop
sequences and camera intrinsics. The learning-based un-
supervised SfM network focuses on exploiting multi-view
geometric constraints to reconstruct large-scale and highly
accurate 3D crop structures. The SfM network uses those
constraints to estimate accurate UAV pose and depth maps.
Due to the similar intensity and color of the crop field
images, photometric loss may not effectively establish tight
constraints. We extract regional contours in crop images to
build relationships between successive images as the
contours can distinctively represent the local crop shaping
properties. To further overcome excessively repeated patterns
in the crop dataset and enable the trained large-scale 3D
farmland to maintain more details, we detect and match
keypoints that constrain the consistency of the salient details
across consecutive crop images as a loss to improve 3D
crop structure modeling effects. The entire unsupervised SfM
network explores spatial and spectral constraints. Spatial
constraint is to enforce the contours and keypoints to be
consistent across different frames on positions to reduce the
displacement error to optimize the depth map, and spectral
constraint is to enforce the pixel values to be consistent with
pixel values corresponding to the same 3D point on different
frames. With the support of both constraints, our proposed
SfM network can achieve a superior large-scale 3D crop
reconstruction effect.

Overall, the contributions of our work are summarized
as follows: 1) we propose a learning-based unsupervised
SfM network targeting at large-scale crop reconstruction to
explore the crop properties; 2) we investigate the specific
texture repetition properties of crops and propose regional
contour consistency constraint to establish the relationship
between consecutive frames; 3) the proposed method ex-
plores the multi-view geometric constraints to optimize and
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Fig. 1.

The framework of our unsupervised 3D reconstruction method for large-scale crop field reconstruction, which explores the regional contour shape

properties, keypoint matching relationship, and spectral consistency in the interaction between depth and pose estimation neural network branches.

enhance 3D crop structure effect. The entire reconstruction
framework is shown in Fig. 1.

II. RELATED WORK

Mainstream 3D crop reconstruction methods can be
roughly divided into two categories: active sensing-based
methods and passive image-based methods. Structured light
(Kinect sensor), ToF cameras, and LiDAR are three major
active sensing methods for 3D crop reconstruction. Structure-
from-motion and multi-view stereo are two image-based
methods for 3D reconstruction with only one or two cameras.

A. Active Sensing-based Methods

Structured light is a group of systems composed of a
projector and a camera. After the projector projects spe-
cific light information on the surface of the object andthe
background, this light information is collected by the
camera. According to the change of the light signal caused
by the object, information such as the position and depth of
the object can be calculated using triangulation [40] to
restore the entire three-dimensional shape. Botterill et al.
[3] applied a robot equipped with stereo cameras and a
structured light scanner to acquire high-level 2D features
and a sparse set of 3D structured light points. However,
it did not offer the resolution to cope with complex plant
structures. Li et al. [21] applied a structured light scanner
with a camera-projector pair to obtain 4D reconstruction,
with time being the fourth dimension. Nguyen et al. [37]
developed a structured light system with the corresponding
software algorithms to produce 3D models of entire plants
without cutting away any parts of a plant destructively.

ToF camera uses active light to determine depth informa-
tion. The sensor emits a light signal which hits the subject
and returns to the sensor. The time it takes to bounce back is
then measured, which provides depth-mapping capabilities.

Kazmi et al. [17] evaluated the performance of ToF cameras
for close-range plant images under three different illumina-
tion conditions and concluded that while ToF cameras can
generate high frame rate accurate depth data under suitable
conditions, the sensors are very sensitive to ambient light
with low resolution, which causes the poor performance un-
der outdoor environment. Therefore, farmland reconstruction
is challenging under outdoor conditions using ToF cameras.

LiDAR, as a specific type of ToF camera, measures the
distance between the object and the sensor using the laser,
followed by calculating the time taken for the reflected
light to come back [40]. Kaminuma et al. [15] presented
precise 3D measurements using a laser range finder (LRF)
and automatic data processing for phenotypic analysis of
plants. Paulus et al. [42] proposed an approach automatically
analyzing barley organs using 3D laser scanning to achieve
the automated parameter tracking of the plant organs, leaf,
and stem, but the point cloud data obtained by LiDAR loses
the details of plants such as plant surface area. To further
improve the accuracy of the model, Wu et al. [55] combined
point cloud data generated by multiview sequence images
as a reference to calibrate the point cloud data from the
LiDAR scanning using lterative Closest Point (ICP), finally
establishing an accurate 3D model of the plant. However,
LiDAR is very costly and needs calibration when used
with cameras. In addition, LiDAR sensing is generally low
resolution compared with normal cameras.

B. Passive Image-based Methods

Structure-from-Motion (SfM) is a widely used 3D
reconstruction method for large-scale 3D modeling
[52][49][45][28][29]. Classical depth prediction methods
mainly rely on handcrafted features or probabilistic models
either to estimate depth information from a single image
[52][16][20][13] or from stereo images [57][33], which



generally create a sparse 3D point cloud. Deep neural
networks have been extensively used to estimate depth maps
due to their superior ability to extract features from images
[5][22][43]. Quan et al. [44] and Tan et al. [53] proposed a
semi-automatic method for completed plant reconstruction
using the SfM. Although those methods achieved good
performance under outdoor conditions, it is difficult to
reconstruct each leaf accurately. Jay et al. [13] applied the
SfM method with RGB images acquired by a single camera
moving along the rows of a crop field to reconstruct a crop
3D model.

Multi-view stereo (MVS) has a similar theory to SfM,
but the MVS refines the SfM steps to generate the dense
reconstruction. Therefore, most classic 3D reconstruction
methods combined SfM and MVS to generate accurate and
dense point clouds [26][48][59][2][58]. Schénberger et al.
present a MVS system called COLMAP [50]. With the
success of the learning-based stereo methods, some existing
research attempted to apply CNNs to the MVS task. Ji etal.
[14] proposed the end-to-end learning network designed for
MVS, called SurfaceNet, by building colored voxel cubes
outside the network to encode the camera parameters through
perspective projection. However, SurfaceNet generates low-
resolution objects and has a huge GPU memory consumption
of 3D voxel. DeepMVS [12] generates a plane-sweep volume
for each reference image, but this method is unrealistic for
large-scale scenes due to the large memory consumption.
Bundle adjustment and pose graph have been proven to be
able to optimize neural networks and improve 3D reconstruc-
tion effects [27]. Liu et al. [23]proposed RED-Net, which
adopts the idea of regularized 2D cost maps from [56] to
effectively exploit neighborhood information, making RED-
Net achieve large-scale and full-resolution reconstruction.

I1l. BIRD-VIEW 3D CROP RECONSTRUCTION

In this section, we elaborate on the learning-based con-
tour matching guidance, which is trained to match con-
tours between different frames to facilitate the 3D crop
reconstruction tasks so that repeated pattern issues of crop
images can be addressed during training. To further fine-
tune the accuracy of crop structures, we investigate keypoint
consistency constraints. The process of both contour match-
ing guidance and keypoint consistency involves keypoint
detection and descriptor learning. Once we obtain the contour
matching and keypoint consistency, a designated end-to-
end SfM network can be developed to navigate the large-
scale 3D crop field reconstruction effectively. The other two
consistency constraints (appearance consistency and depth
consistency) are also fused into the crop field reconstruction
framework to improve the reconstruction accuracy and enrich
details of 3D crop structures.

A. Network Structure

The 3D crops reconstruction framework is to predict the
depth maps and camera poses with consecutive frames as
input. Fig. 1 demonstrates the basic structure of our deep
unsupervised 3D SfM crop reconstruction network, which is
to jointly learn the depth map and the corresponding camera

pose by both contour consistency, keypoint consistency, and
depth and appearance consistency constraints between the
target image and reference image. The whole SfM framework
consists of two deep neural networks: Pose ResNet and
Depth ResNet. Depth ResNet in Fig. 1 is to generate a
depth map with an encoder-decoder network structure. The
encoder network extracts significant features from the input
crop images, composed of seventeen convolutional layers and a
single fully connected layer. The decoder network applies to
skip connections [25] to further interpret those feature
representations to generate a depth map. Pose ResNet has
a similar network structure to Depth ResNet, but instead of
generating depth maps, Pose ResNet outputs relative 6 DoF
parameters, which can construct a rotation matrix R(3 x 3)
and a translation vector t(3 x 1).

B. Contour Matching Learning Guidance

Our contour matching consists of three steps: contour
extraction, keypoint detection, and description extraction.
The contour extraction part is embedded into the contour
matching network to extract the contours of the input crop
images in real-time using the Sobel algorithm provided by
Kornia [47]. Then a detector network, called RF-Det [51],
takes contour images as input to detect the keypoints with a
score map, an orientation map, and a scale map. The contour
images will be cropped into multiple patches according to
these three maps to be fed into the descriptor network to
extract fixed-length feature vectors for matching.

1) Keypoint detection: We first construct multi-scale maps
from input contour images to do the enhancement for low-
texture images. The motivation is that the texture of contour
images is relatively low compared to the RGB images, and
the quality of the sharpness and appearance is also much
lower than RGB images. Therefore, constructing multi-scale
maps M can keep different level features to detect keypoints.

Inspired by LF-Net [38], since multi-scale maps M can
represent pixel responses on multi-scales, high-response pix-
els will be chosen as keypoints, generating the keypoint score
map Mscre Using two softmax operators. The orientation
and scale maps can be calculated by applying convolutions
on multi-scale maps M with two 1 x 1 kernels to separately
generate multi-scale orientation maps Mgra and scale maps
Mscale . Once these maps and keypoints are acquired, we can
determine the matching precision.

2) Description extraction: Given keypoints, the patch de-
scriptor can be trained to obtain descriptions for the target
region. The descriptor network is similar to the Hard-Net
[35], He et al. [10] and L2-Net [54]. The descriptor network
includes seven convolution layers, and each convolution layer
consists of a batch normalization and ReLU except for the
last layer. During training, the patches generated by keypoint
orientation and scale can affect the matching precision of
the descriptor, so that patch consistency is treated as a
constraint to improve the accuracy of the matching patches.
During inference, the descriptor output is multiple matching
128x128 patches P between two different frames, which can
overcome the repeated pattern issues caused by crop images



to improve the accuracy of 3D crop reconstruction.

In the process of training for 3D crops reconstruction, as
shown in the left part of Fig. 1, multiple matched patches
between target image |+ and reference images l+-k B¢+ are
found, and the pixel coordinates corresponding to each patch
can be extracted in original contour image. Meanwhile, the
depth values corresponding to each patch will also be
extracted. So we further enforce the coordinate points of mul-
tiple contour patches cropped from target contour images |+ to
be consistent with coordinate points of reference contour
images |-k B I+ based on the depth values corresponding to
each patch and camera motion. The proposed contour

matching consistency constraints can be formulated as:
X X Bpatm,i (r(Ptr, Dm)) - patn,ild,
M N i

(1)
where M represents the number of target images. N rep-
resents the number of all other reference images except
for the current target view. i is the number of extracted
coordinate points from the contour patches. m represents a
mapping relationship from the coordinate points from
target contour patches to the coordinate points from other
matched reference contour patches. Py, is the relative camera
motion from the target image to the reference images. D wm
corresponds to the depth values at the current My, target
contour region. pat means the pixel coordinate points of
contour patches. The L2 norm is to measure the distance
between warped contour coordinate points in target contour
patches and contour coordinate points in the reference images
and minimize it.

Leontour =

C. Keypoint Consistency

The basic principle of the keypoint consistency constraint
is to find the matching keypoints between target views and
reference views to fine-tune the 3D crop structure. Therefore,
we still follow the matching process of section I11-B to learn
matching keypoints, but different from contour matching,
RGB crop images are taken as input to find matching
keypoints in similar texture RGB images. Once we obtain
the pre-trained model for matching keypoints, the model
can be applied to 3D crop reconstruction. The right part
of Fig. 1 presents the keypoint consistency constraint. With
any consecutive RGB images as input, the detected matching
keypoints between any two frames with the predicted depth
information for each frame and the estimated relative camera
motions between them can build an unsupervised constraint
to enforce the warped keypoints of the target image to
be consistent with detected keypoints of reference images.
Therefore, the proposed keypoint consistency constraint is

defined as:

X X "

pOim,i (T (Ptr, Dm)) = Poiy,iy
(2)

where M, N, i, t, Pty and Dum represent the same meaning
as in Eq. 1. poi means the coordinate points of the detected
keypoints. Similar to the contour matching guidance scheme,
the L2 norm is also to minimize the difference between

Lkeypoint =
N i

warped keypoints in the target image and the detected
keypoints in the reference images.

D. Appearance Consistency

Based on contour consistency and keypoint consistency,
we further add spectral consistency constraints to improve the
details of 3D crop reconstruction, which enforces the spectral
appearance of the warped target images to be consistent with
reference images according to predicted crop depth maps and
estimated camera poses. The spectral consistency constraints
can be achieved as:

Blm (rt(Ptr, Dm)) - In By (3)
M N

Lspectral =

where M and N respectively represent the number of the
target image and reference images, but the reference image
is not the same as the current target image in each loss
calculation. Py, is the relative camera motion from the target
image to the reference images. D v corresponds to the depth
map at current My target image. In is the N, reference
image. The L1 loss is applied to reduce the pixel RGB value
difference between the warped target image and reference
images.

As the robustness of L1 loss is not enough for the
light illumination and contrast variation, the image structural
similarity index (SSIM) is fused into the Lspectral to evaluate
the similarity between two images in illuminance, contrast,
and structure. The improved spectral consistency loss can be
expressed by axcombination of SSIM and L1 loss as:

Lspectral = A Blm (m (P, Dm)) - In By
M N (4)
1- SSIM (Im, In)
+ Ay 5

where SSIM (Im, In) computes the element-wise similarity
between the warped target image | v and the reference image
In. We set A1 = 0.15 and A, = 0.85 following [7] [6].

E. Depth Consistency

Depth represents and consists of the geometric information
of images. Depth maps are less sensitive to the gradient
locality [1] compared with color images. Therefore, we fur-
ther introduce depth consistency across consecutive frames
to solve possible depth ambiguity. Target depth map Dm
can be warped into reference depth map Dn , called warped
reference depth map, and then we force warped reference
depth map to be consistent with the original reference depth
map. A scaling ratio of both two depth maps is first calcu-
lated, and then the depth consistency constraint is defined as
follows:

Ldepth =X r]'D"N(i)_ DN(i)/

' P : 5
i DN (I) ( )
i IjiN (')
where n is the depth scale ratio between the warped refer-

ence depth map and the original reference depth map. The
integrated constraints of our framework are as follows:



Fig. 3.
Liotal = A1Lcontour +)\2Lkeypoint +}\3Lspectral +)\4Ldepth (6)

where A1, A2, A3 and A4 are different weights for the four
constraints.

IV. EXPERIMENT RESULTS AND ANALYSIS
A. Dataset

To generate large-scale 3D crop reconstruction, we use the
Mako G-419 camera mounted on UAV to take consecutive
crop images with recorded real-time LiDAR data. Although
the Mako G-419 camera outputs multi-spectral images, we
only processed the RGB channels using Spectral Python
(SPy) toolbox with the resolution of 512 x512. The calibra-
tion from LiDAR to Mako G-419 camera can be completed
offline to obtain the calibration matrix. Therefore, the 3D
data captured by LiDAR can be treated as ground truth to
validate our model. We collected 15 snap bean sequences
with 18,000 images.

B. Training Configuration

For contour matching and keypoint matching training, the
input images are respectively contoured images through the
Sobel operator and RGB images with the same size of
512 x 512. We first put these two types of images into
the detector network called RF-Det to extract the high-
response pixels as keypoints with three maps. These patches
are determined by three maps input descriptor networks to
extract fix-length feature vectors for matching. Although

3D reconstruction models (below) based on a single image input (above).

these two tasks have the same training process, their training
configuration is different. For contour matching, in orderto
generate larger patches with fewer keypoints to extract
contour patches, we set the patch size as 128 @ 128 and the
top-k contour patch number as 32. As a comparison, we
also want to generate more matched keypoints with smaller
patches to detect more matched keypoints, for which we set
the patch size as 32 @32 and the top-k number to 628.
After detecting matched contour patches and matched
keypoints between the target image and reference images,
the learning-based 3D crop reconstruction network is trained
in an unsupervised manner and does not need any 3D
supervision to guide the training process. It is implemented
with PyTorch library and trained from scratch using Adam
optimizer [19] with B1 = 0.9 and B2 = 0.99. Rectified Lin-
ear Units (ReLu) [36] is applied as activation functions for
all convolutional layers. The weights of the depth estimation
network and pose estimation network are initialized with the
Kaiming initialization [11] by setting the batch size to 4 to
achieve a trade-off between the efficiency and the memory
usage. The whole framework is trained for 30 epochs.

C. 3D Visual Reconstruction Result

We first show the 3D modeling result based on a single
image input, as Fig. 2. One can notice that the 3D modeling
results are accurate from different perspectives with just an
image input. Even with different crop types in the same
field, the reconstruction models of the different crops are
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Fig. 4.  First row: from left to right are the input target image, the corre-
sponding target contour image, the reference image and the corresponding
reference contour image; Last three row: the image patch and contour patch of
the first two columns match the image patch and contour patch of the latter
two columns respectively.

Metric | Contour Matching | Keypoint Matching
NN 0.400 0.329
NNT 0.511 0.482
TABLE |

NEAREST NEIGHBOR (NN) AND NEAREST NEIGHBOR WITH A
THRESHOLD (NNT) ON EVALUATING CONTOUR MATCHING AND
KEYPOINT MATCHING METHODS.

still clearly distinguishable. More results are shown in Fig.
3, which also has shown accurate 3D crop reconstructions.

D. Contour Matching

Through training a set of consecutive crop contour images,
the contour matching model has superior performance with
matched patches. We visually present matching contour
patches between the target image and the reference image.
As shown in Fig. 4, all the corresponding contour patches
are matched correctly, which demonstrates the target contour
patches can match reference contour patches well during
the training process to address the repeated pattern issues.
Meanwhile, to evaluate the performance of our contour
matching strategy, we use two matching metrics according to
[34] to quantitatively calculate the matching score. The first
one is nearest neighbor (NN) based matching. Supposing
the descriptors of the target contour patches are the nearest
neighbor to the descriptors of the reference contour patches,
two contour patches match. Each descriptor has only a
unique match. The second one is the nearest neighbor with a
threshold (NNT) based matching. If the descriptors of the
target contour patches are the nearest neighbor to the
descriptors of the reference contour patches and the distance
between two patches is less than a threshold, the two contour
patches match. Correct matching ratios under these matching

5.

Aligned 2D keypoints between the target and reference images

Fig.

criteria are reported. As the first column of Table I, our
quantitative results are respectively 0.4 and 0.511 on NN
and NNT metrics.

E. Keypoint Matching

Similarly, through training a set of consecutive crop
images, the keypoint matching model represents superior
performance with matched keypoints. We visually plot cor-
responding keypoints detected from the keypoint detector
between the target image and reference images. As shown in
Fig. 5, all the corresponding keypoints between two frames
are matched correctly without being affected by any transfor-
mation such as rotation, translation, affine transformation and
so forth. The results of the first two columns of the first row
and the last two columns of the second row can show that
our keypoint matching model can match correctly under any
transformation. Meanwhile, we also use the same metrics
as the contour matching method to validate our keypoint
matching performance. As shown in the second column of
Table I, our quantitative results are respectively 0.329 and
0.482 on NN and NNT metrics.

F. Comparison with other methods

As shown in Fig. 6, we compare our method with
other state-of-the-art methods including PackNet-SfM [8],
Monodepth2 [7], Vision Transformer [46], and HR-Depth
[32]. The first column is the raw input images, and the
second column is the 3D maps generated by our method,
which reflects the depth information of the crop image,
and the map is not distorted. But for the other models, the
output has severe distortions. PackNet-SfM can capture some
texture information, but the 3D depth maps are still
obviously distorted. The remaining methods can no longer
output meaningful 3D crop field models.

In the quantitative analysis, we use the 3D points data col-
lected by LiDAR as the ground truth and calculate the error



Fig. 6. Visual comparisons on reconstructed crop shapes from snap bean crop datasets between our result and other recent 3D reconstruction methods. First

column: raw input image; second column:

result from our pipeline; third column: result from PackNet-SfM method [8]; fourth column: result from

Monodepth2 [7] method; fifth column: result from Vision Transformer [46] method; sixth column: result from HR-Depth [32] method.

Metric | Our Method | HR-Depth | Monodepth 2 | PackNet-SfM | Vision Transformer

MAE 0.418 0.861 0.972 0.812 0.728

MSE 0.376 0.777 0.851 0.682 0.594
TABLE 1l

MEAN AVERAGE ERROR (MAE) AND MEAN SQUARED ERROR (MSE)
ON SNAP BEAN DATASET.
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Fig. 7.  Ablation study for the full pipeline and network with specific
consistency constraints. The measurement is based on MAE.

of the depth map generated by different models compared to
the ground truth. The results are shown in Table Il. In both
MAE and MSE metrics, our method is significantly better
than the others.

We also conducted an ablation study to compare the
full pipeline with the pipeline missing each specific con-
sistency constraint, as shown in Fig. 7. One can see that
each component contributes to the depth estimation output.
Among all those consistency constraints, contour consistency
contributes the most to accurate 3D crop modeling, followed
by keypoint consistency, appearance consistency, and then
depth consistency. This has demonstrated that the network is
effective for 3D crop modeling tasks.

V. CONCLUSION

This paper proposes an unsupervised SfM neural network
designated for 3D crop field reconstruction, which is typi-
cally difficult for both conventional and learning-based SfM
methods due to the repeated textures and similar colors
and intensities across images. To resolve this issue, we
investigate contour-based and keypoint matching consistency
constraints to guide the learning process together with the
appearance and depth consistencies. Based on both spatial
and spectral constraints, the proposed neural network can
effectively reconstruct large-scale crop fields based on bird-
view images captured by UAVs.
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