
Formalizing and Reasoning about Supply Chain
Contracts between Agents⋆

Dylan Flynn1, Chasity Nadeau1, Jeannine Shantz1, Marcello Balduccini1,
Tran Cao Son2, and Edward R. Griffor3

1 Saint Joseph’s University, Philadelphia, PA, USA
{df752850,cnadeau,js486075,mbalducc}sju.edu

2 Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
stran@nmsu.edu

3 National Institute of Standards and Technologies, MD, USA
edward.griffor@nist.gov

Abstract. Inspired by the recent problems in supply chains, we propose an ap-
proach to declarative modeling of contracts between agents that will eventually
support reasoning about resilience of and about ways to improve supply chains.
Specifically, we present a high-level language for specifying and reasoning about
contracts over action domains of agents. We assume that the behavior of the
agents can be formally expressed through action theories and view a contract
as a collection of constraints. Each constraint specifies the responsibility of an
agent to achieve a certain result by a deadline. Each agent also has a mapping be-
tween constraints and the agent’s concerns, i.e. issues that the agent is concerned
about, which are modeled in accordance with the CPS Framework proposed by
the National Institute of Standards and Technology. We discuss how common
questions related to the fulfillment of a contract or the concerns of the agents can
be answered and computed via Answer Set Programming.

Keywords: Specifying and reasoning about contracts · Supply chain · Cyber-
Physical System Framework · Answer Set Programming .

1 Introduction

Supply chains have historically been optimized with respect to costs and other spe-
cific attributes, including the provisioning of materials, manufacturing processes, and
distribution logistics. This high degree of optimization makes supply chains inherently
brittle, in that their optimized network of exchanges is sensitive to sudden or extreme
changes in demand. Alarming demonstrations of this brittleness have been experienced
during the COVID-19 pandemic, i.e. with the supply chain’s inability to respond to the
surge in demand for masks and ventilators. As these recent events demonstrated, supply
chains nowadays constitute a widely distributed and critical infrastructure with legs into

⋆ Portions of this publication and research effort are made possible through the help and support
of NIST via cooperative agreement 70NANB21H167. Son Tran was also partially supported
by the NSF grants 1812628 and 1914635.

2 D. Flynn et al.

economy and public welfare. Finding effective methods of curbing their brittleness in
response to sudden changes and surges in demand is thus paramount.

In this paper, we report on our progress in an investigation into methodologies that
are ultimately aimed at making supply chains more resilient, and specifically for the
identification of critical dependencies and for the evaluation, verification and restoration
of properties of the supply chain.

As a first step, this paper proposes an approach to declarative modeling of supply
chains that views a supply chain as a collection of contracts between agents, where a
contract is a set of constraints. Each constraint specifies the responsibility of an agent to
achieve a certain result by a deadline. The approach aims at describing, and reasoning
about, the evolution of the state of the supply chain over time in response to events.
Thus, we assume that the behavior of the agents can be formalized declaratively through
action theories.

Typically, a supply chain involves a multitude of stakeholders (e.g., C-suite posi-
tions but also people involved in different level of supply, production, inventory, etc.)
with substantially different types of expertise and goals. For this reason, a critical chal-
lenge with designing and managing resilient supply chains is that one needs not only
to clearly identify all the interdependencies among the relevant elements, but also to
formalize them in such a way that their relevance and ramifications are understandable
by multiple stakeholders regardless of their different views.

To overcome this challenge, we build upon the notion of concern from the CPS
Framework proposed by the National Institute of Standards and Technology (NIST) [3].
Our approach provides each agent with a mapping between constraints and the agent’s
concerns, i.e. issues that the agent is concerned about. While resilience may have many
faces, we hypothesize that these faces can be captured within the concerns provided by
the CPS Framework. An important reason that led us to rely on the CPS Framework is
that it is designed to enable meaningful and grounded discussion among stakeholders
from different backgrounds and with different objectives – supported in particular by a
rich hierarchy of broadly-applicable concerns. This ensures broad applicability of our
approach to a variety of types of supply chains, problems, and mix of stakeholders. All
in all, our approach consists in viewing a supply chain as a large and complex CPS,
and in capturing the supply chain’s interdependencies by means of the elements of the
NIST CPS Framework.

Because resilience is a broad and multi-faceted topic, as a start in this paper we
focus on the three reasoning problems, which we view as fundamental stepping stones
towards reasoning about resilience: Contract feasibility: given an initial state of the
world, can a given contract be successfully executed? (If that is not the case, then the
contract is set up for failure.) Clause satisfaction check: assuming that the contract has
been in execution for some time, has any agent violated any clause of the contract?
If so, then how can the problem be mitigated? Concern satisfaction check: assuming
that the contract has been in execution for some time, which (and whose) concerns are
not satisfied? What can be done to mitigate the problem? Besides the formalization of
the problem and of the reasoning mechanisms, we also discuss the implementation of
our approach, which is based on the declarative knowledge representation formalism of
Answer Set Programming (ASP) [10,12].

Formalizing and Reasoning about Supply Chain Contracts between Agents 3

2 Preliminaries

2.1 The NIST CPS Framework

An important challenge with supply chains is that stakeholders of varying backgrounds
may use different terminology when discussing a supply chain and likely have differ-
ent, possibly even conflicting, goals, which can lead to challenges under normal cir-
cumstances. When the unexpected occurs, disruptions in communication and conflicts
among objectives may be magnified, making it more difficult to ensure resilience. Es-
tablishing a structure incorporating primitives that promote a common vocabulary and
meaningful, grounded discussion among stakeholders may mitigate risks. To create a
“common foundation”, we propose viewing the supply chain as a large, complex Cy-
ber Physical System (CPS) and leveraging the NIST CPS Framework as a lens through
which we can look at a supply chain. With this framework the processes surround-
ing developing, verifying and delivering products can be formalized and more easily
understood by a diverse group of stakeholders [3]. By design, the scope of the CPS
Framework is very broad so that it may be adopted by a broad range of applications.

The NIST Framework for Cyber-Physical Systems, referred to as “NIST CPS Frame-
work” or simply “Framework” below, comprises a set of concerns and facets related to
the system under design or study. This section briefly clarifies the intent and purpose of
the framework. The interested reader is directed to SP 1500-201, SP 1500-202 and SP
1500-203, available on the NIST website.

The CPS Framework provides the taxonomy and methodology for designing, build-
ing, and assuring CPS that meet the expectations and concerns of system stakeholders,
including engineers, users, and the community that benefits from the system’s func-
tions. The concerns of the Framework are represented in a forest, where branching
corresponds to the decomposition of concerns. We refer to each tree as a concern tree
of the CPS Framework. The concerns at the roots of this forest are called aspects. For
instance, the sub-concerns of the Trustworthiness aspect are Privacy, Reliability, Re-
silience, Safety, and Security. In turn, the Security concern has sub-concerns Cyber-
security and Physical Security, and the Cybersecurity concern has sub-concerns Con-
fidentiality, Integrity and Availability. The Framework comprises nine aspects. In this
paper, we will mainly focus on Business, Functional, and Trustworthiness. A concern
about a given system reflects consensus thinking about method or practice, involved in
addressing the concern, and in some cases consensus-based standards describing that
method or practice. Associated with each concern is a set of requirements that address
the concern in question. For example, in a CPS that stores personally identifiable infor-
mation, the system’s designers may agree that the requirement to use encrypted memory
addresses the Confidentiality concern. Because the Confidentiality concern is a descen-
dant of the Trustworthiness aspect, this requirement, together with other relevant ones,
addresses the CPS’s Trustworthiness aspect as well. The dependencies among concerns
and between requirements and concerns can be formally represented by means of an
ontology. Leveraging the ontology, tasks related to reasoning about the satisfaction of
concerns can be reduced to: (a) identifying which requirements are satisfied in the cur-
rent state of the system and which ones are not, and (b) propagating this information up
the concern forest, ultimately determining the satisfaction of the aspects. For details on

4 D. Flynn et al.

this approach, we refer the interested reader to [11]. For the purpose of this paper, it is
sufficient to mention the existence of algorithms for determining whether a requirement
or concern γ is satisfied given the ontology O and a current state s of the CPS. Below,
we will write O ∪ s |= γ to denote that γ is satisfied under s.

2.2 Action Language B

An action domain in the action language B [6] is defined over two disjoint sets, a set of
actions A and a set of fluents F. A fluent literal is either a fluent f ∈ F or its negation
¬f . A fluent formula is a propositional formula constructed from fluent literals. An
action domain is a set of laws of the following form:

Executability condition : executable a if φ (1)
Dynamic law : a causes ψ if φ (2)

Static Causal Law : ψ if φ (3)

where ψ and φ are fluent formulas and a is an action. Intuitively, an executability con-
dition of the form (1) states that a can only be executed if φ holds. (2), referred to as
a dynamic causal law, states that ψ is caused to be true after the execution of a in any
state of the world where φ is true. (3) represents a static causal law, i.e., a relationship
between fluents. It conveys that whenever the fluent formula φ holds then so is ψ. For
an action domain D, we denote the set of laws of the form (3) by K .

Let D be a domain. A set of fluent literals is said to be consistent if it does not
contain f and ¬f for some fluent f . An interpretation I of the fluents inD is a maximal
consistent set of fluent literals of D. A fluent f is said to be true (resp. false) in I iff
f ∈ I (resp. ¬f ∈ I). The truth value of a fluent formula φ in I is defined recursively
over the propositional connectives in the usual way. I |= φ indicates that φ is true in I .

Let u be a consistent set of fluent literals and K a set of static causal laws. We say
that u is closed under K if for every static causal law “ψ if φ” in K, if u |= φ then
u |= ψ. By ClK (u) we denote the least consistent set of literals from D that contains
u and is also closed under K. It is worth noting that ClK (u) might be undefined. For
instance, if u contains both f and ¬f for some fluent f , then ClK (u) cannot contain u
and be consistent; another example is that if u = {f, g} and K contains both “f if h”
and “¬h if f, g” then ClK (u) does not exist because it has to contain both h and ¬h,
which means that it is inconsistent. For a formula η, ClK(η) denotes the set {ClK(u) |
u is a set of fluent literals such that u |= η}. Formally, a state of D is an interpretation
of the fluents in F that is closed under the set of static causal laws K of D.

An action a is executable in a state s if there exists an executability proposition
executable a if φ in D such that s |= φ. The direct effect of an action a in a state
s is the set e (a, s) =

∧
a causes ψ if φ∈D,s|=φ ψ. For a domain D, ΦD(a, s), the

set of states that may be reached by executing a in s, is defined as follows: (i) if a is exe-
cutable in s, then ΦD (a, s) = {s′ | s′ is a state and s′ ∈ ClK

(
e (a, s) ∧

∧
l∈s∩s′ l

)
};

and (ii) if a is not executable in s, then ΦD (a, s) = ∅. ΦD is unique for each domain D
and is called the transition function of D.

Given a domainD, an alternate sequence of states and actionsα = s0a0s1 . . . an−1sn,
where si’s are states and ai’s are actions, is a trajectory over the domain D if si+1 ∈

Formalizing and Reasoning about Supply Chain Contracts between Agents 5

ΦD(ai, si) for every i = 0, . . . , n − 1. We say that n is the length of α and s0 is the
starting state of α. Furthermore, α satisfies a fluent formula φ over the set of fluents in
DA, denoted by α |= φ, if sn satisfies φ.

3 A Motivating Scenario

Let us consider a scenario involving two agents: XYZ Homes and Lumber Yard A. XYZ
Homes aims at building a certain number of homes and contracts with Lumber Yard A
to provide suitable lumber.

Example 1 (A Contract Between XYZ Homes and Lumber Yard A). XYZ Homes builds
eight to nine 2,000 square foot homes each month for new home buyers. Each new
home requires 16,000 board feet of Number 2 Common grade lumber. In order to com-
plete eight to nine homes, XYZ Homes must purchase 144,000 board feet of Number
2 Common grade lumber each month. Lumber Yard A is the preferred supplier of this
lumber.

In the first part of our scenario, we look at the agreement XYZ Homes contracts with
Lumber Yard A for the required lumber. The agreement specifies the responsibilities of
each agent. It is formalized as a set of constraints on how the work is to be conducted.
These constraints can be viewed as requirements (in the sense of the CPS Framework),
and each requirement is mapped to one or more of an agent’s concerns. A sample of
these constraints and concerns includes:

1. Lumber Yard A will produce a total of 144,000 board feet of lumber for XYZ
Homes. This constraint addresses the functionality concern of XYZ Homes.

2. Lumber Yard A guarantees to schedule the transport and delivery of 14-16 tractor
trailers worth of lumber in one month to XYZ Homes. This constraint addresses
the time to market concern.

3. The lumber delivered to XYZ Homes will be at or above Number 2 Common grade.
This constraint addresses several concerns including physical, reliability, quality
and trustworthiness. For example, if Lumber Yard A were to provide lumber that
is of a lesser quality than Number 2 Common grade, then from XYZ Home’s per-
spective, Lumber Yard A would no longer be trustworthy.

4. The agreed upon cost of lumber is at $122,000 for 144,000 board feet and the
transport and delivery cost will be at or below $500,000 for 144,000 board feet.
This constraint addresses the cost concern.

In the context of a contract, agents will normally have to execute actions to fulfill
their commitments. For instance, Lumber Yard A has to produce 144,000 board feet and
deliver them to XYZ Homes. On the other hand, XYZ Homes has to pay for the board,
etc. We therefore proposed to formalize contacts between agents where each agent is
associated with an action domain. Intuitively, the agent’s domain describes the actions
that the agent can execute, when can an action be executed, and what are the effects of
an action. We believe that the action language B is sufficiently expressive enough for
us to represent domains in supply chains.

In usingB, we can easily encode functional fluents that frequently occurred in action
domains of agents involved in supply chain. For example, the number of board feet of

6 D. Flynn et al.

lumber that a company possessed is a functional fluent whose domain is between 0 and
5000.

For later use, we encode a simple set of actions for Lumber Yard A and XYZ Homes
below. Lumber Yard A has an abstract action for producing lumber and it is represented
as follows:

produce(X,Z) causes ∃Y.[Y ≤ X : board(Y,Z)]

Here, board(Y,Z) is a functional fluent denoting that Y board feet of lumber of quality
Z is available for Lumber Yard A.

Lumber Yard A also has the following action:

deliver(Y,Z) causes delivered(Y,Z)] ∧ board(X − Y,Z) if board(X,Z), Y ≤ X

This law states that if Lumber Yard A delivers Y board feet of lumber of quality Z, then
they are delivered (delivered(Y, Z)) if at least Y board feet of lumber are available
(board(X,Z) ∧ Y ≤ X). As a result of the action, there will be X − Y board feet
available after the delivery. Observe that the action domain can be refined to include,
for example, the specific detail on shipping such as the need for tractor trailers, the
capacity of the trailers, etc.

XYZ Homes needs to receive the board and pay. These actions are represented
below

receive(X,Z) causes available_board(X,Z) if delivered(X,Z)
which says that the company would have X board feet of lumber of quality Z if it

executes the action receive(X,Z). This action can only be executed if the said amount
of board feet of lumber is delivered. In addition, XYZ Homes also has the action

pay(X,C) causes payment(X,C) ∧ available_funds(Y −X)

if available_funds(Y), X ≥ Y

whereC is either board or shipping. The law says that XYZ Homes pays an amountX
for the category C and the available fund will be reduced by X . This effect is achieved
only if sufficient funds are available to XYZ Hones.

The above representation encodes the actions and their effects under normal cir-
cumstances. We will assume that for each action a in our discussion, the executability
condition of a is of the form

executable a if ¬ab(a), φ

which, intuitive, says that a can be executed whenever φ is true and ab(a) is false
where ab(a) denotes that some abnormal condition under which a cannot be executed.
For example, for the action produce(X,Y), we have

executable produce(X,Z) if ab(produce(X,Z))

In the following, we denote by DL and DH the action domains of Lumber Yard A
and XYZ Homes, respectively.

Formalizing and Reasoning about Supply Chain Contracts between Agents 7

4 Formalizing a Contract

We now introduce Lc, a high-level language for the specification of contracts between
agents with focus on supply chain management. The language is built on a set of agents
and the action domains associated with these agents. In formalizing a contract, we as-
sume that each agent is aware of the state of the world and can observe the changes
within its environment that it is interested in. To each agent, the contract has two facets,
the public part encodes the agreement between the agent and another agent, while the
private part details its concerns. For example, the contract between XYZ Homes and
Lumber Yard A contains:

– the statement “Lumber Yard A will produce a total of 144,000 board feet of lumber
for XYZ Homes”. This is a public part of the contract that is known to both parties;

– the statement that the above is a constraint addressing the functionality concern is
a private part of the contract (that both sides happen to agree upon);

– the statement “the lumber delivered to XYZ Homes will be at or above Number 2
Common grade” is related to the trustworthiness concern of XYZ Homes; it is not
necessarily related to a concern of Lumber Yard A.

Observe that each of the above clauses specifies a goal, the agent responsible for the
achievement of the goal, and the deadline. Motivated by this observation, we develop
Lc as follows. From now on until the end of this section, we assume two fixed agents
A and B, whose action domains are DA and DB , respectively.

4.1 Syntax of Lc

We formalize the public part of a contract between A and B over Da and DB using
clauses of the form:

ref_id : agent responsible_for goal when time_expression (4)

Intuitively, a clause of the form (4) is associated with a reference identifier ref_id and
says that agent ∈ {A,B} is responsible for achieving goal within the time constraint
specified by time_expression, where:

– goal is a fluent formula constructed over fluents appearing in DA ∪DB ; and
– a time constraint is a simple temporal expression of one the following forms:

always | eventually | per_unit[n . . .m] | by_unit n (5)

where unit can be any time unit such as day, week, etc., n and m are integers,
n ≤ m, and [n . . .m] denotes the range [n, n+ 1, . . . ,m].

Given the public part of a contract C between A and B, the private part of C for
either agent A or B is represented by statements of the form

ref_id : ρ (6)

8 D. Flynn et al.

where ref_id is a reference identifier C and ρ is a requirement. We assume that ontology
O associates each requirement with one or more concerns (of the agent) from the con-
cern forest defined in the CPS Framework, or any customized concern forest specific to
the agent. Formally, a contract between two agents4 is defined as follows:

Definition 1. A contract C between two agents A and B constructed over two actions
domains DA and DB is a triple (C,PA, PB) where

– C is a set of clauses of the form (4); and
– PA (resp. PB) is a set of statements of the form (6) for A (resp. B).

Intuitively, (C,PA) or (C,PB) is the contract under A or B’s perspective, respectively,
and it will be used by A or B to evaluate the progress of the contract. Observe that A
(resp., B) does not necessarily know about PB (resp., PA).

Example 2. Let L and H denote Lumber Yard A and XYZ Homes, respectively. The
public part of the contract in Example 1 is encoded by the following clauses:

C1 : L responsible_for board(144K,Q) ∧ 1 ≤ Q when by_week 4 (7)
C2 : L responsible_for delivered(144K,Q) ∧ 2 ≤ Q when by_week 4 (8)
C3 : H responsible_for payment(122K, board) when by_week 4 (9)
C4 : H responsible_for ∃X ≤ 500K.[payment(X, shipping)] when by_week 4

(10)

The first clause C1 states that L is responsible for producing 144K board feet of lumber
by the end of the project (week 4). C2 says that L needs to deliver, i.e., responsible for
the shipping of, 144K board feet of lumber of quality 2 or greater (also by week 4). C3
and C4 indicate that H must pay $122K for the board feet of lumber and for shipping,
respectively, and the cost of shipping must be no greater than $500K5.

The links between clauses and each agent’s requirements are encoded by the fol-
lowing sets of statements:6

– PL = {C2 : match-customer-expected-grade, C4 : receive-due-payment} where
requirement match-customer-expected-grade addresses the Quality concern from
the CPS Framework’s Business aspect, and requirement receive−due−payment
addresses the Reliability concern under the Trustworthiness aspect and the Cost
concern from the Business aspect.

4 Throughout the paper, we only discuss contracts between two agents but the formalization is
easily adapted for contracts among multiple agents.

5 Observe that we have simplified the contract slightly as there is no mention about the tractor
trailers. This can be easily encoded if we extend the action domains of H and L to consider
the shipping company.

6 A thorough discussion on requirements is beyond the scope of this paper. Thus, for compact-
ness, we use short requirement names, although in practice a requirement would be spelled
out in more details, e.g. the requirement that here we call match-customer-expected-grade
would likely be expressed by a statement “lumber shall be produced in a grade matching the
customer’s expectations.”

Formalizing and Reasoning about Supply Chain Contracts between Agents 9

– PH = {C1 : sufficient-material-for-building, C2 : material-safe-for-building, C2 :
material-sufficiently-durable, C4 : promptly-send-payment, C3 : acceptable-shipping-cost}
sufficient-material-for-building addresses the TimeToMarket concern (Business as-
pect), material-safe-for-building addresses Safety and Reliability (both under the
Trustworthiness aspect), material-sufficiently-durable addresses Performance (Func-
tional aspect), promptly-send-payment addresses Policy (Business aspect), and acceptable-
shipping-cost addresses Cost (also under the Business aspect).

Observe that concerns are not symmetrical between agents.

4.2 Semantics of Lc

Given a contract C = (C,PA, PB) between two agents A and B. The semantics of
Lc is defined over pairs of trajectories over DA and DB of the form (HA, HB). For
simplicity of the presentation, we assume that the action wait, which can always be
executed and has no effect, belongs to every domain. Therefore, whenever we refer
to two trajectories HA and HB over DA and DB , respectively, without the loss of
generality, we will assume that HA and HB have the same length.

Given DA and DB , a joint state s over DA and DB (or, joint state, for short) is an
interpretation over the set of fluents in DA ∪ DB that is closed with respect to the set
of static causal laws in DA ∪ DB . For a joint state s over DA ∪ DB , by sA (or sB)
we denote the restriction of s over the fluents in DA (or DB), respectively. Obviously,
sA (sB) is a state in DA (DB). The truth value of a formula φ over the language of
DA ∪DB in a joint state s is defined as usual. We will next define the satisfaction of a
contract given (HA, HB). To do so, we need the following notion.

Definition 2. Given two agents A and B whose action domains are DA and DB , re-
spectively, and two trajectories HA = sA0 a

A
0 . . . s

A
n−1a

A
n−1s

A
n over DA and HB =

sB0 a
B
0 . . . s

B
n−1a

B
n−1s

B
n over DB , we say that HA and HB are compatible if sAi ∪ sBi is

a joint state for every i = 0, . . . , n.

The satisfaction of a clause is defined next.

Definition 3. Given two compatible trajectories HA = sA0 a
A
0 . . . s

A
n−1a

A
n−1s

A
n in DA

and HB = sB0 a
B
0 . . . s

B
n−1a

B
n−1s

B
n in DB , a clause

ref_id : x responsible_for φ when time_exp

is satisfied by (HA, HB), denoted by (HA, HB) |= ref_id, if

– φ is true in every si = sAi ∪ sBi for i = 0, . . . , n when time_exp is always; or
– φ is true in si = sAi ∪ sBi for some i = 0, . . . , n when time_exp is eventual; or
– φ is true in si = sAi ∪ sBi for i = u, . . . , l when time_exp is per_unit [u . . . l]; or
– φ is true in sk = sAk ∪ sBk when time_exp is by_unit k.

We say that ref_id is violated by (HA, HB) if (HA, HB) ̸|= ref_id.

Building on the above definition, the satisfaction of a contract is defined as follows.

10 D. Flynn et al.

Definition 4. Given two compatible trajectories HA = sA0 a
A
0 . . . s

A
n−1a

A
n−1s

A
n in DA

and HB = sB0 a
B
0 . . . s

B
n−1a

B
n−1s

B
n in DB and a contract (C,PA, PB) between A and

B, we say thatC is satisfied by (HA, HB) if every clause inC is satisfied by (HA, HB).

Definition 4 allows for the reasoning about the satisfaction of the public part of a con-
tract. The satisfaction of the private part of a contract with respect an ontology O is
defined next.

Definition 5. Given two compatible trajectories HA = sA0 a
A
0 . . . s

A
n−1a

A
n−1s

A
n in DA

and HB = sB0 a
B
0 . . . s

B
n−1a

B
n−1s

B
n in DB and a contract (C,PA, PB) between A and

B. Let X ∈ {A,B} and s(PX) = {reg | ref_id : reg ∈ PX}. We say that a concern
c of agent X is satisfied by (HA, HB) if O ∪ s(PX) |= c.

4.3 Reasoning about Contracts

Let C = (C,DA, DB) be a contract between A and B. We will next discuss how the
semantics of Lc can be employed in evaluating C from the perspective of the agents.
Naturally, a contract can be evaluated at different time points such as at the time the
contract is signed or after some actions have been taken by the agents. Let us briefly
discuss the questions that would be of interest to the agents.

Q1 Contract feasibility: given an initial state of the world, can C be successfully ful-
filled? A different perspective of this question is whether there exists any state of
the world in which C is satisfied. If there is none, it is clear that the contract is set
up for failure!

Q2 Clause satisfaction check: assuming that C has been in execution for some time,
has any agent violated a clause in C? If so, then how can the problem be mitigated?

Q3 Concern satisfaction check: assuming that C has been in execution for some time,
which/whose concerns are not satisfied? What can be done to mitigate the problem?

The above definitions in the previous section allow us to answer questions Q1–Q3 by

Q1 computing two compatible trajectories HA and HB that start from the given ini-
tial joint state and satisfy the contract (or determining a joint state such that two
compatible trajectories, that start from this state and satisfy the contract, can be
identified);

Q2 identifying the clauses of the contract that are violated; and, to mitigate the problem
caused by a violation of a clause (by an agent), new compatible trajectories, which
start from the joint state at the end of the given trajectories (e.g., sAn ∪ sBn given the
two trajectories in Def. 3) and satisfy the contract, need to be computed.

Q3 determining the concerns that are satisfied (or not satisfied). To mitigate the prob-
lem, similar approach as described in Q2 needs to be adopted.

We illustrate the aforementioned idea using the running example.

Example 3 (Illustration). Let us consider the situation where Lumber Yard A (L) has
not produced any board feet and XYZ Homes (H) has $1M on its account. Further-
more, all factories of Lumber Yard A are in good operational order. The initial state

Formalizing and Reasoning about Supply Chain Contracts between Agents 11

for L and H can be represented by the set sL0 = {board(0, Y) | Y = 1, 2, 3} ∪
{¬ab(production)}∪{delivered(0, Y) | Y = 1, 2, 3} and sH0 = {available_board(0, Y) |
Y = 1, 2, 3}∪{payment(0, C) | C = board, shipping}∪{available_funds(1M)},
respectively.

In this case, we can check that the two compatible trajectories satisfying the clauses
(C1)–(C3) in the contract specified in Example 2 are:

HL = sL0 produce(144K, 2) sL1 deliver(144K, 2) sL2 wait sL3 wait sL4
HH = sH0 wait sH1 wait sH2 receive(144K, 2) sH3 pay(122K, board) sH4

In the above trajectories, we have that sL2 = sL3 = sL4 and sH0 = sH1 = sH2 and
board(144K, 2) is true in sL1 , board(0, 2) is true in sL2 , available_board(144K, 2) is
true in sH3 , available_fund(878K) is true in sH4 , etc. Assuming that the unit on the
trajectories is week, it is easy to check that these trajectories satisfy the three clauses
(C1)-(C3) of the contract in Example 2. One can also see that they can be extended to
satisfy clause (C4), provided that the action domain of Lumber Yard A is extended with
proper actions for billing the cost for shipping, organizing the delivery, and receiving
money. We omit this discussion for brevity.

Consider a situation where XYZ Homes does not have any money in the initial
state, i.e., available_funds(0) belongs to sH0 , but it can borrow any amount from the
bank. In this case, replacing one of the wait actions in HH with borrow(122K), which
represents the action of borrowing 122K from the bank by XYZ Homes, will result in
H ′
H that is compatible with HL and (HL, H

′
H) satisfies (C1)-(C3).

Let us consider yet another situation in which COVID-19 forces Lumber Yard A to
close all of its factories right after the signing of the contract. It means that the initial
state for L changes to uL0 = sL0 \ {¬ab(production)} ∪ {ab(production)}. In this
case, HL is no longer a valid trajectory for L. It is easy to see that there exists no pair of
compatible trajectories forH and L that can satisfy clauses (C1)-(C2) of the contract. If
Lumber Yard A could, for example, purchase the lumber from some other companies,
then alternative trajectories could be identified and the contract can be fulfilled. Observe
also that the action domain allows XYZ Homes to pay regardless of whether it receives
the board feet, clause (C3) can still be satisfied!

5 Reasoning about Contracts using Answer Set Programming

Answer Set Programming. [10,12] is a declarative programming paradigm based on
logic programming under the answer set semantics. A logic program Π is a set of
rules of the form: c0 ∨ . . .∨ ck ← a1, . . . , am, not b1, . . . , not bn where ci’s, ai’s,
and bi’s are atoms of a propositional language7 and not represents (default) negation.
c0 ∨ . . . ∨ ck can be absent.

The semantics of a logic program Π is defined via a special class of models called
answer sets [4]. A program Π can have several answer sets, one answer set, or no an-
swer set.Π is said to be consistent if it has at least one answer set; it is inconsistent oth-
erwise. Several extensions (e.g., choice atoms, aggregates, etc.) have been introduced
to simplify the use of ASP. We will use and explain them when needed.

7 For convenience, we often use first order logic literals under the assumption that they represent
all suitable ground instantiations.

12 D. Flynn et al.

C: Contract
Specification

CPS
Ontology

�휋(Dx) ∪ �휋(CPS) ∪ �휋(C) Answer

Q1: s Q2/Q3: HA, HB

Fig. 1. Overview of Components used in Answering Queries Q1-Q3 for Agent X ∈ {A,B}

5.1 Answer Set Programming for Reasoning about Contracts

This section presents an ASP encoding given a contract between two agents for rea-
soning about contracts and concerns of the agents, building on the work on planning in
ASP and on formalizing CPS (e.g., [5,1,11]). Throughout this section, we assume that
C = (C,PA, PB), where A and B are two agents with action domains DA and DB ,
respectively, is given. Figure 1 gives an overview of the components used by agent X
in answering Queries Q1-Q3 (gray box). Depending on the queries, the input is given
to them might be an initial joint state (Q1) or two trajectories (Q2-Q3) that implicitly
specify a joint state as well.

We assume that n is a constant in the unit of time used in C and denotes the maximal
length of the trajectories considered by the two agents. Let s0 be a joint state. For each
agent X , we create a programs π(DX), π(CPS), and π(C) as follows.

– π(DX) is the program for reasoning about actions and changes (e.g., [5]) over
predicates h(f, t) (fluent f is true at time step t) and occ(a, t) (action a occurs at
step t) and consists of the following rules8:
• declaration of steps step(0..n);
• for each fluent f , the declaration fluent(f);
• for each action a, the declaration action(a);
• for each fluent f that is true in s0 then h(f, 0) belongs to π(DX) and the rule

¬h(f, 0)← not h(f, 0)
• for each executability law executable a if φ, the constraint that prevents a to

be executed when its precondition is not satisfied: ← occ(a, T), not h(φ, T)
• for each dynamic law a causes ψ if φ, the rule encoding the effect of a

h(ψ, T + 1)← occ(a, T), h(φ, T)
• for each static law ψ if φ, a rule stating that ψ must be true whenever φ is true

h(ψ, T)← h(φ, T)
• for each fluent f , the inertial rules

h(f, T + 1)← h(f, T), not ¬h(f, T + 1) and
¬h(f, T + 1)← ¬h(f, T), not h(f, T + 1).

• rules for reasoning about truth value of formulas where complex formulas are
encoded using a set of atoms using fresh constants and membership func-
tions, e.g., f ∧ g is encoded by a fresh constant fg and the set of atoms
{conjunction(fg),member(f, fg),member(g, fg)} and rules such as

8 In each rule with T as variable, we omit step(T) from the right hand side.

Formalizing and Reasoning about Supply Chain Contracts between Agents 13

h(conjunction(F), T)← conjunction(F),
N = #count{1, X : member(X,F)},
C = #count{1, G : member(G,F), h(G,T)}, N == C.

Note that this rule uses the #count aggregate which counts the number of
atoms satisfying a condition (e.g., the number of members of a formula). We
omit other rules for brevity.

– π(CPS) contains atoms encoding concerns, requirements, and relationships among
all of them (e.g., requirement(R), concern(C) or subCo(X,Y) indicating that
R is a requirement, that C is a concern, and that Y is a subconcern of X) that can
be obtained from a translation of the CPS ontology to ASP facts (see, e.g., [11])
and the rules for reasoning about the satisfaction of requirements and concerns. For
example, given that a formula F over requirements addresses a concern C (i.e.,
contributes to its satisfaction), encoded by addrBy(C,F), the following rules de-
termine whether the concern C is satisfied at step T .
¬h(sat(C), T)← concern(C), addrBy(C,F), not h(F, T).
¬h(sat(X), T)← subCo(X,Y), not h(sat(Y), T), concern(X), concern(Y).
¬h(sat(X), T)← subCo(X,Y),¬h(sat(Y), T), concern(X), concern(Y).
h(sat(C), T)← not ¬(sat(C), T), concern(C).

– π(C) encodes C and PX in C and is constructed as follows.
• for each clause of the form (4), the program contains the atom clause(ref_id),

the set of atoms encoding vg , where vg is the name of the formula goal, and
the following rules:
time_expression π(C) contains
always ¬h(sat(ref_id), n)← not h(vg, T).

h(sat(ref_id), n) ← not ¬h(sat(ref_id), n)
eventually h(sat(ref_id), n) ← h(vg, T).
per_unit[u . . . l] ¬h(sat(ref_id), n)← not h(vg, T), u ≤ T, T ≤ l.

h(sat(ref_id), n) ← not ¬h(sat(ref_id), n)
by_unit[k] h(sat(ref_id), n) ← h(vg, k).

where h(sat(ref_id), n) says that ref_id is satisfied at step n.
• for each requirement r that occurs in PX ,

* if there is only one element of the form ref_id : ρ in PX that contains r,
then π(C) contains the atom addrBy(r, ref_id);

* if there is more than one element of the form ref_id : ρ in PX , then π(C)
contains the atoms addrBy(cg, ref_id) and conjunction(cg) and the set
{member(c, cg) | ref_id : r ∈ PX} where cg is a fresh constant.

This set of atoms helps propagating the satisfaction of clauses of contracts to
the satisfaction of concerns of the agent.

Let HX = sX0 a
X
0 . . . sXn−1a

X
n−1s

X
n be an alternate sequence of states and actions in

DX . Define e(HX) = {occ(ai, i) | i = 0, . . . , n − 1} ∪ {h(f, i) | f is true in si}. It
holds that

Proposition 1. – π(DX)∪e(HX) has a unique answer set ifHX is a trajectory over
DX and a fluent formula φ is true in si iff π(DX) ∪ e(HX) |= h(φ, i).

– if HX is a trajectory over DX then HX satisfies a clause ref_id in C iff π(DX) ∪
π(C) ∪ e(HX) has a unique answer set S that contains h(sat(ref_id), n).

14 D. Flynn et al.

– ifHX is a trajectory overDX and ref_id : c in PX then concern c is satisfied at the
end of the trajectory iff π(DX) ∪ π(CPS) ∪ π(C) ∪ e(HX) has a unique answer
set S that contains h(sat(c), n).

Intuitively, the first property ensures that π(DX) correctly encodes the transition func-
tion in DX . The second property shows that checking whether a clause is satisfied by
HX can be reduced to computing an answer set of π(DX) ∪ π(C) ∪ e(HX). Similarly,
the third property shows that determining whether a concern is satisfied by a trajectory
can be reduced to computing an answer set of π(DX)∪π(CPS)∪π(C)∪e(HX). These
properties help us answer questions related to the satisfaction of a contract or concerns
given the compatible trajectories HA and HB . Observe that the only requirement for an
agentX to reason about the satisfaction of the contract or a concern is the compatibility
of HA and HB . X does not need to know the actions that the other agent executes. This
is important when finding plans to satisfy a contract of an agent, which we discuss next.

To compute trajectories satisfying a contract, we observe that agents do usually have
to plan by themselves. Furthermore, observe that in the context of this paper, the action
domain of an agent (e.g.,DH of XYZ Homes in Example 2) might contain fluents which
cannot be changed by XYZ Homes, such as delivered(b, q). Therefore, any trajectory
created by an agent will need to assume that certain properties that it cannot affect by
its actions must be established by the other agent. Formally, we say that fluent f is
exogenous in DX if there exists no state s and action a such that f is true/false in s and
false/true in some state belonging to Φ(a, s). Given a formula φ, let π(DX , φ) be the
program π(DX) extended with the following rules

– 1{h(f, 0);¬h(f, 0)}1 for each exogenous fluent f ;
– 1{occ(A, T) : action(A)}1← step(T) (exactly one action occurs at one step);
– the goal constraint← not h(φ, n) (φ must be true at step n);
– ← not h(sat(ref_id), n) for each clause of the form ref_id : X in C, i.e., X is

responsible for the satisfaction of the clause ref_id in C

It can be shown that there is a 1-to-1 correspondence between answer sets of π(DX , φ)
and trajectories satisfying φ and all the clauses for which X is responsible for. Fur-
thermore, for each answer set S, the set of assumptions made by the agent is indicated
by the set {h(f, 0) | f is an exogenous fluent and h(f, 0) ∈ S}. Additional constructs
can be added to minimize the set of assumptions (e.g., if the assumption is made then it
must be utilized in at least one state; for example, XYZ Homes can assume that Lumber
Yard A will make fluent delivered(140K, 2) true and plan to receive the board and pay;
on the other hand, XYZ Homes does not need to assume board(140K, 2) is true since
its actions do not refer to this fluent). It is important to point out that when an agent
needs to replan, it might not need to take into consideration all clauses that belong to
its responsibilities; for example, if Lumber Yard A has already produced 140K board
feet of lumber Number 2 Common grade (i.e., (7) is already satisfied) but has not been
able to deliver the boards then the replanning process should only consider the other
clauses. In this sense, the proposed framework supports the resilience of the contract
execution. Similar construction can be done so that the obtained trajectory satisfies all
the concerns of agent X . We omit it due to the space limitation.

Formalizing and Reasoning about Supply Chain Contracts between Agents 15

6 Conclusions and Related Work

In this paper, we discussed an approach for the modeling, and reasoning about, a supply
chain as a collection of contracts. We view this as a stepping stone towards enabling
reasoning about supply chains’ resilience and about ways to improve it. We focused
on the development of a framework that supports various reasoning tasks in contract
realization such as the feasibility of a contract, the satisfaction of clauses, requirements
or concerns of agents of a contract, and the possible plans for mitigating an unsatisfied
clause or concern. The framework assumes that each agent operates in accordance to its
own action domain and has full observability of its environment. It formalizes a contract
as a set of public clauses specifying the responsibility of each agent and, for each agent,
a set of statements relating the public clauses with the agent’s private concerns. By
exploiting knowledge representation and reasoning techniques, we show that all of the
above reasoning tasks can be reduced to the task of computing answer sets of suitable
programs encoding the action domains and the contract. To the best of our knowledge,
this is the first attempt at combining the modeling of supply chain contracts via action
languages and ASP, and at linking the contracts with the relevant concerns through
the CPS Framework. Having said that, there has been a large amount of research on
representing and reasoning about contracts and related topics. Due to space constraints,
we provide here limited highlights.

Within the ASP community, [13] addressed the problem of traceability in the supply
chain. However, their work did not extend to modeling of contracts and stakeholder
concerns, nor reasoning about their satisfaction. Others employed ASP to formalize
negotiation – e.g., [17] focuses on establishing a contract (an exchange) between agents
that can be satisfied by both parties. In other words, the goal of negotiation is different
from that of reasoning about contracts. From the implementation perspective, the ASP-
based system for multi-agent planning described in [16] could be useful in computing
compatible trajectories for different agents. A different logic-based approach is used in
[14], which discusses the representation and reasoning about contracts through deontic-
logic based language CL, with a focus on preserving many of the natural properties and
concepts relevant to legal contracts.

In a different area of the spectrum of supply chain research, [9] discusses resilience
through an equifinality lens to demonstrate that there are different pathways to supply
resilience, with a focus on studying combinations of low and high redundancy scenar-
ios.

A related direction of research is around service level agreements (e.g., [2]), which
are typically focused on models and protocols for managing the negotiations surround-
ing access to resources in a distributed system and their use. Researchers have also
focused on representing agreements via commitments rather than messaging protocols,
see e.g. [18]. Finally, another line of research has been focused on standardized repre-
sentations of contracts, as in [7,8]. Those approaches are focused on a rich representa-
tion of the relationships among contracts, but do not address the challenges posed by
the multiplicity and diversity of stakeholders, and do not reason about the evolution of
the state of the system over time.

In the future, we plan to investigate the relationship between our approach and smart
contracts, whose formalization has recently gained attention (see, e.g., [15]).

16 D. Flynn et al.

References
1. Balduccini, M., Griffor, E., Huth, M., Vishik, C., Burns, M., Wollman, D.A.: Ontology-

based reasoning about the trustworthiness of cyber-physical systems. ArXiv abs/1803.07438
(2018)

2. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol for Ne-
gotiating Service Level Agreements and Coordinating Resource Management in Distributed
Systems. In: Job Scheduling Strategies for Parallel Processing (JSSPP 2002). pp. 153–183
(2002)

3. Edward, Greer, C., Wollman, D.A., Burns, M.J.: Framework for cyber-physical systems:
volume 1, overview (2017)

4. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi,
P. (eds.) Logic Programming: Proceedings of the Seventh International Conference. pp. 579–
597 (1990)

5. Gelfond, M., Lifschitz, V.: Representing actions and change by logic programs. Journal of
Logic Programming 17(2,3,4), 301–323 (1993)

6. Gelfond, M., Lifschitz, V.: Action Languages. Electronic Transactions on Artificial Intelli-
gence 3(6), 193–210 (1998)

7. Governatori, G.: Representing Business Contracts in RuleML. International Journal of Co-
operative Information Systems 14(2–3), 181–216 (2005)

8. Governatori, G., Rotolo, A., Sartor, G.: Normative Autonomy and Normative Co-ordination:
Declarative Power, Representation, and Mandate. Artificial Intelligence and Law 12(1–2),
53–81 (2004)

9. Jahre, M., Selviaridis, K., Li, Q., Dube, N.: One Crisis, Different Paths to Supply Resilience:
the Case of Ventilator Procurement for the COVID-19 Pandemic. Journal of Purchasing and
Supply Management 28(5) (2022)

10. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-year Perspective. pp. 375–398 (1999)

11. Nguyen, T.H., Bundas, M., Son, T.C., Balduccini, M., Garwood, K.C., Griffor, E.R.: Speci-
fying and reasoning about CPS through the lens of the NIST CPS framework. TPLP (2022)

12. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3,4), 241–273 (1999)

13. Nogueira, M., Greis, N.P.: Supply Chain Tracing of Multiple Products under Uncertainty
and Incomplete Information - An Application of Answer Set Programming. In: Proceed-
ings of the International Conference on Knowledge Engineering and Ontology Development
(KEOD 2013). pp. 399–406 (2013)

14. Prisacariu, C., Schneider, G.: CL: An Action-Based Logic for Reasoning about Contracts. In:
Proceedings of Logic, Language, Information and Computation (WoLLIC 2009). pp. 335–
349 (2009)

15. Singh, A., Parizi, R.M., Zhang, Q., Choo, K.K.R., Dehghantanha, A.: Blockchain smart con-
tracts formalization: Approaches and challenges to address vulnerabilities. Computers Se-
curity 88 (2020)

16. Son, T.C., Pontelli, E., Nguyen, N.H.: Planning for multiagent using asp-prolog. In: Dix, J.,
Fisher, M., Novák, P. (eds.) Computational Logic in Multi-Agent Systems - 10th Interna-
tional Workshop, CLIMA X, Hamburg, Germany, September 9-10, 2009, Revised Selected
and Invited Papers. Lecture Notes in Computer Science, vol. 6214, pp. 1–21. Springer (2010)

17. Son, T.C., Pontelli, E., Nguyen, N., Sakama, C.: Formalizing negotiations using logic pro-
gramming. ACM Trans. Comput. Log. 15(2), 12 (2014)

18. Wan, F., Singh, M.P.: Formalizing and Achieving Multiparty Agreements via Commitments.
In: Proceedings of the fourth international joint conference on Autonomous agents and mul-
tiagent systems (AAMAS ’05). pp. 770–777 (2005)

	Formalizing and Reasoning about Supply Chain Contracts between Agents

