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Abstract

Continuous DR-submodular functions are a class of func-

tions that satisfy the Diminishing Returns (DR) property,

which implies that they are concave along non-negative di-

rections. Existing works have studied monotone continu-

ous DR-submodular maximization subject to a convex con-

straint and have proposed e�cient algorithms with approx-

imation guarantees. However, in many applications, e.g.,

computing the stability number of a graph and mean-field

inference for probabilistic log-submodular models, the DR-

submodular function has the additional property of being

strongly concave along non-negative directions that could be

utilized for obtaining faster convergence rates. In this paper,

we first introduce and characterize the class of strongly DR-

submodular functions and show how such a property implies

strong concavity along non-negative directions. Then, we

study L-smooth monotone strongly DR-submodular func-

tions that have bounded curvature, and we show how to

exploit such additional structure to obtain algorithms with

improved approximation guarantees and faster convergence

rates for the maximization problem. In particular, we pro-

pose the SDRFW algorithm that matches the provably op-

timal 1 � c
e approximation ratio after only dL

µ e iterations,

where c 2 [0, 1] and µ � 0 are the curvature and the strong

DR-submodularity parameter. Furthermore, we study the

Projected Gradient Ascent (PGA) method for this prob-

lem and provide a refined analysis of the algorithm with an

improved
1

1+c approximation ratio (compared to
1
2 in prior

works) and a linear convergence rate. Given that both al-

gorithms require knowledge of the smoothness parameter L,

we provide a novel characterization of L for DR-submodular

functions showing that in many cases, computing L could be

formulated as a convex optimization problem, i.e., a geomet-

ric program, that could be solved e�ciently. Experimental

results illustrate and validate the e�ciency and e↵ectiveness

of our algorithms.

∗The full version of the paper can be accessed at https:

//arxiv.org/abs/2111.07990

1 Introduction

Submodular set functions are a class of discrete func-
tions that exhibit the Diminishing Returns (DR) prop-
erty. A set function F defined over the ground set
V is called submodular if for all items j 2 V and
A ✓ B ✓ V \ {j}, we have:

F (A [ {j})� F (A) � F (B [ {j})� F (B).

In other words, the gain of adding a particular element
j to a set decreases as the set gets larger. Such functions
are commonly used to quantify coverage and diversity
in discrete domains. Submodular set function optimiza-
tion has found many applications in machine learning
such as viral marketing (Kempe et al., 2003), dictio-
nary learning (Das and Kempe, 2011), feature selection
for classification (Krause and Guestrin, 2007) and doc-
ument summarization (Lin and Bilmes, 2011) to name
a few.
While the DR property is mostly associated with sub-
modular set functions, it can be defined similarly for
continuous functions. A di↵erentiable function f : K !

R, K ✓ Rn
+, satisfies the DR property if for all x, y 2 K

such that xi  yi 8i 2 [n], we have rif(x) � rif(y) for
all i 2 [n], i.e., rf is an order-reversing mapping. Con-
tinuous functions that satisfy the DR property are called
DR-submodular. Similar to submodular set functions,
continuous DR-submodular functions find applications
in multiple domains such as influence and revenue maxi-
mization, MAP inference for DPP (Determinantal Point
Process) and mean-field inference of probabilistic graph-
ical models (see Bian et al. (2020, Section 6) for more
applications and details). While DR-submodular func-
tions are generally non-convex/non-concave, the DR
property provides a natural structure that allows de-
signing tractable approximation algorithms. In partic-
ular, DR-submodular functions are concave along non-
negative directions (Bian et al., 2017), i.e., for all x, y
such that xi  yi 8i 2 [n], we have f(y)  f(x) +
hrf(x), y � xi.
Monotone DR-submodular maximization subject to a
convex constraint has been previously studied in the
literature. Bian et al. (2017) proposed a Frank-Wolfe
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variant that obtains a provably optimal 1� 1
e approxima-

tion guarantee at a sub-linear convergence rate. Later,
Hassani et al. (2017) studied the well-known Projected
Gradient Ascent (PGA) method for this problem and
proved that PGA has a 1

2 approximation ratio and sub-
linear rate of convergence.
A number of the DR-submodular objective functions
in the aforementioned applications of the continuous
DR property are indeed strongly concave along non-
negative directions. For instance, consider a graph
G = (V,E) with adjacency matrix A. Computing
the stability number s(G) of the graph (i.e., cardinal-
ity of the largest subset of vertices such that no two
vertices in this subset are adjacent) is a well-known
NP-hard combinatorial problem. This problem could
be formulated as s(G)�1 = minx2� x

T (A + I)x where
� = {x 2 R|V | : 1Tx = 1, xv � 0 8v 2 V } is the stan-
dard simplex and I is the identity matrix (Motzkin and
Straus, 1965). We can rewrite the problem as:

s(G)�1 = min
x2�

x
T (A+ I)x

= �max
x2�

x
T (�A� I)x

= 2�max
x2�

x
T (�A� I)x+ 21Tx| {z }

=2

.

It will soon be clear that the function x
T (�A �

I)x + 21Tx is 2-strongly DR-submodular (see Defini-
tion 2.1 in Section 2) and thus, finding the stability
number of a graph could be formulated as a convex-
constrained monotone 2-strongly DR-submodular max-
imization problem. Another example is the mean-
field inference problem for probabilistic log-submodular
models (Section 6.6 of Bian et al. (2020)). Let F : 2V !

R be a submodular set function. Consider distributions
over subsets S ✓ V of the form P (S) = 1

Z exp(F (S))
where the normalizing quantity Z =

P
S✓V exp(F (S))

is called the partition function. In general, computing
the partition function involves summing over exponen-
tial number of terms and is not computationally feasi-
ble. Alternatively, one can use mean-field inference to
approximate P (S) by a completely factorized distribu-
tion Q(S), i.e., elements i 2 V are picked independently
and Q(S|x) =

Q
i2S xi

Q
j /2S(1 � xj) where x 2 [0, 1]V

is the vector of marginals, by minimizing the KL diver-
gence KL(x) =

P
S✓V Q(S|x) ln

�Q(S|x)
p(S)

�
between the

two distributions. KL(x) can be written as:

KL(x) = �

X

S✓V

F (S)
Y

i2S

xi

Y

j /2S

(1� xj)

+

|V |X

i=1

�
xi lnxi + (1� xi) ln(1� xi)

�
+ lnZ.

It will be clear later that the problem
maxx2[0,1]V �KL(x) (equivalent to minimizing KL(x))
is a 4-strongly DR-submodular maximization problem.

1.1 Contributions In this paper, we precisely char-
acterize the class of strongly DR-submodular func-
tions, i.e., DR-submodular functions that are strongly
concave along non-negative directions. We consider
the optimization problem maxx2K f(x) where K is
a convex set and f is a monotone, smooth and
strongly DR-submodular function with bounded cur-
vature cf 2 [0, 1], and we provide algorithms with re-
fined approximation guarantees that exploit the strong
DR-submodularity structure of the objective function.
Specifically, we make the following contributions:
• We propose the SDRFW algorithm in Section 3 that
obtains the approximation guarantee 1 �

cf
e after d

L
µ e

iterations, where L is the smoothness parameter and µ

is the strong DR-submodularity parameter of the func-
tion f .
• In Section 4, we analyze PGA for our problem and we
provide a refined and sharper analysis of the algorithm
showing that PGA has an improved 1

1+cf
approximation

guarantee (compared to 1
2 in prior works) at a linear

convergence rate, i.e., it only takes O(ln( 1✏ )) iterations
to get within ✏ of 1

1+cf
OPT, where OPT denotes the

optimal value of the problem.
• We also study online strongly DR-submodular max-
imization in Section 4.1. We analyze the online coun-
terpart of PGA, called Online Gradient Ascent (OGA),
for this problem and we show how our techniques could
be used to obtain improved logarithmic bounds for the
( 1
1+c )-regret of the algorithm.

• Given that both SDRFW and PGA require knowl-
edge of the smoothness parameter L, in Section 5, we
provide a novel characterization of L for (strongly) DR-
submodular functions showing that in many cases, com-
puting L could be formulated as a convex optimization
problem, i.e., a geometric program, that could be solved
e�ciently. Therefore, we can compute L in an e�cient
manner before running the algorithms.
Finally, we test our algorithms on a class of strongly
DR-submodular functions and also for the problem of
computing the stability number of graphs in Section 6.
A summary of our results is provided in Table 1.

2 Preliminaries

2.1 Notation The set {1, 2, . . . , n} is denoted by [n].
For a vector x 2 Rn, xi is used to denote the i-th entry
of x. Similarly, for a matrix A 2 Rn⇥n, we use Aij to
indicate the entry in the i-th row and j-th column of
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Paper Setting Approximation ratio Convergence rate
Bian et al. (2017) µ = 0 1� 1

e sub-linear
Hassani et al. (2017) µ = 0 1

2 sub-linear
This work (PGA) µ = 0 1

1+cf
sub-linear

This work (PGA) µ > 0 1
1+cf

linear

This work (SDRFW) µ > 0 1� cf
e after dL

µ e iterations

Table 1: Comparison of our results and the prior works.

the matrix. The inner product of two vectors x, y 2 Rn

is denoted by either hx, yi or x
T
y. Moreover, for two

vectors x, y 2 Rn, we have x � y if xi  yi holds
for every i 2 [n]. Also, we use x _ y = max{x, y}
and x ^ y = min{x, y} to denote the component-wise
maximum and minimum of x, y 2 Rn, i.e., for all i 2 [n],
[x _ y]i = max{xi, yi} and [x ^ y]i = min{xi, yi} holds.
k · k indicates the Euclidean norm by default. We use
ProjK(x) to denote the Euclidean projection of x onto
the convex set K, i.e., ProjK(x) = argminz2K kz � xk.
A function f : K ! R is called �-Lipschitz if for all
x, y 2 K, we have |f(y) � f(x)|  �ky � xk. Also, f
is called monotone if for all x, y 2 K such that x � y,
f(x)  f(y) holds. The diameter of a set K is defined
as R = maxx,y2K ky � xk. By default, f(·) indicates
a continuous function and F (·) denotes a discrete set
function.

2.2 DR-submodular functions A di↵erentiable
function f : K ! R, K ⇢ Rn

+, is called DR-submodular
if for all x, y such that x � y, rf(x) ⌫ rf(y) holds.
If f is twice di↵erentiable, DR-submodularity is equiv-
alent to the Hessian matrix r

2
f(x) being entry-wise

non-positive for all x 2 K. For instance, for a submod-
ular set function F over the ground set V , the multilin-
ear extension f : [0, 1]|V |

! R of F defined as f(x) =P
S⇢V F (S)

Q
i2S xi

Q
j /2S(1 � xj) is DR-submodular.

While DR-submodularity and concavity are equivalent
for the special case of n = 1, DR-submodular func-
tions are generally non-concave. Nonetheless, an im-
portant consequence of DR-submodularity is concav-
ity along non-negative directions (Bian et al., 2017),
i.e., for all x, y such that x � y, we have f(y) 

f(x) + hrf(x), y � xi.

2.3 Strongly DR-submodular functions We de-
fine the class of strongly DR-submodular functions be-
low.

Definition 2.1. For µ � 0, we call a di↵erentiable

function f : K ! R, K ⇢ Rn
+, to be µ-strongly DR-

submodular if any of the following equivalent properties

hold:

• f(·) + µ
2 k · k

2
is DR-submodular.

• For all x, y 2 K such that x � y, we have

rf(x) ⌫ rf(y) + µ(y � x).

• If f is twice di↵erentiable, r
2
iif(x)  �µ 8i 2 [n] and

r
2
ijf(x)  0 8i 6= j holds for all x 2 K.

We provide two classes of strongly DR-submodular func-
tions below:
• Indefinite quadratic functions. Let f(x) =
1
2x

T
Hx+h

T
x+ c where H is a symmetric matrix. If H

is entry-wise non-positive, f is a DR-submodular func-
tion and if in addition, Hii  �µ holds for all i 2 [n],
f is µ-strongly DR-submodular. Such quadratic utility
functions have a wide range of applications. As an ex-
ample, consider the problem of computing the stability
number of a graph (introduced in Section 1). The Hes-
sian of the objective function x

T (�A � I)x + 21Tx is
H = �2A � 2I. Given that Hii = �2 and Hij  0
for all i 6= j 2 [n], the objective function is 2-strongly
DR-submodular. In addition, price optimization with
continuous prices (Ito and Fujimaki, 2016) is also a non-
concave (strongly) DR-submodular quadratic optimiza-
tion problem.
• Concave functions with negative dependence.

Let d � 2. If hi : R+ ! R is (strongly) concave
for all i 2 [n] and ✓i1,...,ir  0 for all r 2 [d] and
(i1, . . . , ir) ✓ [n], the following function f : Rn

+ ! R
is (strongly) DR-submodular:

f(x) =
nX

i=1

hi(xi) +
X

(i,j):i 6=j

✓ijxixj + . . .

+
X

(i1,...,id):ir 6=is 8r,s2[d]

✓i1,...,idxi1 . . . xid .

We can prove that µ-strongly DR-submodular functions
are indeed µ-strongly concave along non-negative direc-
tions. This property is extensively used in the design
and analysis of our algorithms.

Lemma 2.1. If f : K ! R, K ⇢ Rn
+, is di↵erentiable

and µ-strongly DR-submodular, for all x 2 K and v ⌫ 0
or v � 0, the following holds:

f(x+ v)  f(x) + hrf(x), vi �
µ

2
kvk

2
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited171

D
ow

nl
oa

de
d 

08
/2

0/
23

 to
 1

72
.5

6.
10

4.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Proof. Without loss of generality, assume v ⌫ 0 holds
(analysis for v � 0 is similar). For any z 2 K, v ⌫ 0
and i 2 [n], we have:

[r2
f(z)v]i + µvi = r

2
iif(z)vi +

X

j 6=i

r
2
ijf(z)vj + µvi

= (r2
iif(z) + µ)| {z }

0

vi|{z}
�0

+
X

j 6=i

r
2
ijf(z)| {z }
0

vj|{z}
�0

 0.

Therefore, r2
f(z)v + µv � 0 holds. We can use the

mean value theorem to write:

f(x+ v)� f(x)� hrf(x), vi

=

Z 1

0
hrf(x+ tv), vidt� hrf(x), vi

=

Z 1

0
hrf(x+ tv)�rf(x), vidt

=

Z 1

0

nX

i=1

t([r2
f(zi,t)v]i + µvi| {z }

0

) vi|{z}
�0

dt�µ

Z 1

0
thv, vidt

| {z }
=�µ

2 kvk2


�µ

2
kvk

2
,

where zi,t 8i 2 [n] is in the line segment between x and
x + tv. Thus, f is µ-strongly concave along the non-
negative direction v.

Bian et al. (2020) defined µ-strongly DR-submodular
functions to be the class of functions that are µ-strongly
concave along non-negative directions. Note that our
definition of µ-strong DR-submodularity is a stronger
condition than µ-strong concavity along non-negative
directions. For instance, µ-strongly concave functions
are µ-strongly concave along any direction, but they
may not even be DR-submodular.

2.4 Smooth functions A di↵erentiable function f :
K ! R, K ⇢ Rn

+, is called L-smooth if for all x, y 2 K,
we have

f(y) � f(x) + hrf(x), y � xi �
L

2
ky � xk

2
.

If f is twice di↵erentiable, there is an equivalent defi-
nition of smoothness: f is L-smooth if r2

f(x) ⌫ �LI

holds for all x 2 K where I is the identity matrix. In
other words, the smallest eigenvalue of the Hessian of f
is uniformly lower bounded by �L everywhere. Com-
bining the definition of smooth functions and the re-
sult of Lemma 2.1, it is clear that for a µ-strongly DR-
submodular and L-smooth function, µ  L holds.

2.5 Curvature We define the notion of curvature for
monotone continuous functions below.

Definition 2.2. Given a monotone di↵erentiable

function f : K ! R, K ⇢ Rn
+, we define the curvature

of f as follows:

cf = 1� inf
x,y2K,i2[n]

rif(y)

rif(x)
.

If f is DR-submodular and 0 2 K, we have cf =

1� infx2K,i2[n]
rif(x)
rif(0)

.

It is easy to see that cf 2 [0, 1] holds for all monotone
f . cf  1 is due to monotonicity of f (i.e., rf being
non-negative) and cf � 0 follows from setting x = y

in the definition. If cf = 0, f is linear and larger cf

corresponds to f being more curved.
A similar notion of curvature was introduced in Sessa
et al. (2019). The definition is inspired by the curvature
of submodular set functions (Conforti and Cornuéjols,
1984). In fact, if f is the multilinear extension of a
monotone submodular set function F , cf coincides with
the curvature of F (Sadeghi and Fazel, 2021). Submod-
ular set function maximization with bounded curvature
has been widely studied in the literature. Conforti and
Cornuéjols (1984) showed that the greedy algorithm ap-
plied to the monotone submodular set function max-
imization problem subject to a cardinality constraint
has a 1

 (1 � e
�) approximation ratio, where  is the

curvature of the set function. More recently, Sviridenko
et al. (2017) proposed two approximation algorithms
for the more general problem of monotone submodu-
lar maximization subject to a matroid constraint and
obtained a 1 � 

e approximation ratio for these two al-
gorithms. They also provided matching upper bounds
for this problem showing that the 1� 

e approximation
ratio is indeed optimal. Later on, Feldman (2021) man-
aged to obtain the same 1� 

e approximation ratio with
an algorithm that is much faster than the ones proposed
by Sviridenko et al. (2017).

3 Strongly DR-submodular Frank-Wolfe

(SDRFW) algorithm

In this section, we propose the SDRFW algorithm for
strongly DR-submodular maximization with bounded
curvature. Throughout the section, we make the further
assumption that the domain set K contains the origin,
i.e., 0 2 K. Furthermore, we consider f to be a
monotone, µ-strongly DR-submodular and L-smooth
function with curvature cf 2 [0, 1]. Without loss of
generality, we also assume that f is normalized, i.e.,
f(0) = 0. For the DR-submodular setting (µ = 0),
Bian et al. (2017) proposed a Frank-Wolfe variant for
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solving the problem. Starting from x0 = 0, their
algorithm performs K Frank-Wolfe updates where at
each iteration k 2 {0, . . . ,K � 1}, it finds vk such
that vk = argmaxx2Khx,rf(xk)i, performs the update
xk+1 = xk + 1

K vk and outputs xK .
Define g(x) = f(x) � `

T
x where for all i 2 [n],

`i = minx rif(x). Note that similar to f , g is also a
normalized, monotone, µ-strongly DR-submodular and
L-smooth function.
The SDRFW algorithm is presented in Algorithm 3.1.
First, note that the output of the algorithm (x = xK) is
the average of K points {vk}

K�1
k=0 in the convex domain

set K, and therefore, x 2 K. Also, it is noteworthy that
the update rule for {vk}Kk=1 can be computed e�ciently
in many cases. To see this, for all k 2 {0, . . . ,K � 1},
we can equivalently write:

vk = ProjK
� 1
µ
rg(xk) +

1

µ(1� 1
K )K�k�1

`
�
.

In many cases, such projection could be computed in
linear time O(n) (Brucker, 1984; Pardalos and Kovoor,
1990), e.g., for K = {x 2 Rn : 1Tx  1, 0 � x � 1}.
Algorithm 3.1 is di↵erent from the Frank-Wolfe variant
of Bian et al. (2017) in two important aspects:
1) At step k 2 {0, . . . ,K � 1}, Algorithm 3.1 is applied
to the function (1 �

1
K )K�k�1

g(·) + h`, ·i (instead of
f(·) = g(·) + h`, ·i),
2) The linear maximization step for computing {vk}

K�1
k=0

in the Frank-Wolfe variant of Bian et al. (2017) is
replaced by a strongly concave maximization problem.
Modification 1 is inspired by a similar idea in Feldman
(2021) where they provided an algorithm for the setting
where the objective function is the multilinear extension
of a submodular set function (µ = 0) and obtained
a 1 �

cf
e approximation ratio for the problem. They

also proved matching negative results showing that
no polynomial time algorithm can perform better in
terms of the approximation ratio. The same upper
bound applies to our framework as well. However, the
additional strong DR-submodularity of f allows for a
faster convergence to (1 �

cf
e )OPT. We provide the

approximation guarantee of Algorithm 3.1 below.

Theorem 3.1. Let f : K ! R, K ⇢ Rn
+ and 0 2 K,

be a normalized, monotone, µ-strongly DR-submodular

and L-smooth function. If we set K = d
L
µ e, the

output of Algorithm 3.1 has the following performance

guarantee:

f(x) � (1�
cf

e
)f(x⇤),

where x
⇤ = argmaxx2K f(x).

Proof. Define g(x) = f(x) � `
T
x where for all i 2 [n],

`i = minx rif(x). Note that similar to f , g is also a

Algorithm 3.1. SDRFW

Input: Convex set K with 0 2 K, L-smooth and µ-
strongly DR-submodular f , g(·) = f(·)� h`, ·i where
for all i 2 [n], `i = minx rif(x), K > 0.
Set x0 = 0.
for k = 0 to K � 1 do

Set vk = argmaxx2Kh(1�
1
K )K�k�1

rg(xk)+`, xi�

µ(1� 1
K )K�k�1

2 kxk
2.

xk+1 = xk + 1
K vk.

end for

Output: x = xK .

normalized, monotone, µ-strongly DR-submodular and
L-smooth function. For instance, in order to verify the
µ-strong concavity of g along non-negative directions
(which will be used in the proof), for all x 2 K and
v ⌫ 0 or v � 0, we can write:

g(x+ v) = f(x+ v)� h`, x+ vi

 f(x) + hrf(x), vi �
µ

2
kvk

2
� h`, x+ vi

= f(x)� h`, xi| {z }
=g(x)

+hrf(x)� `| {z }
=rg(x)

, vi �
µ

2
kvk

2

= g(x) + hrg(x), vi �
µ

2
kvk

2
,

where the inequality uses the µ-strong DR-
submodularity of f . Therefore, g is µ-strongly
concave along non-negative directions.
Now, we move on to prove the theorem. For all k 2

{0, . . . ,K � 1}, we can write:

g(xk+1) � g(xk) +
1

K
hrg(xk), vki �

L

2K2
kvkk

2
.

Rearranging the terms, we have:

(3.1) g(xk+1)� g(xk) �
1

K
hrg(xk), vki �

L

2K2
kvkk

2
.

For all k 2 {0, . . . ,K}, define the function �(k) as
follows:

�(k) = (1�
1

K
)K�k

g(xk) + h`, xki.
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For a fixed k 2 {0, . . . ,K � 1}, we have:

K
�
�(k + 1)� �(k)

�

= K(1�
1

K
)K�k�1

g(xk+1)�K(1�
1

K
)K�k

g(xk) + h`, vki

=
(1� 1

K )K�k�1
�
g(xk+1)� g(xk)

�

1/K

+ (1�
1

K
)K�k�1

g(xk) + h`, vki

(a)
�

(1� 1
K )K�k�1

�
1/Khrg(xk), vki � Lkvkk

2
/2K2

�

1/K

+ (1�
1

K
)K�k�1

g(xk) + h`, vki

= (1�
1

K
)K�k�1

�
hrg(xk), vki �

L

2K
kvkk

2
�

+ (1�
1

K
)K�k�1

g(xk) + h`, vki

= h(1�
1

K
)K�k�1

rg(xk) + `, vki

� (1�
1

K
)K�k�1 L

2K
kvkk

2 + (1�
1

K
)K�k�1

g(xk)

(b)
� (1�

1

K
)K�k�1

hrg(xk), x
⇤
i+ h`, x

⇤
i

+
µ(1� 1

K )K�k�1

2
kvkk

2
�

µ(1� 1
K )K�k�1

2
kx

⇤
k
2

� (1�
1

K
)K�k�1 L

2K
kvkk

2 + (1�
1

K
)K�k�1

g(xk),

where (a) follows from inequality 3.1 and (b) is due to
the update rule of the SDRFW algorithm for vk. We
can use the monotonicity and strong DR-submodularity
of g respectively to write:

g(x⇤)� g(xk)  g(x⇤ + xk)� g(xk)

 hrg(xk), x
⇤
i �

µ

2
kx

⇤
k
2
.

Putting the above two inequalities together, we have:

K
�
�(k + 1)� �(k)

�

� (1�
1

K
)K�k�1

�
g(x⇤)� g(xk) +

µ

2
kx

⇤
k
2
�
+ h`, x

⇤
i

+
µ(1� 1

K )K�k�1

2
kvkk

2
�

µ(1� 1
K )K�k�1

2
kx

⇤
k
2

� (1�
1

K
)K�k�1 L

2K
kvkk

2 + (1�
1

K
)K�k�1

g(xk)

= (1�
1

K
)K�k�1

g(x⇤) + h`, x
⇤
i

+ (1�
1

K
)K�k�1

�µ
2
�

L

2K

�
kvkk

2

Therefore, if we set K = d
L
µ e and divide both sides by

K, we obtain:

�(k + 1)� �(k) �
1

K
(1�

1

K
)K�k�1

g(x⇤) +
1

K
h`, x

⇤
i.

Applying the inequality for all k 2 {0, . . . ,K � 1} and
taking the sum, we have:

f(xK) = g(xK) + h`, xKi

= �(K)� �(0)

�
� 1

K

K�1X

k=0

(1�
1

K
)K�k�1

�
g(x⇤) + h`, x

⇤
i

=
� 1

K

1� (1� 1
K )K

1/K

�
g(x⇤) + h`, x

⇤
i

� (1�
1

e
)g(x⇤) + h`, x

⇤
i,

where the last inequality uses (1� 1
K )K 

1
e . Therefore,

f(x) � (1� 1
e )g(x

⇤) + h`, x
⇤
i holds.

Using the mean value theorem and considering that
f(0) = 0, we have f(x⇤) =

Pn
i=1 rif(tx⇤)x⇤

i where
t 2 [0, 1]. Therefore, we can use the definition of ` and
the curvature to write:

`
T
x
⇤ =

nX

i=1

`ix
⇤
i � (1�cf )

nX

i=1

rif(tx
⇤)x⇤

i = (1�cf )f(x
⇤).

Putting the above inequalities together, we have:

f(x) � (1�
1

e
)g(x⇤) + `

T
x
⇤

= (1�
1

e
)f(x⇤)� (1�

1

e
)`Tx⇤ + `

T
x
⇤

= (1�
1

e
)f(x⇤) +

1

e
`
T
x
⇤

� (1�
1

e
)f(x⇤) +

1� cf

e
f(x⇤)

= (1�
cf

e
)f(x⇤).

In comparison, the Frank-Wolfe variant of Bian et al.
(2017) obtains the approximation guarantee f(x) �

(1 �
1
e )f(x

⇤) � LR2

2K where R = maxx,y2K ky � xk is
the diameter of K. Therefore, Algorithm 3.1 has an
improved approximation ratio for objective functions f
with curvature cf < 1 and its guarantee does not dete-
riorate as the diameter of K becomes larger. Intuitively,
for K chosen large enough (i.e., K �

L
µ ) in the analysis

of Algorithm 3.1, the �LR2

2K term is cancelled with a pos-
itive term resulting from µ-strong DR-submodularity of
the objective function.
We need to know the smoothness parameter L and the
strong DR-submodularity parameter µ to setK in Algo-
rithm 3.1. For µ-strongly DR-submodular functions, if
we run Algorithm 3.1 with µ̂ instead of µ, the algorithm
obtains the same guarantee as long as µ̂  µ. In

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited174

D
ow

nl
oa

de
d 

08
/2

0/
23

 to
 1

72
.5

6.
10

4.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Algorithm 3.2. PGA

Input: Convex set K, x1 2 K, L-smooth and µ-
strongly DR-submodular f , K > 0.
for k = 1 to K do

Set xk+1 = ProjK
�
xk + 1

Lrf(xk)
�
.

end for

Output: x = xK+1.

order to compute such a lower bound, one can inves-
tigate the diagonal entries of the Hessian matrix. In
Section 5, we show how to compute L e�ciently using
convex optimization tools.

4 Projected Gradient Ascent (PGA) algorithm

In this section, we study the well-known Projected
Gradient Ascent (PGA) method for strongly DR-
submodular maximization with bounded curvature.
The PGA algorithm is provided in Algorithm 3.2 (Nes-
terov, 2003). Given an initial point x1 2 K, PGA itera-
tively applies the update xk+1 = ProjK

�
xk+

1
Lrf(xk)

�
.

In other words, at each iteration k 2 [K], the current
iterate xk is updated by adding 1

Lrf(xk) and the re-
sulting point is then projected back to the constraint set
K. The algorithm outputs the final iterate x = xK+1.
Unlike the SDRFW algorithm, PGA does not require to
start from the origin and for any feasible initial point
x1 2 K, PGA still converges to a competitive solution.
However, as we will soon see in the result of Theorem
4.1, the rate of convergence depends on the distance be-
tween the initial point x1 and the optimal point x⇤.
We first provide a key lemma below that is used in the
analysis of Algorithm 3.2.

Lemma 4.1. For any x, z 2 K, if f is a non-negative

monotone µ-strongly DR-submodular function with cur-

vature cf , we have:

f(z)� (1 + cf )f(x)  hrf(x), z � xi �
µ

2
kz � xk

2
.

Proof. Let u = x_ z and w = x^ z. Using the µ-strong
DR-submodularity property of f , we can write:

f(u)� f(x)  hrf(x), u� xi �
µ

2
ku� xk

2
,

f(w)� f(x)  hrf(x), w � xi �
µ

2
kw � xk

2
.

Taking the sum of the two inequalities and using the
fact that u+ w = x+ z, we have:

(4.1) f(u)+f(w)�2f(x)  hrf(x), z�xi�
µ

2
kz�xk

2
.

Using the mean value theorem, we can write:

f(u)� f(z) =

Z 1

0
hu� z,rf

�
z + t(u� z)

�
idt,

f(w)� f(x) =

Z 1

0
hw � x,rf

�
w + t(x� w)

�
idt.

Given that x � w = u � z and rif
�
z + t(u � z)

�
�

(1� cf )rif
�
w + t(x� w)

�
holds for all i 2 [n], we can

bound the first inequality as follows:

f(u)� f(z) � �(1� cf )

Z 1

0
hw � x,rf

�
w + t(x� w)

�
idt

= �(1� cf )
�
f(w)� f(x)

�
.

Equivalently, we can write:

(4.2) f(u) + f(w) � f(z) + (1� cf )f(x) + cff(w).

Combining the inequalities 4.1 and 4.2, we conclude:

f(z)�(1+cf )f(x)+cff(w)  hrf(x), z�xi�
µ

2
kz�xk

2
.

Given that cf 2 [0, 1] and f is non-negative, we can
drop the term cff(w) and derive the result as stated.

We can now exploit the result of Lemma 4.1 to obtain
the approximation guarantee of the PGA algorithm.

Theorem 4.1. If f is a monotone, µ-strongly DR-

submodular and L-smooth function, PGA obtains the

following approximation guarantee:

f(x) �
1

1 + cf
f(x⇤)�

e
�µK/L

1 + cf

�
f(x⇤)� (1 + cf )f(x1)

�
.

Moreover, for the DR-submodular setting (µ = 0), the
utility of the output of the PGA algorithm is bounded as

follows:

f(x) �
1

1 + cf
f(x⇤)�

L

2K(1 + cf )
kx1 � x

⇤
k
2
.

Hassani et al. (2017) analyzed the PGA method in
the DR-submodular setting (µ = 0) and proved that

f(x) �
1
2f(x

⇤) �
LR2

2K . In comparison, thanks to
Lemma 4.1, we obtain an improved 1

1+cf
approximation

ratio with a similar sub-linear convergence rate in the
DR-submodular setting. Moreover, if f is µ-strongly
DR-submodular, Theorem 4.1 shows that the 1

1+cf
approximation ratio could be achieved at a faster linear
convergence rate. Furthermore, if cf <

1
e�1 ⇡ 0.58, the

1
1+cf

approximation ratio obtained in Theorem 4.1 is
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Algorithm 4.1. OGA

Input: Convex set K, x1 2 K, L-smooth and µ-
strongly DR-submodular {ft}Tt=1, {⌘t}

T
t=1.

Output: {xt}
T
t=1.

for t = 1 to T do

Play xt and receive the reward ft(xt).
Set xt+1 = ProjK

�
xt + ⌘trft(xt)

�
.

end for

larger than the 1� 1
e approximation ratio guaranteed by

the Frank-Wolfe variant of Bian et al. (2017). However,
1

1+cf
 1 �

cf
e always holds, i.e., the approximation

ratio of the SDRFW algorithm is greater than that of
the PGA algorithm.

4.1 Online setting We can also use Lemma 4.1 to
obtain improved regret bounds in the online setting for
the Online Gradient Ascent (OGA) algorithm. To be
precise, consider the following online optimization pro-
tocol: A convex constraint set K with diameter R is
given. At each iteration t 2 [T ], the online algorithm
first chooses an action xt 2 K. Upon committing to this
choice, a monotone (strongly) DR-submodular function
ft : K ! R, K ⇢ Rn

+, is revealed and the algorithm
receives the reward ft(xt). The goal is to maximize the
total obtained reward or equivalently minimize the ↵-
regret ↵-RT = ↵maxx2K

PT
t=1 ft(x)�

PT
t=1 ft(xt), i.e.,

the di↵erence between the cumulative reward of the al-
gorithm and the ↵ approximation to that of the best
fixed decision in hindsight where ↵ 2 (0, 1].
The Online Gradient Ascent (OGA) algorithm is pro-
vided in Algorithm 4.1. OGA is the online counterpart
of the PGA algorithm for the o✏ine setting. Starting
from an arbitrary initial point x1 2 K, for all t 2 [T�1],
OGA uses the update xt+1 = ProjK

�
xt + ⌘trft(xt)

�

to obtain the next iterate xt+1, where ⌘t > 0 is the
step size. Chen et al. (2018) analyzed the OGA al-
gorithm in the DR-submodular setting (µ = 0) and
provided O(

p
T ) bounds for the 1

2 -regret of the algo-
rithm. Using Lemma 4.1, we can obtain improved
O(

p
T ) and O(lnT ) ( 1

1+c )-regret bounds in the DR-
submodular and strongly DR-submodular settings re-
spectively where c = maxt2[T ] cft . This result is stated
in the theorem below.

Theorem 4.2. Assume that the functions {ft}
T
t=1

are all monotone, �-Lipschitz and µ-strongly DR-

submodular. If for all t 2 [T ], we set ⌘t = 1
µt , the

OGA algorithm has the following ( 1
1+c )-regret bound.

1

1 + c

TX

t=1

ft(x
⇤)�

TX

t=1

ft(xt) 
�
2

2µ(1 + c)
(1 + lnT ),

where x
⇤ = argmaxx2K

PT
t=1 ft(x). Moreover, in the

DR-submodular setting (µ = 0), if we set ⌘t = ⌘ =
R

�
p
T

8t 2 [T ], the ( 1
1+c )-regret of the algorithm is

bounded as follows:

1

1 + c

TX

t=1

ft(x
⇤)�

TX

t=1

ft(xt) 
R�

1 + c

p

T .

For the online monotone DR-submodular maximization
problem with bounded curvature, the only prior study
was done by Harvey et al. (2020) where the authors
proposed an algorithm for the special setting where the
DR-submodular functions {ft}

T
t=1 are the multilinear

extensions of corresponding submodular set functions
{Ft}

T
t=1 and they showed that the algorithm obtains an

O(
p
T ) (1� c

e �✏)-regret bound with n2

✏ projections per
iteration. In comparison, while the approximation ratio
in Theorem 4.2 is slightly worse, Algorithm 4.1 performs
only a single projection per step (hence a significantly
lower computational complexity) and its logarithmic
regret bound is superior in the strongly DR-submodular
setting.

5 Computing the smoothness parameter

Both the SDRFW and PGA algorithms require knowl-
edge of the smoothness parameter L of the objective
function to be implemented. In this section, we show
how computing L of a twice di↵erentiable µ-strongly
DR-submodular objective function f (µ � 0) could be
formulated as a convex optimization problem that could
be solved e�ciently prior to running the algorithms.
Given that our technique applies to the DR-submodular
setting (i.e., µ = 0) as well, the results of this section
are useful for the proposed algorithms in prior works
for DR-submodular maximization. In particular, while
Hassani et al. (2017) chose the step size of (stochas-
tic) PGA as a function of the smoothness parameter L
to obtain the theoretical approximation guarantees in
their work, they mentioned that estimating L is di�-
cult in general and poses a challenge for implementa-
tion. Therefore, they suggested an alternative adaptive
step size rule (as a function of the iteration number)
with no theoretical performance guarantees in their ex-
periments. This section precisely addresses the afore-
mentioned challenge.
As we defined smoothness earlier in Section 2, we need
to find a constant L > 0 such that for all x 2 K, the
smallest eigenvalue of r2

f(x) is lower bounded by �L,
i.e., r2

f(x) ⌫ �LI. This is equivalent to finding L > 0
such that the largest eigenvalue of �r

2
f is uniformly

upper bounded by L everywhere. Given that f is µ-
strongly DR-submodular, �r

2
f is an element-wise non-

negative matrix. The Perron-Frobenius theorem (Horn
and Johnson, 2012, Theorem 8.4.4) states that if �r

2
f
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is irreducible, i.e., the matrix (I �r
2
f)n�1 is element-

wise positive, �r
2
f has a positive real eigenvalue �pf

equal to its spectral radius (which is the largest mag-
nitude of its eigenvalues) and an entry-wise positive
eigenvector vpf � 0 corresponding to �pf and there-
fore, we can set L = �pf . In order to check irreducibil-
ity of the symmetric matrix �r

2
f , we can associate

with it an undirected graph G with n vertices labeled
{1, . . . , n} where there is an edge between vertices i and
j if �r

2
ijf = �r

2
jif � 0. �r

2
f is irreducible if and

only if its associated graph G is connected. Accord-
ing to a result in the theory of non-negative matrices,
the Perron-Frobenius eigenvalue is the solution of the
following optimization problem:

(5.1)
minimize �

subject to
Pn

j=1 �r
2
ijf(x)vj  �vi 8i 2 [n],

where the variables are x � 0, v � 0 and � > 0. We
show how the above problem could be transformed to a
convex optimization problem in many cases.
A function h : Rn

++ ! R defined as h(x) = cx
a1
1 . . . x

an
n ,

where c > 0 and ai 2 R 8i 2 [n], is called a monomial. A
sum of m monomials, i.e., a function of the form h(x) =Pm

s=1 csx
a1s
1 . . . x

ans
n where cs > 0 8s 2 [m] and ais 2

R 8i 2 [n], s 2 [m], is called a posynomial. Consider the
following optimization problem with variable x 2 Rn

++:

minimize h0(x)
subject to h1i(x)  1 8i 2 [n]

h2j(x) = 1 8j 2 [p].

If h0, h11, h12, . . . , h1n are posynomials and h21, . . . , h2p

are monomials, the above problem is called a Geometric
Program (GP). While GPs are not generally convex
optimization problems, they can be transformed to
convex problems (see Boyd and Vandenberghe (2004,
Section 4.5.3) for details).
For all i 2 [n], we can rewrite the constraints of problem
(5.1) in the following equivalent way:

(��1
v
�1
i )

nX

j=1

�r
2
ijf(x)vj  1.

If the non-zero entries of �r
2
f(x) are posynomial

functions of the variable x, the constraints of problem
(5.1) are posynomial inequalities and therefore, the
optimization problem for computing the smoothness
parameter L = �pf can be expressed as a GP.
As an example, consider the problem of computing
the stability number of an undirected graph G with
adjacency matrix A where f(x) = x

T (�A� I)x+21Tx
(introduced in Section 1) . Without loss of generality,
assume that G is connected (otherwise, we can consider

Figure 1: Comparison of algorithms for a class of
strongly DR-submodular quadratic functions.

each connected component of G separately and use the
fact that the stability number of a graph equals the
sum of stability numbers of its connected components).
Since G is connected, �r

2
f(x) = 2A + 2I is an entry-

wise non-negative and irreducible matrix and therefore,
computing the smoothness parameter L of f could be
formulated as a GP.
More generally, consider the class of concave functions
with negative dependence. Let d � 2. If hi : R+ ! R
is µ-strongly concave for all i 2 [n] and ✓i1,...,ir  0 for
all r 2 [d] and (i1, . . . , ir) ✓ [n], the following function
f : Rn

+ ! R is µ-strongly DR-submodular:

f(x) =
nX

i=1

hi(xi) +
X

(i,j):i 6=j

✓ijxixj + . . .

+
X

(i1,...,id):ir 6=is 8r,s2[d]

✓i1,...,idxi1 . . . xid .

It is easy to see that all o↵-diagonal entries of �r
2
f(x)

are posynomials. If for all i 2 [n], �h
00
i (xi) is a

posynomial as well, the smoothness parameter of f

could be computed as the solution of a GP.

6 Numerical examples

For the first experiment, we set n = 25 and chose
K = {x 2 Rn : 1Tx  s, 0 � x � 1}. We considered
the class of indefinite quadratic functions and defined
f(x) = ( 12x � 1)THx, where H 2 Rn⇥n is a matrix

4

5

6

7 8

9

10

3

1

2

Figure 2: Graph G with n = 10 used in Experiment 2
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(a) (b)

Figure 3: Computing the stability number s(G) for a graph G with (a) n = 10 vertices and s(G) = 4, (b) n = 1024
vertices and s(G) = 196.

whose entries are uniformly distributed in the range
[�10,�5]. Therefore, µ = 5 in this setting. We
computed L using the technique described in Section 5
and set K = d

L
µ e. We ran Algorithm 3.1, Frank-Wolfe

variant of Bian et al. (2017) and PGA for K iterations
using di↵erent values of s in the range [2, 20] (using
x1 = 0 for PGA) and plotted the utility of the output of
all three algorithms in each setting. The plot is depicted
in Figure 1. This plot shows that Algorithm 3.1 obtains
slightly higher utilities, followed by PGA and the Frank-
Wolfe variant of Bian et al. (2017).
As the second experiment, we studied the problem of
computing the stability number s(G) for two graphs.
The first graph is provided in Figure 2. It is easy
to see that s(G) = 4 for this graph (e.g., vertices
{3, 5, 6, 8} form a maximum stable set of G). As it
was mentioned earlier in Section 1, we set K = {x 2

Rn : 1Tx = 1, xi � 0 8i 2 [n]} where n = 10. Also,
we defined f(x) = x

T (�A � I)x + 21Tx and using the
formula s(G)�1 = 2 � maxx2K f(x), we set 1

2�f(x) as
the estimate of the stability number at x 2 K. Since
all the diagonal entries of r2

f(·) are equal to �2, we
have µ = 2. We also computed L using the method
presented in Section 5. We ran PGA for this problem
and plotted 1

2�f(xk)
versus the iteration number k in

Figure 3(a). As the plot shows, PGA converges to the
optimal value 4 after only 10 iterations. As the second
example, we considered a graph with n = 1024 vertices
from https://oeis.org/A265032/a265032.html that
contains a collection of graph instances commonly used
in coding theory. Using an algorithm with a running
time of 200 hours, Niskanen and Österg̊ard (2003)
managed to show that the stability number of this graph
is 196. The performance of PGA for this problem is
plotted in Figure 3(b). The algorithm converges to the
value 182 as the estimate of the stability number and

therefore, the performance of PGA for this problem is
significantly better than the approximation guarantee
proved in Theorem 4.1. Note that the domain in the
second experiment does not contain the origin and thus,
Algorithm 3.1 is not applicable to this problem.

7 Conclusion and future work

In this paper, we considered the class of monotone,
smooth and strongly DR-submodular functions with
bounded curvature and we proposed a number of first-
order gradient methods for this problem along with their
approximation guarantees and convergence rates.
This work could be extended in a number of directions.
Throughout this paper, we assumed that we have access
to the exact gradient of the objective function. However,
in many applications, it is di�cult to compute the gradi-
ent exactly, but an unbiased estimate of the gradient can
be easily obtained. It is interesting to study stochastic
gradient methods for this setting and provide perfor-
mance guarantees. Secondly, we introduced the class of
strongly DR-submodular functions with respect to the
norm k · k2. As we showed in Lemma 2.1, strongly DR-
submodular functions are strongly concave along non-
negative directions with respect to k ·k2. This definition
could be easily extended to other norms as well. For in-
stance, a twice di↵erentiable function f is µ-strongly
DR-submodular with respect to the norm k · k1 if all
entries of the Hessian r

2
f(x) are upper bounded by

�µ for all x. Similarly, while the smoothness of f over
the domain K was defined with respect to the Euclidean
norm, in some cases, f and K are not well-behaved in
the k ·k2 norm and L scales with the ambient dimension
n leading to slower convergence rates for our proposed
algorithms in large-scale applications. In such cases, one
can study mirror ascent methods that are designed to
adapt to smoothness in general norms.
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